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Abstract

High order derivative information has been widely used in developing variational models in
image processing to accomplish more advanced tasks. However, it is a nontrivial issue to
construct efficient numerical algorithms to deal with the minimization of these variational
models due to the associated high order Euler-Lagrange equations. In this paper, we propose
an efficient numerical method for a mean curvature based image denoising model using the
augmented Lagrangian method. We describe how to construct an augmented Lagrangian
functional for the model and detail the procedures of finding the related saddle-points of the
functional. We present numerical experiments to illustrate the effectiveness and efficiency
of the proposed numerical method, and show a few important features of the image denoising
model such as keeping corners and image contrast. Moreover, a comparison with the gradient
descent method further demonstrates the efficiency of the proposed augmented Lagrangian
method.

1 Introduction

Image denoising provides a crucial step towards the capturing image signals from noisy
images with lots of applications in medical imaging and video monitoring etc. During
the last three decades, numerous methods have been applied to deal with this problem,
such as variational methods, partial differential equations, statistical methods and so on
[3, 4, 8, 23, 24, 25, 27, 28, 29, 33]. Among these variational method is one of the most
popular methods. A classical variational model on image denoising was developed by Rudin,
Osher, and Fatemi (ROF) [29], in which achieving a clean image from a noisy one amounts
to the minimization of the following functional:

E(u) = λ

∫

Ω

|∇u| +
∫

Ω

(f − u)2, (1)

where f : Ω → R is a given noisy image defined on Ω (always a rectangle in R
2) and λ > 0

is a positive constant. The ROF model has proved to be very efficient in the noise removal
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tasks, and it has also been widely used in other tasks of image processing such as image
deblurring, image inpainting etc. Besides these, the idea of the total variation has broadly
been utilized in many other disciplines.

Even though the ROF model is very powerful in removing noise while preserving edges
and contours of objects, it also has some unfavorable properties. For instance, it yields
the staircase effect, smears object corners and leads to the loss of image contrasts. To
remedy these drawbacks, quite a few high order variational models have been proposed
[1, 2, 21, 22, 10, 19, 38]. For instance, in [1], the authors used the Euler’s elastica of level
curves of a smooth function as a regularizer and proposed the following energy functional:

E(u) =

∫ [
a + b

(
∇ · ∇u

|∇u|

)2
]
|∇u| + η

2

∫
(f − u)2. (2)

In [19], Lysaker et al. directly incorporated second order derivative information into the
image denoising process and their energy functional reads:

E(u) = λ

∫ √
u2

xx + u2
xy + u2

yx + u2
yy +

1

2

∫
(f − u)2. (3)

In [38], two of the authors proposed a variational model that uses the mean curvature of
the induced image surface (x, y, f(x, y)) to remove noise. Specifically, the model employs
the total variation of mean curvature as a regularized term and the functional is written as
follows:

E(u) = λ

∫ ∣∣∣∣∣∇ ·
(

∇u√
1 + |∇u|2

)∣∣∣∣∣+
1

2

∫
(f − u)2, (4)

where λ is a tuning parameter. The term ∇ · ( ∇u√
1+|∇u|2

) is the mean curvature of the

surface φ(x, y, z) = u(x, y) − z = 0. The model tries to fit the given noisy image surface
(x, y, f(x, y)) with a surface (x, y, u(x, y)) that bears small amount of mean curvature. The
model can sweep noise while keeping object edges, and it also ameliorates the staircase
effect. More importantly, as discussed in [38], the model is also capable of preserving image
contrasts as well as object corners.

While all the models can effectively accomplish the noise removal task, the associated
functionals are not easy to minimize. Since they involve high order derivatives, the related
Euler-Lagrange equations are often fourth-order, which raises a nontrivial issue of developing
effective and efficient numerical algorithms to solve them. Indeed, there are lots of high or-
der model existing in the literature of image processing [5, 8, 9, 12, 13, 14, 15, 26, 32, 36, 37].
Therefore, there is a pressing need to develop efficient numerical methods for these models.

In this paper, we plan to develop a fast algorithm to minimize the functional (4). We
employ the idea of augmented Lagrangian methods that have already been successfully uti-
lized in the minimization of the ROF model [34] and Euler’s elastica based functionals [31].
In these works, the augmented Lagrangian methods achieve much higher speed than other
numerical methods, such as the gradient descent method, primal-dual methods. The reason
of how the method is so efficient mainly lies in the following fact: the augmented Lagrangian
methods proposed in [34, 31] decomposed the original nontrivial minimization problem to
be a few simple ones, some of which can be solved using the Fast Fourier transformation
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(FFT), while the other ones can be quickly dealt with due to their existing explicit solutions.
Therefore, the construction of an efficient augmented Lagrangian method for the minimiza-
tion of a given functional depends on whether one can break down the original functional
into simple ones. In the functional (4), note that the mean curvature ∇ · ( ∇u√

1+|∇u|2
) is not

homogeneous in the variable u, how to introduce a new variable that can commute freely
with ∇u is a key problem for developing the associated augmented Lagrangian method of
the functional (4). To solve this problem, just as what we regard a 2D image function as a
surface in R

3, we introduce a new variable p =< ∇u, 1 >, instead of p = ∇u, to connect
with ∇u. In this way, we can apply the augmented Lagrangian method to the minimization
of the functional (4).

The rest of this paper is organized as follows. In Section 2, we will first review the
mean curvature based image denoising model, recall the augmented Lagrangian method
for Euler’s elastica based variational models [31], and then will detail how to apply the
augmented Lagrangian method to the mean curvature denoising model. In Section 3, we will
discuss how to carry out the numerical implementation. In Section 4, we present numerical
experiments to illustrate the effectiveness and efficiency of the proposed numerical method,
which is followed by a conclusion in Section 5.

2 Augmented Lagrangian Method

In this section, we first review the mean curvature image denoising model and the augmented
Lagrangian method to the Euler’s elastica functional, then detail how to treat the mean
curvature based image denoising model using the augmented Lagrangian method.

2.1 The Mean Curvature Based Image Denoising Model

In [38], two of the authors proposed a variational model that uses the mean curvature
of image surface for image denoising. For simplicity, we will call it as MC model in the
following context. The functional can be written as follows:

E(u) = λ

∫
|κu| +

1

2

∫
(f − u)2, (5)

where λ is a tuning parameter and the term κu = ∇ · ( ∇u√
1+|∇u|2

) is the mean curvature

of the image surface φ(x, y, z) = u(x, y) − z = 0. This model aims for obtaining a surface
that is close to the original induced surface (x, y, f(x, y)) and has a small amount of mean
curvature. Therefore, noise part of an image can be removed to reduce the amount of mean
curvature.

The motivation of the MC model is to remedy some unfavorable features of the classical
ROF model [29] such as the staircase effect. To avoid this effect, as discussed above, numer-
ous variational models that use high order derivative information have already developed
[1, 2, 21, 22, 10, 19]. The MC model regards a given 2D image as a surface in 3D space, and
uses the total variation of mean curvature of the surface as the regularizer. Therefore, the
model suppresses the oscillation of mean curvature and prefers small mean curvature that
lead to piecewisely smooth image surface. This effectively ameliorates the staircase effect.
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Besides removing noise, the MC model is also capable of preserving image contrasts. In
fact, as discussed in [38], for a region R ⊂ Ω with a C2 boundary, one gets

∫
Ω
|κhχR

| = H1(R)
for the image hχR, where χR and H1(R) are the characteristic function and the perimeter of
the region R, respectively, and h depicts the height. Note that the regularizer is independent
of the height h, which results in the preservation of image contrasts. It demonstrates an
important difference between this model and the ROF model whose regularizer

∫
Ω
|∇(hχR)|

equals to hH1(R) that relies on the height h.
Moreover, the MC model is capable of preserving object corners. This suggests that the

MC model can keep lots of visually meaningful clues. It is well-known that object corners
will be smeared when the ROF model is applied.

Even though the MC model possesses the above merits, it is a challenging issue to develop
numerical algorithms to minimize its functional as it involves high order derivatives and
the non-differentiable regularization term. In fact, due to the non-differentiability of the
function |x|, one cannot obtain the associated Euler-Lagrangian equation. Instead, as in
[26], one may consider the following smoothed version of the functional (5)

E(u) = λ

∫
|Φ(κu)| + 1

2

∫
(f − u)2, (6)

with

Φ(x) =

{
x2, |x| ≤ 1
|x|, |x| > 1.

(7)

and the associated Euler-Lagrangian equation can then be written as follows [38]:

λ∇ · [ 1√
1 + |∇u|2

(I − P)∇Φ′(κu)] − (f − u) = 0, (8)

where I,P : R
2 → R

2 with I(x) = x and P(x) = (x · ∇u√
1+|∇u|2

) ∇u√
1+|∇u|2

, and the associated

gradient descent equation of the functional (6) can be given as follows:

∂u

∂t
= −λ∇ · [ 1√

1 + |∇u|2
(I − P)∇Φ′(κu)] + (f − u). (9)

with time t being an evolution parameter.

2.2 The Augmented Lagrangian Method to the Euler’s Elastica func-

tional

In [31], the augmented Lagrangian method was successfully applied to the Euler’s elastica
based image denoising model that was supposed to remove Gaussian white noise [1, 2]. The
functional reads

E(u) =

∫

Ω

[
a + b

(
∇ · ∇u

|∇u|

)2
]
|∇u| + η

2

∫

Ω

(f − u)2. (10)

As discussed in [31], one may convert the minimization of this functional as a constrained
minimization problem by introducing two new variables p = ∇u and n = ∇u/|∇u|, and
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the corresponding augmented Lagrangian functional can be written as follows:

L(u,p,n;λ1,λ2) =

∫ [
a + b (∇ · n)2

]
|p| + η

2

∫
(f − u)2

+
r1

2

∫

Ω

(|p|n − p)2 +

∫

Ω

λ1 · (|p|n − p)

+
r2

2

∫

Ω

(p−∇u)2 +

∫

Ω

λ2 · (p−∇u). (11)

However, instead of dealing with this functional, in [31], the authors considered a more
relaxed and easily handled functional that is given as follows:

L(u,m,p,n;λ1,λ2,λ3) =

∫ [
a + b (∇ · n)2

]
|p| + η

2

∫
(f − u)2

+
r1

2

∫

Ω

(|p| − m · p) +

∫

Ω

λ1(|p| − m · p)

+
r2

2

∫

Ω

(p−∇u)2 +

∫

Ω

λ2 · (p−∇u)

+
r3

2

∫

Ω

(n− m)2 +

∫

Ω

λ3 · (p −∇u) + δR(m), (12)

where R = {m ∈ L2(Ω) : |m| ≤ 1 a.e. in Ω} and δR(·) is the characteristic function on R
and can be expressed as follows:

δR(m) =

{
0, m ∈ R;
+∞, otherwise.

One then needs to find its saddle points as these points correspond to the minimizers of
the original functional (10). To this end, as in [31], one just needs to solve the associated
subproblems of each variable by fixing other ones iteratively with new updated Lagrangian
multipliers λ1, λ2, λ3, and λ4. There are totally four subproblems related to the functional,
each of which involves only one variable of u, m, p, and n. Specifically, the equation for the
variable u is a linear equation that can be efficiently solved using FFT, and the one for n

can be locally solved. Moreover, the other two subproblems have explicit minimizers using
some shrinkages. Therefore, the new augmented Lagrangian functional (12) will be solved
very efficiently.

From the above discussion, whether an augmented Lagrangian method can be efficiently
employed is highly determined by the original functional. Basically, a functional could be
easily converted to be a constrained problem by introducing new variables. However, the
searching for saddle points of the associated augmented Lagrangian functional may require
quite a lot of effort. The success of the above augmented Lagrangian method is benefited
by the simpleness of the associated subproblems.

2.3 Description of the Augmented Lagrangian Method to the Mean Cur-

vature Based Image Denoising Model

In this section, we discuss how a similar augmented Lagrangian method will be applied to
the MC model (5).
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To develop an augmented Lagrangian functional for the mean curvature based image
denoising model, we may naturally introduce three new variables q, w, and p and consider
the following constrained minimization problem:

minu,q,w,p

[
λ

∫

Ω

|q| + 1

2

∫
(f − u)2

]
,

with q = ∇ · n, n =
p√

1 + |p|2
, p = ∇u. (13)

We then write down the associated augmented Lagrangian functional:

E(u, q,n,p, λ1,λ2,λ3) = λ

∫
|q| + 1

2

∫
(f − u)2

+
r1

2

∫
(q −∇ · n)2 +

∫
λ1(q −∇ · n)

+
r2

2

∫
(n − p√

1 + |p|2
)2 +

∫
λ2 · (n − p√

1 + |p|2
)

+
r3

2

∫
(p −∇u)2 +

∫
λ3 · (p−∇u). (14)

However, due to the term p/
√

1 + |p|2, this functional is also not easy to handle. This
differs from the Euler’s elastica functional where p = ∇u and n = ∇u/|∇u| can be nicely
and mutually converted. Therefore, a key issue of applying the augmented Lagrangian
method to functionals involving the term

√
1 + |∇u|2 or ∇u/

√
1 + |∇u|2 is to find a way

that can easily solve p from
√

1 + |p|2. In fact, the term
√

1 + |∇u|2 also appears in other
occasions such as the surface area based image denoising model [17]:

E(u) = λ

∫

Ω

√
1 + |∇u|2 +

1

2

∫

Ω

(f − u)2. (15)

Before stating our idea of dealing with this issue, let’s recall the idea of introducing the
mean curvature denoising model. In this model, a given 2D image f(x) is regarded as a
surface (x, y, f(x, y)) in R

3. One thus considers the surface φ(x, y, z) = u(x, y)− z = 0 and
the mean curvature κ = ∇ · (∇φ/|∇φ|) = ∇ · (< ∇u,−1 > /| < ∇u,−1 > |). Note that
one introduces two variables p = ∇u and n = ∇u/|∇u| to tackle the Euler’s elastica for
its curvature term κ = ∇ · (∇u/|∇u|). This gives us a hint to treat the curvature term
in our case, that is, we may introduce a variable p =< ∇u,−1 > instead of p = ∇u and
n =< ∇u,−1 > /| < ∇u,−1 > | accordingly.

As there is no difference if p =< ∇u, 1 > is used, we then propose the following con-
strained minimization problem that is equivalent to the minimization of the functional (5):

minu,q,n,p

[
λ

∫

Ω

|q| + 1

2

∫
(f − u)2

]
,

with q = ∇ · n, n =
p

|p| , p =< ∇u, 1 >, (16)
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and the associated augmented Lagrangian functional:

L(u, q,p,n,m;λ1,λ2, λ3,λ4) = λ

∫
|q| + 1

2

∫
(f − u)2

+ r1

∫
(|p| − p ·m) +

∫
λ1(|p| − p ·m)

+
r2

2

∫
|p− < ∇u, 1 > |2 +

∫
λ2 · (p− < ∇u, 1 >)

+
r3

2

∫
(q − ∂xn1 − ∂yn2)

2 +

∫
λ3(q − ∂xn1 − ∂yn2)

+
r4

2

∫
|n − m|2 +

∫
λ4 · (n −m) + δR(m), (17)

where n,m,p ∈ R
3, λ1, λ3 ∈ R, λ2,λ4 ∈ R

3. All these terms are similar to the ones
discussed in [31]. For the sake of the completeness of presentation, we want to emphasize
important points of the above augmented Lagrangian functional as follows.

The introduction of the variable m is to relax the variable n that is supposed to connect
with the variable p in terms of n = p/|p|, and the variable m is required to lie in the set
R so that the term |p| − p · m is always non-negative. As discussed in [31], the benefit of
this non-negativeness is that the L2 penalization is unnecessary and we just use |p| −p ·m
as a penalization.

As the saddle points of the augmented Lagrangian functional (17) corresponds to the
minimizers of the constrained minimization problem (16), one just needs to find the saddle
points of (17). To this end, as in [31], we apply an iterative algorithm. Specifically, for
each variable in (17), we fix all the other variables and seek a critical point of the induced
functional to update this variable. Once all the variables are updated, the Lagrangian
multipliers will also be advanced. Then we repeat all the process until the variables are
convergent. The algorithm is summarized in Table 1 and Table 2.

Therefore, we need to consider the following subproblems and obtain critical points for
each of them.

ε1(u) =
1

2

∫
(f − u)2 +

r2

2

∫
|p− < ∇u, 1 > |2 +

∫
λ2 · (p− < ∇u, 1 >), (24)

ε2(q) = λ

∫
|q| + r3

2

∫
(q − ∂xn1 − ∂yn2)

2 +

∫
λ3(q − ∂xn1 − ∂yn2), (25)

ε3(p) = r1

∫
(|p| − p · m) +

∫
λ1(|p| − p · m) +

r2

2

∫
|p− < ∇u, 1 > |2

+

∫
λ2 · (p− < ∇u, 1 >), (26)

ε4(n) =
r3

2

∫
(q − ∂xn1 − ∂yn2)

2 +

∫
λ3(q − ∂xn1 − ∂yn2) +

r4

2

∫
|n− m|2

+

∫
λ4 · (n − m), (27)

ε5(m) = r1

∫
(|p| − p · m) +

∫
λ1(|p| − p · m) +

r4

2

∫
|n− m|2

+

∫
λ4 · (n − m) + δR(m). (28)
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Table 1: Augmented Lagrangian method for the mean curvature model.

1. Initialization: u0, q0, p0, m0, n0, and λ0
1, λ

0
2, λ0

3, λ
0
4.

2. For k ≥ 1, compute an approximate minimizer (uk, qk,pk,mk,nk) of the augmented
Lagrangian functional with the fixed Lagrangian multiplier λk−1

1 , λ
k−1
2 , λk−1

3 , λ
k−1
4 :

(uk, qk,pk,mk,nk) ≈ argmin L(u, q,p,m,n, λk−1
1 ,λk−1

2 , λk−1
3 ,λk−1

4 ). (18)

3. Update the Lagrangian multipliers

λk
1 = λk−1

1 + r1(|pk| − pk · mk)

λ
k
2 = λ

k−1
2 + r2(|p|k− < ∇uk, 1 >)

λk
3 = λk−1

3 + r3(q
k − ∂xnk

1 − ∂yn
k
2)

λ
k
4 = λ

k−1
4 + r4(n

k − mk),

where n = (n1, n2, n3).

4. Measure the relative residuals and stop the iteration if they are small than a threshold
ǫr.

Table 2: Alternating minimization method to solve the subproblems.

1. Initialization: ũ0 = uk−1, q̃0 = qk−1, p̃0 = pk−1, m̃0 = mk−1, and m̃0 = nk−1.

2. For l = 1, · · ·, L and fixed Lagrangian multiplier λ1 = λk−1
1 , λ2 = λ

k−1
2 , λ3 = λk−1

3 ,
and λ4 = λ

k−1
4 , solve the following subproblems :

ũl = argmin L(u, q̃l−1, p̃l−1, m̃l−1, ñl−1, λ1,λ2, λ3, λ4) (19)

q̃l = argmin L(ũl, q, p̃l−1, m̃l−1, ñl−1, λ1,λ2, λ3, λ4) (20)

p̃l = argmin L(ũl, q̃l,p, m̃l−1, ñl−1, λ1,λ2, λ3, λ4) (21)

m̃l = argmin L(ũl, q̃l,pl,m, ñl−1, λ1,λ2, λ3, λ4) (22)

ñl = argmin L(ũl, q̃l,pl,ml,n, λ1,λ2, λ3,λ4) (23)

3. (uk, qk,pk,mk,nk) = (ũl, q̃l, p̃l, m̃l, ñl).
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In what follows, we will discuss the minimizers of all the above functionals and the update
of the Lagrangian Multipliers.

Similarly as what discussed in [31], the minimizers of the functionals ε2(q), ε3(p), and
ε5(m) can be expressed explicitly, while the minimizers of the functionals ε2(u) and ε3(n)
are determined by the associated Euler-Lagrange equations. For the sake of completeness
of presentation, we provide the details here.

To obtain the minimizers of the functionals ε2(q) and ε3(p), we need the following lemmas
[31].

Lemma 1. Let x0 be a given scalar or vector, µ, r be two parameters with r > 0, then the
minimizer of the following functional

minx

∫

Ω

µ|x| + r

2
|x− x0|2,

reads

x = max

{
0, 1 − µ

r|x0|

}
x0,

Lemma 2. (Lions and Mercier [18]) Let m0 be a given vector, then the minimization
problem

minm

∫

Ω

|m −m0|2 + δR(m)

has an explicit solution

m =

{
m0, |m0| ≤ 1;
m0/|m0|, otherwise.

Note that

ε2(q) =

∫

Ω

λ|q| + r3

2

(
q − (∂xn1 + ∂yn2 −

λ3

r3

)

)2

+ c̃1, (29)

where c̃1 is a constant independent of the variable q, and

ε3(p) =

∫

Ω

(r1 + λ1)|p| +
r2

2
|p − (< ∇u, 1 > −λ2

r2

+
r1 + λ1

r2

m)|2 + c̃2,

where c̃2 is a constant independent of the variable p, based on Lemma 1, we obtain the
minimizers of ε2(q) and ε3(p) as follows:

Argminqε2(q) = max

{
0, 1 − λ

r3|q̃|

}
q̃, q̃ = ∂xn1 + ∂yn2 −

λ3

r3

, (30)

Argminpε3(p) = max

{
0, 1 − r1 + λ1

r2|p̃|

}
p̃, p̃ =< ∇u, 1 > −λ2

r2

+
(r1 + λ1)m

r2

.

(31)
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As

ε5(m) =
r4

2

∫
|m−

(
n +

r1 + λ1

r4

p +
λ4

r4

)
|2 + δR(m) + c̃3,

where c̃3 is a constant independent of the variable m, based on Lemma 2, we get

Argminmε5(m) =

{
m̃, |m̃| ≤ 1;
m̃/|m̃|, |m̃| > 1.

m̃ = n +
λ4

r4

+
(r1 + λ1)p

r4

. (32)

As for the functionals ε1(u), ε4(n), we need to get the associated Euler-Lagrange equa-
tions. Standard procedures lead to the following equations of u and n:

−r2∆u + u = f − (r2p1 + λ21)x − (r2p2 + λ22)y, (33)

and

−r3(∂xn1 + ∂yn2)x + r4n1 = r4m1 − λ41 − (r3q + λ3)x,

−r3(∂xn1 + ∂yn2)y + r4n2 = r4m2 − λ42 − (r3q + λ3)y,

n3 = m3 − λ43/r4, (34)

where p =< p1, p2, p3 >, m =< m1,m2,m3 >, n =< n1, n2, n3 > and the Lagrangian
multiplier λ2 =< λ21, λ22, λ23 >, λ4 =< λ41, λ42, λ43 >. To update the variables u and n,
one needs to solve these Euler-Lagrangian equations.

Finally, the updates of the variables λ1,λ2, λ3,λ4 are given as follows:

λnew
1 = λold

1 + r1(|p| − p · m),

λ
new
2 = λ

old
2 + r2(p− < ∇u, 1 >),

λnew
3 = λold

3 + r3(q − ∂xn1 − ∂yn2),

λ
new
4 = λ

old
4 + r4(n −m). (35)

2.4 Discussion of the Smoothed Mean Curvature Based Image Denoising

Model

As discussed previously, in [38], due to the non-differentiability of the MC model (5), the
gradient descent equation of the smoothed version of the MC model (6) had to be employed.
However, by using the augmented Lagrangian method, the difficulty can be easily overcome
[34, 31]. This is one appealing feature of the augmented Lagrangian methods.

In this work, to fairly get a comparison of efficiency for the proposed augmented Lagrange
method and the gradient descent method, we also consider the functional (6). In fact, to
minimize this functional, we may use the same augmented Lagrangian functional (17) except
that the term λ

∫
|q| that will be replaced by λ

∫
Φǫ(q) with Φǫ defined as follows:

Φǫ(x) =

{
x2/ǫ, |x| ≤ ǫ,
|x|, |x| > ǫ.

(36)
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where ǫ > 0 is a parameter. This modification only leads to the change of the subproblem
related to the variable q, and it becomes

ε2(q) = λ

∫
Φǫ(q) +

r3

2

∫
(q − ∂xn1 − ∂yn2)

2 +

∫
λ3(q − ∂xn1 − ∂yn2). (37)

Therefore, the subsequent problem is how to determine its minimizer. To this end, we
propose the following lemma.

Lemma 3. Let q0 be a given scalar, µ, r be two parameters with r > 0, then the following
functional

∫

Ω

µΦǫ(q) +
r

2
(q − q0)

2,

with Φǫ being defined as (36) attains its minimizer at

q = sgn(q0)





q2, q1 ≥ ǫ and q2 ≥ ǫ,
ǫ, q1 ≥ ǫ and q2 < ǫ,
q1, q1 < ǫ and q2 ≤ ǫ,
argmin{f(q1), f(q2)}, q1 < ǫ and q2 > ǫ.

(38)

where f(q) = µΦǫ(q) + r
2
(q − q0)

2, and q1, q2 are given as follows:

q1 =
r|q0|

2µ/ǫ + r
,

q2 = |q0| −
µ

r
.

Proof. Since no derivatives involved in the functional, one just needs to find the minimum
point of the following scalar function:

f(q) = µΦǫ(q) +
r

2
(q − q0)

2.

Note that f is piecewisely defined on the intervals (−∞,−ǫ), [−ǫ, ǫ], and (ǫ,+∞), to find
the minimum, one just needs to calculate the critical points for each interval. As f is an
even function, only the case with q0 > 0 is considered below. The critical points of f defined
in [−ǫ, ǫ] and (ǫ,+∞) are given as

q1 =
rq0

2µ/ǫ + r
,

q2 = q0 −
µ

r
.

respectively.
As f is upward convex in each of these intervals, f attains the minimum at the critical

point if it is inside the interval where f is defined. Therefore, if q1 ≥ ǫ, the minimum is
either at ǫ or at q2, which can be determined by whether q2 is inside (ǫ,+∞); if q1 < ǫ, the
minimum may be attained either at q1 or q2. In summary, we get the minimum point of f
as stated in this lemma.
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3 Numerical Implementation

In this section, we present the details of how to solve the equations (33) and (34) and update
the variables q, p and m for each iteration. Since the numerics are almost the same as what
discussed in [31], we here only present the key points.

Before discussing the discretizations of the above equations, we need to note that the
regularizer of the MC model, |κu| = |∇ · ( ∇u√

1+|∇u|2
)| or Φǫ(κu), is not homogeneous in u.

This is one of the most important features that differentiate it from other image denoising
ones such as the ROF model [29] and the Euler’s elastica based model [1, 2]. Therefore, one
shall introduce a spatial mesh size for the discretization of the terms involving derivatives.

Numerically, the spatial mesh size plays an important role in the performance of the
model, as it determines the magnitude of gradient. Note that any given image is only de-
fined on a finite number of grids, therefore, once the spatial mesh size is small enough, any
tiny variation of u in a neighborhood of a grid will lead to large κu at that point and may
be preserved as a jump by the model. This surely fails to remove the noise but also suggests
that a relative small spatial mesh size helps to preserve fine structures of images. On the
other hand, if the spatial mesh size is large enough, and as the image intensity only ranges
in [0, 255], then even visually salient jumps will still lead to a small κu and be removed.

We then define the discrete backward and forward differential operators with periodic
boundary condition and the spatial mesh size h as follows:

∂−
1 u(i, j) =

{
(u(i, j) − u(i − 1, j))/h, 1 < i ≤ M ;
(u(1, j) − u(M, j))/h, i = 1.

∂+
1 u(i, j) =

{
(u(i + 1, j) − u(i, j))/h, 1 ≤ i < M − 1;
(u(1, j) − u(M, j))/h, i = M.

∂−
2 u(i, j) =

{
(u(i, j) − u(i, j − 1))/h, 1 < j ≤ N ;
(u(i, 1) − u(i,N))/h, j = 1.

∂+
2 u(i, j) =

{
(u(i, j + 1) − u(i, j))/h, 1 ≤ j < N ;
(u(i, 1) − u(i,N))/h, j = N.

and the central difference operators and the gradient operators are defined accordingly as

∂c
1u(i, j) = (∂−

1 u(i, j) + ∂+
1 u(i, j))/2,

∂c
2u(i, j) = (∂−

2 u(i, j) + ∂+
2 u(i, j))/2,

∇±u(i, j) = (∂±
1 u(i, j), ∂±

2 u(i, j)).

Let’s first discuss how to solve the equation (33). As periodic condition is imposed, we
may use FFT to solve this linear equation. We employ the following discretization:

−r2div−∇+u + u = f − ∂−
1 (r2p1 + λ21) − ∂−

2 (r2p2 + λ22), (39)

or

−r2(∂
−
1 ∂+

1 + ∂−
2 ∂+

2 )u + u = f − ∂−
1 (r2p1 + λ21) − ∂−

2 (r2p2 + λ22). (40)
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We then apply the discrete Fourier transform F for both sides. Note that

F∂±
1 u(i, j) = ±(e±

√
−1zi − 1)Fu(i, j),

F∂±
2 u(i, j) = ±(e±

√
−1zj − 1)Fu(i, j),

where zi = 2πi/M, i = 1, · · ·,M , zj = 2πj/N, j = 1, · · ·, N , we get

(−2r2(cos zi + cos zj − 2) + 1)Fu(i, j) = Fg(i, j), (41)

where g(i, j) = f(i, j) − ∂−
1 (r2p1 + λ21)(i, j) − ∂−

2 (r2p2 + λ22)(i, j). Therefore, once Fu is
calculated, u can be obtained using the discrete inverse Fourier transform.

We also use FFT to solve the equations (34). To this end, we first discretize the first two
equations of (34 ) as follows:

−r3(∂
+
1 ∂−

1 n1 + ∂+
1 ∂−

2 n2) + r4n1 = r4m1 − λ41 − ∂+
1 (r3q + λ3) (42)

−r3(∂
+
2 ∂−

1 n1 + ∂+
2 ∂−

2 n2) + r4n2 = r4m2 − λ42 − ∂+
2 (r3q + λ3), (43)

then apply the discrete Fourier transform to both sides and get the following 2 × 2 system
for each grid (i, j):

(
a11 a12

a21 a22

)(
Fn1(i, j)
Fn2(i, j)

)
=

(
Fh1(i, j)
Fh2(i, j)

)
(44)

with

a11 = r4 − r3(e
2πi

√
−1/M − 1)(1 − e−2πi

√
−1/M ),

a12 = −r3(e
2πi

√
−1/M − 1)(1 − e−2πj

√
−1/N ),

a21 = −r3(e
2πj

√
−1/N − 1)(1 − e−2πi

√
−1/M ),

a11 = r4 − r3(e
2πj

√
−1/N − 1)(1 − e−2πj

√
−1/N ),

and

h1(i, j) = r4m1(i, j) − λ41(i, j) − ∂+
1 (r3q + λ3)(i, j)

h2(i, j) = r4m2(i, j) − λ42(i, j) − ∂+
2 (r3q + λ3)(i, j).

As the determinant of the above 2×2 matrix equals to r2
4−2r4r3(cos 2πi/M+cos 2πj/N−2),

which is always positive when r4 > 0, we can easily solve the above system to get Fn1 and
Fn2, then apply the discrete inverse Fourier transform to them, and the real parts of the
inverse Fourier give us the new n1 and n2. The third component n3 of n can be calculated
directly.

In what follows, we discuss the update of the variables q, p, m as well as the Lagrangian
multipliers.

As q is scalar defined on the grid points (i, j), based on the formulation (30), one gets

q(i, j) = max

{
0, 1 − λ

r3|q̃i,j|

}
q̃i,j,

with q̃i,j = ∂−
1 n1(i, j) + ∂−

2 n2(i, j) − λ3/r3.

13



As for the variable p, we first calculate the three components of p̃, and then calculate
the length of p̃ and the updated p. Specifically,

p̃(i, j) = < ∂+
1 u(i, j), ∂+

2 u(i, j), 1 > −< λ21, λ22, λ23 > (i, j)

r2

+
(r1 + λ1) < m1,m2,m3 > (i, j)

r2

,

and based on the formulation (31)

p(i, j) = max

{
0, 1 − r1 + λ1(i, j)

r2|p̃(i, j)|

}
p̃(i, j).

Similarly, we calculate

m̃(i, j) = n(i, j) +
λ4(i, j)

r4

+
(r1 + λ1(i, j))p(i, j)

r4

,

and get the new m(i, j) using the formulation (32).
Moreover, based on the formulations (35), we may update all the Lagrangian multipliers:

λnew
1 (i, j) = λold

1 (i, j) + r1(|p|(i, j) − p(i, j) · m(i, j)),

with |p|(i, j) =
√

p2
1(i, j) + p2

2(i, j) + p2
3(i, j), and

λnew
21 (i, j) = λold

21 (i, j) + r2(p1(i, j) − ∂−
1 u(i, j)),

λnew
22 (i, j) = λold

22 (i, j) + r2(p2(i, j) − ∂−
2 u(i, j)),

λnew
23 (i, j) = λold

23 (i, j) + r2(p3(i, j) − 1),

λnew
3 (i, j) = λold

3 (i, j) + r3(q(i, j) − ∂−
1 n1(i, j) − ∂−

2 n2(i, j)),

λnew
41 (i, j) = λold

41 (i, j) + r4(n1(i, j) − m1(i, j)),

λnew
42 (i, j) = λold

42 (i, j) + r4(n2(i, j) − m2(i, j)),

λnew
43 (i, j) = λold

43 (i, j) + r4(n3(i, j) − m3(i, j)).

4 Numerical Experiments

In this section, we apply the proposed augmented Lagrangian method (ALM) for both the
original MC model (5) and the smoothed MC model (6), and then compare the algorithm
with the gradient descent method (GDM) in their efficiency for the smoothed MC model.

To check whether the ALM converges to some saddle point, we monitor the following
relative residuals as in [31]:

(Rk
1 , Rk

2 , Rk
3 , Rk

4) =
1

|Ω|(R̃
k
1 , R̃k

2 , R̃
k
3 , R̃k

4), (45)

with

R̃k
1 = |pk| − pk · mk,

R̃k
2 = pk− < ∇uk, 1 >,

R̃k
3 = qk − ∂xnk

1 − ∂yn
k
2,

R̃k
4 = nk − mk.
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In all the following numerical experiments, we use the relative residuals (45) as the stopping
criterion, that is, given a small threshold ǫr, once Rk

i < ǫr for i = 1, ..., 4 and for some k,
the iteration process will be terminated. To check the convergence of the iteration process,
as in [31], we also check the relative errors of Lagrange multipliers:

(Lk
1 , L

k
2 , L

k
3 , L

k
4) =

(
‖ λk

1 − λk−1
1 ‖L1

‖ λk−1
1 ‖L1

,
‖ λ

k
2 − λ

k−1
2 ‖L1

‖ λ
k−1
2 ‖L1

,
‖ λk

3 − λk−1
3 ‖L1

‖ λk−1
3 ‖L1

,
‖ λ

k
4 − λ

k−1
4 ‖L1

‖ λ
k−1
4 ‖L1

)
,

(46)

and the relative error of the solution uk

‖ uk − uk−1 ‖L1

‖ uk−1 ‖L1

. (47)

Besides all these quantities, we also consider how the energy (5) is evolving during the
iteration by tracking the amount E(uk). For the presentation purpose, all the above quan-
tities are shown in log-scale in the following results. Moreover, to illustrate what signals
are removed as noise, we also present the associated residual image f −u, besides the given
noisy image f and the cleaned one u.

We first consider some real images. In Fig 1, we present the results for the images ”Cam-
eraman” and ”Peppers”, including the original noisy images, cleaned ones and the residual
images. The cleaned images demonstrate that noise part and small scale signals have been
removed, which can be observed in the related residual images. One can easily find that the
cleaned images are composed of piecewisely smooth surface patches, that is, they are free
from the stair case effect that is a typical unfavorable feature of the well-known ROF model.
In Fig 2, the plots of the relative residuals (45), relative errors in Lagrange multipliers (46),
relative error in uk (47), and the energy versus iteration are listed for these two examples.
These series of plots illustrate the convergence of the iteration process using the proposed
Augmented Lagrange method, and also show that the process leads to some saddle points
of the constrained minimization problems.

We then apply the proposed Augmented Lagrange method for some synthetic images. In
Fig 3, the results of two synthetic images are presented. These two images have some special
visual clues. For instance, the image ”lattice” has corners and sharp edges, and the image
”rings” consists of a few surface patches with both flat patches and a curved one inside the
image. From the two cleaned images, one can check that the noise has been effectively re-
moved and the corresponding residual images nearly contain no meaningful signals for both
examples. A careful check of the cleaned lattice image shows that the corners are preserved
very well, which is an important feature of the mean curvature model [38]. Moreover, in the
plots (a4) and (b4), we present the slices of the original noise free images, noisy images and
the cleaned ones. These slices provide another perspective to check the denoising results. In
the plot (a4), we can see that the cleaned slice curve (blue) almost overlaps with the original
noise free slice curve (red), which demonstrates the preservation of image contrast, which is
another feature of the mean curvature model. The plot (b4) shows that the original noise
free ”rings” has a smooth arch in its center, which is also almost fully restored by the model.

We have applied the proposed ALM for real and synthetic images. To explicit how ef-
ficiency the proposed method is, in Table 3, we present the cpu time for all the above
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Table 3: The presentation of the sizes, the SNRs, the numbers of total outer iteration, and
the computational time for the images in Figures 1 and 3.

image size SNR Number of iterations time (sec)

Fig. 1-(a2) 256 × 256 8.93 583 155.22

Fig. 1-(b2) 256 × 256 10.37 433 112.01

Fig. 3-(a2) 128 × 128 10.88 268 18.80

Fig. 3-(b2) 100 × 100 11.40 579 25.58

experiments.

As mentioned in the introduction, a few other higher order image denoising models have
been existed in the literature such as Euler’s elastica image denoising model [1] and the
Lysaker et al.’s model [19]. In Figure 4, we apply the MC model, Euler’s elastica model
and the ROF model for a synthetic image with sharp edge and corners. The results show
that the MC model keeps corners better than the other two models. This can be observed
in the related residual images where some corner signals exist explicitly for the two models.
Moreover, from the cleaned images, one can see that the MC model also preserves image
contrast better than the ROF model. In fact, the result obtained by the ROF shows less
darkness of the object than that of the MC model.

The above three examples demonstrate that the proposed ALM can efficiently accomplish
the task of sweeping noise and keeping corners and image contrasts that are assumed by
the MC model.

In the next experiment, we demonstrate an important feature of the MC model, that
is, the clean image function u depends discontinuously on the regularization parameter λ.
To see this point clearly, we compare the results using the ROF model and the MC model
respectively in Figure 5. In this experiment, we consider a noise-free synthetic image with
a bunch of squares of different sizes. We first list the results of the MC model for two
different regularization parameters. One can see that when λ = 2.5× 104, the squares with
the smallest size are swept as noise and show up in the residual image, while the other
squares are well preserved in the cleaned image. When we increase the parameter to be λ =
4.0×104, then the squares of larger size will be removed as shown in the residual image. This
phenomenon demonstrates that the results of the MC model do not continuously depend on
the regularization parameter λ. In contrast, the ROF model depends on its regularization
parameter continuously. In fact, for either a relatively small parameter λ = 10.0 and a
relatively larger one λ = 100.0, all the squares, regardless of the sizes, are partially swept
as noise, and the removed part depends on the square size.

This specific feature of the MC model suggests a data-driven scale selection approach,
that is, as the regularization parameter λ gradually increases, objects of small sizes will be
removed from the given image, while large size objects will be almost completely preserved.
This particular property is also possessed by the TV-L1 model [6] with lots of applications
[7, 35]. However, the MC model is able to keep corners, while the TV-L1 model cannot,
which suggests that the MC model might be more suited than the TV-L1 model to appli-
cations for which the preservation of geometry is crucial.

In the last experiment, we compare the efficiency of the proposed ALM and the GDM
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by applying them to the smoothed MC model (6). To make the comparison fairly, for each
method, we stop the iteration process once the following L2 error in uk with satisfies:

1

|Ω| ‖ uk − uexact ‖L2 < ǫe, (48)

where ǫe = 5.5×10−3, uexact denotes the convergent state of uk. Note that the MC model is
not convex, the two algorithms may converge to two different local minimizers. Therefore,
for each algorithm, we calculate its own uexact. For instance, for ALM, we get the uexact

using a far large number of iterations; while for GDM, besides the huge iteration number,
we choose a much small time step. By using the quantity 1

|Ω| ‖ uk−uexact ‖L2 , one can check
which algorithm can converge to uexact more quickly. In Figure 6, we list the results for
both algorithms. The two cleaned images show almost no difference, however, the energy
associated with ALM drops dramatically within one hundred iterations. From the efficiency
comparison Table 4, we also see that ALM takes much fewer iterations and less cost time
than GDM, which demonstrate that ALM is much more efficient than GDM.

Table 4: Efficiency comparison between ALM and GDM for Figure 6

Augmented Lagrangian Method Gradient Descent Method

Iterations needed 866 53,635

Time needed (seconds) 233.78 7,153.88

5 Conclusion

Recently, the augmented Lagrangian method has been successfully used to minimize the
classical ROF functional [34] and Euler’s elastica based functionals [31]. In this paper,
we apply this method to deal with a mean curvature based image denoising model, which
is nontrivial to develop an efficient algorithm due to higher order derivative information
and non-differentiability of the model. The numerical experiments demonstrate that the
proposed augmented Lagrangian method is much faster than the gradient descent method
in converging to minimizers of the mean curvature based functional.
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Figure 1: The denoising results for the images ”Cameraman” and ”peppers”. The noisy,
cleaned, and residual images are listed from the first row to the third row respectively. For
both examples, we set the spatial step size h = 5.0, choose r1 = 40, r2 = 40, r3 = 1 × 105,
and the remaining parameters r4 = 1.5 × 105 and ǫr = 6 × 10−3 for ”Cameraman” while
r4 = 105 and ǫr = 6 × 10−3 for ”peppers”.
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Figure 2: The plots of relative residuals, relative errors in Lagrange multipliers, relative error
in uk and energy for the previous examples ”Cameraman” and ”peppers”. The left column
lists the plots for ”Cameraman” while the right one for ”peppers”. The plots demonstrate
the converges of the iteration process, showing that some saddle points will be achieved.
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Figure 3: The denosing results for two synthetic images ”lattices” and ”rings”. The noisy,
cleaned, residual images are listed from the first row to the third row respectively. In the
fourth row, a slice of the original noise free image, noisy and the cleaned images for each
example is presented. For the ”lattices” example, we choose the parameters as follows:
h = 1.0, r1 = 20, r2 = 20, r3 = 1×104, r4 = 1×105 and ǫr = 5×10−3, while for the ”rings”
example, h = 5.0, r1 = 20, r2 = 20, r3 = 1 × 105, r4 = 2 × 105 and ǫr = 8 × 10−3.
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Figure 4: The comparison of three models: the mean curvature (MC) model, the Euler’s
elastica model and the ROF model. The first row lists the noise free image and the noisy
one. The second row presents the results by applying the above three models respectively,
while the associated residual images are shown in the third row. The results illustrate that
the MC model keeps corners better than the other two models, which can be observed in
the related residual images where some corner signals exist explicitly for the two models.
Moreover, the cleaned image by the ROF shows less darkness of the object than that of the
MC model, which suggests that the MC model preserves image contrast better than the
ROF model.
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Figure 5: The dependence of the regularization parameter for the MC model and the ROF
model. The results demonstrate that the MC model is lack of continuous dependence on
the regularization parameter, which is not possessed by the ROF model.
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Figure 6: The efficiency comparison of ALM and GDM for the smoothed MC model. The
first row lists the two results by both algorithms; the second row shows how the energy is
evolving for the two algorithms; and the third row presents the L2-norm of the difference
between the calculated solution and the exact solution, which is calculated with high accu-
racy. The common parameters used for these two methods are: λ = 5 × 103, h = 5.0, and
ǫ = 0.2. The parameters for ALM are r1 = 50, r2 = 100, r3 = 5 × 104, and r4 = 5 × 104.
The time step size for GDM is dt = 2 × 10−4.
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