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Summary 

The rapid and cost-effective identification of bacterial species is crucial, especially for 

clinical diagnosis and treatment. Peptide aptamers have been shown to be valuable for use 

as a component of novel, direct detection methods. These small peptides have a number 

of advantages over antibodies, including greater specificity and longer shelf life. These 

properties facilitate their use as the detector components of biosensor devices. However, 

the identification of suitable aptamer targets for particular groups of organisms is 

challenging. We present a semi-automated processing pipeline for the identification of 

candidate aptamer targets from whole bacterial genome sequences. The pipeline can be 

configured to search for protein sequence fragments that uniquely identify a set of strains 

of interest. The system is also capable of identifying additional organisms that may be of 

interest due to their possession of protein fragments in common with the initial set.  

Through the use of Cloud computing technology and distributed databases, our system is 

capable of scaling with the rapidly growing genome repositories, and consequently of 

keeping the resulting data sets up-to-date. The system described is also more generically 

applicable to the discovery of specific targets for other diagnostic approaches such as 

DNA probes, PCR primers and antibodies.  

1 Introduction 

The detection of a specific bacterial strain or group of related strains is important in many 

industrial and clinical settings.  For example, in the food industry, early detection of the 

presence of organisms such as Salmonella is needed to prevent contamination [1]. Rapid 

diagnostic testing is also necessary for the effective detection and treatment of nosocomial or 

community-acquired infection [2, 3]. Current detection and identification techniques include 

culture isolation, immunoassays and PCR analyses, but these approaches are expensive and 

time consuming [4], and most require specialised laboratory facilities. Consequently, these 

diagnostic tests are of little value for point-of-care screening.  

An increasingly attractive alternative to the use of antibodies for the rapid identification of 

bacterial groups is the use of small molecules, known as aptamers [5]. Aptamers may consist 

of DNA, RNA, XNA or peptide sequences. Peptide aptamers are particularly promising 
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because they are relatively easy to construct and handle, and have the ability to bind to 

proteins with high specificity. 

Peptide aptamers consist of a variable peptidic region that is fused at both termini to a 

scaffold protein [6]. This double fusion limits the conformational liberty of the variable 

region, increasing the specificity and binding affinity of the aptamer [7]. There is currently 

considerable interest in developing rapid diagnostic tests which incorporate aptamers to 

recognise specific molecules. Whilst peptide aptamers typically have specificities similar to 

antibodies, aptamers have a number of advantages that make them amenable to biosensor 

applications [8, 9]. The small size of aptamers, typically 20 to 30 amino acids, enables them 

to reach targets that antibodies may be too large to access [7]. Also, once identified, the highly 

stable aptamers can be synthesised quickly and cheaply [5]. The high binding specificity of 

aptamers enables accurate and immediate detection of specific target proteins [10-12]. 

In order to utilise an aptamer-based sensor, suitable protein targets, or parts of protein targets, 

must first be identified. A target protein or protein region must be unique to the organism or 

group of organisms to be detected. For rapid screening it is important that pre-processing of 

the samples is kept to a minimum. For this reason, the choice of potential target proteins 

residing in or extending from the cell envelope are the most useful targets, since disruption of 

the cells in not necessary and the ligands may be used in surface capture-based strategies. 

Surface-located bacterial proteins are involved in a variety of processes, including host cell 

targeting, immune evasion, mobility and cell wall metabolism [13]. Surface proteins are also 

known to facilitate pathogenicity by imparting drug resistance, and are therefore potential 

candidates for aptamer sensors designed to screen for drug-resistant strains [14, 15]. 

Recently, the amount of DNA and protein sequence data that is freely available in public 

databases has grown exponentially. Therefore, a computational approach employing a 

comparative genomics strategy is now ideally suited for discovering small regions of proteins 

that are displayed at or near the surface of a cell and are conserved only among members of a 

defined group of organisms.  However, the computational demands of such an approach are 

immense, given the scale of the data. Recent advances in Grid and Cloud technologies have 

enabled researchers to access large amounts of computational capacity. Institution-wide 

Condor [16] installations and commercial services such as Amazon EC2
†
 allow access to the 

processing capacity of many hundreds or thousands of machines, real or virtual. Meanwhile 

replicated, distributed data stores can utilise the disk and processing resources of several 

servers simultaneously in order to facilitate the structured storage of billions of data items. 

In the work described here, we made use of the large amounts of genomic and proteomic data 

available in bioinformatics databases, in combination with Cloud computing technology, to 

discover targets suitable for the detection of bacteria using novel sensor technologies.  

Determining suitable diagnostic targets involves a number of steps, which typically form an 

iterative cycle: a) defining the organism or group of organisms to be detected; referred to here 

as the group of interest (GOI); b) finding proteins or protein regions that are unique to a GOI; 

c) determining whether these regions are likely to be surface-accessible; d) assessing whether 

the structure of the protein is likely to allow an aptamer to bind at the target region(s).   

This cycle of steps is typically carried out using a manual approach in which the human user 

needs to access a variety of information sources, databases and bioinformatics tools. 

However, given the number of DNA sequences now in the public domain it is no longer 

possible to carry out the process manually in a systematic and time-efficient manner. Our 

motivation for this work was the creation of a cloud computing system, ApID, that would 
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perform parts (b) and (c) in an automated fashion, through the creation of workflows, thereby 

significantly reducing the number of potential aptamer targets while increasing their 

specificity, and consequently the amount of manual work required in part (d).  

We employed a number of bioinformatics applications, including the Cloud computing 

platform Microbase [17], to develop an automated workflows on which ApID is based. ApID 

has been designed to identify proteins, or small regions of protein sequences, that are unique 

to specific groups of organisms. The protein sequence regions identified by ApID are 

potential aptamer targets since they are common to the defined organisms, but are otherwise 

globally unique. We demonstrate the utility of the system by identifying aptamer targets 

unique to the opportunist pathogen, methicillin resistant Staphylococcus aureus (MRSA).  

2 Methods 

The workflows developed for this work made use of the Microbase Cloud computing 

platform. Microbase is a distributed computing platform that permits the construction of 

bioinformatics workflows from modular components. Microbase consists of a file storage 

system, a publish-subscribe messaging system and a distributed job scheduler. Components, 

termed responders, may be activated on receipt of a particular type of event, such as the entry 

of new data items into the system. Responders can be connected to form a workflow. Each 

responder is responsible for performing one task, such as executing an analysis application 

and managing the resulting data. Actions within a Microbase pipeline are driven by events. 

For example, the addition of new genome data to a database produces a notification event. 

The resulting message is then propagated to further responders that are registered to receive 

this type of message.  

A Microbase pipeline may be highly parallel. Responders can be run in parallel, and each 

responder may generate multiple tasks, each of which, in turn, can run in parallel. For 

example, a number of independent BLAST tasks may be executed at the same time as a set of 

protein subcellular localisation prediction tools. The Microbase system, together with 

responder-specific configuration parameters, determines the exact number of tasks needed, 

and the computers on which they execute analysis tools or maintain databases of results. Each 

workflow component was written in Java and executed on a local 48-core cluster, as well as a 

number of remote Amazon Web Services machines. Microbase managed the distribution and 

execution of tasks over all the available machines.  

The source data used as input to the workflows came from NCBI RefSeq release 47 

(2011/05). RefSeq entries for all available bacteria were parsed and stored in a relational 

database. Result data generated by the workflow was stored in a separate set of PostgreSQL 

databases. These databases were replicated across a number of high performance machines in 

order to increase query performance. 

3 Results 

We developed two automated workflows that form the core of ApID. The first workflow, 

ApID1, performs data integration and storage, bringing together genomic information 

including DNA and protein sequences, predictions about protein cellular location and 

metadata relating to the source of these sequences. A second workflow, ApID2, is then used 

to query the integrated dataset for surface-located protein sequence fragments that are 

globally unique to a particular organismal group of interest (GOI). 
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3.1 Dataset integration and construction workflow (ApID1) 

The 'integration and construction' workflow, ApID1 builds the integrated datasets over which 

ApID2 operates for querying.  The dataset construction phase builds upon the output of a 

number of existing bioinformatics tools. Such tools often operate over independent units of 

data (jobs), and can therefore be executed in an ‘embarrassingly parallel’ [18] fashion. ApID1 

consists of a series of responders that perform the following automated functions: parsing of 

genome information into a structured database; constructing a protein token database that 

covers all protein sequences present in the genome database; and the execution of several 

tools which predict the sub-cellular location of a protein  (Figure 1). These protein tokens 

form the putative target binding regions for the development of diagnostic aptamers.  

A set of GenBank-formatted files was used as the primary data source for the data generation 

pipeline. For this project all of the bacterial genome data from the NCBI RefSeq [19] 

(accessed 05/2011) was downloaded, parsed and stored in a structured data store, the Genome 

Pool Database (GPDB). This relational database allows efficient querying over the RefSeq 

data, and is used extensively by subsequent workflow components.  

 

Figure 1:  The integration and dataset generation pipeline, ApID1. NCBI GenBank-format files 

are inserted, parsed and indexed into a database (the GenomePool). This process triggers the 

execution of a number of analytical tasks that run in parallel: the tokenization of each protein 

sequence and the sub-cellular localization analysis of each protein. This upstream pipeline is 

used to generate several datasets that form the basis for further token analysis. 

The arrival of a new GenBank fragment into the GPDB triggers the 'protein tokeniser' 

responder. This pipeline component iterates over all of the protein sequences in the newly 

added genome fragment. A sliding window is passed over each protein sequence. A token size 

of 15 amino acids was used with a step size of 1, generating a large number of 15-mers for 

each protein sequence (Figure 2). The resulting database, TokenDB, stores the set of 

individual token strings found across all organisms, together with an index to the taxon, 

protein identifier and intra-protein location for every occurrence of every token string. The 

tokenisation work was split into Microbase compute jobs; the scope of each job was a single 

genome fragment, with sizes ranging from a plasmid up to a complete bacterial sequence. 
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Figure 2: Generating the protein token database. The individual protein sequences in a GenBank 

entry are first split into a series of overlapping fragments (tokens). The details of each token, 

including the position within a particular protein and the taxon from which that protein is 

derived are then recorded in a database. The tokens are used to specify the binding sites for 

diagnostic aptamers. 

In addition to triggering protein tokenisation tasks, the addition of a new GenBank fragment 

to the GPDB also triggers the execution of protein sub-cellular localisation tools. TMHMM 

[20] and SignalP [21] were used to determine which proteins are likely to be surface-

associated. Sub-cellular localisation predictions for each protein are stored for future 

querying. An initial set of 3.7 million bacterial proteins from ~1400 organisms   from RefSeq 

generated 1,349,601,310 tokens. Of these, 888,314,351 tokens were unique. 

3.2 Identifying candidate aptamer targets (ApID2) 

Once the integrated dataset has been constructed via ApID1, queries can be performed to 

identify protein sequences, or regions of protein sequences in the form of tokens, that are 

putative target sequences for a target group of interest (GOI). The process of discovering a 

putative aptamer targets consists of a number of stages. These stages are defined in the second 

workflow, the GOI query workflow, ApID2 (Figure 3). 

3.2.1 Groups of Interest 

Firstly, a GOI must be defined. A GOI consists of a set of taxon identifiers that indicate the 

organisms that the diagnostic system must be able to distinguish from the background set. The 

specification of a clearly defined group of organisms is critically important, and defining an 

optimal GOI is a particularly challenging task. Members of a GOI are typically selected 

according to user-specified phenotypic features that are unique to a set of organisms. Finding 

suitable features for diagnostics is problematic for at least two reasons. Firstly, the literature is 

sometimes ambiguous with regard to the phenotypes of a given bacterial species, and there is 

no complete reference database of phenotypes for all bacterial species. Secondly, the species 

concept in bacteria is not well defined, and often phenotypic traits that appear to be attractive 

targets for diagnostics are not encoded by genes that are maintained by orthologous 

mechanisms; many of these genes may be acquired through horizontal gene transfer. 

Therefore, care is needed when selecting candidates for a GOI. If an identified GOI omits 

organisms with the phenotypic feature of interest the results of the query workflow will be 

vastly reduced; many potential protein token results will be 'cancelled out' by the sequences of 

the omitted organism. Conversely, the inclusion in the GOI of even one taxon that does not 

possess the property of interest reduces the probability that unique tokens will be found. 

 

MMTLQIHTGGINLKK

MMTLQIHTGGINLKKKNIYSIRKLGVGIASVTLGTLLISGGVTPAANAAQHDEAQQNAFY

MTLQIHTGGINLKKK

TLQIHTGGINLKKKN

LQIHTGGINLKKKNI

QIHTGGINLKKKNIY

...

A sliding window moves across a protein sequence, 
advancing one amino acid at a time, generating a large 

number of token strings

Token DB

Distinct token strings are assigned an 
identifier and stored in a database. 
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Figure 3:  The GOI query workflow, ApID2, uses the datasets provided by the automated token 

generation and characterisation workflow, ApID1. A Group of Interest (GOI) is defined, based 

on the phenotype of a set of organisms of interest in a diagnostic context. The TokenDB is 

queried for any fragments of proteins that occur in all organisms defined in the GOI, but which 

do not occur in any other organism present in the NCBI RefSeq dataset. The parent proteins of 

this set of tokens are then identified. Any token that originates in a protein sequence that is not 

predicted to be located on the membrane or cell wall is excluded. Finally, BLAST-P is used to 

verify the remaining tokens against the NCBI’s non-redundant (NR) database. 

 

 
 

Figure 4: A heatmap showing the distribution of tokens around a Group of Interest.  Each cell 

contains a count of unique diagnostic token strings found by adding or removing organisms from 

the initial GOI. In this figure, a peak can be seen when 2 extra organisms are added and one of 

the existing organisms is removed from the original GOI definition. Such a huge increase in 

tokens may indicate that the original GOI was incorrect, especially if most of the additional 

tokens found at 2, 1 are from the same two additional organisms.  

The establishment of a GOI is therefore an iterative process with a biological domain expert 

making an initial GOI prediction that may need to be adjusted in the light of available 

diagnostic signatures. In order to address this uncertainty, the ApID2 workflow provides 

information allowing a user to explore the ‘token space’ around a particular group of interest. 

This functionality allows the user to refine GOI membership through the identification of 

particular strains that may need to be added or removed from a group. To aid this process a 

heat map is constructed representing the total numbers of tokens that occur at each possible 
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combination of additional or missing taxa with respect to the GOI (Fig.4).  Examination of the 

results with non-zero values for ‘additional’ and ‘missing’ taxa allows the investigator to 

explore outside of the initial GOI space, by adding taxa to or subtracting taxa from the GOI. 

For example, if the number of truly unique tokens for a given GOI is relatively small, but a 

large number of tokens are found when one additional taxon is allowed into the group, then 

this indicates that the GOI might need to be redefined. Specifically, it indicates that an 

organism might be missing from the original GOI defined by the user. 

3.2.2 Token querying and merging 

Once a suitable GOI has been established the purpose of the ApID2 query workflow is to find 

a set of protein tokens that exist in all of the members of the GOI, but that do not exist in any 

other organism present in the database. We refer to these tokens as being globally unique to a 

particular version of the integrated dataset.  

A list of token fragments that are unique to the organisms in the GOI is  obtained first. The 

length of this list depends on the number of organisms in the GOI and the extent of their 

diversity. Typically, a list consists of several million items. All of the token strings in this list 

occur at least once in one or more members of the GOI. Each token string must then be 

queried against the entire token database in order to determine in which other proteins it 

occurs.  This step can be performed in a parallel manner if a cluster of database machines is 

used, but is still a computational bottleneck. If the taxon IDs associated with the proteins 

returned from each token string query exactly match the set of taxon IDs present in the GOI, 

then the token string can be considered globally unique to all of the organisms in the GOI. 

In many cases, regions larger than a 15-mer token may be common to the members of a GOI, 

for example when part of a protein is conserved among all organisms in the group. In these 

cases, it is desirable to merge consecutive, overlapping tokens together into ‘super tokens’ in 

order to reduce the analysis workloads and storage space. Variable length unique super 

tokens, rather than the original 15-mer tokens, are used for the remainder of the sequence 

selection process.  

Whilst each super token is globally unique to the set of organisms in a GOI, it is also desirable 

to identify sequences similar, but not identical to super tokens in the next closest sequence 

outside of the GOI. This procedure is necessary since it is possible that an aptamer may be 

tolerant of mismatches in its target sequence, leading to false positive hits with respect to a 

given GOI. Furthermore, other ligand-based diagnostics such as antibodies can also be 

tolerant of amino-acid changes in their epitopes. Therefore, the next stage of the ApID2 

workflows involves performing a BLAST similarity search of each super token against the 

NCBI’s non-redundant (NR) database. The super tokens with high similarity to regions of 

proteins belonging to organisms outside the GOI are discarded.  

The final stage of the selection process involves ranking the tokens by the likelihood that they 

are accessible on the surface of the cell. The predictions from various sub-cellular localisation 

tools are used to annotate the super-token fragments with tags that indicate whether a 

particular fragment might be localised on the surface of the cell. These annotations can be 

visualised within a graphical viewer to browse the available super tokens and either filter or 

sort them according to the presence or absence of a tag, or the score of a subcellular 

localisation prediction tool. Intermediate results are stored throughout the selection process, 

allowing manual inspection and intervention at any point in the pipeline. Once identified, 

tokens are verified using a series of manual bioinformatics analysis. These analytical steps 

include verification using a variety of sequence searches against the databases (Blast, FastA 

etc.), phylogenetic analysis, and the mapping of tokens onto a protein structure, or predicted 

protein structure, in order to verify that an identified token is actually surface-accessible.  
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3.3 Use case: Application of ApID to the design of aptamers for the 
detection of methicillin-resistant Staphylococcus aureus.  

The ApID system described above was used to find tokens acting as putative targets for 

Aptamers that would bind uniquely to methicillin-resistant staphylococci. Firstly, a list of all 

staphylococci with genome sequences in RefSeq (as of 2011/05), together with their 

methicillin resistance status, was gathered from the literature (Table 1). We then defined a 

number of GOIs based on the drug resistance information available for the various strains 

listed in Table 1, and these GOIs were processed by the ApID2 pipeline (Table 2). Three 

GOIs were identified. Taxon group (a) consists of all Staphylococcus proteomes identified as 

finished in RefSeq. In this GOI, just 22 proteins (one per taxon) had a positive SpII Lipop 

prediction indicating surface localisation.  A large number of membrane-associated proteins 

were predicted using both psortb and TmHMM. Taxon group (b) consists of just the 

Staphylococcus aureus strains. As expected when comparing a set of more closely related 

strains, a much larger set of unique token strings was found. On average, in this group, 1900 

proteins from each strain shared at least one distinct token string. Many more cell membrane 

and cell wall proteins were predicted to be suitable aptamer targets. Furthermore, many more 

Lipop SpII predictions are present in GOI (b) than in group (a), and psortb predicted 

427 cell wall proteins. 

Table 1: A summary of the known methicillin resistance/sensitivity of the Staphylococcal strains 

whose genomes are available in the NCBI RefSeq database.  A value of ‘ambiguous’ in the 

‘resistance’ column means that the literature is contradictory; ‘unknown’ indicates that no 

information about methicillin resistance could be found for a particular strain. 

Strain RefSeq  

Taxon ID 

Resistant to 

methicillin 

Reference 

Staphylococcus aureus RF122  273036 No [22] 

Staphylococcus aureus subsp. aureus COL 93062 Yes [23] 

Staphylococcus aureus subsp. aureus ED98  681288 No [22] 

Staphylococcus aureus subsp. aureus JH1 359787 Yes [22] 

Staphylococcus aureus subsp. aureus JH9 359786 Yes [24] 

Staphylococcus aureus subsp. aureus MRSA252 282458 Yes [23]. 

Staphylococcus aureus subsp. aureus MSSA476 282459 No [23] 

Staphylococcus aureus subsp. aureus Mu3 418127 Yes [24] 

Staphylococcus aureus subsp. aureus Mu50 158878 Yes [23] 

Staphylococcus aureus subsp. aureus MW2 196620 Yes [23]. 

Staphylococcus aureus subsp. aureus N315 158879 Yes [23] 

Staphylococcus aureus subsp. aureus NCTC 8325 93061 No [23] 

Staphylococcus aureus subsp. aureus str. Newman 426430 No [22] 

Staphylococcus aureus subsp. aureus USA300_FPR3757 451515 Yes [25, 26] 

Staphylococcus aureus subsp. aureus USA300_TCH1516 451516 Yes [26, 27] 

Staphylococcus carnosus subsp. carnosus TM300 396513 No [28, 29] 

Staphylococcus epidermidis ATCC 12228 176280 Ambiguous [30, 31] 

Staphylococcus epidermidis RP62A  176279 Yes [32] 

Staphylococcus haemolyticus JCSC1435 279808 Yes [31] 

Staphylococcus lugdunensis HKU09-01 698737 Unknown  

Staphylococcus pseudintermedius HKU10-03 937773 Unknown  

Staphylococcus saprophyticus subsp. saprophyticus ATCC 15305 342451 Unknown  
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Group (c) was defined based on all Staphylococcus strains for which any evidence of 

resistance to methicillin was found (Table 1). Only 12 distinct token strings were found, a 

figure much lower than might be expected. These tokens were located in a single conserved 

uncharacterised protein, SACOL0037. An investigation of the token space around this GOI 

was carried out to shed light on the reason for this reduced number of tokens (Figure 5). An 

analysis of the number of distinct tokens contributed by each strain in a leave one out strategy 

revealed that Staphylococcus epidermidis ATCC 12228 is an outlier to the group. In this 

strategy, sub-GOIs are created by systematically leaving out one member of the group at a 

time and counting the number of unique tokens available for that subgroup. Strains whose 

inclusion results in a major reduction of the unique tokens are highlighted as warranting 

further investigation into the validity of their inclusion in the GOI. The leave-one-out exercise 

resulted in the identification of approximately 1,000 distinct tokens contributed by each strain 

considered, except for S. aureus ATCC12228, which provided almost no new tokens. This 

finding indicates that ATCC12228 may not belong in the original GOI. 

With the above results in mind, a further GOI, (d), was defined consisting of any 

Staphylococcus strain for which evidence of methicillin resistance exists (same as group c), 

but with the exclusion of strain Staphylococcus epidermidis ATCC 12228. This strain was 

excluded from group (d) because of conflicting reports about its resistance to methicillin [30, 

31].  This grouping resulted in the prediction of many more distinct tokens (993) from four 

different sets of homologous proteins.  None of these proteins were predicted to possess signal 

peptides, and none were predicted to be cell wall associated. Twelve proteins, one per 

organism, were predicted to be membrane associated. This group of 12 was comprised of 

orthologous members of the well-known penicillin-binding protein 2’, MecA family, 

SACOL0033. The only other proteins identified in group (d) were MaoC (SACOL0032), 

IS431mec (transposase) (SACOL0028), and glycerophosphoryl diester phosphodiesterase 

(SACOL0031). The details of the various GOIs are listed in Table 2.  

Table 2: A number of groups of interest (GOIs) were defined (a-d), which were analysed by the 

analysis pipeline. The number of distinct tokens for each group is shown, together with a 

summary from various SCL prediction tools for the set of proteins for which at least one distinct 

token string was present. The GOIs were: a) a group containing all organisms listed in Table 1; 

b) a subgroup containing just the S. aureus strains; c) a subgroup containing organisms for 

which any evidence of methicillin resistance existed; d) an alternative methicillin resistance 

group, excluding the ATCC 2228 strain that Takeuchi et al report as methicillin-sensitive. 

 GOI 

 (a) (b) (c) (d) 

No. organisms 22 15 13 12 

No. group-unique token 

occurrences 
97,995 4,625,838 192 11,976 

Distinct group-unique token 

strings 
4,438 307,102 12 993 

No. proteins containing at 

least one GOI-unique token 

instance 

10,115 28,593 
17 (1 set of 

homologues) 

52 (4 sets of 

homologues) 

SignalP positive predictions 113 1,926 0 0 

LipoP SpII positive 

predictions 
22 829 0 0 

psortb predictions 

(Membrane / Wall) 
1935 / 22 7791 / 427 

0 / 0 (all 

‘unknown’) 
12 / 0 

TmHMM (proteins with > 0 

transmembrane domains) 
1730 7761 0 12 
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3.4 Conclusions and future work 

As the utility, range and popularity of molecular diagnostics increases, databases of bacterial 

genome sequences will become an increasingly valuable resource. In this work, we 

demonstrate how the mining of bacterial genome sequences can be used to design target 

protein sequences for diagnostic protein aptamers, using the ApID system. Whilst the work 

we present is specific for protein aptamers, the approach is more generically applicable to any 

ligand-based diagnostic system where a unique protein sequence target may be used to design 

an epitope. These systems include antibodies, antibody fragments and, by replacing protein 

sequences with their encoding DNA sequence, DNA and RNA probes.  

We show how the system can be used to specify targets for aptamers specific for methicillin 

Staphylococcus aureus. Aptamers targeting these sequences are being characterised in our 

laboratory. The ApID system is generically applicable for finding diagnostic protein 

signatures for a range of applications of relevance to medical care, the food industry and to 

the environment.  

A major requirement of ApID is that the user is able to define a GOI that includes the 

organisms they would like to detect. The definition of a GOI is a challenging exercise, 

requiring a combination of user expertise, information about the phenotypic traits of 

organisms from the literature and databases, and a clear definition of bacterial species. 

Sources of information relating to these requirements are often prone to error, and the species 

defined by classical numeric taxonomy frequently do not correlate exactly with those defined 

through similarity at the genome sequence level. The ApID system therefore allows a user to 

suggest a GOI and then explore the effect, on the number of unique tokens generated, of 

modifying the group membership, thus optimising the GOI. In the future it may be possible 

automatically predefine suggested groups of interest based on the occurrence of shared 

tokens, saving time by avoiding the need for the dynamic execution of the ApID2 workflow.  

A major challenge of the approach implemented in the ApID system is the computationally 

intensive nature of both the preparation of the integrated datasets and data mining for tokens 

for a given GOI. Here, we show how the combined use of Cloud computing workflows and 

parallel databases can be used to address this challenge. We used a system previously 

constructed in our group, Microbase, to implement the two major workflows underlying the 

ApID system. Microbase automatically handles the issues of task scheduling, parallelisation 

and job monitoring and execution. The use of the tokenisation strategy allows a fine-grained 

definition of diagnostic targets but also adds a layer computational demand. We address this 

demand through the use of a high performance cluster of replicated databases.  

The use of a Cloud-based approach allows the system to be scaled with the number of 

complete bacterial genome sequences, which continues to increase in an exponential fashion. 

Furthermore, the use of workflows and the Microbase system allows much of the system to be 

automated, automatically executing workflows as the databases are updated. In the future we 

envisage that the system will be enhanced to further exploit the increasingly large number of 

incomplete genomic sequences that are accumulating in the sequence databases.  
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