
Fractal Image Compression

Project Report

Viswanath Sankaranarayanan

4th December, 1998

Abstract

The demand for images, video sequences and computer animations has increased

drastically over the years. This has resulted in image and video compression becoming

an important issue in reducing the cost of data storage and transmission. JPEG is

currently the accepted industry standard for still image compression, but alternative

methods are also being explored. Fractal Image Compression is one of them. This

scheme works by partitioning an image into blocks and using Contractive Mapping to

map range blocks to domains. The encoding step in fractal image compression has

high computational complexity. In this project we implement an innovative method

of partitioning an image, which reduces the computational complexity in the encoding

step. We also present a comparison of this method against the quadtree method and

against the JPEG standard.

1

1 Introduction

The encoding step in fractal image compression has high computational complexity. In this

project we have implemented a method to reduce this computational complexity. We �rst

present an introduction to fractal image compression. Then, we look into the complexity

involved in the encoding step, describe the solution we have implemented, and present the

results obtained. This section presents an introduction to fractal image compression.

The term fractals was coined by Mandelbrot [1] in 1975 to describe the irregular and

fragmented patterns that appear in nature. Barnsley [2, 3] suggest that storing images as

a collection of transformations will result in image compression. The image to be encoded

is partitioned into non-overlapping range blocks R. The encoder then �nds a larger domain

block D of the same image for every range block, such that a transformation of D is a good

approximation of the range block R. This transformation � is a combination of an a�ne

transformation [2, 3, 4, 11] and a luminance transformation �. In matrix form � can be

expressed as

�

0
BBBBB@

x

y

z

1
CCCCCA
=

0
BBBBB@

k
11

k
12

0

k
21

k
22

0

0 0 a

1
CCCCCA

0
BBBBB@

x

y

z

1
CCCCCA
+

0
BBBBB@

�x

�y

b

1
CCCCCA

Here, z denotes the pixel intensity at position (x; y). kij are the co-e�cients of the a�ne

transformation. �x and �y are the relative x and y positions of the range with respect to

the domain. a and b are the contrast and brightness adjustments for the transformation. The

encoder stores only these eight numbers. The decoder iteratively applies the transformations

to any initial image and generates the reconstructed image. To ensure convergence at the

decoder, the transformations � have to be contractive [2, 4].

The �rst practical fractal compression system to appear in literature was by Jacquin [6].

He compressed an image by a block-based compression scheme. Most other compression

systems to appear in literature are based on Jacquin's block-based compression system. One

of the compression systems is a quadtree-based [4] fractal encoding scheme and we use this

method to implement our improvement. Another method uses the same quadtree scheme,

2

but further breaks down the square region into irregular shapes before coding [5, 9].

2 Encoding Time

The objective of this project is to reduce the time complexity in the encoding step. We �rst

see where the time complexity arises in the encoding step the time complexity arises, and

how we can reduce it.

Consider an image that is 256x256 pixels in size. We partition it into 8x8 non-overlapping

ranges R
1
;R

2
: : : ;R

1024
. We also partition it into 16x16 overlapping domains D = D

1
;D

2
;

: : : ;D
58;081. Now, for each Ri, we search through all D to �nd a Di which minimizes some

threshold. In other words, we try to �nd a part of the image that looks similar to Ri. There

are eight ways to map one square to another. So for each range Ri, 464,648 domains have

to be compared. Various techniques have been proposed to overcome the time complexity.

One such technique is the classi�cation of domains based on some feature, such as the edges

[6, 10] or bright spots [4, 8]. A domain once discarded removes from the pool all other

similar domains for a particular range. Another technique is to classify the domains as

multidimensional keys. This reduces the complexity from O(N) to O(logN) [7].

The weakness of this method is that the size of the range Ri is �xed. This is overcome

in the quadtree partition [4] method. Here, a square in the image is split up into four

equal-sized sub-squares when it is not covered su�ciently by the domain. This process is

repeated recursively, starting from the complete image and continued until the squares are

small enough to be covered within some speci�ed threshold. This range-domain match is

the time

3 Variance Based Image Partitioning

In the quadtree partitioning, a rangeRi which would have been split further is also compared

with the domains. These futile range comparisons increase the encoding time unnecessarily.

To prevent these futile domain searches, we have to partition the image before we begin the

3

encoding. We model the image as a contour of the grey-scale value versus position.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

0

200

400

Model of Lena image

Now, for good detail and for good chance of a domain match, we have to partition the image

such that, each range is a at portion of the contour. We could use the variance metric for

determining how at the contour is. The variance metric is de�ned [4] as

Vi =
nX

j=1

(rij)
2

� A2

i

where i is the range under consideration, n is the total number of pixels in the range, rji is

the grey level of the jth pixel in the ith range, and

Ai =
nX

j=1

rij

This computation is quite involved and would consume considerable time. Instead, we

assume that if the peak di�erence between the pixels is above some threshold, we have

4

to split the range further. This partitioning is done before we start the domain matches

and thus only useful ranges are compared with the domains. This method gives signi�cant

improvement over the quadtree partition method, with comparable image quality. The

disadvantage of this method it that, some of the larger squares, which would have been

mapped originally, would be skipped now.

The `C' code for the quadtree partition method already exists [4]. We implemented the

variance partition method, using this quadtree code.

4 Results

In this section, we present the results that we obtained with our method.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70
Encoding Time for Lena Image

Compression Ratio

E
nc

od
in

g
T

im
e

in
 s

ec
on

ds

Variance − Partition

Quadtree − Partition

JPEG

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70
Encoding Time for Mandrill Image

Compression Ratio

E
nc

od
in

g
T

im
e

in
 s

ec
on

ds

Variance − Partition

QuadTree − Partition

JPEG

0 10 20 30 40 50 60
20

25

30

35

40

45
PSNR for Lena Image

Compression Ratio

P
S

N
R

 in
 d

B

Variance − Partition

Quadtree − Partition

JPEG

0 5 10 15 20 25 30
20

25

30

35

40

45
PSNR for Mandrill Image

Compression Ratio

P
S

N
R

 in
 D

B

Variance − Partition

QuadTree − Partition

JPEG

Comparison of the Encoding Time and Compression Ratio for the di�erent schemes

5

We �nd that our method gives considerable saving in encoding time over the quadtree

method for all images and compression ratios. The image quality is slightly degraded for

some images at higher compression ratios. The `Mandrill' image coded with di�erent schemes

is shown below (Compression ratio 6:1).

Original Image QuadTree Partitioned

Variance Partitioned JPEG

6

We �nally give results for the encoding time for 11 standard images. There �gures show

that our method is faster than the quadtree method for all of these images.

1 2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60
Encoding Time

Image

T
im

e
in

 s
ec

on
ds

Quadtree
Variance
JPEG

Encoding Time on Standard Images

5 Conclusion

Our method gives a considerable saving in the encoding time over the quadtree method, with

comparable image quality. The key point to note from the results is that JPEG is better

than both these methods. Fractal image compression, using a quadtree partition is far from

replacing JPEG as the standard for still image compression. There are some properties of

fractals that make them ideal for other applications.

� Fractals have no characteristic size, and an encoded image can be decoded at any

resolution.

� Realistic detail is arti�cially generated at all scales.

7

� Fractals perform very well for highly sampled, natural images.

� Synthetic images and half tones are not compressed by this method.

� The encoding step is time consuming, but the decoding step is very fast.

All these properties make fractals a good choice for transmitting images over the Internet.

The resolution independence property is desired, as target browsers have di�erent resolutions.

Images are encoded only once, but decoded many times. A sizeable portion of the images

over the Internet are natural images. The decoding step works is the natural way that images

load up in browsers. Netscape 4.02 has a plug in for the Fractal Image Format. The 1992

version of Microsoft Encarta had all its images compressed in this format.

The quadtree partition is not the optimal way of compressing images [5]. Other methods

like the triangular partition [4, 8] and irregular partition [5, 10] yield better image quality.

Our variance partition improvement can also be applied to these methods to reduce the

encoding time.

References

[1] B. B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company, ISBN

0-7167-1186-9, 1983.

[2] M. F. Barnsley and L. Y. Hurd, Fractal Image Compression, AK Peters Ltd., ISBN

1-56881-000-8, 1993.

[3] M. F. Barnsley, Fractals Everywhere, Academic Press Professional, ISBN 0-12-079061-0,

1993.

[4] Y. Fisher, Fractal Image Compression - Theory and Application, Springer-Verlag, ISBN

0-387-94211-4, 1994.

[5] L. Thomas and F. Deravi, \Region-Based Fractal Image Compression Using Heuristic

Search," IEEE Trans. on Image Processing, vol. 4, no. 6, pp. 832-838, Jun. 1995.

8

[6] A. E. Jacquin, \Image Coding Based on a Fractal theory of Iterated Contractive Image

Transformations, " IEEE Trans. on Image Processing, vol. 1, no. 1, pp. 18-30, Jan.

1992.

[7] D. Saupe, \Breaking the Time complexity of Fractal Image Compression," Technical

Report, vol. 53, Institut f�ur Informatik, Universit�at Freiburg, 1994.

[8] F. Davoine, M. Antonini, J. M. Chassey and M. Barlaud, \Fractal Image Compression

Based on Delaunay Triangulation and Vector Quantization," IEEE Trans. on Image

Processing, vol. 5, no. 2, pp. 338-346, Feb. 1996.

[9] Y. Wang, Y. Jin and Q. Peng, \Merged quadtree fractal image compression," Optical

Engineering, vol. 37, no. 8, pp. 2284-2288, Aug. 1998.

[10] H. Lin and A. N. Venetsanopoulos, \Fast fractal image compression using pyramids,"

Optical Engineering vol. 36, no. 6, pp. 1720-1730, Jun. 1998.

[11] D. Saupe and R. Hamzaoui, \A review of the fractal compression literature," Computer

Graphics, vol. 28, no. 4, pp. 268-276, 1994.

9

