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Abstract
Exploring and modeling the distribution of a data sample is
a key step in many applications of statistics and data
mining.  This presentation will introduce you to software
for creating high-resolution graphics displays of data
distributions, including histograms, probability plots, and
quantile-quantile plots, which have been added to the
UNIVARIATE procedure in Version 8.  Comparative
versions of these displays are available, along with
statistical methods for fitting parametric and nonparametric
distributional models.  For data involving multiple samples,
you can create box plot displays with the new BOXPLOT
procedure in SAS/STAT  software.

Introduction
The UNIVARIATE procedure, introduced in the late 1970s,
produced "simple descriptive statistics for numeric
variables" and differed from other SAS procedures "in the
greater detail it provides on the distribution of a variable"
(SAS Institute Inc., 1979).  Designed to analyze univariate
distributions, the procedure computed basic statistics such
as the mean and standard deviation, provided detail on
quantiles and extreme values, and generated several plots
such as stem-and-leaf and probability plots.  Because it
was developed to print results to a line printer mode of
output, PROC UNIVARIATE displayed statistical tables
compactly and rendered plots using ASCII characters.

Until now, PROC UNIVARIATE has not provided a
number of features for analyzing distributions, including
confidence intervals on appropriate statistics, numerous
goodness-of-fit statistics, distribution fitting, and a wide
range of publication-quality graphics.   Some of these
capabilities have been available in the CAPABILITY
procedure, which was designed for process capability
analysis available in SAS/QC  software. However, these
features were not available in Base SAS  or SAS/STAT
software and were not presented in the context of general
data analysis.

Version 8 SAS software addresses these deficiencies by
providing many new enhancements for modeling and
visualizing distributions. Many new statistics have been
added to PROC UNIVARIATE, including numerous
confidence limits, robust statistics, and empirical
goodness-of-fit tests.  New distribution fitting facilities
enable you to fit a wide range of parametric distributions
including the normal, lognormal, gamma, and Weibull.  In
addition, user comments and the advent of the Output
Delivery System motivated a reorganization of the
procedure output.

The UNIVARIATE procedure also provides new
statements that enable you to visualize distributions
through high-resolution graphic displays including

histograms, probability plots, and quantile-quantile plots.
In addition, Version 8 SAS/STAT software now includes
the BOXPLOT procedure for generating boxplots, a
convenient tool for comparing distributions of a
quantitative variable across levels of a grouping variable.

Statistical Enhancements
The UNIVARIATE procedure now computes confidence
limits for basic statistics and percentiles.  You can produce
confidence limits for the mean, standard deviation, and
variance based on the assumption that the data are
normally distributed.  You can also request confidence
limits for quantiles based on the normal distribution or a
method that is distribution free.

If outliers are present in your data, Winsorized and
trimmed means provide robust location estimates that are
robust to outlying observations.  The Winsorized mean is
computed after the k smallest and largest observations are
replaced with the (k+1) smallest and largest observation,
respectively, while the trimmed mean is computed after
the k smallest and k largest observations are deleted from
the sample.  The UNIVARIATE procedure computes both
Winsorized and trimmed means as well as robust
measures of scale including Gini's mean difference, the
mean absolute deviation (MAD), and the Sn and Qn
statistics proposed by Rousseeuw and Croux (1993).

PROC UNIVARIATE provides facilities for fitting and
plotting continuous distributions including the normal,
lognormal, exponential, gamma, beta, and Weibull.  You
can estimate distribution parameters by maximum
likelihood, or you can specify specific parameter values.
In addition, PROC UNIVARIATE can also smooth the data
distribution using kernel density estimation.

When you fit a parametric distribution, PROC
UNIVARIATE provides a series of goodness-of-fit tests
and p-values based on the empirical distribution function
(EDF).  The EDF tests, including the Kolmogorov-Smirnov,
Anderson-Darling, and Cramer-von Mises statistics, are
based on various measures of discrepancy between the
empirical distribution function and the cumulative
distribution function based on a specified distribution.  The
p-values of the goodness-of-fit tests vary depending on
which parameters are known and which are estimated by
the procedure.

Other new PROC UNIVARIATE options enable you to
specify the location parameter value in the null hypothesis
of a test of location, request a table of all possible modes,
and control the number of listed extreme values and
observations.



Example: Octane Requirements

The following example illustrates the basic features of the
UNIVARIATE and HISTOGRAM statements.  An
automotive industry study was carried out to assess the
octane requirements of a group of customer-owned cars
as determined by trained raters and the customers
themselves; refer to Rodriguez and Taniguchi (1980).
Based on previous studies, a significant fraction of
customers experienced knock on gasoline with an average
octane number of 92.6.  Consequently, a preliminary stage
of the analysis explored the distribution of customer and
expert octane requirements.

The following statements create a SAS data set called
OCTANE that contains the customer and expert rater
requirements.

data octane;
   input Expert Customer;
   datalines;
94.5 92.0
94.0 88.0
94.0 90.0
93.0 93.0
88.0 88.0
...  ...
;
run;

The following statements invoke the UNIVARIATE
procedure and use the Output Delivery System (ODS) to
produce a selected list of tables.

ods select BasicMeasures
           BasicIntervals
           RobustScale
           Quantiles;

proc univariate data=univar.octane
                CIBASIC
                CIPCTLNORMAL
                ROBUSTSCALE;
   var customer;
run;

ods select all;

The ODS SELECT statement identifies four output objects
for the selection list of tables printed in the Output window:
basic statistical measures, basic confidence limits,
quantiles, and robust measures of scale.   By displaying
only the tables of interest, you can gain a better
understanding of the data without wading through tables of
irrelevant statistics to find the results you need.

The CIBASIC and CIPCTLNORMAL options request
confidence limits for the basic statistics and quantiles,
respectively.  These confidence limits are based on the
assumption that the data are normally distributed.  The
ROBUSTSCALE option produces a table with robust
measures of scale including Gini's mean difference and
the IQR.  The VAR statement identifies CUSTOMER as
the analysis variable, and ODS SELECT ALL resets the
selection list to include all tables produced by subsequent
analyses.

Figure 1.  Basic Statistical Measures

The UNIVARIATE procedure now prints basic statistical
measures of location and variability in the "Basic Statistical
Measures" table as displayed in Figure 1.  Although
statistics such as the mean are also included in the
"Moments" table, the new layout provides a more readable
display of the basic statistics without being cluttered by
other statistics that may be less relevant to your analysis.

Figure 2.  Basic Confidence Limits

In response to user requests, the UNIVARIATE procedure
now provides confidence intervals for a variety of
distributional parameters and quantiles.  You can also
specify the confidence level and select the type of
confidence interval, such as a two-sided, upper, or lower
interval.

Figure 3.  Robust Measures of Scale

Figure 3 displays the "Robust Measures of Scale" table
that includes the robust statistics with their corresponding
estimates of σ.  In this case, the robust estimates of σ
range from 3.41 to 4.41 and are similar to the traditional
estimate of 3.91.

Figure 4.  Quantiles with Confidence Limits

The "Quantiles" table displays a wide range of quantiles
along with confidence limits based on the assumption that
the data are normally distributed.  By specifying the
CIPCTLDF option, you can also request confidence limits
for quantiles based on a method that is distribution-free.
The UNIVARIATE procedure uses order statistics (ranks)



to compute distribution-free confidence limits as described
in Hahn and Meeker (1991).

Histograms
A histogram is a bar chart of a continuous variable where
each bar represents observations contained in an interval
called a bin.  Histograms are useful for visualizing a data
distribution, suggesting probability models or
transformations, and detecting outliers and unusual
behavior (Snee and Pfeifer 1983).   You can create
histograms using high-resolution graphics with the new
HISTOGRAM statement in the UNIVARIATE procedure.

The following statements produce a histogram of the
customer octane requirements.

proc univariate data=octane;
   histogram customer;
run;

Figure 5.  Histogram of Customer Requirements

By default, the UNIVARIATE procedure determines the
initial number of midpoints for the data based on the total
number of observations using the method of Terrell and
Scott (1985).  However, changes in bar width and position
can greatly affect your perception of the distribution's
shape.  You can control the width of the histogram bars by
specifying midpoint values.  The width of the histogram
bars is determined by the difference between consecutive
midpoints.

proc univariate data=octane;
   histogram customer
             / midpoints = 76 to 100 by 2;
run;

The MIDPOINTS option specifies how to determine the
midpoints for the histogram intervals. The values 76 to 100
by 2 define a range of midpoints that extend at each end
by half the bar width and cover the entire data range.
Note that PROC UNIVARIATE requires that histogram
bins be equally sized.

Figure 6: Histogram using the MIDPOINTS option

The two plots exhibit subtle differences, such as the slight
depression in the second plot.  However, the perturbations
are most likely due to sampling variation and both
histograms indicate that the data is roughly normally
distributed.

Nonparametric Density Estimates
Sometimes, a fitted curve based on a parametric
distribution does not effectively summarize a data
distribution. For example, a normal curve will not
adequately represent a distribution that is multimodel.  In
this case, you can use nonparametric kernel density
estimation to obtain a smooth density estimate that
accounts for this characteristic.  Kernel density estimation
is a technique that averages a kernel function across
observations to create a smooth approximation. Using the
KERNEL option, you can superimpose kernel density
estimates on a histogram to visualize these features using
smoother data distribution.  The following statements fit a
kernel density to both the customer and expert ratings.

proc univariate data=octane noprint;
   histogram customer expert /
      kernel ( k = normal
               c = 0.8
               w = 2.5
               color = green )
      normal ( mu = est
              sigma = est
              color = red
              w = 2.5 )
      midpoints = 76 to 100 by 2;
run;

The KERNEL option specifies that the UNIVARIATE
procedure produce kernel density estimates of the
customer and expert ratings.  The K=option requests a
normal kernel function, the C=0.8 option specifies the
standardized bandwidth parameter, and the W=2.5 option
defines the width of the density curves.  The NORMAL
option requests an additional fitted normal curve.



Figure 7. Kernel Density of Customer Ratings

For the customer ratings, the kernel density estimate
provides a fit similar to the normal fitted curve.  The fact
that the kernel estimate does not drop at customer rating
equal to 82 suggests that the depressed histogram bar is
an artifact of binning and sampling variation.

Figure 8. Kernel Density of Expert Ratings

The distribution of expert ratings is clearly skewed to the
left, and the normal density estimate fits the distribution
poorly.  On the other hand, the kernel density estimate fits
the distribution more closely than the parametric
distribution by providing a smooth estimate that accounts
for the skewness.

The UNIVARIATE procedure is designed to model single
variables and does not address bivariate and more
complex relationships between variables.  However, you
can compute kernel density estimates of univariate and
bivariate densities using the KDE procedure now available
in SAS/STAT software.  PROC KDE provides several
methods for bandwidth selection and enables you to
compute contours of the estimated density function for
subsequent plotting or analysis.  Figure 14 provides an
example of a bivariate kernel density estimate of customer
and expert ratings using results from the KDE procedure.
The display in Figure 9 was produced by the %surface
macro, available for download from Technical Support at
www.sas.com/techsup/download/stat/.

Figure 9.  Bivariate Kernel Density Estimate

Modeling Distributions
The UNIVARIATE procedure provides methods for
assessing and modeling the distribution of a variable
including testing goodness-of-fit, generating graphics, and
fitting distributions such as the normal, lognormal, gamma,
exponential, and Weibull.

Goodness-of-Fit Tests

When you request a fitted parametric distribution using the
HISTOGRAM statement, the procedure computes
goodness-of-fit test statistics for the null hypothesis that
the values of the analysis variable are a random sample
from the specified theoretical distribution.  If the sample
size is less that 2000, PROC UNIVARIATE computes the
ratio of the best estimator of the variance to the usual
corrected sum of squares estimator of the variance known
as the Shapiro-Wilk statistic (Shapiro and Wilk, 1965).  In
addition, the procedure also computes the Kolmogorov-
Smirnov, Anderson-Darling, and Cramer-von Mises EDF
statistics.

Example: Steel Rod Diameters

The data for the following example arose from a sample of
diameter measurements of 50 steel rods.  As a preliminary
analysis, you decide to evaluate whether or not the
diameter of the rods is normally distributed.  The following
statements produce the RODS data set that contains the
50 diameter measurements.

data rods;
    input diameter @@;
    label diameter='Diameter in mm';
    datalines;
5.501  5.251  5.404  5.366  5.445
5.576  5.607  5.200  5.977  5.177
...
;
run;

You can assess whether rod diameters are normally
distributed by using the following statements.

proc univariate data=rods normal;
   histogram diameter /
      normal (mu=est sigma=est)
      midpoints = 5 to 6.30 by 0.15;
run;



The NORMAL option in the PROC UNIVARIATE
statement requests tests for normality that include the
Shapiro-Wilk test and a series of EDF goodness-of-fit
tests.  The NORMAL option in the HISTOGRAM statement
displays a fitted normal density curve, and the MU=EST
and SIGMA=EST options specify that µ and σ are to be
estimated from the sample.

Figure 10: Goodness-of-fit tests

Based on a Shapiro-Wilk statistic W=0.879 with a p-value
of 0.0001, you reject the null hypothesis and conclude that
the diameter of the rods are not normally distributed.  The
Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von
Mises statistics also result in p-values less than 0.01,
which confirm the conclusion that the data are not
normally distributed.

Figure 11: Diameters with Fitted Normal Curve

The histogram of rod diameters is skewed to the right and
the normal fitted curve does not fit the histogram well.
This also suggests that the diameter measurements are
not normally distributed.

Probability Plots and Q-Q Plots

Probability plots and quantile-quantile (Q-Q) plots are
useful for comparing ordered values of a variable with
percentiles or quantiles of a specified theoretical
distribution such as the normal.  If the data distribution
matches the theoretical distribution, the points on the plot
form a linear pattern.  Thus, you can use these plots to
determine how well a theoretical distribution models a set
of measurements. Q-Q plots are more useful than
probability plots for graphically estimating location and
scale parameters since the x-axis is scaled linearly, while
probability plots are convenient for estimating percentiles
and probabilities.

There are many reasons why point patterns in probability
plots and Q-Q plots may not be linear.  The following table
summarizes many of the commonly encountered
departures from linearity in these plots.

Pattern Interpretation

All but a few points fall
on a line

Outliers in the
data

Left end of the pattern is
below the line while the
right end of the pattern
is above the line

Symmetric, long
tails at both ends

Left end of the pattern is
above the line while the
right end of the pattern
is below the line

Symmetric, short
tails at both ends

Curved pattern with
slope increasing from
left to right

Skewed to right

Curved pattern with
slope decreasing from
left to right

Skewed to left

Staircase pattern Data have been
rounded or may
be discrete

Table 1: Plot Diagnostics

The UNIVARIATE procedure can create high-resolution
graphic probability plots and Q-Q plots and can
superimpose a reference line that corresponds to specified
or estimated parameters of the theoretical distribution.
The following statements produce a probability plot of
steel rod diameters.

proc univariate data=rods noprint;
   probplot diameter /
      normal (mu=est sigma=est);
run;

The PROBPLOT statement creates a probability plot of
the DIAMETER variable.  The normal option specifies that
the percentiles from the normal distribution, and MU=EST
and SIGMA=EST suboptions add a reference line
corresponding to the normal distribution with mean and
standard deviation estimated from the sample.

Figure 12. Probability Plot of Rod Diameters

If the rod diameter measurements came from a normal
distribution, the points would tend to follow the
superimposed distribution reference line.  However, the



point pattern is curved with an increasing slope left to
right, which indicates that the distribution is skewed to the
right.

The lognormal distribution is a useful alternative for fitting
data that are skewed to the right, and it may be suitable
for modeling the rod diameter data.  The lognormal
distribution is often used in the biological and physical
sciences to model sizes of various quantities and is
closely linked to normal distribution.  If, for some value θ,
ln(X −  θ) has a normal distribution with mean µ and
variance σ2, then X has a lognormal distribution with
threshold parameter θ, scale parameter ζ  = exp(µ), and
shape parameter σ.

You can create a series of Q-Q plots to visually estimate
the shape parameter of the lognormal distribution.   An
appropriate value for the shape parameter produces an
approximately linear pattern with intercept θ and slope
exp(ζ ).  The following statements produce a series of Q-Q
plots based on increasing values of σ.

proc univariate data=rods noprint;
   qqplot diameter / lognormal
      (sigma=0.2 to 0.8 by 0.3
       theta=est zeta=est);
run;

The QQPLOT statement with the LOGNORMAL option
creates a quantile-quantile plot that compares ordered
values of the DIAMETER variable with quantiles of
lognormal distribution.  By specifying more than one value
of σ  using the SIGMA= suboption, the procedure creates
multiple Q-Q plots that enable you to select the value of σ
that most nearly linearizes the point pattern.  The
THETA=EST and ZETA=EST options add a reference line
that corresponds to estimated values of θ  and ζ .  You can
also specify specific values for θ  and ζ  with the THETA=
and ZETA= suboptions.

Figure 13: Lognormal Q-Q Plot, σ = 0.2

Figure 14: Lognormal Q-Q Plot, σ = 0.5

Figure 15: Lognormal Q-Q Plot, σ = 0.8

The multiple plots provide a convenient tool for visualizing
changes in the fitted distribution across increasing values
of σ.  The Q-Q plot with σ = 0.2 is nonlinear with an
increasing slope and does not fit the data well, while the
Q-Q plot with σ = 0.8 is nonlinear with a decreasing slope
and also does not fit the data well.   In the Q-Q plot with σ
= 0.5, the observations form an approximately linear
pattern, although there are some discrepancies such as
observations on the right tail of the distribution that are
slightly above the reference line.  This pattern indicates
that the estimate of σ  is close to but perhaps slightly
different from 0.5.

Regardless, the close agreement between the
observations and reference line indicate that a lognormal
distribution with σ = 0.5 is appropriate.  You can compute
the sample estimates of θ and ζ  by fitting a lognormal
distribution using the HISTOGRAM statement with the
LOGNORMAL option.  This results in an estimated
lognormal distribution with parameter estimates of σ = 0.5,
θ  ≅ 5, and ζ  ≅ − 1.  You can also simultaneously estimate
all three parameters, which results in similar estimates.

Comparing Distributions
Comparative histograms are useful for visualizing the
distribution of a continuous variable simultaneously across
levels of a classification variable.  You can construct



comparative histograms by using the HISTOGRAM
statement in conjunction with the CLASS statement.

Example: Monitoring Change In Blood Pressure

Consider a trial testing the efficacy of a new
antihypertensive medication.  The study measured the
change in blood pressure after nine months for patients
receiving either an innovative new medication or a
placebo.  The following statements create a data set that
contains a treatment grouping variable and a variable that
contains the change in blood pressure.

data BPChange;
   input Treatment $ BPchange;
   datalines;
Placebo  -14.0
Active    -8.0
Active   -23.0
Placebo    2.5
Active   -15.5
Placebo  -12.0
...
;
run;

The following statements construct a comparative
histogram to compare the change in blood pressure
across treatment groups.

proc univariate data=BPChange;
   class Treatment;
   histogram BPChange
      / normal
        midpoints  = -50 to 50 by 5
        cfill      = cx153e7e
        cframeside = cxeeeeee;
run;

The TREATMENT variable defines the classification levels
for the analysis and is specified in the CLASS statement.
The CFILL= option specifies the color of the histogram
bars, and the CFRAMESIDE= option specifies the color
that fills the classification label boxes.  These two options
are examples of the numerous options for controlling the
appearance of graphics available in the UNIVARIATE
procedure.

Figure 16.  Histogram of Change in Blood Pressure
Across Treatment Groups

Both groups appear to have normally distributed values for
change in blood pressure.  The distribution for the ACTIVE
treatment is shifted to the left, indicating that the active
treatment reduced blood pressure while the placebo
treatment had no effect.

Graphical displays such as histograms and probability
plots can be enhanced by an additional box or table
(referred to as an inset) of summary statistics.  A typical
application of an inset is to augment a graphic with the
sample size, mean, and standard deviation. The INSET
statement creates an inset box and includes options for
specifying the position of the box, applying a header for
the table, and controlling background colors and font
characteristics.

The following statements create a comparative histogram
with an inset.

proc univariate data=BPChange noprint;
   class Treatment;
   var BPChange;
   histogram BPChange
      / normal
        midpoints = -50 to 50 by 5
        href = 0
        chref = cx888888
        vscale = count
        intertile = 1
        cframeside = cxeeeeee;
   inset n="N" (5.0)
         mean="Mean" (5.1)
         std="Std Dev" (5.1)
      / pos=ne height=3;
run;

The HREF= option in the HISTOGRAM statement creates
a reference line on the x-axis at blood pressure equal to
zero and the VSCALE=COUNT option specifies the scale
of the vertical axis as the number of observations per bin.
The INSET statement positions a table of summary
statistics in the northeast corner of the display as defined
by POS=NE.  The table will include the number of
observations, mean, and standard deviation, labeled "N,"
"Mean," and "Std Dev," respectively.  The values in
parentheses specify the format for the statistics in the
inset, and the HEIGHT= option specifies the height of the
text.

Figure 17. Comparative Histogram with Inset



The inset statistics provide a quick reference for
comparing the means and standard deviations of the two
treatment groups.  On average, the blood pressure of
patients receiving the active treatment decreased
approximately 15 units, while the average change for the
placebo group was nearly zero.

Although the mean difference of the two distributions is
visible in the first comparative histogram, the left-shift of
the treatment group distribution is graphically enhanced
with the addition of the vertical reference line.  Here, it is
easier to see that the placebo group is nearly centered on
zero while the treatment group is substantially shifted to
the left.  Because the vertical axis is scaled in frequency
units, the size of the histogram bars reflects the different
group sizes.  This was not apparent in the previous
histogram and is reinforced by the sample size statistics in
the inset.

Box Plots
Box plots, also known as box-and-whisker plots, provide a
convenient tool for comparing distributions of a
quantitative variable across levels of a grouping variable.
These plots display a wide range of quantitative
information about a variable including its mean, median,
quartiles, minimum, maximum, and outlying observations.
The BOXPLOT procedure, available in Version 8
SAS/STAT software, produces box plots and enables you
to specify different methods for calculating quantiles and
control the layout and appearance of the plot.

The BOXPLOT procedure provides a variety of box plot
styles.  The skeletal box plot contains whiskers that extend
from the edges of the box to the extreme values of the
group.  A skeletal style is requested by specifying
BOXSTYLE=SKELETAL in the PLOT statement and is the
default for the BOXPLOT procedure.  On the other hand,
schematic box plots contain whiskers drawn to the largest
value within the upper fence and smallest value above the
lower fence, and observations beyond the fence are
displayed as individual symbols.  The fence is one and a
half times the interquartile range (IQR) from each edge of
the box and is not displayed. You can request a schematic
boxplot by specifying the BOXSTYLE=SCHEMATIC
option.

Figure 18.  Box Plots

Figure 11 illustrates a few of the main features of
schematic and skeletal box plots.   You can also produce
variations of the schematic box plot by using the
SCHEMATICID and SCHEMATICIDFAR box plot styles.
If you specify BOXSTYLE=SCHEMATICID, a schematic
box plot is displayed in which the value of the first variable
listed in the ID statement is used to label the symbol
marking each observation outside the lower and upper
fences.  If you request the SCHEMATICIDFAR style, a
schematic box plot is displayed where only observations
outside the far fences are labeled.  The lower and upper
far fences are located 3×IQR below the 25th and 75th
percentiles, respectively.

Example: Webpage Downloads

This example uses box plots to analyze the number of
webpage downloads of the Statistics and Operations
Research subsite of www.sas.com.  Daily webpage
downloads were recorded from late December 1998
through April 1999.   The goal of the analysis is to
compare the number of downloads across days of the
week to monitor trends and diagnose heavy and light
periods of web activity.

The following DATA step creates a SAS data set named
WEBHITS that contains daily download counts with the
corresponding date and day of the week.

data webhits;
   input Date $ Day $ Hits;
   datalines;
21Dec Monday    1003
22Dec Tuesday    851
23Dec Wednesday  757
24Dec Thursday   703
...
;
run;



The BOXPLOT procedure is used to create a box plot of
web downloads across days of the week.

proc boxplot data=webhits;
   plot HITS*DAY
        / boxstyle = SKELETAL
          cboxes   = CX153e7e
          cboxfill = CX1589ff;
run;

The PLOT statement creates a boxplot of the HITS
variable across the levels of the grouping variable DAY.
The BOXSTYLE=SKELETAL option specifies the skeletal
style, while the CBOXES= and CBOXFILL= options define
the colors for the box outline and fill, respectively.

Figure 19.  Skeletal Box Plot of Web Hits

Webpage download counts have similar distributions
Monday through Friday, and there is a noticeable
decrease in hits over the weekend, as expected.  Note
that even the maximum observations recorded on
Saturday and Sunday, indicated by the serifs of the upper
whiskers, are less than the median and mean of any
weekday.

Although it is useful for visualizing the spread of a
distribution, a skeletal box plot does not highlight outlying
observations.  You can highlight outliers by producing a
schematic box plot.  The following statements produce the
desired plot.

proc boxplot data=webhits;
   plot HITS*DAY
        / caxis    = BLACK
          cframe   = CXFFFFFF
          ctext    = BLACK
          cboxes   = CX153E7E
          cboxfill = CX1589FF
          boxstyle = SCHEMATICID
          idcolor  = BLUE
          idsymbol = CIRCLE;
   id DATE;
run;

The BOXSTYLE=SCHEMATICID option requests a
schematic box plot with symbols marking each
observation outside the lower and upper fences.  These
symbols are labeled using the values of the DATE variable
specified in the ID statement.  The IDCOLOR=BLUE and

IDSYMBOL=CIRCLE options specify that the ID
observations are to be displayed as blue circles.

Figure 20: Schematic Box Plot of Web Hits

Although the display is generally similar in appearance to
the skeletal box plot in Figure 20, the schematic box plot
does provide a different perspective of the data.  For
example, the long upper whisker of the box plot for Friday
was a result of a single extreme observation.  Nearly 2500
downloads occurred on April 9th, which is at least 500
downloads more than any other day.  Not coincidentally,
April 9th was the last Friday before the SUGI 24
conference held in Miami.  Perhaps many conference
attendees visited the site on April 9th to read about the
latest news and enhancements on their last day of work
before coming to Florida.

Conclusion

The distributional modeling and visualization tools in SAS
software have been significantly improved with
enhancements to PROC UNIVARIATE and the new
PROC BOXPLOT.  Additional statistics, high-resolution
graphics, and integration with the Output Delivery System
provide users with additional tools for exploring data
distributions.  You can find more information about the
new capabilities and other analytical SAS software on the
R&D website at www.sas.com/rnd/app/.
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