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Criterion based Two Dimensional Protein
Folding Using Extended GA

T. Kalai Chelvi, P.Rangarajan

Abstract— In the dynamite field of biological and ptein
research, the protein fold recognition for long gatn protein
sequences is a great confrontation for many yeaw§ith that
consideration, this paper contributes to the prateifolding
research field and presents a novel procedure forpping
appropriate protein structure to its correct 2D fbby a concrete
model using swarm intelligence. Moreover,
incorporates Extended Genetic Algorithm (EGA) with corded
Markov model (CMM) for effectively folding the proie
sequences that are having long chain lengths. Theotpin
sequences are preprocessed, classified and themlyaed with
some parameters (criterion) such as fitness, simtla and
sequence gaps for optimal formation of protein sttures. Fitness
correlation is evaluated for the determination 0bhding strength
of molecules, thereby involves in efficient foldamgnition task.
Experimental results have shown that the proposed moeit is
more adept in 2D protein folding and outperformsehexisting
algorithms.

Index Terms— classification, CMM, criterion analysiEGA,
protein folding, sequence gaps
I. INTRODUCTION

Extensively, protein folding is the method by @lha protein
structure deduces its functional conformation. st are

folded and held bonded by several forms of molecula

interactions. Those interactions include the thelynamic
constancy of the complex structure, hydrophobierattions
and the disulphide binders that are formed in jmeteThe
folded state of protein is defined as the compadt@dered
structure, whereas the unfolded state is subslgntess
ordered and significantly larger. The mode in whibiis
myriad of unsystematic folds of comparable confdrome is
a complex issue that still remains.

The primary structure of a protein is given by litsear
sequence of amino acids and the position of diilfionds.
Protein fold recognition is a substantial approchtructure
detection that may rely on sequence similarity [A]other
words, protein structure prediction is defined d® t
determination of tertiary protein structure by wgsithe
information of its primary structures [8]. Theresdgbed that
there are two important issues in protein strucpuesliction.
The first issue is designing a structure modeltardsecond is
the design of optimal technology. While consideratgput
structure model, Amino acids are the building bkak
proteins and that is defined as the molecule costanh amine
and carboxile groups. Depending upon the structsizs,
electric charge and solubility constraints of amaeid side
chains, they can be classified under either hydsbjzhor
hydrophilic. The hydrophobic and hydrophilic casalbe
termed as the residues of proteins. The energyrdigiation
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for protein structure model is based on the cogntihevery
two hydrophobic residues that are non-successivéhén
protein sequence and adjacent neighbors on thieeldit].

Figure 1 reveals the sample protein residue chamemergy
-4. The white square presents hydrophilic residuele the
black represents the hydrophobic. The solid lingicie the

the modelProtein sequences, whereas the dashed line idEntifi

hydrophobic-hydrophobic (HH) contacts. HH interans
can be stated into two types namely, Connectedd¥d@ént
Bond) and non-connected H (non-Covalent Bond).

On the other hand, computational examination ofolgical
data acquired in genome sequencing is essentiathior
assimilation of cellular functions and the innowatiof new
therapies and drugs. Sequence-sequence
sequence-structure discrimination play a criticalerin
portending a possible function for new sequenceguénce
positioning is accurate in the discovery of relaslips
between proteins [22].

and

B
L

Figure 1: Sample Protein Chain
In general, proteins have various levels of stnggtwhich are
described as follows [1]:
1. Primary structure: It is defined as linear stiue
determined wholly by the number, sequence, and tfpe
amino acid residues.
2. Secondary structure: It is the local structuetedmined by
hydrogen bonding between the amino acids and néar-po
interactions between hydrophobic regions.
3. Tertiary structure: This structure is formedhatthe results
of various interactions such as hydrophobic ativast
hydrogen bonding, and disulfide bonding of the anaioils
side chains.
4. Quaternary structure: It is determined by theraction of
two or more individual polypeptides (often via dfile
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formation in order to produce fast and consideraigurate
solutions in complex pattern
problems. Swarm intelligence (Sl) is defined asdabiéective
behavior of decentralized and self-organized natara
artificial systems. The bases of evolutionary athans are
employed with artificial intelligence and there hribt follow
any centralized control structure. S| algorithms explored
to perform some bioinformatics tasks like microagrdata
clustering, multiple sequence alignment and prog&incture
prediction. It is conspicuous that proteins cankatogether
to attain a particular function and often form &ab
complexes. This feature is correlated with the edncof
evolutionary algorithms and induces in protein fioid
mechanism. Typically, in protein folding, it invas in
predicting the structures of long sequences [16].

In the proposed work, the protein structures aassified
using Bayesian approach and analyzed with the paeam
such as fithess correlation, sequence gaps, ideatit
similarity. The fithess value should be consideydtiyh and
the sequence gaps should be significantly reducefdrin
efficient folding. The main intent of this paperndsproduce
two dimensional protein folding rather than 3D. MAXN
parameters of Sl are highly considered for 2D pndtdding.
They signify the exponent of the pheromone leveld the
heuristic measures in the random proportional
respectively and involves in emphasizing the déferes
between the arcs. Extended genetic algorithm imdthfor
2D folding of long protein sequences with targatdss and
sequence length. The adduced work provides a framkeiar
2D protein folding using the adept conceits in ecnanner.

The remainder of this paper is organized as foll@&estion
2 provides a deliberation on the related work. i8acB8
presents the system architecture and design with
implementation of the affirmed system. Sectiondspnts the
experimental results and Section 5 concludes tperpaith
pointers to future work.

Il. RELATED WORKS

Myriad researches have been made protein strueiue
protein folding prediction. Here, some of the wortkeat
induced this research is summarized. There wasdg about
the folding problems with the incorporation of nauoti
planning technique [6]. The paper composed PR
(Probabilistic Roadmap Method) since it producettelbe
results in exploring high-dimensional configurat&paces in
protein folding. The paper [14] was discussed ahkibet
high-level simulation approach that manages themitad
interactions between all atoms present in the aatids. The
work was focused on predicting tree dimensionaiveat
conformation of protein. Concurrent constraint pesgming
was induced with the simulation based techniquee8pimit
of protein folding was analyzed in [17]. Approxirabt, the
speed limit of protein folding for a generic N-mse¢ single
domain protein was given as N/100 us, both in tteal and

experimental approaches. The paper also stated othat®

proteins folding is faster thghor o protein folding. There
was also a discussion about the theoretical appesdaor the
determination of protein folding speed limit suchRolymer

utiized to obtain scalable speedups. Guided Geneti

recognition and searchlgorithm was presented in [3] for protein foldipgediction

in two dimensional Hydrophobic-Hydrophilic (HP). &h
shape of H-core was given for effective boundary
determination. New operators such as diagonal raodetilt
move were included to form the core boundary. Vifitit,
possible sub conformation layers are determinedrio the
HP mixed layer. Generally, the proteins folding of
consecutive chain of aminoacids provide a 3D sfinect 2D
HP model is applied to achieve this structure. mieehanism
could be extended with the analysis of some additio
parameters. In addition to that, the paper [5] @&xeld about
the inverse protein folding problem on 2D and 3Bidas
using the Canonical model. Shifted slice and digere@ach
was also incorporated to design a polynomial time
approximation scheme that solves the inverse préoiling
problems and paves a way to analyze the protedstapes.
Moreover, in protein structure prediction problelattice
model had been utilized for effective folding metisan. The
FCC (Face-Centred-Cube) HP lattice model provides t
most compact core and that could map closest tdotbed
protein [10]. Hybrid Genetic Algorithm that suppo”quare
and cube lattice model was adopted for framing3the=CC
model. The authors have produced optimum confoonati

rulerossover and mutation in 3D, whereas our focumi®D

protein folding. A different method for approprigbeotein
folding has been given in [7]. According to that, low
resolution model, twin removal from the geneticaaithm
population provided a great impact on effective
conformational searching. Since twins cause a @ojoul to
lose diversity and resulting in both the ineffetta@ssover
and mutation operations. The HP model given inghper
afated that for an aminoacid sequence S of lengtithé&l
protein sequence prediction involves in finding
conformation g, where,

g* € 6(5) andE* = E(G)

As far as the protein folding is concerned, HP nhqdiys a
substantial role and many researchers focused ain The
paper [11] measured the protein structural sintildrased on
the HP forces. The paper described that aminoaoidsined
within a k-sized sub-conformation and developed two
algorithms namely HP sub-conformation similaritggiction

the

§lgorithm and HP shape analysis algorithm.

On the other hand, a review paper [13] describealitathe
evolutionary algorithms involved in protein foldimgoblem
and their current trends. The authors definedttir@proteins
are complex macro molecules that accomplish vitatfion
in living organisms. While constructing the protsinucture,
it must have the following features, according fue t
computational model.
A model of protein must be defined by a set oftersi
representing atoms and their interactions.
* Asetofrulesthat are defining the possible conftions
of protein should be included.
A computationally feasible function should be camta
for evaluating the free-residue of each possible
conformation.
The paper also examined about the computational

Collapse Theory and Kramer's Theory of unimoleculagPproaches such as molecular dynamics, approximatio

reaction rates.

STAPL (the Standard Template Adaptive Parallel &y
was adopted for parallel protein folding [20]. Thaper
comprised roadmap analysis, potential energy caticuls to
achieve effective parallel folding. Sequential codeere
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algorithms, genetic algorithms, encoding, fitnesscfions,
Ant Colony Optimization (ACO), etc., for proteinlding.
Following that, the paper [21] an algorithm callegbrid
population based ACO algorithm for protein folding
problems. With the base of ACO, the approach cemsitithe
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pheromone information that stores information aluetter
solutions and transferred from an iteration of phecess to
the next. Another approach for protein folding lsasa BCO
(Bacteria Chemotaxis Optimization) was developed 2D
protein folding using lattice model. Foraging bebavof
bacteria has taken into the account for framingrbeel. The
algorithm has been applied effectively for proteiith small
chain and become ineffectual on
sequences. An EDA (Estimation of Distribution Aliglom)
based method for protein folding was given in [15he
algorithm replaced the traditional fithess functioh HP
model with the composite fitness function to enleative

long chain proteiarder
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Apparently, the elementary process of the proposed
methodology is to obtain the protein sequences flamge
repositories. Those sequences may often diffetsiramino
acids chain length. Perhaps, there is a possihiftythe
occurrence of erroneous identified interactions poténtial
false positives. Hence, the protein interactionsioled from
the database needs to be re-affirmed by prepraoceshki
to further proceed from the acquired protein
interactions, preprocessing of amino acid sequerioes
classification is much substantial. It normaliZes sequences
having variant lengths, eliminate suspect edges fafs®
interactions. In such a way that the enriched [mstequences

prediction performance. Furthermore, a set of glideare obtained and transformed for further procedteda

operators have been used to increase the divekiGA
population. Backtracking mechanism also invokedetgair
for operating with long sequence protein
Nonetheless, the proposal was not appropriateddpRling.

classification.

3.1 Domain based Classification
The process involves in grouping of protein seqadnto

instances.

A novel tensor based method was introduced fdfS related domains such as Myoglobin, T4-Lysozyemnel

performing a Spatio-temporal analysis of proteitdifig
pathways [18]. The resultant of the approach reab#iree
regions of protein depicted similar and collectat&ributes
across multiple simulations, and also representddable
dynamic invariants in the protein folding proce3ssides, in
order to avoid the conformational

H-RAS etc. Modified Bayesian classification methsdised
here, which greatly supports better understandimppaiedict
the structure of proteins. In that, estimatiobased on both
the number and content of classes. Moreover, thihade
involves in maximizing the net information gain&gch class

deformities  within the potential classification is described byeadf attribute

hydrophilic residues, an extended HP model has beg}an and variances. Regarding the adduced Bayesian

developed [19]. The conventional HP lattice modeljued
high degeneracy and that would be extended with BGiCe
configuration, which provides closest resemblarfdb®real
folded 3D protein instance. The results could berated
with further enhancements of the algorithm.

Perhaps, the crossover operators of GA resultéuvalid
conformations [12]. While combining that with DF&efth
first search), the potential pathways were reveafetinvalid
crossover were turned into valid. Random conforomesti
were often applied for maintaining the diversityde The
paper directed its enhancement with the exploratién
biological significances. Another work in [9], inttuced
ABC (Artificial Bee Colony) optimization for 2D ptein
folding by applying it to HP lattice model. Theiedility of
the process could be further improved by bandingneso
efficient conceits.

. PROPOSED WORK

Folding of protein is an intricate and abstruse lmaacsm.
While solving protein folding prediction, the prageal work
incorporates Extended Genetic Algorithm with comeda
markov model. The main goal is to ascertain theégimdold

classification, data are defined by the probabdistribution.
Probability is calculated that the data elementi$®d member
of classes C, where C={,Cq, a0, Gy}

_ _ Bgl4al

F[:fl S C] E—gm 1)(

WhereP.{A4] is the given as the density of the class C
evaluated at each data element. Prior probabistyalso
determined that a class described by a specifiofsiimains
(d) exists. It is responsible to measure the releyaate of the
required sequences categorized under a partidalss.c

While applying Bayesian classification process, the
probability of the domains (d) and scores (s) séquence is
maximized. When the probability of the applied adé
constant, the Modified Bayesian classification gsel

PisdlPid|sd
P(s,dlA) = o) ) (2)

This is achieved based on the theory of finite omiss. It
means that, the observed distribution has beenrdfilom a
population that consists of a number of distincdsses.
Correlation between the structural classification @mino
acid sequence is optimally used to verify the diasgion
accuracy.

by conceding both the amino acid sequences and the; o concealed Markov Model (CMM)

secondary structure of protein. The amalgamatiorthef
structural and sequential information of proteins
accomplished by the concealed markov model. Mongov
sequence is made with modified Bayesian classifinat
method based on domains. Optimization has been wiihe
the examination of protein sequence parameters sasgch
sequence gaps, identity, similarity and fithessalation.
Functionally effective proteins are the sequendesmno
acids that fold promptly under appropriate condiio
described in chemical point of view. Here, the cof€MM
is utterly based on the notion of local structwhjch may
have different representations. Such representaiam be
captured by the equivalent classes, productiors midoy any
clustering scheme.
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After classification based on domains, conceits of
concealed markov model is applied for training &esting

Eihe sequences. The concept emphasizes the camelati

between the parts of an entity and the whole. Tam fiocus

is that the complex protein patten= {B,.B;..... B} can

be considered as the sequence of constituengs tbht is
made of strings of symbo& £ ¥ interrelated in some way.
Here, it is assumed that eaBhis assigned to the local
structure called’,. The figure presented below represents the
graphical representation f concealed markov model.
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are obtained. The description for the criterionsdukere are
as follows:

* Sequence Gap:

Sequence gap in protein interactions is definedaag
maximal or consecutive run of spaces in a singlesece of a
given alignment. For example, consider the follayin
sequence alignment,

S=attc--ga-tggacc

T=a--cgtgatt---cc

This alignment has four gaps containing a totalemjht
spaces. The alignment would be described as haaagn
matches, no mismatch, four gaps and eight spaces.

* Identity:

Identity of a sequence is defined as the idenpicaition of
the protein interaction or length of the obtainetgin
sequence.

e Smilarity:

Structural similarity of obtained sequences is eatdd for
effective folding. Moreover, protein sequencessaie to be
similar when they have the same arrangement of majo
secondary structures and having the same topologica

G
G
0-000 000 00

connections.
Figure 2: Graphical representation of Concealedkidar . Fitness Correation:
Model Fitness correlation is evaluated to determine thading

The main advantage of CMM in protein folding problés  strength of the protein sequence. Threshold valiliebe
that the method is capable of predicting the fuitate with assigned here for examining whether the particptatein
respect to the analysis of the past state. Traiofngrotein sequence is fit to fold. If the fitness correlaticaiue is less
sequence is made by the CMM training model with thghan the threshold, the corresponding protein sezpieannot

consideration of local structures obtained from amgl pe folded. The criterion is described with an exings,
sequence. In such a way that all the sequencemebttiiom

_[+2 x=y
the database are trained with local structuresrgiast;. Flxy) = I—i else
Following that, testing is also made based on §ipeci Where x and y are the protein sequences.
domains, wherein the trained sequences are tesied Additionally, MAX-MIN parameters, which are givers a
accurate folding process. Figure 3 reveals theatvibow of  (lower bound) an@ (upper bound) are also determined based

proposed mechanism. on the protein sequence arcs. Mainlyand f are the Ant
— ____— — system parameters, where it includes in swarmligésice.

' H clssitcaton ] The parameters involve in increasing the convergeoic
folding mechanism and lead to find the iteratiostis®lution

Training & Testing for framing the appropriate protein structure. &aihg the

criterion analysis, the protein sequences are daptiinfor
adept two dimensional folding. Multi dimensional

erteronnave \ optimization has been done to increase the spitgifiz the
L Sequence Gaps } L tdentity J novel cofactors and substrates. Implicitly, optiatian
’ reduces the sequence gap between the proteindtiteraand

~

Fi...&sm.a.;o..J increases its fithess, which is responsible fadifaj.

/
‘ Similarity J
N

3.4 Protein Structure Formation

Swarm intelligence is applied anew for typical piot
structure formation. The principles of some of the
evolutionary algorithms such as ACO (Ant Colony

Multi Dimensional

Optimization

P Formation Optimization) and BCO (Bee Colony Optimization) a&BIC
(Artificial Bee Colony) optimization [8, 9] are incporated

for structure formation. The procedure is basedtton
behavior of swarms that moves towards the foodcsoir an

optimal way. According to that, the structure hastbformed
to construct a relative good solution based onctiterions
calculated above.

3.5 EGA based protein folding

Consecutively, protein structure has been molde@Do
protein folding using the novel algorithm calledt&nded
Genetic Algorithm (EGA). The EGA algorithm is prased
in Table 1. The algorithm begins with long patt@notein
sequence (S) and length of the sequence (L) torothta 2D

Figure 3: Overall flow of Proposed Mechanism

3.3 Criterion Analysis and Optimization

In the proposed criterion based folding approahh, rhain
parameters that are taken for analysis is sequeape
identity, similarity and fithess correlation. Deémg upon
the sequence alignment, the consequences of stljctu
functional and evolutionary relation between thquamces
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folded sequence. The process of classificatiofnitmg and
optimization is accomplished by the proceduregdtabove.
In the algorithm, F(S) and G(S) define the fithesgelation
value and sequence gap respectively, and it iscsthat if the
fitness value is greater than the target fithesseghold
value), then the sequence is proceeded with theinfpl
process. Else the protein sequence is not fitdloirig and it
will be discarded.

The EGA based folding algorithm is processed with hest
fitted sequence. It is also substantial to verifyether the
fitness correlation is present between the MAX-Mialues
that are determined earlier. Mainly, the two bagierations
performed here are,

1. Crossover

2. Mutation

By crossover, the new offsprings are created fromn t

| SSN: 2231-2307, Volume-2, I ssue-6, January 2013

Then, the fithess correlation of each characteressmtation
of the protein interactions is evaluated for perf2d fold.
With those accomplishments, the two dimensionaktgimno
fold is obtained. The resultant protein foldingchieved with
less sequence gap and highly bonded manner.

IV. EXPERIMENTAL RESULTS

For affording the efficiency of the proposed work,
experimentation has been made with the dataset ishat
obtained from SCOP (Structural Classification obtBins)
database. It is the PDB-49D dataset that is deeeldyy the
authors of [23]. They used the protein featuresetaon the
statistical information on aminoacids such as items
composition and distribution. After acquiring tharde
patterns of protein sequences, it is preprocessedcturate
classification and structure analysis. The samppnocessed

parental sequences. The sequence is converteditsio |54 pattern protein sequences obtained for theess are
corresponding binary value by the binary encodlngiven below

mechanism and then, the crossover is made witialimito
binary digits, and iterated with consecutive digilisattains
the adept results.

After performing crossover, mutation takes placisT
prevents falling all solutions into a local optimyropulation
of solved problem. Further, mutation alters the oéapring
in randomized manner. The mutation depends on thath
encoding and crossover resultants.

Input: Long Pattern protein Sequence (S), Length of dogience (L)

Output: Best fitted 2D folded sequence

1. Begin Initialization
a. Id->0, F->0, G->0;
end
Begin Classification
for eachsequence S
Determine score (s)
Find domain D
Classify by Modified Bayesian Classification Themre
end
. Begin Training
10.for eachDomain D
11.do
a. while No of Domain n(D) = No of Trained Domains

n(Dr)
Perform- Training domain
Perform- Testing domain
Train sequence until end of the sequence reached
end

CENoGOARLN

®P20T

12.end
13.Begin Criterion based analysis
14.for each Sequence S

a. Evaluate G(S)

b. Determine 1d(S)

c. Calculate F(S)

d. Evaluate Similarity
15.end
16.Begin Optimization
17.do
18.for eachsequence (S)

a. if F(S) > target fitness;

b. return True;

c. elsediscard sequence;
19.end
20.Begin Folding
21.for eachbest fitted sequence (S)
22.do
23. evaluatefolding parameters & 3
24.while a < F(S) <B

i. crossover;
ii. mutation;
iii. evaluateF(c);

25.end
26.Obtain 2D fold
27.end

Table 1: Algorithm for Criterion based 2D folding
Mechanism
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101m A protein 154 MYOGLOBIN MVLSEGEWQLVLHVWAKVEADVAGHGODILIRLFKSHPETLE
1021 A protein 165 T4 LYSOZYME MNIFEMLRIDEGLRLKIVKDTEGYYTIGIGHLLTKSPSLNAAAK
i1as A protein 330 ASPARAGIN SYNTHETASE MKTAYIAKQRQISFVKSHFSRQLEERLGLIEVQAL
i1ba A protein 124 PROTEIN(RIBONUCLEASE, SEMINAL) KESAAAKFERQHMDSGNSPSSSSNYCY
121 A protein 166 H-RAS P21 MTEYKLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVY
101m A protein 153 MYOGLOBIN VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEK
1021 A protein 165 T4 LYSOZYME MNIFEMLRIDEGLRLKIVKDTEGYYTIGIGHLLTKSPSLNSLDA
1as A protein 330 ASPARAGIN SYNTHETASE AVIAKQRQISFVKSHESRQLEERLGLIEVQAPILS
{1ba A protein 124 PROTEIN(RIBONUCLEASE, SEMINAL) FERQHMDSGNSPSSSSNYCNLMMCCR
121p A protein 166 H-RAS P21 KLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVIDGE]
{101m A protein 150 MYOGLOBIN NMSAGEWQLVLHVWAKVEADVAGHGNDILIRLFKSHPETLER
1021 A protein 165 T4 LYSOZYME RGIFEMLRIDEGLRLKIVKDTEGYYTIGIGHLLTKSPSLNSLDA.
1as A protein 330 ASPARAGIN SYNTHETASE RQISFVKSHFSRQLEERLGLIEVQAPILSRVGDGT|
11ba A protein 124 PROTEINRIBONUCLEASE, SEMINAL) HESLADVKEKFERQHMDSGNSPSSSS)
121 A protein 166 H-RAS P21 MSALLVVVGAGGVGKSALTIQLIQNHFVDEYDPTIEDSYRKQVVI]

e A mmataie ARAATVACTOARTALEAD AT VT IOMA YT ANY A O UONDIT ML CUNETT VTR
{ 4

Figuré 4: Sample Large pattern protein sequences

These sequences are based on some specific doafains

protein structures like Myoglobin, Protein (Ribolease),
T4-Lysozyme, Asparagin-Synthetase, H-RAS-P21, Ehe
protein interactions are classified under its demasing
Modified Bayesian Classification model, explainedéction
3.1. Moreover, to outperform the related approachies
adduced work provides an extended genetic algoritlitim
concealed markov model.

4.1 Training and Testing

For the sake of explanation, 27 protein classes are

considered in the database; hence, 27 CMM traimindels
have been built. Training of protein sequencesaslenwith
the consideration of four types of secondary stmast
namely, ‘helix’, ‘sheet’, ‘turn’ and ‘extended’. Tk, the local
structure is fixed here as 4. The input proteinuseges are
trained based on the four determined local strestaong
with its classified domains. Approximately, the st holds

990 aminoacid sequences. For measuring the power of

generalization of CMM based classifier, m-fold
cross-validation estimation technique is used.Heurthe 990
aminoacid sequences are divided into 5 sets, wher@th
contains 198 sequences.

Then, among the 5 sets, one set is selected fimgesnd
the other 4 sets are fixed for training. Iteratiakes place by
selecting different sets for testing in the samexmaa until
accomplish the testing for final test. Each amindda
sequence has been tested with all 27 CMM modelsaisnd
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regarding its domains. The one that attains thedsigscore is ~ The above figure demonstrates identity analysis rgmo
the class assigned to that protein sequence. \Wdsilimg, the sequences, wherein the length of the protein seguen
optimal model amongst the 27 is the one that adhptime optimized. The following figure represents the fesuwf
series sequence of amino acid in a better waydBssglobal sequence gap evaluation acquired before and after
accuracy of CMM is the mean of the results obtainach the optimization. Obviously, the sequence gap is canrsidly

5 test sets. reduced by multi dimensional optimization.

42 Performance EVaIUation :;: I:‘ After Optimizatio. Before Optimizatio
Following training and testing, criterion basedlgsia has e '

been performed. According to our consideration, the o pe—ad

sequence gap, identity, similarity and fithess eation is a8 "

00 5
275
250

evaluated to capture the best fitted sequenceDofoRling.
Figure 5 presented below represents the determaadeds for _ ;
those criterions. With those values, the sequermes - ' '
optimized and examination has been made with thaltse e

150

obtained before and after optimization. 128 .
100 5 4
Sequence 1 Beguence 2 Identity Sirmilarity Gaps  [Fitness Conela.. 75
AVLSEGEWQLYLHVWAKVE., MNIFEMLRIDEGLRLKIVED TEGYYTIGIG.., 1443 (R36%) | 2045 (4651) | 1243 QTI1%) |40 50

)

AIVLSEGEWQLYLHVWARVE., MNFEMLRIDEGLRLEVED TEGYYTIGIG.. 2201 (416%) | 01Q516%) | 1TR1QNEM) | 3450 28
)
)

Sequence Gap

VLSEGEWQLVLHVVAKYE.. RGIFMLRDEGLRLIVRDTEGYYIIGHG..| 1547 (R209%) | 567 (1AL 161 (4 | 880 T T v 2 5 % B & o e on e
IVLSEGEWQLYLEVWAKVE.. (GOHSMLRDECLRLETVEDTEGTVIIGIG.. | IALOLILY) ALGEM) | 1241 Qame) [ 3040 Sequence

IVLSEGEWQLYLAVWAKVE.. |AHVALRIDEGLALEVKDTEGVYTIGICL.| 201 AIBY) JBLGRIG) 7101QM41%) |30 Figure 8: Sequence gap evaluation
IVLSEGEWQLYLAVWAKVE.. MKTAVIARQRISFVKSHFSRQLEERLG... | T C243%5) W0 GRS1%) 40007 (789 | 600 a0 . - z
IVLSEGEWQLYLAVWAKVE.. [AYLARQRQISFYKSHFSRQLEERLCLEEY.. | 4107 C243%) WV GR31%) 40007 (789 | 4600
VLSEGEWQLVLHVYAKYE.. [RQISFVRSHESRQLEERLGLIEVQAFILSR.. | 24107 (L0%) | 30007 (551%) 007 (T30%) 4600 a0 =4
IVLSEGEWQLYLAVWAKVE.. |APLIAKQRQISTVSHFSRQLEERLGLE. | T C243%) WV GR31%) 40007 (8% | 4600
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Figure 5: Results of Criterion based Analysis - T - ——
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Figure 6 depicts the graphical representation ifoil@rity 25 i i ‘
gap between sequences. It is apparent from thé ghap, the T W @ v o B R D B B e TR
similarity between sequences is much reduced after . . Seguanss
o Figure 9: Fitness Correlation between sequences
optimization. . . )
‘ Figure 9 shown above demonstrates the fithesslatoe
[ Ater optimizaidll]  Before Optimizatio | among sequences. Since the most fitted sequencédean
e applied for folding, Fitness value has been enhdnce
effectively. Then, the value gained for each seqeeis
o verified with the target or threshold fitness fdd Zolding.
= ™ ; Following that, the folding operation is carriedt eith best
£ o fitted sequences according to the proposed ExteGaetic
T > : Algorithm. Figure 10 shows the sequence gap ofemot
. interactions before folding and Figure 11 depibtslevel of
i . - sequence gap after folding. ]
du..,,’.' . .. :_..__ i Ty 70{m mmm R nn EEE mm §
1 I [] Before
30 65

01 2 3 4 5 8 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sequence

Figure 6: Similarity between sequences
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Figure 11: Sequence gap obtained after folding
Amalgamation of the adept conceits in the proposetk
leads to the effective folding mechanism. By cormmathe
two graphical representation presented above, it
substantiated that the adduced folding algorithduces the
sequence gap between the aminoacid sequenceseamaiyd
Thus, the appropriate 2D folding has been obtafoetbng
pattern protein sequences and also it is affirnfed the
methodology outperforms the efficiency of the rethtvorks.

V. CONCLUSION AND FUTURE WORK

The predominant intention of this paper is to pdevia
congruous method for protein fold recognition apgttiion.
With that concern, the proposed work incorporateseh
conceits for two dimensional protein folding ofdarpattern
amino acid sequences with varying lengths. Initjathe
protein interactions are classified using modifigglyesian
classification method that affords appropriate diontesed

classification results. For training and testing #equences,

CMM based training model has been developed aratesd.
Criterion analysis significantly evaluates the dis
correlation of obtained sequences that are to laedo

(5]

9]

[10

2

[12]

[13]

[14]

[15]

[16]

._\
-l

Accordingly, the sequences are optimized and protei

structure is formed with best fitted sequences dbasethe
core of swarm intelligence. Hence, it exploits tékationship
among secondary structure of a protein, which ishmuital

for the recognition of protein 2D fold. Then, thB folding

process is carried out with the framed EGA. Theseixpental
results show that the proposed work affords pre@Be
protein fold with extremely reduced sequence gdpsatein
interactions.

(18]

[19

[20]

Though the results obtained here are very encawgagi[21]

future investigation is still necessary. With redpe future
enhancements, this work is open for distinctiveaesh areas
where beneficial contributions can be done.
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