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ABSTRACT
As ever-larger training sets for learning to rank are cre-
ated, scalability of learning has become increasingly impor-
tant to achieving continuing improvements in ranking accu-
racy [2]. Exploiting independence of“summation form”com-
putations [3], we show how each iteration in ListNet [1] gra-
dient descent can benefit from parallel execution. We seek
to draw the attention of the IR community to use Spark [7],
a newly introduced distributed cluster computing system,
for reducing training time of iterative learning to rank al-
gorithms. Unlike MapReduce [4], Spark is especially suited
for iterative and interactive algorithms. Our results show
near linear reduction in ListNet training time using Spark
on Amazon EC2 clusters.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]
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1. INTRODUCTION
A potentially easy way to improve learning to rank ac-

curacy is to simply train on more data. The challenge, of
course, is scalability [2]. Prior work showed that many ma-
chine learning algorithms, such as those based on a “sum-
mation form”, can be easily parallelized [3]. While summa-
tion terms can be independently computed via MapReduce,
MapReduce is not well-suited to computing iterative learn-
ing algorithms and relatively inefficient for such usage.

Instead, we adopt the recently developed Spark1 cluster
computing system [6]. Spark is not only well-suited to such
iterative (and interactive) algorithms such as gradient de-
scent, but it runs on existing Hadoop2 clusters. Spark sup-
ports reuse of a working set of data across multiple parallel
operations via a distributed memory abstraction called Re-
silient Distributed Datasets (RDDs), which support parallel,
in-memory computations on large clusters while retaining
similar fault tolerance as MapReduce to reconstruct a lost
partition whenever faults occur. As with Hadoop, the same
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Spark program can be run stand-alone on a single node or
distributed on a compute cluster.

ListNet [1] uses gradient descent to minimize the loss be-
tween gold relevance scores and predicted scores. Scores can
then be sorted to produce document ranking. Suppose there
are m queries in the training set. Denoting gold relevance
scores and predicted scores on query i by y(i) and z(i) re-
spectively, the total loss is given in “summation form” by:

TotalLoss(w) =

mX
i=1

L(y(i), z(i)) (1)

We sum loss over queries in the dataset. ListNet attempts
to minimize this loss using gradient descent:

w ← w − α∇wTotalLoss(w) (2)

where α is a step-size parameter and ∇wTotalLoss(w) is the
gradient of the loss (1) evaluated at w. Since we have:

∇wTotalLoss(w) =

mX
i=1

∇wL(y(i), z(i)) . (3)

the gradient is in “summation form” and its computation
can be parallelized. Optimization of w iteratively alter-
nates between (2) and (3). We are not aware of any existing
work that parallelizes ListNet training on commodity clus-
ters. There is some recent work [5] on parallelizing learning
to rank for information retrieval but it proposed a new al-
gorithm based on evolutionary computation.

Figure 1 shows our implementation of “vanilla” gradient
descent for ListNet using Spark. Using SparkContext, we
create an RDD by reading in the training set from a file in
Amazon S3. This RDD is parsed to populate a datastruc-
ture using the map transformation, creating a list such that
each element in the list consists of a query, documents to be
ranked, gold relevance labels, and feature vectors. We then
call a cache function to advise Spark to keep the RDD in
memory of the worker nodes to improve performance. Fur-
ther, we use a shared variable gradient which is a Spark
accumulator, similar to Hadoop counters. The gradient

accumulator is used to sum up the contributions to the gra-
dient calculated by all the worker nodes for computing the
weight vector in the driver code.

EVALUATION. We use the Microsoft Learning to Rank
datasets3 MSLR-WEB10K and MSLR-WEB30K. There is
a trade-off involved in choosing the step size α. If it is
too small, the convergence will be slow. If it is too large,
we may not have convergence. We tried α values in the
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for (i <- 1 to ITERATIONS) {
val gradient = sparkContext.accumulator(spark.examples.Vector.zeros(dim))
val loss = sparkContext.accumulator(0.0)
for (q <- queries) {

val expRelScores = q.relScores.map(y => math.exp(beta*y.toDouble))
val ourScores = q.docFeatures.map(x => w dot x); val expOurScores = ourScores.map(z => math.exp(z))
val sumExpRelScores = expRelScores.reduce(_ + _); val sumExpOurScores = expOurScores.reduce(_ + _)

val P_y = expRelScores.map(y => y/sumExpRelScores); val P_z = expOurScores.map(z => z/sumExpOurScores)

var lossForAQuery = 0.0; var gradientForAQuery = spark.examples.Vector.zeros(dim)
for (j <- 0 to q.relScores.length-1) {

gradientForAQuery += (q.docFeatures(j) * (P_z(j) - P_y(j)))
lossForAQuery += -P_y(j) * math.log(P_z(j))

}
gradient += gradientForAQuery; loss += lossForAQuery

}
w -= gradient.value * stepSize

}

Figure 1: Parallel implementation of ListNet algorithm in Scala (www.scala-lang.org) using Spark. The code
for(q <- queries){body} is equivalent to queries.foreach(q => {body}). As foreach is a parallel operation in
Spark, all queries will be processed in parallel. The variables gradient and loss are accumulators that support
only “add” operations and are used to sum values obtained by various worker nodes.

(a) Relative speedups on the 10K train-
ing set as more CPUs are used.

(b) Training times for MSLR-WEB10K
for serial (1 CPU) vs. parallel (10
CPUs).

(c) Run times on 10K and 30K training
sets with 20 CPUs.

Figure 2: Performance improvement in ListNet training time enabled by parallelization.

range 10−4 to 10−2 and chose the largest one that did not
lead to divergence. Standard MSLR dataset partitioning
of queries facilitates computation of NDCG accuracy using
five-fold cross-validation. Average NDCG@10 ranking ac-
curacy achieved over all five test folds of MSLR-WEB10K
is 0.252; greater NDCG accuracy might be achieved by us-
ing more sophisticated line search procedures in the gradient
descent algorithm shown in Figure 1.

Figure 2(a) shows that as the number of iterations in-
creases, the overhead of using Spark reduces, achieving lin-
ear speedup in training time. Figure 2(b) shows that with
a parallelism of 10 we achieve roughly 11x speedup on the
MSLR-WEB10K dataset as compared to serial implementa-
tion. When the degree of parallelism is 1 and the cache is
insufficient, some recomputations might become inevitable
leading to slightly super-linear speedup. Figure 2(c) shows
that training times for MSLR-WEB30K, which has 3x as
many queries as MSLR-WEB10K, is actually less than 3x
the corresponding times for MSLR-WEB10K, showing greater
benefit from parallelization as the training size increases.
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