
A continued fractions package for special functions

FRANKY BACKELJAUW and ANNIE CUYT

University of Antwerp, Belgium

The continued fractions for special functions package (in the sequel abbreviated as CFSF pack-

age) complements a systematic study of continued fraction representations for special functions.
It provides all the functionality to create continued fractions, in particular k-periodic or limit

k-periodic fractions, to compute approximants, make use of continued fraction tails, perform
equivalence transformations and contractions, and much more. The package, developed in Maple,

includes a library of more than 200 representations of special functions, of which only 10% can be

found in the NBS Handbook of Mathematical Functions with Formulas, Graphs and mathematical
Tables by Abramowitz and Stegun.

Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: Approximation—Special func-

tion approximations

Additional Key Words and Phrases: CAS software, continued fractions, Maple, special functions

1. INTRODUCTION

Special functions are pervasive in all fields of science and industry. The most well-
known application areas are in physics, engineering, chemistry, computer science
and statistics. Because of their importance, several books and websites (see for
instance functions.wolfram.com) and a large collection of papers have been de-
voted to these functions. Of the standard work on the subject, the Handbook of
Mathematical Functions with Formulas, Graphs and Mathematical table edited by
Milton Abramowitz and Irene Stegun, the American National Institute of Stan-
dards and Technology (formerly National Bureau of Standards) claims to have sold
over 700 000 copies (over 150 000 directly and more than fourfold that number
through commercial publishers)!

But the NBS Handbook [Abramowitz and Stegun 1964], as well as the Bateman
volumes written in the early fifties [Erdélyi et al. 1953a; 1953b; 1955], are currently
out of date due to the rapid progress in research and the revolutionary changes in
technology. Already in the nineties (see for instance [Lozier 2000]) several projects
were launched to update the principal handbooks on special functions and to make
them available on the web and extend them with computational facilities.

This package complements the Handbook of Continued Fractions for Special Func-
tions [Cuyt et al. 2008], which results from a systematic study of continued fraction
representations for special functions. Only 10% of the continued fractions contained
in this book, can also be found in the NBS Handbook or at the Wolfram website!
And in this count we systematically disregard continued fractions which are equiva-
lent to series, because of their limited interest (see section 5.3). The Maple package
discussed here offers all the basic support required to handle continued fractions
on the one hand, and implements all series and continued fraction representations
listed in [Cuyt et al. 2008] on the other hand. The package requires Maple 9 or
above and can be downloaded from www.cfsf.ua.ac.be.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008, Pages 1–0??.

2 · F. Backeljauw and A. Cuyt

2. MAPLE’S NUMTHEORY[CFRAC]

A continued fraction is an expression of the form

f(z) := b0(z) +
a1(z)

b1(z) +
a2(z)

b2(z) +
a3(z)

b3(z) +
. . .

(1)

where the partial numerators am(z) and partial denominators bm(z) are complex
numbers or functions of z with am(z) 6= 0 for all m. A common name for the
ordered pair [am(z), bm(z)] is element. In the sequel, the variable z is dropped
when no confusion can arise. The following alternative notations are also used:

f(z) = b0 +
a1

b1 +
a2

b2 + . . .
= b0 +

∞

K
m=1

(
am
bm

)
.

The development of this continued fraction package is necessary because the
built-in support for continued fractions in symbolic computing environments is
rather inadequate. For instance, Maple only offers limited basic support to handle
continued fractions through its numtheory[cfrac] command. With this command
it is possible to create a continued fraction expansion for a number, a rational
function, a series or another algebraic object (such as a special function), up to
a user-defined constant number of elements (the default is 10). For example, a
continued fraction expansion for the complementary error function is obtained via:

> erfcCF := cfrac(erfc(z));

erfcCF := 1 +
z

−
√
π

2
+

z2

6
√
π

+
z2

5
√
π +

.. .

(2)

Other forms can be created by specifying either regular, simregular, simple,
semisimple or monic, e.g.:

> cfrac(erfc(z), simregular);

1−
2az/

√
π

1 +
z2/3

1−
z2/30

1 +
39z2/70

1−
. . .

However, this command sometimes fails to return a continued fraction expansion
while an expansion of the requested form exists. Some examples:
ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

A continued fractions package for special functions · 3

> cfrac(erf(z), ’semisimple’);
Error, (in numtheory:-cfrac) unable to evaluate sign
> cfrac(GAMMA(a,z), z);
Error, (in series/exp) unable to compute series
> cfrac(Ei(1,z));
Error, in (numtheory:-cfrac) invalid series

Classical approximants (also called convergents, see section 4.4) can be computed
using Maple’s nthconver command. For example, the fifth approximant of (2) is
computed by:

> nthconver(erfcCF, 5);

−
1478
15

z5 −
2475
1478

√
πz4 +

3570
739

z3 −
9975
739
√
πz2 +

49140
739

z −
24570
739

√
π

√
π (165 z4 + 1330 z2 + 3276)

But when computing the tenth approximant, one gets:

> nthconvert(erfcCF, 10);
Error, (in numtheory:-nthconver) wrong arguments

Most important is that numtheory[cfrac] lacks the functionality to deal with
limit-periodic continued fractions. Many continued fraction expansions for special
functions are defined by a repetition of a limited number of general elements in
terms of a running index, such as in (3) and (4). Yet numtheory[cfrac] does not
allow to create continued fraction representations of that form.

Finally, numtheory[cfrac] does not offer the possibility of equivalence transfor-
mations, transformations between series and fractions or any functionality to work
with continued fraction tails (see section 4.5).

3. FAMILIES OF CONTINUED FRACTIONS

For a lot of elementary and special functions in mathematics, physics and engineer-
ing, and for many well-known constants, there exist elegant continued fraction ex-
pansions. Many of these continued fractions offer the advantage that they converge
much more rapidly than power series and in a much larger domain of the complex
plane. In addition, the partial numerators and/or denominators often satisfy some
useful properties such as monotonicity or limit-periodicity. Such properties allow
to further improve the truncation error bounds [Cuyt et al. 2006].

Continued fractions can be categorized into several families, depending on the
properties of their partial numerators and denominators. Among others, one can
distinguish between the following families:

— C-fractions are continued fractions of the form

1 +
∞

K
m=1

(
αmz

βm

1

)
, αm ∈ C \ {0}, βm ∈ N.

If furthermore βm = 1 for m ≥ 1, then it is called a regular C-fraction.
ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

4 · F. Backeljauw and A. Cuyt

— S-fractions or Stieltjes fractions are of the form

∞

K
m=1

(amz
1

)
, am > 0.

Any continued fraction that is equivalent to this form is also called an S-fraction.
For a definition of equivalence, we refer to section 5.

— general T-fractions or Thron fractions are of the form

∞

K
m=1

(
Fmz

1 +Gmz

)
, Fm ∈ C \ {0}, Gm ∈ C.

If furthermore all Fm = 1 then the fraction is called a T-fraction without further
specification. When F1z is replaced by F1, the continued fraction is called an
M-fraction after Murphy and Mc Cabe.

— J-fractions, introduced by Jacobi, are of the form

α1

β1 + z +

∞

K
m=2

(
−αm
βm + z

)
, αm ∈ C \ {0}, βm ∈ C.

— Thiele interpolating continued fractions are of the form

b0 +
∞

K
m=1

(
z − zm−1

bm

)
, bm ∈ C, zm ∈ C.

A continued fraction C(z) is called a modified X-fraction (with X ∈ {C,S,T,M,J})
if there exist transformations C(z)→ B(C(z)) and z → a(z) such that the resulting
continued fraction B(C(a(z))) is an X -fraction.

A nonexhaustive list of special functions for which continued fraction expansions
of the above types exist, is given in Table 1.

Running examples. The continued fraction

exp(z) = 1 +
2z

2− z +
z2/6

1 +

∞

K
m=3

(
amz

2

1

)
, z ∈ C (3)

with

am =
1

4(2m− 3)(2m− 1)

is an S-fraction for the exponential function.
A modified C-fraction involving the complementary incomplete gamma function

Γ(a, z) is given by

Γ(a, z)
zae−z

=
1
z +

∞

K
m=1

(
m− a

1 +
m

z

)
, a ∈ C, |Arg z| < π. (4)

When adding the constraint −∞ < a < 1 the continued fraction in (4) becomes a
modified S-fraction.
ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

A continued fractions package for special functions · 5

Table I. List of special functions (notation and name) and families of continued fractions as defined

in section 3 (checkmark indicates availability). Information about the variable and parameter
constraints can be found in the constraints argument.

Special function Continued fraction

notation name C S T M J

exp(z), log(z), sin(z), . . . elementary X X X
Γ(a, z), γ(a, z) (compl.) incomplete gamma X X X X

ψ1(z) trigamma X X X
ψ2(z) tetragamma X X

erf(z), dawson(z) error, Dawson’s integral X X
erfc(z) complementary error X X
w(z) complex error X X

Ik erfc(z) repeated integrals of erfc X
C(z), S(z) Fresnel integral X X
Em(z) exponential integral X X X X

Ei(z), li(z) exponential and logarithmic integral X X

2F1(a, b; c; z) hypergeometric X X X
3F2(a, b, c; d, e; z) ratios of hypergeometric

1F1(a; b; z),M(a, b, z), U(a, b, z) confluent hypergeometric function X X X
2F0(a, b; z) confluent hypergeometric series X
0F1(; b; z) confluent hypergeometric limit X X
Dν(z) parabolic cylinder X

Jν(z), Yν(z) Bessel X X

H
(1)
ν (z), H

(2)
ν (z) Hankel X X

jn(z), yn(z) spherical Bessel/Hankel X X
Iν(z),Kν(z) modified Bessel X X X X

(log Iν(z))′, (logKν(z))′ log. derivative of mod. Bessel X X X X
in(z), kn(z) modified spherical Bessel X X

F (x, µ, σ2), Q(x, µ, σ2) normal distribution (cdf) X X X
R(x) Mills ratio X X
Ik(x) repeated integrals of probability integral X

P (x2; ν), Q(x2; ν) chi-square distribution (cdf) X X X
P (x;α; θ), Q(x;α; θ) gamma distribution (cdf) X X X

Ix(a, b) incomplete beta distribution (cdf) X X

4. THE CFSF PACKAGE

The CFSF package, developed in Maple, provides functionality for creating con-
tinued fractions, retrieving information about them and computing approximants
with the possibility to make use of continued fraction tail estimates. A continued
fraction expression can also be transformed into another form and it is possible to
construct the continued fraction representation of a given series and vice versa.

We now discuss this functionality in more detail.

4.1 Creating continued fractions

The CFSF package supports any continued fraction that can be written in the form

b0 + f

a1

b1 + · · · +
an
bn +

∞

K
k=0

`=n+1+kt

(
c1(`)
d1(`) + · · · +

ct(`+ t− 1)
dt(`+ t− 1)

) . (5)

Only the last part is compulsory. That is, a continued fraction may start with
a front term b0, it may contain a factor f and some non-general begin elements
[ai, bi] for i = 1, . . . , n, but it must always be followed by a repetition of its general

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

6 · F. Backeljauw and A. Cuyt

elements cj(m)/dj(m) for j = 1, . . . , t.
Using the CFSF package, such a continued fraction can easily be created with

the create command. This command takes several arguments, most of which
are optional. Its first argument is compulsory and must be set to contfrac. Also
required is the general argument which is assigned the list of the successive general
elements [cj(m), dj(m)] of (5). The optional front term is assigned to the front
argument and defaults to 0 when missing. The optional factor is assigned to the
factor argument, which defaults to 1 when missing. The optional begin argument
is assigned the list of begin elements [ai, bi].

For example, the continued fraction given in (3) can be constructed using the
statement:
> expCF := create(contfrac,

front = 1,
begin = [[2*z, 2-z], [z^2/6, 1]],
general = [[z^2/(4*(2*m-3)*(2*m-1)), 1]]

);

expCF := formula
([

type = contfrac, front = 1, begin =
[
[2z, 2− z] ,

[
z2

6
, 1
]]
,

general =
[[

z2

4(2m− 3)(2m− 1)
, 1
]]
,

variable = z, index = m

])
Note that not all arguments are explicitly specified in the create command.

If missing, required arguments are given their default value. For instance, it is
assumed by default that all parts of the formula (be it the front, factor, begin
or general arguments) are expressions in the variable z. However, the user can
assign another symbol to the variable argument. To replace the variable by an
expression, see section 5.4. Likewise, it is assumed that all the general elements are
written in function of the index m. This also can be changed by reassigning the
index argument. Note that the running index m takes into account the number of
begin elements.

The create command also supports parametrized functions as well as constraints.
If the fraction is parametrized, the parameters must be identified by assigning their
set to the parameters argument. Any constraints which must be satisfied for
numerical computations, such as the convergence domain of the continued fraction
or restrictions on its parameters, can be specified using the constraints argument.
It must be a set with logical expressions involving the variable or the parameters,
or items of the form e::prop where e is an expression containing the variable or
one of the parameters and prop being a Maple property, which must be written in
a form described in the ?property help page of Maple.

Other optional arguments are lhs, function, category, label and comment.
The lhs argument is used to store the left hand side f(z) as in (1). The function
argument can be used to identify the set of function names to which the continued
fraction relates. Information about the family to which the continued fraction be-
longs can be stored as a string in the category argument. By assigning a string
ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

A continued fractions package for special functions · 7

to the label argument, a formula is identified for future reference. Finally, the
comment argument allows adding a comment to the formula. None of these argu-
ments influence any numerical computations.

Using all these extra arguments, one constructs the continued fraction for the
complementary incomplete gamma function Γ(a, z) from (4) with the following
statement:
> CIGammaCF := create(contfrac,

label = "CIGammaCF",
factor = z^a * exp(-z),
begin = [[1,z]],
general = [[(m/2)-a,1], [(m-1)/2,z]],
parameters = {a},
function = GAMMA,
lhs = GAMMA(a, z),
category = "S-fraction",
constraints = { abs(functions:-argument(z)) < Pi }

);

CIGammaCF := formula(“CIGammaCF”);

Here, the denominator from the left hand side of (4) has been incorporated into
the factor argument.

Note that, by specifying the label argument, the formula is added to the list
of predefined formulas (provided that no other formula with such a label already
exists). From then on, it is printed in short form, showing only its label. Together
with the function and category arguments, this makes reusing and retrieving
the formula at a later stage possible using the formula and query commands,
respectively. This functionality is discussed in section 6.

4.2 The underlying structure

The CFSF library defines the new type formula that can be used to check whether
a given formula is correctly constructed. For example, to check whether expCF is a
valid formula, one uses the statement:

> type(expCF, formula);

true

Type checking is handled by an internal routine, called validate, which performs
several checks to make sure that all parts of the formula are well formed. For
instance, this routine checks whether the begin and general arguments contain
items that conform to the Maple structured type list([exprtype,exprtype]),
where exprtype is defined in the CFSF library as

exprtype := { ‘+‘, ‘*‘, ‘^‘, function, symbol, complex(numeric) };

The underlying structure of a formula is a table in which the argument names
have been used as indices. As such, its content fully resembles the call to the create
command, except for the first argument contfrac which is assigned to the type
index. Using a table makes retrieving information on a formula very easy, as is
shown in the next section.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

8 · F. Backeljauw and A. Cuyt

4.3 Retrieving information on a continued fraction

One can easily check which parts of the general form (5) are specified by using the
Maple functions assigned and indices. For example:

> assigned(CIGammaCF[front]);

false

> assigned(CIGammaCF[begin]);

true
> map(op, { indices(CIGammaCF) });

{ type, factor , begin, general , parameters, constraints,
lhs, function, category , label , variable, index }

The last statement returns the set of all arguments that are specified for CIGammaCF.
Accessing the individual parts is done using the subscript selector:

> CIGammaCF[general];[[
m

2
− a, 1

]
,

[
m− 1

2
, z

]]
The commands nthpnumer, nthpdenom and nthpelement can be used to get the

N -th partial numerator, denominator or element respectively. These commands
take two arguments, namely a formula as its first argument and a positive integer
value for N as its second argument. For example, the next statement gives the
fourth partial numerator of (4):

> nthpnumer(CIGammaCF, 4);

2− a

If the second argument to these commands is a symbol, the statement is returned
unevaluated. The evaluation is deferred until a numeric value for the second argu-
ment is known.

Using Maple’s seq command, one can retrieve the sequence with the first 6
elements of (4) as follows:

> seq(nthpelement(CIGammaCF, i), i=1..6);

[zae−z, z], [1− a, 1], [1, z], [2− a, 1], [2, z], [3− a, 1]

Note that the factor has been incorporated into the first element, that is, the first
element in this sequence is actually of the form [fa1, b1].

One gets information about the domain of convergence of (4) by looking at its
constraints:
> CIGammaCF[constraints];

{ |functions :−argument(z)| < π }

This constraint indicates that the continued fraction (4) converges for all z ∈ C\{0}
with |Arg(z)| < π (see also section 6.3). It is important to realize that the use of
functions :−argument implies that all functions of a complex variable are treated
as single-valued.
ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

A continued fractions package for special functions · 9

4.4 Computing classical approximants

Evaluating a continued fraction means truncating expression (1) after a finite num-
ber of elements, say N , and evaluating the resulting classical approximant (also
called convergent), which is of the form

fN (z) := b0 +
N

K
m=1

(
am
bm

)
. (6)

Such approximants can be computed using the nthapprox command. This com-
mand takes at least two arguments, namely a formula as its first argument and a
positive number that specifies which approximant to compute. When evaluating a
continued fraction that has been parametrized, one can also pass a set of parameter
substitutions as a third argument to the nthapprox command (for all parameters
specified by the parameters argument in the create command).

For example, the following statement computes the fifth approximant of (4) for
Γ(1/2, z) symbolically:

> nthapprox(CIGammaCF, 5, { a = 1/2 });

2
(
2 z2 + 9 z + 4

)
e−z

(4 z2 + 20 z + 15)
√
z

The approximant is computed using the backward recurrence scheme

FN+1 = 0,
Fi = ai/(bi + Fi+1), i = N, . . . , 1, (7)
F0 = b0 + F1.

When a symbolic result is requested, the intermediate results Fi are occasionally
normalized to avoid excessive memory usage when Maple tries to simplify the final
result F0.

The N -th numerator AN and the N -th denominator BN of (1) are defined by
the recurrence relations[

An
Bn

]
:= bn

[
An−1

Bn−1

]
+ an

[
An−2

Bn−2

]
, n = 1, 2, . . . , N,

with initial conditions

A−1 := 1, B−1 := 0, A0 := b0, B0 := 1.

Note that fN (z) = AN/BN . They can be computed using the commands nthnumer
and nthdenom, which take the same arguments as the nthapprox command. Like
nthapprox, these commands occasionally normalize their intermediate results.

For (4), this gives:

> nthnumer(CIGammaCF, 5, { a = 1/2 });

1
2

(
2 z2 + 9 z + 4

)√
z

ez

> nthdenom(CIGammaCF, 5, { a = 1/2 });

z3 + 5 z2 +
15
4
z

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

10 · F. Backeljauw and A. Cuyt

To compute a numerical evaluation, an argument of the form variable = value
must be provided as the last argument to the nthapprox, nthnumer or nthdenom
commands. In this case, the same recurrence relations are used, but the normaliza-
tion process is replaced by a floating-point evaluation at every step (evalf), where
the Maple environment variable Digits determines the decimal precision in which
the calculation is performed. Doing an evaluation at every step is much faster than
first having to compute the symbolic result separately and then substituting the
numeric values.

Computing the 10-th approximant of (3) for z = 1.0 in 40 digit decimal arithmetic
gives:

> Digits := 40:
> nthapprox(expCF, 10, z = 1.0);

2.718281828459045235360287179900086259351

which has 25 significant digits. In contrast, the partial sum of degree 10 of the
exponential series only has 8 significant digits.

During a numerical evaluation, it is also checked whether the constraints (as
specified by the constraints argument to the create command) are satisfied. If
a constraint involving a parameter is violated, an error is generated. On the other
hand, if a constraint involving the variable is violated, a warning message is printed,
and the calculation proceeds as usual. This allows one to investigate the behavior
of a continued fraction outside its domain of convergence. Note, however, that the
result is not guaranteed in any way.

For example, when evaluating the fifth approximant of (4) to obtain an approx-
imation to Γ(1/2,−1.5), one gets:

> nthapprox(CIGammaCF, 5, { a = 1/2 }, z = -1.5);

Warning, constraint ‘abs(functions:-argument(z)) < Pi’
is not satisfied
Warning, subsequent results are not guaranteed

−6.098806337853648321063169057669218412762 I

4.5 Tails and modifications

Next to computing the approximant fN (z) as defined in (6), one is often interested
in the truncated part as well. This truncated part of a continued fraction expansion,
which is of the form

tN (z) :=
∞

K
m=N+1

(
am
bm

)
(8)

is called the N -th tail.
Such tails can easily be constructed with the nthtail command. For example,

the fifth tail of (4) can be computed with the following statement:
ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

A continued fractions package for special functions · 11

> nthtail(CIGammaCF, 5);

formula
([

type = contfrac, variable = z, index = m,

general =
[[
m+ 5

2
− a, 1

]
,

[
m+ 1

2
, z

]]
, parameters = {a},

comment = “5-th tail of “CIGammaCF””
])

Note that the comment argument of the newly created formula contains information
on how it was constructed.

Computing classical approximants means replacing the continued fraction tails
with zero. However, unlike for series, these tails do not need to converge to zero as
N → ∞ [Lorentzen and Waadeland 1992, ch. II]. Take for instance the continued
fraction expansion

√
1 + 4x− 1

2
=
∞

K
n=1

(x
1

)
, x ≥ −1

4
.

Each tail tN converges to (
√

1 + 4x − 1)/2 as well. More remarkable is that the
even-numbered tails of the convergent continued fraction

√
2− 1 =

∞

K
n=1

(
(3 + (−1)n)/2

1

)
=

1
1 +

2
1 +

1
1 +

2
1 + · · ·

converge to
√

2−1 while the odd-numbered tails converge to
√

2 (hence the sequence
of tails does not converge), and that the sequence of tails {tN}N≥1 = {N + 1}N≥1

of

1 =
∞

K
n=1

(
n(n+ 2)

1

)
converges to +∞.

Hence a more accurate approximant than the classical fN (z) is obtained if the
N -th tail is replaced with some suitable value wN , called a modification. That is,
instead of computing the classical approximant (6), one can also compute a modified
approximant [Lorentzen and Waadeland 1992, p. 20], defined by

fN (z;wN) := b0 +
N−1

K
m=1

(
am
bm

)
+

aN
bN + wN

. (9)

A proper choice of a modification for a limit-periodic continued fraction of the
form K(am/1) depends on the limiting behavior of its partial numerators am. One
considers the following cases:

— When

lim
m→∞

am = a 6=∞, a /∈ (−∞,−1/4),

one can replace the N -th tail by the value of the periodic continued fraction K(a/1),
namely

wN = w :=
a

1 +
a

1 +
a

1 + . . .
=
√

4a+ 1− 1
2

, (10)

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

12 · F. Backeljauw and A. Cuyt

where we take
√

4a+ 1 with <(
√

4a+ 1) > 0.
— If furthermore

r = lim
k→∞

ak+1 − a
ak − a

exists, then one can use [Jacobsen and Waadeland 1988]

wN := w +
aN+1 − a

1 + (r + 1)w
. (11)

— When

lim
m→∞

am =∞, aN+1 /∈ (−∞,−1/4),

one can choose

wN :=
aN+1

1 +
aN+1

1 +
aN+1

1 + . . .
=
√

4aN+1 + 1− 1
2

. (12)

where we take
√

4aN+1 + 1 with <(
√

4aN+1 + 1) > 0.

For a continued fraction of the form K(cm/dm), a suitable modification is obtained
by setting w̃N := dNwN for N ≥ 1 where wN is a modification for the equivalent
continued fraction K(am/1).

The tailestimate command is used to automatically compute a modification
wN for a given continued fraction. To determine which case applies from the list
given above, this command makes use of the assuming facility provided by Maple.
That is, it computes the limiting behavior of the partial numerators am under the
assumption that the constraints of the given formula are satisfied. When specifying
improved as the last argument of tailestimate, the command tries to compute
the improved estimate (11) in case it applies.

For example, applying this to the continued fraction given in (3) for the expo-
nential function, one gets:

> w := tailestimate(expCF, improved);

w := nthdenom (expCF,m) nthpnumer (transform (expCF, simregular) ,m+ 1) .

Subsequently, this result can be assigned to the modification argument of the
nthnumer, nthdenom or nthapprox commands, in order to compute a modified
numerator, denominator or approximant, respectively. This amounts to starting
the backward recurrence (7) with FN+1 = w instead of the classical FN+1 = 0. For
example, the modified approximant can now be computed as follows:

> nthapprox(expCF, 10, modification = w, z = 1.0);

2.718281828459045235360287471503357984171

This value has 28 significant digits, while the classical approximant, computed in
section 4.4, is correct to only 25 digits.

Sometimes, tailestimate initially fails in computing a modification. In this
case, it helps to introduce an additional constraint to the constraints argument
of the given formula. One example is to add a constraint of the form z::positive,
indicating that one is only interested in the positive real case (with z being the
variable of the given formula). Unfortunately, due to the nature and limitations
ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

A continued fractions package for special functions · 13

of the assuming facility as well as the large amount of possibilities for specify-
ing the constraints, it is not always possible to automatically compute a symbolic
modification.

For numerical computations, the tailestimate command can also be assigned
directly to the modification argument of the nthnumer, nthdenom or nthapprox
commands. Since in numerical computations, values are known for all the param-
eters as well as for the variable of a given formula, the tailestimate command
has no problem in automatically computing the modification. For example, the
following statement computes the fifth modified approximant of (4) with a = 1/2
and z = 2 + 3 I in 20 digit decimal arithmetic:

> evalf[20](nthapprox(CIGammaCF, 5, { a = 1/2 },
modification = tailestimate(), z = 2+3*I));

−0.063490399330654569450 + 0.017403965788340933772 I

5. EQUIVALENCE TRANSFORMATIONS AND CONTRACTIONS

For many special functions or constants, several continued fraction expansions exist,
with some having all numerators or denominators equal to 1, some equivalent to
a power series, and so on. Here we give some commands to transform between
expansions or continued fraction representations.

Transformations are automatically computed with the transform command.
This command takes a formula as its first argument and the name of the re-
quested transformation as its second argument (which can be any of simregular,
even contraction, odd contraction or Euler).

5.1 Simregular equivalence transformation

Two continued fractions b0 + K(am/bm) and d0 + K(cm/dm) are called equivalent if
they have the same sequence of approximants. This equivalence holds if and only
if there exist complex numbers {rm} with r0 = 1 and rm 6= 0 for m ≥ 1 such that

d0 = b0, cm = rmrm−1am, dm = rmbm.

In particular, if bm 6= 0 for m ≥ 1, one can take rm = 1/bm so that dm = 1 and

c1 =
a1

b1
, cm =

am
bmbm−1

, m ≥ 2,

to get the equivalent fractions

b0 +
∞

K
m=1

(
am
bm

)
≡ b0 +

∞

K
m=1

(cm
1

)
=
a1/b1

1 +
a2/(b2b1)

1 + . . .
. (13)

A continued fraction in which all partial denominators are equal to 1, is said to be
in simregular form.

For example, the following statement constructs a continued fraction of the form
(13) for the continued fraction given in (4):

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

14 · F. Backeljauw and A. Cuyt

> CIGammaCF_simregular := transform(CIGammaCF, simregular);

formula
([

type = contfrac, parameters = {a} ,

lhs = Γ(a, z), factor = zae−z, begin =
[[

1
z
, 1
]
,

[
1− a
z

, 1
]]
,

general =
[[

(m− 1)/2
z

, 1
]
,

[
m/2− a

z
, 1
]]
,

constraints = { |functions :−argument(z)| < π },
variable = z, index = m,

comment = “simregular form of “CIGammaCF””
])
.

The equivalence of two continued fractions can be checked using the equivalent
function. This function checks if their sequence of approximants are the same. Since
we are dealing with limit-periodic continued fractions, this comes down to compar-
ing all approximants up to the least common multiple of the numbers of general
elements increased with the maximum number of begin elements. For instance, to
check whether CIGammaCF and CIGammaCF simregular are equivalent, one uses the
following statement:

> equivalent(CIGammaCF, CIGammaCF_simregular);

true

This functionality allows to compare newly discovered or constructed fractions
versus existing ones.

5.2 Even and odd contractions

Another type of transformations can be obtained using contractions. A continued
fraction d0 + K(cm/dm) is called a contraction of another continued fraction b0 +
K(am/bm) if and only if its approximants are a subset of the approximants of the
latter. Conversely, the continued fraction b0 +K(am/bm) is then called an extension
of d0 + K(cm/dm). If in particular b2k 6= 0 for k ≥ 1, then an even contraction of
b0 +K(am/bm) is given by

d0 +
∞

K
m=1

(
cm
dm

)
= b0 +

a1b2
b1b2 + a2 −

a2a3b4/b2
a4 + b3b4 + a3b4/b2

−
a4a5b6/b4

a6 + b5b6 + a5b6/b4 − . . .
(14)

with

d0 = b0, c1 = a1b2, d1 = a2 + b1b2,

cm = −a2m−2a2m−1b2m
b2m−2

, m ≥ 2,

dm = a2m + b2m−1b2m +
a2m−1b2m
b2m−2

, m ≥ 2.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

A continued fractions package for special functions · 15

An odd contraction can be constructed in a similar way (under the condition that
b2k+1 6= 0).

For example, an even contraction of (4) can be constructed using the statement:

> CIGammaCF_even := transform(CIGammaCF, even_contraction);

formula
([

type = contfrac, parameters = {a} ,
lhs = Γ(a, z), begin = [[zae−z, 1− a+ z]],

general = [[− (m− 1− a) (m− 1) , 2m− a+ z − 1]],
constraints = { |functions :−argument(z)| < π },

variable = z, index = m,

comment = “even contraction of “CIGammaCF””
])
.

This is a real J-fraction with a single general element.
Computing an even (or odd) contraction means constructing new elements by

combining elements from the original formula. For the even contraction in (5.2),
its elements cm/dm are expressions which involve the three successive elements
am−2/bm−2, am−1/bm−1 and am/bm from the original formula. If a continued
fraction has an even number of general elements, then its even contraction has only
half that number of general elements. If on the other hand a continued fraction has
an odd number of general elements, then its even contraction has the same amount
of general elements.

5.3 Connection with series

The transform command can also be used to construct the continued fraction
representation of a given series and vice versa. This transformation is often called
the Euler transformation or representation. Given a sequence {ck}k in C\{0} such
that

fN :=
N∑
k=0

ck, (15)

there exists a continued fraction b0 + K(am/bm) of the form

b0 = c0, a1 = c1, b1 = 1,

am = − cm
cm−1

, bm = 1 +
cm
cm−1

, m ≥ 2,

which has fN as its N -th approximant for all N .
For example, if expSeries is the McLaurin series of exp(z), then the Euler

representation can be computed with

> expEuler := transform(expSeries, Euler);

formula
([

type = contfrac, front = 1, variable = z, index = k,

lhs = ez, function = exp, begin = [[z, 1]], general =
[[
− z
k
,
z + k

k

]]
,

comment = “Euler form of “expSeries””
])

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

16 · F. Backeljauw and A. Cuyt

Conversely, for a continued fraction b0 + K(am/bm) with finite approximants fN ,
the sequence {ck}k defined by

c0 = b0, ck =
(−1)k−1

∏k
j=1 aj

BkBk−1
, k ≥ 1

where Bk denotes the k-th denominator of the continued fraction, satisfies (15).
Since this connection between series and continued fractions implies the same con-
vergence or divergence behavior, it is only of limited interest.

5.4 Variable transformation

Finally, a variable transformation z → T (z) can be incorporated by using the
varsubs command. Given a formula as its first argument and an argument of
the form variable = expression as its second argument, this command returns a
new formula where all occurrences of the variable (except for the variable itself)
are substituted with the supplied expression. The newly created formula remains
being defined in function of the original variable. This allows the evaluation of
the new continued fraction without having to explicitly repeat the expression every
time.

For instance, one can apply the variable transformation T (z) = −z2 + 3 to
CIGammaCFeven using the statement:

> varsubs(CIGammaCF_even, z=-z^2+3);

formula
([

type = contfrac, parameters = {a} ,

lhs = Γ(a, z), begin =
[[(
−z2 + 3

)a
ez

2−3, 4− a− z2
]]
,

general =
[[
− (m− 1− a) (m− 1) , 2m+ 2− a− z2

]]
,

variable = z, index = m

])
6. A LIBRARY OF CONTINUED FRACTIONS

Besides providing all the functionality needed to create continued fractions and to
compute their approximants, the CFSF package also includes a library of continued
fractions and series for a lot of special functions. Table 1 contains a list of special
functions and the available continued fraction representations, classified in families
as given in section 3.

The CFSF package provides two commands, query and formula, for querying
this list and retrieving the predefined continued fractions or series. Both commands
use the function, category and label arguments introduced in section 4.1.

6.1 Querying the library

Using the query command, one can search the library for continued fractions
or series of a specific special function. The name of the function is assigned to
the function parameter, while the continued fraction family is assigned to the
category parameter. When executed, this command returns a set of label argu-
ments for the formulas (continued fractions and/or series) which satisfy the search.
These labels refer to the full list of formulas at www.cfsf.ua.ac.be.
ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

A continued fractions package for special functions · 17

For example, the set of all library formula labels related to the gamma and
incomplete gamma functions can be retrieved by using the following statement:

> query(function = GAMMA);

{“GA.lincgamma.cfrac.01”, “GA.lincgamma.power.02”,
“GA.lincgamma.mfrac.01”, “GA.uincgamma.asymp.01”,
“GA.uincgamma.cfrac.02”, “GA.uincgamma.jfrac.02”,
“GA.uincgamma.sfrac.01”, “GA.uincgamma.jfrac.01”,

“GA.lincgamma.power.01”, “GA.uincgamma.mfrac.01”,
“GA.uincgamma.cfrac.01”}

Additionally, one can restrict this set to include only those labels that correspond
to S-fractions by adding the category parameter to the previous statement:

> query(function = GAMMA, category = "S-fraction");

{“GA.uincgamma.sfrac.01”}

If neither the function nor the category parameter is specified, the set of labels
for all predefined formulas is returned.

6.2 Retrieving formulas

To retrieve a formula from the library, the formula command is used. It is given
a label as its first argument. For example, one can retrieve the formula with label
GA.uincgamma.sfrac.01 using the following statement:

> f := formula("GA.uincgamma.sfrac.01");

f := formula(“GA.uincgamma.sfrac.01”);

This label corresponds to the modified S-fraction of the incomplete gamma function,
obtained from (4) by adding the constraint −∞ < a < 1. To see the full definition
of this formula one uses the eval command, which returns the underlying table
structure:
> eval(f);

table
([

type = contfrac, parameters = {a}, factor = zae−z,

begin = [[1, z]] , general = [[m/2− a, 1] , [(m− 1)/2, z]] ,
function = { functions :−uincgamma,Γ },

lhs = functions :−uincgamma(a, z), category = “S− fraction”,
constraints = {−∞ < a and a < 1, |functions :−argument(z)| < π },

variable = z, index = m, label = “GA.uincgamma.sfrac.01”
])

The formula command also allows parameters to be substituted immediately
when retrieving the formula. This is done by adding a set of parameter substitutions
as a second argument. If a given parameter substitution violates a constraint, an
error is raised. For example, one can replace a by 1/2 in the continued fraction
with label GA.uincgamma.sfrac.01 for Γ(1/2, z) through:

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

18 · F. Backeljauw and A. Cuyt

> g := formula("GA.uincgamma.sfrac.01", { a = 1/2 });

table
([

type = contfrac, factor =
√
ze−z,

begin = [[1, z]] , general = [[m/2− 1/2, 1] , [m/2− 1/2, z]] ,
function = {functions :−uincgamma,Γ },

lhs = functions :−uincgamma(1/2, z), category = “S− fraction”,
constraints = { |functions :−argument(z)| < π },

variable = z, index = m
])

6.3 The submodule CFSF:− functions

Note that the function argument of the previous formula is a set of two functions.
The first function, functions :−uincgamma, is defined as an alias for Γ(α, z) in the
submodule CFSF:− functions. Adding functions to the function argument makes
the query command more flexible. For example, one retrieves only those formulas
that are related to functions :− uincgamma, which is a subset of the previous
query statement, by using:

> query(function = functions:-uincgamma);

{“GA.uincgamma.mfrac.01”, “GA.uincgamma.jfrac.02”,
“GA.uincgamma.asymp.01”, “GA.uincgamma.cfrac.02”,
“GA.uincgamma.sfrac.01”, “GA.uincgamma.jfrac.01”,

“GA.uincgamma.cfrac.01”}

The submodule CFSF:− functions also defines functions for which no function exists
directly in Maple. For example, the functions :− lincgamma function is defined by

functions :− lincgamma := (α, z)→ Γ(α)− Γ(α, z).

Since the Maple function argument incorrectly returns 0 for Arg(0), a correct
implementation for Arg(z) is provided as functions :− argument which returns
undefined when z = 0.

7. SUMMARY AND FUTURE WORK

In total 220 series and continued fraction representations for the special functions
listed in Table 1 are available. We have outlined how these representations can be
retrieved and which functionality is offered in the CFSF package. A full list of the
220 implemented formulas with their labels is shown on www.cfsf.ua.ac.be.

The project is an ongoing project and future work includes the inventory and
implementation of representations for the Coulomb wave functions, the Legendre
functions, the Riemann zeta function and other number theoretic functions. As the
work evolves, the webpage will be updated.

Acknowledgement. The authors are very grateful to Stefan Becuwe for transfer-
ring these 220 formulas from the continued fractions handbook [Cuyt et al. 2008]
to the CFSF package. He has also thoroughly tested the package and verified all
implemented series and continued fraction representations.
ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

A continued fractions package for special functions · 19

REFERENCES

Abramowitz, M. and Stegun, I. 1964. Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables. U.S. Government Printing Office, NBS, Washington, D. C.

Cuyt, A., Brevik Petersen, V., Verdonk, B., Waadeland, H., and Jones, W. 2008. Handbook

of Continued Fractions for Special Functions. Springer Verlag.

Cuyt, A., Verdonk, B., and Waadeland, H. 2006. Efficient and reliable multiprecision imple-
mentation of elementary and special functions. SIAM J. Sci. Comput. 28, 1437–1462.

Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. 1953a. Higher transcendental

functions. Vol. 1. McGraw-Hill, New York.

Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. 1953b. Higher transcendental

functions. Vol. 2. McGraw-Hill, New York.

Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. 1955. Higher transcendental

functions. Vol. 3. McGraw-Hill, New York.

Jacobsen, L. and Waadeland, H. 1988. Convergence acceleration of limit periodic continued

fractions under asymptotic side conditions. Numer. Math. 53, 285–298.

Lorentzen, L. and Waadeland, H. 1992. Continued fractions with applications. North-Holland
Publishing Co., Amsterdam.

Lozier, D. 2000. The DMLF project: A new initiative in classical special functions. In Special

Functions: Proceedings of the International Workshop (Hong Kon, 1999), C. Dunkl, M. Ismail,
and R. Wong, Eds. World Scientific, Signapore, 207–220.

ACM Transactions on Mathematical Software, Vol. V, No. N, June 2008.

