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Abstract 

 

In this chapter, we review a variety of algorithms developed by different groups for 

automatically segmenting structures in medical images, such as brain MRI scans. Some of the 

simpler methods, based on active contours, deformable image registration, and anisotropic 

Markov Random Fields, have known weaknesses, which can be largely overcome by learning 

methods that better encode knowledge on anatomical variability. We show how the anatomical 

segmentation problem may be re-cast in a Bayesian framework. We then present several 

different learning techniques increasing in complexity until we derive two algorithms recently 

proposed by the authors.  We show how these automated algorithms are validated empirically, by 

comparison with segmentations by experts, which serve as independent ground truth, and in 

terms of their power to detect disease effects in Alzheimer’s disease. We show how these 

methods can be used to investigate factors that influence disease progression in databases of 

thousands of images.  Finally we indicate some promising directions for future work. 
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Automated analysis of brain scans is increasingly important as the cost of acquiring a brain scan 

decreases, and the frequency of their use increases.  Drug trials and genetic studies often collect 

hundreds or thousands of images, and efficient algorithms are increasingly needed to compute 

morphometric statistics. Automated segmentation has been successfully applied to magnetic 

resonance images (MRI), which are used clinically to examine disease effects. Research studies 

of large-scale image databases now survey thousands of images at once. These population-based 

image analyses have discovered how diseases spread in the living brain over time (Thompson, et 

al. 2003), which medications best resist brain changes in disease (Jack, et al. 2008b; Thompson, 

et al. 2008), and have discovered specific genes that protect the brain from illness (Hua, et al. 

2008), or increase the risk for disease  (Leow, et al. 2008; Morra, et al. 2008b; Morra, et al. 

2008c). All of these studies have been accelerated by learning approaches that identify and 

analyze features in brain images automatically (Fischl, et al. 2002; Grenander and Miller 1998). 

 

MRI scans can be automatically analyzed using a sequence of several steps, including intensity 

normalization, registration to a common template, segmentation of specific substructures, and 

statistical analysis.  In this chapter, we will focus on current trends for segmenting brain 

structures on MRI, focusing specifically on learning methods. Most of these approaches are 

somewhat generic, and have been used to segment images of the heart, liver, lungs, and other 

organs. They are also applicable in principle to other types of biomedical images, such as 

computed tomography or histology (Pitiot, et al. 2005). 

 

 In MRI studies, automated segmentations have been used to compute volumetric measures or 

shape statistics for specific brain regions, in studies of Alzheimer’s Disease (Apostolova, et al. 

2007; Clare, et al. 2003; Csernansky, et al. 2000; Morra, et al. 2008a; Morra, et al. 2008b; Morra, 

et al. 2008c), epilepsy (Lin, et al. 2005), childhood development (Gogtay, et al. 2006), autism 

(Nicolson, et al. 2006), drug-related degeneration in methamphetamine users (Thompson, 

Hayashi, Simon et al., 2004), and effects of lithium treatment in bipolar illness (Bearden, et al. 
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2007).  Figure 1 shows an example of a subject’s brain MRI segmented both by hand and 

automatically. 

 

Figure 1: An example of a human brain MRI scan with the hippocampus segmented by hand in the first row, 
and also segmented automatically by one of the authors’ algorithms, Ada-SVM, on the second row. The 
images labeled Sagittal Left and Right show sagittal slices through the hippocampus in the left and right brain 
hemispheres (there is one hippocampus on each side of the brain).  

 

Anatomical segmentation is a key step in many of these imaging projects, but most studies still 

rely on manual segmentations by experts, who delineate each region of interest (ROI) in 

consecutive sections of each subject’s 3D MRI scan (Apostolova, et al. 2006; Schuff, et al. 

2008).  This is time consuming, especially in very large studies.  For instance, the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) (Jack, et al. 2008a) is a longitudinal study of 800 

subjects scanned five times.  Assuming it takes about 2 hours to manually segment the 

hippocampus from an MRI, then segmenting the hippocampus for all subjects in ADNI would 

take 2 hours x 2 hippocampi per individual x 800 subjects x 5 time points = 16,000 man-hours 

for just the hippocampus in this study; clearly this process needs to be automated. 
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The goal of this chapter is to give an overview of the general principles of image segmentation 

based on learning. We introduce various methods, increasing in complexity, finally describing a 

state-of-the-art segmentation algorithm that overcomes several limitations of prior methods. 

Throughout, we discuss validations that evaluate the accuracy and reproducibility of the 

segmentations. Finally, we highlight some directions for future research. 

 

Background 

 

Most subcortical segmentation algorithms may be grouped into two broad classes: those that rely 

on low-level intensity based information – also called appearance-based models – and those that 

incorporate higher-order shape information about the objects in the image. Deformable 

templates, or atlases, for example, are canonical images that contain detailed 3D labelings of 

brain structures. An automated image registration algorithm can deform this labeled template to 

match a new image, transforming the labels in the template onto the new image (Collins, et al. 

1994). Many atlasing efforts have been coupled with nonlinear image registration techniques, 

that use elastic or fluid transformations of images to reshape an atlas template to match new 

images (Christensen, et al. 1993; Toga and Thompson 2000). Morphometric statistics can then be 

computed from the deformed labels. Additional statistics and maps can be derived from the 

deformation field used to align the atlas to the new image (e.g., tensor-based morphometry 

(Ashburner, et al. 1998; Hua, et al. 2008; Thompson and Toga 2000)).  

 

Alternatively, this atlas deformation approach can be used in reverse. Instead, all subjects’ MRI 

scans are non-rigidly aligned to a common template, or atlas, where all ROIs have already been 

segmented. This process, called spatial normalization or image warping (Toga 1999), allows 

regional statistics to be derived for other measures such as functional activation or metabolism, 

depending on the type of image aligned to the atlas. The accuracy with which a new image may 

be registered to a common atlas, depends on the registration model chosen to deform the image 

(e.g., elastic, fluid), the similarity measure defined between the images to optimize their 
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alignment (e.g., cross-correlation, mutual information, etc.), and the number of degrees of 

freedom in the transformation model (see (Klein, et al. 2008), for a comparison of 15 such 

approaches; approaches with more degrees of freedom tend to perform best). 

 

Miller et al. (Miller 2004), for example, developed a complex process called Large Deformation 

Diffeomorphic Metric Mapping (LDDMM), which deforms individual subjects’ brain MRI scans 

to a common template, and then deforms the corresponding ROIs back to the original image 

space. The approach is based on the metric pattern theory of (Grenander 1976; Grenander and 

Miller 1998).  The vector-valued flow field, which is applied to the deforming template, is 

computed by solving a partial differential equation derived from continuum mechanics, assuming 

that the image is embedded in a deforming fluid. This ensures that the mapping is diffeomorphic 

(i.e., the deforming image does not tear or fold), and the resulting maps that are provably one-to-

one, smooth, and have smooth inverses (Christensen, et al. 1996; Christensen, et al. 1995). 

Because the labeling error of these registration-based approaches depends on the accuracy of the 

registration method, some variants of this basic approach have used multiple registrations, or 

even multiple labeled atlases, to segment a single image, prior to combining the multiple 

segmentations using voting or other statistical methods (Chou, et al. 2008a; Chou, et al. 2008b; 

Lepore, et al. 2008; Lepore, et al. 2007). The tactic of ‘targetless’ spatial normalization 

(Kochunov, et al. 2005), in which all images in a database are deformed to all others, has also 

been proposed to minimize errors associated with single registrations. It also removes statistical 

bias associated with prescribing a single individual as the anatomical reference.  Even so, all 

such deformable atlas methods assume that the image to be labeled is a smoothly deformed 

version of the template; this assumption is problematic when tumors or other pathologies are 

present, and it is also not ideal for labeling sulcal features of the cortex, as not all sulci are 

consistent in their incidence and topology across subjects. 

  

3D deformable atlas methods were originally based on simpler deformable template 

formulations, such as active contours or ‘snakes,’ in which moving curves are attracted to 

structure boundaries in 2D images (Davatzikos and Prince 1996; Yushkevich, et al. 2006). In 
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active contour approaches, a user initializes an approximate boundary on a subject’s image and 

an energy minimization algorithm drives the curve to surround the ROI. Over the years, these 

methods were generalized to segment 3D surfaces with spherical topology such as the cortex 

(Cohen and Cohen 1992), using governing equations that drive a moving surface into 

correspondence with a target boundary in the image, often specified by an intensity isovalue. 

Deformable template methods based on parameterized curves and surfaces were also generalized 

to include level sets, permitting topological changes in templates if needed (McInerney and 

Terzopoulos 2000; Osher and Sethian 1988). The governing equations for these templates 

initially penalized high curvature regions, sometimes leading to models that were artificially 

smooth.  Recent innovations, such as gradient vector flow, have allowed them to segment more 

convoluted surfaces in medical images, including the cortex (Han, et al. 2004). Other approaches 

have initialized numerous templates all at once in an image, combining the results through 

genetic or evolutionary programming (Pitiot, et al. 2002b).   

 

Deformable template methods usually make strong assumptions about the topology of the objects 

to be segmented in the image. This is both a strength and a limitation. A complementary 

segmentation approach uses low-level computer vision methods to classify each voxel in the 

image into one of several classes, often as a pre-processing step for other methods that aggregate 

these labeled classes into an object. This may be considered a “bottom-up” approach, as it 

classifies each voxel first, without necessarily referring to the global structure of the image. 

Bayesian tissue classifiers, for example, are widely used to classify an MRI image into distinct 

tissue classes such as gray and white matter and cerebro-spinal fluid (CSF). These tissue types 

have characteristic intensities in T1-weighted MR images, but they are corrupted by noise and 

partial volume effects, so that each tissue class’s intensity mean and variance parameters need to 

be estimated from individual images. Tissue types in standard MR images are also easier to 

differentiate by considering Bayesian prior information on the expected locations and intensities 

of the signals, after transforming images to a standard anatomical space (such as normalization to 

an atlas).  Wells et al. (Wells, et al. 1996) proposed a Bayesian tissue classification for brain 

MRI driven by the expectation maximization (EM) algorithm. This method was extended by 

Shattuck et al. (Shattuck, et al. 2001) to better accommodate voxels containing mixtures of tissue 
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classes (partial volumed voxels), and to better adjust the image for shading artifacts and intensity 

inhomogeneities associated with the non-uniform sensitivity of the MR scanner. If these 

common artifacts are not adjusted in advance - or iteratively during the classification (as in an 

EM algorithm) - serious misclassifications of tissue can occur (for example, the cortical gray 

matter may appear to have zero thickness in some regions of the image).   

 

Many learning methods have been used to analyze intensity based information in images, 

including support vector machines (SVM) (Morra, et al. 2007; Powell, et al. 2008), artificial 

neural networks (ANN) (Pitiot, et al. 2004; Pitiot, et al. 2002a), and principal components 

analysis (PCA) (Golland, et al. 2005).  Additionally, Fischl et al. (Fischl, et al. 2002) have 

integrated both appearance and shape-based information into a publicly available software suite 

called FreeSurfer which, among other things, performs subcortical segmentation by first 

registering new subjects’ images to a common template. It then uses an anisotropic Markov 

Random Field to learn the likely stereotaxic positions and intensities for different anatomical 

structures. Domain specific knowledge, about which subcortical structures are likely to be 

adjacent, is encoded into the Bayesian prior distribution of the segmentation algorithm. A related 

approach called BrainVisa (Mangin, et al. 2004) performs a tissue classification of the image, 

and then performs a 3D skeletonization of the extracted cerebro-spinal fluid component. A 

topological analysis of the junctions between voxels in this branching structure is used to create 

an attributed relational graph (Mangin, et al. 1994) that models deep sulcal surfaces as a network 

of interconnected 3D sheets. These sheets are then labeled using an artificial neural network that 

uses pre-compiled statistics on which features are likely to occur in each region of the 3D 

standard template space.  

 

Given this plethora of algorithms, it is perhaps surprising that none has proven effective in all 

situations or for all structures.  Semi-automatic methods (such as snakes) become ineffective as 

the number of subjects grows large, and registration-based methods are limited by the accuracy 

of the registration, the subjects used to create the template, and by the structures delineated on 

the template (for instance, a registration method would be ineffective in finding multiple 
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sclerosis lesions, tumors or pathologies that may be distributed throughout the brain). Some 

learning applications have also been somewhat limited when they incorporate little or no shape 

information.  The user is then forced to select important information for segmentation a priori 

(this could potentially include intensity information, position information, information from 

various filters, etc.). Even so, the most useful information may differ for different structures, 

suggesting the need for adaptive learning algorithms that can identify the most relevant 

information for segmenting a structure in a principled way.   

 

Learning for Segmentation 

 

Basic Procedure 

 

One goal of image segmentation algorithms that label brain substructures is to assign a label to 

each voxel in the image assigning it to one of possibly many classes (e.g., hippocampus, caudate, 

ventricles, etc.).  For the remainder of this chapter, we focus on the two-class classification 

problem (e.g., “is this voxel part of the hippocampus or not”), but most methods here can be 

extended to multi-class classification relatively easily. 

 

Supervised learning approaches require two distinct groups of images, one for training and one 

for testing.  Training images are images that have been manually segmented by experts; these are 

used to learn patterns associated with a particular ROI.  Testing images are an independent set of 

images not included in the training set. These are used to validate how well the patterns were 

learned, by labeling structures automatically. To compare an algorithm’s performance with 

ground truth defined by an expert, the testing images should also be manually segmented, 

although obviously (after validation) new datasets would not need to be manually segmented.  

One of the potential pitfalls of learning algorithms is over-fitting, where a model memorizes the 
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training images instead of creating a general model. For this reason, a separate group of images 

must be used for validation. 

 

Limitations 

 

Not every study can benefit from learning based methods.  First, these methods may not be ideal 

for small studies where absolute precision is needed.  In a small study, to create a training set 

most of the images may already be segmented by hand. There is almost always a trade-off 

between the low efficiency and high quality of manual segmentations, versus the high efficiency 

of automated segmentations, but the need to hand-trace a training set.  A second potential 

limitation is poor training ROI delineation.  Since the goal of learning methods is to learn 

patterns associated with the training images, if these patterns are inexactly or irregularly captured 

by the expert raters, the patterns will not be learned well and the resulting model will suffer, 

though unsupervised and weakly supervised methods can help with incomplete or inconsistent 

data. This problem is usually addressed by developing a standardized protocol for tracing 

anatomy, with explicit rules to ensure that inter-rater reliability is high. These protocols may be 

extremely complex in the case of cortical surface anatomy and may require neuroanatomical 

training that is expensive and time-consuming to obtain, over and above the time needed to 

actually segment the images (see, e.g., Hayashi et al., 2002; 

http://www.loni.ucla.edu/~khayashi/Public/medial_surface/). Since different manual raters can 

trace the same training set, it is common to compute measures of inter-rater and intra-rater 

reliability. A reasonable target for the learning algorithm is that it should agree with manual 

raters at least as well as human raters tend to agree with each other (see (Morra, et al. 2008e), for 

this type of validation). This is in some respects analogous to a Turing test, in which the 

algorithm’s performance should not be easily distinguishable from that of a group of human 

raters.  

 

Preprocessing 
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Preprocessing involves any of a number of processes that help the segmentation algorithm to 

produce a more accurate model.  Ideally these should all be fully automatic, so that the entire 

segmentation process involves no user interaction.  Common preprocessing algorithms include 

registration of images to a common coordinate space, intensity normalization, and bias field 

correction.  Registration involves aligning a given target image to a common template image, 

and, as noted earlier, this may involve a linear or nonlinear (warping) transformation.  If all 

images in a study are first aligned to a common template, a specific ROI is then already in 

approximately the same region of the coordinate space for all subjects, which makes learning 

patterns easier and reduces the search space for a particular ROI.  For the algorithms described 

here, simple linear registration has proved sufficient, but extra power may be gained through 

non-linear registration (although at considerable computational cost).  

 

Intensity normalization entails removing artifacts introduced by the scanner and rescaling all the 

image intensities so that ROIs have approximately the same intensities across subjects. On 

standard T1-weighted MRI, relative signal intensities of gray and white matter and CSF are in 

the same order (gray matter being darker and white matter being lighter), but there is no absolute 

scale for the signal intensity units, unless specialized MRI protocols are used (e.g., relaxometry 

or parametric imaging). As such, intensity rescaling is usually beneficial; it may be either linear 

or non-linear, and may involve histogram normalization or equalization.  Finally, bias field 

correction involves removing a specific bias introduced by the MRI machine.  When a scan is 

performed, even voxels in the same tissue class may have spatially-varying intensities.  A bias 

field corrector attempts to remove these spatial dependencies. Initial approaches to this problem 

often involved scanning a phantom (i.e., a geometrical test object) to model the field as a 

multiplicative correction factor. More recently, entropy-based methods have been proposed that 

automatically sharpen the intensity histogram to maximize its entropy (Boyes, et al. 2008; 

Shattuck, et al. 2001; Sled, et al. 1998) 

 

Features 
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Most learning approaches for image segmentation combine several image features to form a 

decision rule that assigns each voxel to a specific structure or tissue class.  Generally, a feature is 

any piece of information present in every scan (both training and testing scans).  Examples of 

features include image intensities, x, y, z positions, and the values returned by various 

neighborhood filters such as mean or median filters, standard deviation filters, Haar filters, 

wavelets, etc.  This list is not exhaustive but provides an overview of some types of features the 

authors have used in their own segmentation algorithms, and that have been chosen from a larger 

list by adaptive feature selection methods, such as AdaBoost, which minimize classification 

error.  Features may also consist of domain-specific knowledge such as rules, or normative 

statistics on shape, intensity, topology, boundary regularity, connectivity, convexity, etc. When 

choosing features, the goal is to have the features encompass all the information necessary to 

segment an ROI. 

 

Bayesian Problem Formulation 

 

Bayes’ rule provides a useful mathematical representation to formulate the segmentation 

problem.  Assuming that we have N examples and M features, we can define )( 1 NxxX v
K

v∈  as 

the features where each ixv  is a vector of length M and )( 1 NyyY K∈  are the training labels with 

each }1,1{ +−∈iy .  We then wish to solve for P(Y|X) which according to Bayes’ law is P(Y|X) = 

P(X|Y) P(X) /  P(Y).  Formulating this as a maximization problem, we want Y* = argmax P(X|Y) 

P(X).  However, this problem is very difficult because of its extremely high dimensionality (with 

many potential features at each voxel). It can be complex to find a numerical solution using 

standard optimization methods. 

 

Formulating the problem in this way combines the strengths of each of the two main schools of 

segmentation - those that focus on appearance models, which mainly aim to model the posterior 
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probability P(X|Y), and those that focus on shape information, which mainly encode features into 

the prior probability, P(X).  We note that even registration models for feature labeling may be 

considered as Bayesian labeling models with maximum a posteriori (MAP) solutions: the 

intensity-based cost function serves as the likelihood term, and the regularizer (such as the elastic 

or fluid energy) serves as a Gibbs prior encoding the plausibility of different image 

deformations. The connection between Bayesian theory and registration is further presented in 

(Gee and Bajcsy 1998; Gee, et al. 1995; Thompson and Toga 2000). 

 

Linear Discriminant Analysis 

 

One very simple attempt at creating a decision rule in feature space is based on Fisher’s linear 

discriminant analysis (LDA).  In LDA, it is assumed that a decision rule can be formulated by 

projecting the data from M dimensional feature space onto a one-dimensional line and then 

thresholding.  To do this, we first divide the feature vectors into two classes D1 and D2 

containing the positive and negative examples (i.e. known members of each of the two classes).  

Next, we define the sample mean as the average of all feature vectors for each class such that 

∑
∈

=
iDxi

i x
n

m
v

vv 1 where i is either plus one or minus one.  Next, we define the scatter 

matrix ∑∑
= ∈

−−=
2

1
2 ))((

i Dx

t
iw

i

mxmxS
v

vvvv .  Finally, we can define the best one-dimensional metric for 

classification as )( 21
1 mmSw w

vvv −= − , and determine the optimal threshold empirically.  For a more 

detailed analysis, including derivations, refer to Duda et al. (Duda, et al. 2001). 

 

Problems with LDA include the fact that the classifier must have a linear form, the classifier’s 

performance degrades when the two groups to be classified are not perfectly separable in feature 

space, and when the training set gets very large the minimum error rate in feature space is not 

achievable.  These last two problems are especially important in medical image segmentation 

because of the large number of examples in an image and the high complexity of the images. 
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Support Vector Machines 

 

Many of the pitfalls of LDA can be overcome by a more sophisticated learning technique, 

support vector machines (SVMs).  SVMs look for support vectors to separate the data in the 

feature space.  To create an SVM, first we must define a few terms including wv , the separating 

hyperplane, b, a scalar bias term so that the hyperplane is not forced to go through the origin, zi, 

the slack variables which are examples that are on the wrong side of wv , and C, which is a user 

defined parameter to control the trade-off between the number of slack variables and maximizing 

the margin.  The margin is the distance from wv to the nearest example in feature space.  Ideally 

this should be as large as possible in order to increase the generalization ability of the resulting 

classifier.  The SVM formulation is then as follows: 

 

iii

N

i
i

zbxwy

zCw

−≥−⋅

+ ∑
=

1)( subject to
2
1min

1
2

vv

v

 

2

1
wv

is the margin of the hyperplane according to the l2 – norm (based on the sum of squared 

distances).  This problem may also be solved by formulating a dual problem and maximizing it 

as follows: 

0 subject to

max
,1

≥

−∑∑
=

i

ji
j

T
ijiji

N

i
i xxyy

α

ααα vr

 

Here iα  is a dual representation of the hyperplane such that ∑
=

=
N

i
iii xyw

1

vv α , and the final 

classification of a new example is ( ) ⎟
⎠

⎞
⎜
⎝

⎛ +⋅=+⋅= ∑
=

bxxybxwx
N

i
iii
vvvvv

1

signsign)(class α .  Typically 
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quadratic programming is used to solve this problem.  In the dual formulation of SVM, every 

time an xv  appears, another one appears right next to it (in both the maximization problem and 

the classification formula).  This allows the introduction of the “kernel trick”, which involves 

replacing every xx vv ⋅  by ),( xxK vv  where K is any general kernel function.  Some examples of 

kernels include polynomial kernels, radial basis functions, and sigmoid kernels.  This may be 

viewed either as creating a non-linear classifier, or as projecting the feature space into a very 

high-dimensional space and using a linear classifier there.  For a more detailed analysis, 

including derivations, refer to Vapnik et al. (Vapnik 2000). 

 

In addition to returning a class assignment, SVM also returns a “confidence” value (or margin), 

which is the distance from the separating hyperplane to a given example.  Thresholding this 

confidence at values different from b will produce a more conservative or aggressive classifier.  

Additionally, this “confidence” may be converted to a pseudo-probability using the logit 

transform xe
p −−
=

1
1  which transforms (-∞, +∞) to (0, 1).  Therefore, SVMs can easily be 

altered to output a probability instead of a decision rule. 

 

Though the SVM is considered as an off-the-shelve classifier, it has many limitations. First, 

kernel selection can be a tricky task for SVMs.   Usually this is done with a “guess and check” 

method, or by visualizing the data and trying to see which kernel fits best.  Second (and more 

importantly), the feature space may be too large to store in memory.  Since images can contain 

potentially many features at each voxel it is usually not possible to run SVM on the full feature 

space. 

 

Feature Selection 
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Selecting important features from a potentially large pool is difficult, and on the surface seems to 

require expert knowledge, which may vary for different studies or different structures.  This 

becomes unmanageable as the number of ROIs and different imaging studies increases. Clearly, 

this problem would be more tractable if feature selection were automated. 

 

One solution, that is easy to implement, is principal component analysis (PCA), which performs 

dimensionality reduction (Duda, et al. 2001).  Specifically, PCA uses eigenvalue decomposition 

of the feature space and selects features whose variance is the largest.  This projection algorithm 

is often used as a visualization tool to see if data tend to lie in a lower-dimensional space than 

that in which they are originally defined.  The main problem with using PCA as a dimensionality 

reduction tool for classification is that PCA has no notion of classes.  An easy to visualize 

counter-example is in two-dimensional space, where the two classes are completely separable 

and lie in two long straight cigar-shaped objects.  PCA would project the data along the direction 

of the largest variance; however, a projection in the perpendicular direction would be better for 

classification purposes.  Despite this limitation, PCA has still been used with SVM to classify 

medical image data (Golland, et al. 2005). 

 

AdaBoost 

 

AdaBoost is a learning algorithm that addresses the problem of feature selection for 

classification.  As a type of meta-algorithm, AdaBoost uses a weighted vote of weak learners to 

form a strong learner.  A weak learner is any learning technique that performs better than pure 

chance in classifying data to classes.  Some examples of weak learners are decision trees, naïve 

Bayes classifiers, LDA, and SVMs.  AdaBoost selects weak learners from a pool of candidate 

weak learners one at a time and assigns a weight to each of them based on their error when 

classifying the training data.  The final classification of an example, the strong learner, is then a 

weighted vote of the weak learners.  Figure 2 gives an overview of the AdaBoost algorithm. 
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AdaBoost does not directly select features, it selects weak learners.  However, if we impose a 

one-to-one relationship between a feature and a weak learner, then AdaBoost directly selects 

features.  In all of the authors’ experiments, a weak learner is a decision tree of depth zero, also 

known as a decision stump (Morra, et al. 2007).  A decision stump is a classifier that classifies all 

examples above a threshold within a particular feature as either positive or negative, and below a 

threshold the opposite.  As it is based on creating a one-to-one relationship between a feature and 

a weak learner, a decision stump can be very quickly calculated. This is advantageous because 

the vast majority of computational time is spent finding the best weak learner at each iteration of 

AdaBoost. 

 

In addition to being a feature selection algorithm, AdaBoost has some very useful properties 

including known bounds on its training and testing error. It is also provable that adding more 

weak learners continues to decrease the testing error.  See a review by Schapire et Al. (Schapire, 

Given: N labeled training examples (xi, yi) with }1,1{ +−∈iy  and Xxi ∈ , and an initial 
(possibly uniform) distribution of weights D1(i) over the examples. 

For t = 1 … T: 

• Train a weak classifier ht : X {-1, +1} using distribution Dt 

• Calculate the error of ht : ( )∑
=

≠=
N

i
ititt xhyiDe
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∑
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Figure 2: AdaBoost algorithm.  1 is an indicator function returning 1 if its input expression is true and 0 
otherwise. 
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et al. 1998) for a comprehensive review of AdaBoost properties.  Similarly to SVM, AdaBoost 

may be modified to output a probability by running f(x) through the logit function. 

 

Layered Classifiers 

 

Because of the nature of image segmentation (finding a structure in an overall image) there are 

almost always more negative than positive examples, which leads to a “biased” training set, in 

the sense that one type of example is over-represented.  Additionally, many examples (such as 

parts of the image outside the brain) are usually easily to classify, whereas boundary voxels are 

much more difficult to classify.  One way to exploit this fact is to use a pruning tree.  A pruning 

tree involves running a classification algorithm and then discarding those examples that are 

clearly negative.  This may be achieved by transforming the output of a classifier to a probability 

and thresholding it at a very low value, such as 0.1.  All examples with a probability greater than 

the threshold are passed to another iteration of the algorithm and the process is repeated.  By re-

running the classification algorithm on successively more difficult examples, a different decision 

rule may be used for each layer of the tree. 

 

An extension to the pruning tree is the probabilistic tree or when used in conjunction with 

AdaBoost, the probabilistic boosting tree (PBT; (Tu 2005)).  The probabilistic tree involves 

separating both positive and negative examples into two separate classes instead of just 

retraining on all the clearly non-negative examples.  However the probabilistic tree has a soft 

separating criterion ε, a user defined parameter.  If a given classifier is unsure of an example, its 

probability is between 0.5 + ε and 0.5 – ε, then it is passed to both of the child classifiers.  This 

allows examples that are difficult to classify to be classified by more than one classifier.  When 

testing, an example follows the same rules regarding passing to children and its overall 

probability is a combination of both classifier’s outputs.  See Tu (Tu 2005) for a comprehensive 

explanation. 
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AdaSVM 

 

Since AdaBoost chooses features incrementally, it incrementally minimizes an error function, 

but only with respect to features already chosen.  However, SVM minimizes a similar error 

function over all features simultaneously.  Therefore, we could design an algorithm that uses 

AdaBoost to select features and SVM to classify examples. This should theoretically outperform 

AdaBoost and SVM with manually selected features (Morra, et al. 2007).  The only change we 

must make to AdaBoost to make it compatible with AdaSVM is that AdaBoost must select weak 

learners without replacement. This is because having the same feature appear twice in an SVM 

formulation is redundant, but in traditional AdaBoost the same feature may be selected more 

than once with a different threshold, therefore making it a different weak learner. 

 

AdaSVM may also be seamlessly integrated with the probabilistic tree.  Instead of having ε be a 

user-defined parameter, we can automatically estimate an optimal ε using the margin of both 

AdaBoost and SVM.  SVM has a natural margin built into its formulation, namely
2

1
wv

.  

AdaBoost has also been shown to be a margin maximization algorithm, in the l1 – norm 
1

1
αv

.  

The probabilistic tree can now have a dynamic ε, changing at each node (Morra, et al. 2007). 

 

Auto Context Model 

 

AdaBoost and AdaSVM present powerful approaches to the feature selection problem, but they 

are still only appearance-based methods, focusing exclusively on estimating the posterior 

probability.  A model that also incorporates an accurate prior probability is likely to outperform 
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any of the methods mentioned so far.  Instead of using a different method to estimate the prior 

probability and then pre-multiplying by it, we will instead formulate a model that estimates both 

the posterior and prior together, the likelihood, P(Y|X). 

 

To estimate the likelihood, we will augment the feature pool from just features based on the 

intensity to those also based on contextual information.  Contextual features are features that 

encode information such as “if voxel x has a high probability of being in the ROI, then x’s 

neighbors should also have a high probability of being in the same ROI.”  We do this by 

introducing another “image,” the probability map P.  P contains the probability of each voxel 

being in the ROI.  We can then incrementally update P, at each iteration, to achieve the auto-

context model described in Figure 3. 

 

 

 

 

 

The reason that the auto context model estimates the likelihood is that it is formulating its 

decision rule based on both intensity-based information and neighborhood filters on the 

probability map, which contain contextual and shape information.  No specific classification 

algorithm has to be used to make the auto context model effective, but AdaBoost provides a 

Given: N labeled training images S = {(Yj, Xj), j = 1, …, m}:  For each image Xj, construct 
probability maps Pj

(0), with a distribution (possibly uniform on all the labels. 

For t = 1 … T : 

• Make a training set St = {(Yj, Xj(Ni), Pj
(t-1)(Ni)), j = 1, …, m, i = 1, …, n} 

• Train a classifier on both image and context features extracted from Xj(Ni) and  

Pj
(t-1)(Ni) 

• Use the trained classifier to compute new classification maps Pj
(t) for each training 

image Xj 

The algorithm outputs a series of trained classifiers p(t)(Yi|X(Ni), P(t-1)(Ni)) 

Figure 3: The auto context algorithm.  Ni is a general neighborhood filter.  Testing is done in a very similar 
manner except the classifier is in the testing mode, and the final output is P(T). 
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natural way to do it because the only thing to change is the feature pool.  By augmenting the 

feature pool and allowing AdaBoost to select either contextual or intensity features, it will 

incorporate both sources of information seamlessly. 

 

Also, because all that the auto context model is doing is updating the feature pool at each 

iteration, it is guaranteed to never increase the training error (based on the fact that AdaBoost’s 

error is provably non-increasing (Schapire, et al. 1998)).  If these context-based features prove 

useless, any classification algorithm will just ignore them, therefore keeping the error the same at 

each iteration.  However, if these context-based features prove informative, the error will 

decrease.  For most algorithms the testing error can be bounded as a function of the training 

error, so the overall error is guaranteed to never increase. 

 

A reasonable stopping criterion may also be formulated by comparing P(t) and P(t-1).  If the 

probability map does not change much between iterations, then new intensity-based information 

is not being incorporated and therefore the model is not changing much and training can be 

stopped (Morra, et al. 2008d; Morra, et al. 2008e). 

 

Validation and Medical Application 

 

In any learning study, it is important to validate the algorithm. There are many different ways to 

validate an algorithm, so here we will focus on two specific goals.  First, it is desirable to have 

segmentations that agree with manual tracings defined by an expert.  This agreement may be 

quantified by volumetric measurements or distance metrics.  For comparisons with manual 

segmentations, the authors commonly use the definitions of Figure 4, which are widely employed 

in medical image segmentation studies (Morra, et al. 2007; Morra, et al. 2008d; Morra, et al. 

2008e). 
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Figure 4: Commonly used error metrics to evaluate the difference between manual and automatic 
segmentations.  Define A, the manually segmented ROI, B, the automatically segmented ROI and, d(a,b), the 
Euclidean distance between points a and b. The intersection of A and B just means that we count the voxels 
belonging to A and B.  We note that the Hausdorff distance here is slightly different from the traditional 
definition; it has been modified so as to symmetrize the measurement.

 

Second, when analyzing brain morphometry, it is desirable to have an automated segmentation 

algorithm that detects disease-related effects as powerfully as possible.  This is not necessarily 

the same as agreeing with manual raters, as an algorithm that exaggerates the disease effects may 

be just as useful for a disease study (or even more useful) than manual segmentations.  To assess 

disease classification, one could look for known effects and see if the automated segmentation 

correctly predicts these known relationships.  For instance, it is known that in Alzheimer’s 

disease (AD), hippocampal volume declines.  It is also known that in AD, hippocampal 

morphology is statistically correlated with various cognitive test scores, with smaller 

hippocampal volumes being associated with poorer cognitive performance.  After these 

relationships have been established, a particular automated segmentation algorithm can then be 

used to test predicted relationships or discover new and unsuspected correlates of brain changes. 

 

In a study by the authors involving AdaSVM (Morra, et al. 2007), we wished to show that 

AdaSVM was outperforming both AdaBoost and the widely-used package FreeSurfer (Fischl, et 

al. 2002) for hippocampal segmentation. We compared the results of all these methods to manual 

segmentations. The study consisted of 30 training subjects (15 normal healthy elderly subjects 

and 15 age-matched AD patients), and 80 testing subjects (40 normal healthy elderly, and 40 age 

matched AD patients).  Table 1 compares manual segmentations with automated segmentations 

obtained using probabilistic tree AdaSVM, PBT, and FreeSurfer. Figure 5 shows an analysis of 

disease effects for the same images and methods. 
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 AdaSVM AdaBoost FreeSurfer 
 Left Right Left Right Left Right
 Train Test Train Test Train Test Train Test Test Test 

Precision 0.821 0.785 0.844 0.802 0.792 0.771 0.777 0.760 0.716 0.737
Recall 0.868 0.851 0.848 0.848 0.841 0.828 0.827 0.839 0.743 0.732
R.O. 0.728 0.691 0.732 0.701 0.687 0.665 0.666 0.663 0.572 0.577
S.I. 0.841 0.814 0.845 0.822 0.813 0.795 0.797 0.795 0.726 0.729

Hausdorff 4.04 4.34 4.41 4.63 4.64 4.98 5.20 4.83 4.97 4.99 
Mean 0.019 0.029 0.018 0.034 0.024 0.028 0.027 0.041 0.075 0.065

Table 1: Precision, recall, relative overlap (R.O.), similarity index (S.I.), symmetrized Hausdorff distance, and 
mean distance are reported for training and testing data from 3 segmentation algorithms, probabilistic tree 
with AdaSVM, probabilistic boosting tree (AdaBoost), and FreeSurfer for hippocampal segmentation.  
Distance measures are expressed in millimeters. The best values are obtained by AdaSVM, and are 
highlighted in bold font; in the first 4 rows, higher numbers indicate better performance, but the in bottom 
two rows, lower numbers are better.  
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Figure 5: Significance maps (p-maps) based on manual, AdaSVM, AdaBoost, and FreeSurfer hippocampal 
segmentations.  Based on the automated segmentations (binary maps), a parametric mesh is fitted to the 
hippocampus in each subject, and the size of the hippocampus at each surface point is measured as the 
distance between that surface point and a central curve threading down the center of the structure 
(see(Thompson, et al. 2004); also see (Styner, et al. 2005) for related work on M-reps). Significance maps 
involve performing a Student’s t-test at each point with the null hypothesis being that there is no correlation 
between a covariate and the hippocampal size (radial distance) at a given point.  Therefore many low p-values 
suggest that there is a statistical correlation between a given covariate and radial atrophy.  Mini-mental state 
exam score (MMSE) is a common clinical test that measures cognitive function and is frequently used in AD 
studies.  See Thompson et al. (Thompson, et al. 2004) for an in depth review of these surface-based p-maps; 
see (Csernansky, et al. 1998), for related work.  

 

It is also interesting to know how many training subjects are required to achieve adequate 

segmentation performance. Manually segmenting a training set can be time-consuming  

(but not as time-consuming as hand-segmenting the whole database), so it is useful to know how 

the labeling error declines when different numbers of training brains are used. Figure 6 shows 

that after 20 brains are included in the training set, the hippocampal segmentation error levels off, 

on an independent testing set. 
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Figure 6: The effect of varying the number of images in the training set versus the testing error (number of 
incorrectly classified examples divided by the number of total voxels) between automated and gold standard 
manual hippocampal segmentations.  Values are obtained for 5, 10, 15, 20, 25, and 30 brains in the training 
set.  The curves level off after 20 brains indicating diminishing returns when training the classifier on more 
than 20 brains. The same trend is shown using both AdaBoost and a variant of AdaBoost that uses support 
vector machines (SVMs; see main text). Left and right indicate results for the left and right hippocampi (there 
is one hippocampus in each brain hemisphere). 

 

One final analysis involves parameter optimization for the auto context model.  Figure 7 shows 

how two different error metrics change as the number of auto context model iterations increases 

(Morra, et al. 2008d).  The error metrics level off after a few iterations, suggesting that at this 

point the classifier is just returning the probability map and is not adding new intensity-based 

information. 
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Figure 7: Effects of varying the number of iterations of the auto context model (ACM) on the Hausdorff 
distance and the f-value, defined as the average of precision and recall.  All other error metrics showed a 
similar pattern.  This data is derived by evaluating automated hippocampal segmentations against 
independently defined ground truth segmentations. 

 

Future Research Directions 

 

A key goal of future research in learning for brain image segmentation is selecting robust 

features.  Ideal features should be independent of scanning parameters, intensity information, the 

registration algorithm used, etc.  A universal model could then be created for each structure 

without the need to retrain the classifier for each new study, and would greatly increase the 

usability of any of the above algorithms. 

 

Another open research question concerns online learning.  Longitudinal studies of the brain (such 

as the ADNI initiative) commonly acquire data over a long period of time – often up to 10 years 

– and depending on the storage ability and computational resources of a given system it might be 

impractical to retrain a new model to incorporate new training data.  Online learning can update 

a given classifier without observing previously learned data.  This would make model updating 

much easier.  Many online learning algorithms exist for other models and applications, but 

finding one specific to this problem is still an open research question. 
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Conclusion 

 

In this chapter, we showed why automated segmentation is useful in medical imaging, and 

presented a variety of methods for performing it.  We built up a hierarchy of learning 

approaches, culminating in a method that integrates both appearance and context-based 

information and benefits from the advantages of each.  We presented some results that the 

authors have gathered in their own research, focusing on parameter selection for these models, 

and comparisons with independently defined ground truth.  Finally, we provided future areas of 

research where innovations are likely. These developments are already having a major impact on 

the pace of discovery in biomedical science, integrating information from thousands of images to 

understand disease, drug and gene effects in large populations.  
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