
1 

Software Engineering 

 

Session 7 – Main Theme 

From Analysis and Design to  

Software Architectures 

(Part I) 

 

Dr. Jean-Claude Franchitti 

 

New York University 

Computer Science Department 

Courant Institute of Mathematical Sciences 

 
Presentation material partially based on textbook slides 

Software Engineering: A Practitioner’s Approach (8/e) 

by Roger S. Pressman 

Slides copyright © 1996, 2001, 2005, 2009, 2014 



2 

Agenda 

1 Introduction 

4 Summary and Conclusion 

2 Architectural Design 

3 Pattern-Based Design 



3 

What is the class about? 

 Course description and syllabus: 

» http://www.nyu.edu/classes/jcf/g22.2440-001/  

» http://www.cs.nyu.edu/courses/spring16/G22.2440-001/     

 

 Textbooks: 
» Software Engineering: A Practitioner’s Approach 

 Roger S. Pressman 
McGraw-Hill Higher International 

 ISBN-10: 0078022126, ISBN-13: 978-0078022128, 8th Edition (01/23/14) 

» Recommended: 

» Code Complete: A Practical Handbook of Software Construction, 2nd Edition 

» The Mythical Man-Month: Essays on Software Engineering, 2nd Edition 

http://www.nyu.edu/classes/jcf/g22.2440-001/
http://www.nyu.edu/classes/jcf/g22.2440-001/
http://www.nyu.edu/classes/jcf/g22.2440-001/
http://www.nyu.edu/classes/jcf/g22.2440-001/
http://www.nyu.edu/classes/jcf/g22.2440-001/
http://www.nyu.edu/classes/jcf/g22.2440-001/
http://www.nyu.edu/classes/jcf/g22.2440-001/
http://www.nyu.edu/classes/jcf/g22.2440-001/
http://www.nyu.edu/classes/jcf/g22.2440-001/
http://www.nyu.edu/classes/jcf/g22.2440-001/
http://www.nyu.edu/classes/jcf/g22.2440-001/
http://www.nyu.edu/classes/jcf/g22.2440-001/
http://www.nyu.edu/classes/jcf/g22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/
http://www.cs.nyu.edu/courses/spring15/G22.2440-001/


4 

Icons / Metaphors 

4 

Common Realization 

Information 

Knowledge/Competency Pattern 

Governance 

Alignment 

Solution Approach 



5 

Agenda 

1 Introduction 

4 Summary and Conclusion 

2 Architectural Design 

3 Pattern-Based Design 



6 

Why Architecture? 

The architecture is not the operational 
software. Rather, it is a representation 
that enables a software engineer to:  

(1) analyze the effectiveness of the 
design in meeting its stated 
requirements,  

(2) consider architectural alternatives at 
a stage when making design changes is 
still relatively easy, and  

(3) reduce the risks associated with the 
construction of the software. 



7 

Why is Architecture Important? 

 Representations of software architecture are an 

enabler for communication between all parties 

(stakeholders) interested in the development of 

a computer-based system. 

 The architecture highlights early design 

decisions that will have a profound impact on all 

software engineering work that follows and, as 

important, on the ultimate success of the system 

as an operational entity. 

 Architecture “constitutes a relatively small, 

intellectually graspable mode of how the system 

is structured and how its components work 

together”. 



8 

Architectural Descriptions 

 The IEEE Computer Society has proposed IEEE-Std-
1471-2000, Recommended Practice for Architectural 
Description of Software-Intensive System, [IEE00] 

» to establish a conceptual framework and vocabulary for use 
during the design of software architecture,  

» to provide detailed guidelines for representing an 
architectural description, and  

» to encourage sound architectural design practices. 

 The IEEE Standard defines an architectural 
description (AD) as a “a collection of products to 
document an architecture.”  
» The description itself is represented using multiple views, 

where each view is “a representation of a whole system 
from the perspective of a related set of [stakeholder] 
concerns.” 



9 

Architectural Genres 

 Genre implies a specific category within the overall 

software domain.  

 Within each category, you encounter a number of 

subcategories.  

» For example, within the genre of buildings, you would 

encounter the following general styles: houses, condos, 

apartment buildings, office buildings, industrial building, 

warehouses, and so on.  

» Within each general style, more specific styles might apply. 

Each style would have a structure that can be described 

using a set of predictable patterns. 



10 

Architectural Styles 

 Data-centered architectures 

 Data flow architectures 

 Call and return architectures 

 Object-oriented architectures 

 Layered architectures 

Each style describes a system category that 
encompasses: (1) a set of components (e.g., a 
database, computational modules) that perform a 
function required by a system, (2) a set of 
connectors that enable “communication, 
coordination and cooperation” among components, 
(3) constraints that define how components can be 
integrated to form the system, and (4) semantic 
models that enable a designer to understand the 
overall properties of a system by analyzing the 
known properties of its constituent parts.  



11 

Data-Centered Architecture 



12 

Data Flow Architecture 



13 

Call and Return Architecture 



14 

Layered Architecture 



15 

Architectural Patterns 

 Concurrency—applications must handle multiple tasks in a 
manner that simulates parallelism  

»  operating system process management pattern 

» task scheduler pattern 

 Persistence—Data persists if it survives past the execution of 
the process that created it. Two patterns are common:  

» a database management system pattern that applies the storage 
and retrieval capability of a DBMS to the application architecture 

» an application level persistence pattern that builds persistence 
features into the application architecture 

 Distribution— the manner in which systems or components 
within systems communicate with one another in a distributed 
environment 

» A broker acts as a ‘middle-man’ between the client component 
and a server component. 



16 

Architectural Design 

 The software must be placed into context 

» the design should define the external entities (other 

systems, devices, people) that the software interacts 

with and the nature of the interaction 

 A set of architectural archetypes should be 

identified 

» An archetype is an abstraction (similar to a class) that 

represents one element of system behavior 

 The designer specifies the structure of the 

system by defining and refining software 

components that implement each archetype 



17 

Architectural Context 

target system: 

Security Function
uses

uses peershomeowner

Safehome 

Product
Internet-based 

system

surveillance 

function

sensors

control 

panel

sensors

uses



18 

Archetypes 

Figure 10.7  UML relat ionships for SafeHome securit y funct ion archetypes 

(adapted f rom [BOS00] )

Cont roller

Node

communicates with

Detector Indicator



19 

Agenda 

1 Introduction 

4 Summary and Conclusion 

2 Architectural Design 

3 Pattern-Based Design 



20 

Bibliography… 

 « A System of Pattern » Bushmann et All 

 « Design Patterns » Gamma et All 

 « Concurrent Programming in Java » D. Lea. 

 « Distributed Objects » Orfali et All 

 « Applying UML and Patterns » Larman 



21 

21 

Patterns… 

 « Patterns help you build on the collective 
experience of skilled software engineers. » 

 «  They capture existing, well-proven experience 
in software development and help to promote 
good design practice » 

 « Every pattern deals with a specific, recurring 
problem in the design or implementation of a 
software system » 

 « Patterns can be used to construct software 
architectures with specific properties… » 



22 

22 

Becoming a Chess Master 

 First learn rules and physical requirements 
 e.g., names of pieces, legal movements, chess board 

geometry  and orientation, etc.  

 Then learn principles  
 e.g., relative value of certain pieces, strategic value of 

center squares, power of a threat, etc.  

 However, to become a master of chess, one must 
study the games of other masters  
 These games contain patterns that must be understood, 

memorized, and applied repeatedly  

 There are hundreds of these patterns  



23 

23 

Becoming a Software Designer Master 

  First learn the rules  
 e.g., the algorithms, data structures and languages of 

software  

 Then learn the principles  
 e.g., structured programming, modular programming, 

object  oriented programming, generic programming, 
etc.  

 However, to truly master software design, one 
must study the designs of other masters  
 These designs contain patterns must be understood, 

memorized, and applied repeatedly  

 There are hundreds of these patterns  



24 

24 

Software Architecture 

 A software architecture is a description of the 

subsystems and components of a software system 

and the relationships between them.  

 Subsystems and components are typically 

specified in different views to show the relevant 

functional and non-functional properties of a 

software system.  

 The software system is an artifact. It is the result 

of the software design activity. 



25 

25 

Component 

 A component is an encapsulated part of a 

software system. A component has an 

interface.  

 Components serve as the building blocks for 

the structure of a system.  

 At a programming-language level, 

components may be represented as 

modules, classes, objects or as a set of 

related functions. 



26 

26 

Subsystems 

 A subsystem is a set of collaborating 

components performing a given task. A 

subsystem is considered a separate entity 

within a software architecture.  

 It performs its designated task by interacting 

with other subsystems and components… 



27 

27 

Architectural Patterns 

 An architectural Pattern expresses a 

fundamental structural organization schema 

for software systems. It provides a set of 

predefined subsystems, their 

responsibilities,  and includes rules and 

guidelines for organizing the relationships 

between them. 



28 

28 

Design patterns 

 A design pattern provides a scheme for 

refining the subsystems or components of a 

software system, or the relation ships 

between them. It describes a commonly-

recurring structure of  communicating 

components that solves a general design 

problem within a particular context. 



29 

29 

Idioms 

 An Idiom is a low-level pattern specific to a 

programming language. An idiom describes 

how to implement particular aspects of 

components or the relationships between 

them using the features of the given 

language. 



30 

30 

Framework 

 A framework is a partially complete software 

(sub-) system that is intended to be 

instantiated. It defines the architecture for a 

family of (sub-) systems and provides the 

basic building blocks to create them. It also 

defines the places where adaptations for 

specific functionality should be made. 



31 

Design Patterns 

 Each of us has encountered a design problem 

and silently thought: I wonder if anyone has 

developed a solution to for this? 

» What if there was a standard way of describing a 

problem (so you could look it up), and an 

organized method for representing the solution to 

the problem?  

 Design patterns are a codified method for 

describing problems and their solution allows 

the software engineering community to capture 

design knowledge in a way that enables it to be 

reused. 



32 

Design Patterns 

 Each pattern describes a problem that occurs 

over and over again in our environment and 

then describes the core of the solution to that 

problem in such a way that you can use the 

solution a million times over without ever 

doing it the same way twice. 

– Christopher Alexander, 1977 

 “a three-part rule which expresses a relation 

between a certain context, a problem, and a 

solution.” 



33 

Basic Concepts 

 Context allows the reader to understand the 

environment in which the problem resides and 

what solution might be appropriate within that 

environment.  

 A set of requirements, including limitations 

and constraints, acts as a system of forces that 

influences how  

» the problem can be interpreted within its context 

and  

» how the solution can be effectively applied. 



34 

Effective Patterns 

 Coplien [Cop05] characterizes an effective design pattern in 
the following way: 
» It solves a problem: Patterns capture solutions, not just abstract 

principles or strategies. 

» It is a proven concept: Patterns capture solutions with a track record, 
not theories or speculation. 

» The solution isn't obvious: Many problem-solving techniques (such as 
software design paradigms or methods) try to derive solutions from 
first principles. The best patterns generate a solution to a problem 
indirectly--a necessary approach for the most difficult problems of 
design. 

» It describes a relationship: Patterns don't just describe modules, but 
describe deeper system structures and mechanisms. 

» The pattern has a significant human component (minimize human 
intervention). All software serves human comfort or quality of life; the 
best patterns explicitly appeal to aesthetics and utility. 



35 

Generative Patterns 

 Generative patterns describe an important and 

repeatable aspect of a system and then provide 

us with a way to build that aspect within a 

system of forces that are unique to a given 

context.  

 A collection of generative design patterns 

could be used to “generate” an application or 

computer-based system whose architecture 

enables it to adapt to change.  



36 

Kinds of Patterns 

 Architectural patterns describe broad-based design problems that are 

solved using a structural approach. 

 Data patterns describe recurring data-oriented problems and the data 

modeling solutions that can be used to solve them.  

 Component patterns (also referred to as design patterns) address problems 

associated with the development of subsystems and components, the 

manner in which they communicate with one another, and their placement 

within a larger architecture 

 Interface design patterns describe common user interface problems and 

their solution with a system of forces that includes the specific 

characteristics of end-users.  

 WebApp patterns address a problem set that is encountered when building 

WebApps and often incorporates many of the other patterns categories just 

mentioned.  



37 

Kinds of Patterns 

 Creational patterns focus on the “creation, composition, and representation 
of objects, e.g.,  

» Abstract factory pattern: centralize decision of what factory to instantiate 

» Factory method pattern: centralize creation of an object of a specific type 
choosing one of several implementations 

 Structural patterns focus on problems and solutions associated with how 
classes and objects are organized and integrated to build a larger structure, 
e.g.,  

» Adapter pattern: 'adapts' one interface for a class into one that a client expects 

» Aggregate pattern: a version of the Composite pattern with methods for 
aggregation of children 

 Behavioral patterns address problems associated with the assignment of 
responsibility between objects and the manner in which communication is 
effected between objects, e.g.,  

» Chain of responsibility pattern: Command objects are handled or passed on 
to other objects by logic-containing processing objects 

» Command pattern: Command objects encapsulate an action and its 
parameters 

http://www.answers.com/topic/abstract-factory-pattern
http://www.answers.com/topic/factory-method-pattern
http://www.answers.com/topic/factory-method-pattern
http://www.answers.com/topic/adapter-pattern
http://www.answers.com/topic/aggregate-pattern
http://www.answers.com/topic/composite-pattern
http://www.answers.com/topic/chain-of-responsibility-pattern
http://www.answers.com/topic/command-pattern


38 

Frameworks 

 Patterns themselves may not be sufficient to develop 
a complete design.  
» In some cases it may be necessary to provide an 

implementation-specific skeletal infrastructure, called a 
framework, for design work.  

» That is, you can select a “reusable mini-architecture that 
provides the generic structure and behavior for a family of 
software abstractions, along with a context … which 
specifies their collaboration and use within a given 
domain.” [Amb98] 

 A framework is not an architectural pattern, but rather 
a skeleton with a collection of “plug points” (also 
called hooks and slots) that enable it to be adapted to 
a specific problem domain.  
» The plug points enable you to integrate problem specific 

classes or functionality within the skeleton. 



39 

Describing a Pattern 

 Pattern name—describes the essence of the pattern in a short but expressive name  

 Problem—describes the problem that the pattern addresses 

 Motivation—provides an example of the problem  

 Context—describes the environment in which the problem resides including 
application domain 

 Forces—lists the system of forces that affect the manner in which the problem must 
be solved; includes a discussion of limitation and constraints that must be 
considered 

 Solution—provides a detailed description of the solution proposed for the problem 

 Intent—describes the pattern and what it does 

 Collaborations—describes how other patterns contribute to the solution 

 Consequences—describes the potential trade-offs that must be considered when the 
pattern is implemented and the consequences of using the pattern 

 Implementation—identifies special issues that should be considered when 
implementing the pattern 

 Known uses—provides examples of actual uses of the design pattern in real 
applications 

 Related patterns—cross-references related design patterns 



40 

Pattern Languages 

 A pattern language encompasses a collection of 

patterns 

» each described using a standardized template and  

» interrelated to show how these patterns collaborate to solve 

problems across an application domain. 

 a pattern language is analogous to a hypertext 

instruction manual for problem solving in a specific 

application domain. 

» The problem domain under consideration is first described 

hierarchically, beginning with broad design problems 

associated with the domain and then refining each of the 

broad problems into lower levels of abstraction 

» http://www.corej2eepatterns.com/  

http://www.corej2eepatterns.com/


41 

Pattern-Based Design 

 A software designer begins with a 

requirements model (either explicit or implied) 

that presents an abstract representation of the 

system.  

 The requirements model describes the problem 

set, establishes the context, and identifies the 

system of forces that hold sway. 

 Then … 



42 

Pattern-Based Design 



43 

Thinking in Patterns 

 Shalloway and Trott [Sha05] suggest the following approach 
that enables a designer to think in patterns: 

» 1.   Be sure you understand the big picture—the context in which the 
software to be built resides. The requirements model should 
communicate this to you. 

» 2.   Examining the big picture, extract the patterns that are present at 
that level of abstraction. 

» 3.   Begin your design with ‘big picture’ patterns that establish a context 
or skeleton for further design work. 

» 4.   “Work inward from the context” [Sha05] looking for patterns at 
lower levels of abstraction that contribute to the design solution. 

» 5.   Repeat steps 1 to 4 until the complete design is fleshed out. 

» 6.   Refine the design by adapting each pattern to the specifics of the 
software you’re trying to build. 



44 

Design Tasks—I 

 Examine the requirements model and develop a 

problem hierarchy.  

 Determine if a reliable pattern language has been 

developed for the problem domain. 

 Beginning with a broad problem, determine whether 

one or more architectural patterns are available for it. 

 Using the collaborations provided for the 

architectural pattern, examine subsystem or 

component level problems and search for appropriate 

patterns to address them. 

 Repeat steps 2 through 5 until all broad problems 

have been addressed.  



45 

Design Tasks—II 

 If user interface design problems have been isolated 
(this is almost always the case), search the many user 
interface design pattern repositories for appropriate 
patterns. 

 Regardless of its level of abstraction, if a pattern 
language and/or patterns repository or individual 
pattern shows promise, compare the problem to be 
solved against the existing pattern(s) presented. 

 Be certain to refine the design as it is derived from 
patterns using design quality criteria as a guide. 



46 

Pattern Organizing Table 



47 

Common Design Mistakes 

 Not enough time has been spent to understand the 

underlying problem, its context and forces, and as a 

consequence, you select a pattern that looks right, but 

is inappropriate for the solution required.  

 Once the wrong pattern is selected, you refuse to see 

your error and force fit the pattern.  

 In other cases, the problem has forces that are not 

considered by the pattern you’ve chosen, resulting in 

a poor or erroneous fit.  

 Sometimes a pattern is applied too literally and the 

required adaptations for your problem space are not 

implemented.  



48 

Architectural Patterns 

 Example: every house (and every architectural style for 
houses) employs a Kitchen pattern.  

 The Kitchen pattern and patterns it collaborates with address 
problems associated with the storage and preparation of food, 
the tools required to accomplish these tasks, and rules for 
placement of these tools relative to workflow in the room.  

 In addition, the pattern might address problems associated with 
counter tops, lighting, wall switches, a central island, flooring, 
and so on. 

 Obviously, there is more than a single design for a kitchen, 
often dictated by the context and system of forces. But every 
design can be conceived within the context of the ‘solution’ 
suggested by the Kitchen pattern.  



49 

Patterns Repositories 

 There are many sources for design patterns 

available on the Web. Some patterns can be 

obtained from individually published pattern 

languages, while others are available as part of 

a patterns portal or patterns repository. 

 A list of patterns repositories is presented in 

the sidebar (see section 12.3 of textbook) 



50 

Component-Level Patterns 

 Component-level design patterns provide a 
proven solution that addresses one or more 
sub-problems extracted from the requirement 
model.  

 In many cases, design patterns of this type 
focus on some functional element of a system. 

 For example, the SafeHomeAssured.com 
application must address the following design 
sub-problem: How can we get product 
specifications and related information for any 
SafeHome device? 



51 

Component-Level Patterns 

 Having enunciated the sub-problem that must be 
solved, consider context and the system of forces that 
affect the solution.  

 Examining the  appropriate requirements model use 
case, the specification for a SafeHome device (e.g., a 
security sensor or camera) is used for informational 
purposes by the consumer.  

» However, other information that is related to the 
specification (e.g., pricing) may be used when e-commerce 
functionality is selected.  

 The solution to the sub-problem involves a search. 
Since searching is a very common problem, it should 
come as no surprise that there are many search-
related patterns. 

 See Section 12.4 of textbook 



52 

User Interface (UI) Patterns 

 Whole UI.  Provide design guidance for top-level structure and navigation throughout the 

entire interface. 

 Page layout.  Address the general organization of pages (for Websites) or distinct screen 

displays (for interactive applications) 

 Forms and input.  Consider a variety of design techniques for completing form-level input. 

 Tables.  Provide design guidance for creating and manipulating tabular data of all kinds. 

 Direct data manipulation.  Address data editing, modification, and transformation. 

 Navigation.  Assist the user in navigating through hierarchical menus, Web pages, and 

interactive display screens. 

 Searching.  Enable content-specific searches through information maintained within a Web 

site or contained by persistent data stores that are accessible via an interactive application.  

 Page elements.  Implement specific elements of a Web page or display screen. 

 E-commerce.  Specific to Web sites, these patterns implement recurring elements of e-

commerce applications. 



53 

WebApp Patterns 

 Information architecture patterns relate to the overall structure of the 
information space, and the ways in which users will interact with the 
information.  

 Navigation patterns define navigation link structures, such as hierarchies, 
rings, tours, and so on. 

 Interaction patterns contribute to the design of the user interface. Patterns 
in this category address how the interface informs the user of the 
consequences of a specific action; how a user expands content based on 
usage context and user desires; how to best describe the destination that is 
implied by a link; how to inform the user about the status of an on-going 
interaction, and interface related issues. 

 Presentation patterns assist in the presentation of content as it is 
presented to the user via the interface. Patterns in this category address how 
to organize user interface control functions for better usability; how to 
show the relationship between an interface action and the content objects it 
affects, and how to establish effective content hierarchies. 

 Functional patterns define the workflows, behaviors, processing, 
communications, and other algorithmic elements within a WebApp. 



54 

Design Granularity 

 When a problem involves “big picture” issues, attempt 

to develop solutions (and use relevant patterns) that 

focus on the big picture. 

 Conversely, when the focus is very narrow (e.g., 

uniquely selecting one item from a small set of five or 

fewer items), the solution (and the corresponding 

pattern) is targeted quite narrowly.   

 In terms of the level of granularity, patterns can be 

described at the following levels: 



55 

Design Granularity 

 Architectural patterns. This level of abstraction will typically relate to 
patterns that define the overall structure of the WebApp, indicate the 
relationships among different components or increments, and define the 
rules for specifying relationships among the elements (pages, packages, 
components, subsystems) of the architecture. 

 Design patterns.  These address a specific element of the design such as an 
aggregation of components to solve some design problem, relationships 
among elements on a page, or the mechanisms for effecting component to 
component communication. An example might be the Broadsheet pattern 
for the layout of a WebApp homepage. 

 Component patterns. This level of abstraction relates to individual small-
scale elements of a WebApp. Examples include individual interaction 
elements (e.g. radio buttons, text books), navigation items (e.g. how might 
you format links?) or functional elements (e.g. specific algorithms). 



56 

Agenda 

1 Introduction 

4 Summary and Conclusion 

2 Architectural Design 

3 Pattern-Based Design 



57 

Summary – From Analysis and Design to Software Architecture (Part I) – 1/2 

 All design work products must be traceable to 

software requirements and that all design work 

products must be reviewed for quality  

 Software projects iterate through the analysis and 

design phases several times  

 Pure separation of analysis and design may not 

always be possible or desirable  

 There are many significant design concepts 

(abstraction, refinement, modularity, architecture, 

patterns, refactoring, functional independence, 

information hiding, and OO design concepts)  

 Design changes are inevitable and that delaying 

component level design can reduce the impact of 

these changes  

 



58 

Summary – From Analysis and Design to Software Architecture (Part I) – 2/2 

 The goal of the architectural model is to allow the 

software engineer to view and evaluate the system 

as a whole before moving deeper into design  

 At the architecture level, data design is the process of 

creating a model of the information represented at a 

high level of abstraction (using the customer's view of 

data) 

 An architectural style is a transformation that is 

imposed on the design of an entire system 

 



59 

Course Assignments 

    
 Individual Assignments 

 Reports based on case studies / class presentations 

 Project-Related Assignments 

 All assignments (other than the individual assessments) will 

correspond to milestones in the team project. 

 As the course progresses, students will be applying various 

methodologies to a project of their choice. The project and related 

software system should relate to a real-world scenario chosen by each 

team. The project will consist of inter-related deliverables which are 

due on a (bi-) weekly basis. 

 There will be only one submission per team per deliverable and all 

teams must demonstrate their projects to the course instructor. 

 A sample project description and additional details will be available 

under handouts on the course Web site 



60 

Team Project 

  
 Project Logistics 

 Teams will pick their own projects, within certain constraints: for instance, 

all projects should involve multiple distributed subsystems (e.g., web-

based electronic services projects including client, application server, and 

database tiers). Students will need to come up to speed on whatever 

programming languages and/or software technologies they choose for their 

projects - which will not necessarily be covered in class. 

 Students will be required to form themselves into "pairs" of exactly two (2) 

members each; if there is an odd number of students in the class, then one 

(1) team of three (3) members will be permitted.  There may not be any 

"pairs" of only one member!  The instructor and TA(s) will then assist the 

pairs in forming "teams", ideally each consisting of two (2) "pairs", possibly 

three (3) pairs if necessary due to enrollment, but students are encouraged 

to form their own 2-pair teams in advance. If some students drop the 

course, any remaining pair or team members may be arbitrarily reassigned 

to other pairs/teams at the discretion of the instructor (but are strongly 

encouraged to reform pairs/teams on their own). Students will develop and 

test their project code together with the other member of their programming 

pair. 



61 

 Document Transformation methodology driven 
approach 

 Strategy Alignment Elicitation  

 Equivalent to strategic planning  

 i.e., planning at the level of a project set 

 Strategy Alignment Execution 

 Equivalent to project planning + SDLC 

 i.e., planning a the level of individual projects + project 

implementation 

 Build a methodology Wiki & partially implement the 

enablers 

 Apply transformation methodology approach to a 

sample problem domain for which a business solution 

must be found 

 Final product is a wiki/report that focuses on 

 Methodology / methodology implementation / sample 

business-driven problem solution 

Team Project Approach - Overall 



62 

 Document sample problem domain and 

business-driven problem of interest 

 Problem description 

 High-level specification details 

 High-level implementation details 

 Proposed high-level timeline 

 

Team Project Approach – Initial Step 



63 

Course Project 
     

• Project Logistics 
• Teams will pick their own projects, within certain constraints: for instance, 

all projects should involve multiple distributed subsystems (e.g., web-based 

electronic services projects including client, application server, and database 

tiers). Students will need to come up to speed on whatever programming 

languages and/or software technologies they choose for their projects - 

which will not necessarily be covered in class. 

• Students will be required to form themselves into "pairs" of exactly two (2) 

members each; if there is an odd number of students in the class, then one 

(1) team of three (3) members will be permitted.  There may not be any 

"pairs" of only one member!  The instructor and TA(s) will then assist the 

pairs in forming "teams", ideally each consisting of two (2) "pairs", possibly 

three (3) pairs if necessary due to enrollment, but students are encouraged to 

form their own 2-pair teams in advance. If some students drop the course, 

any remaining pair or team members may be arbitrarily reassigned to other 

pairs/teams at the discretion of the instructor (but are strongly encouraged to 

reform pairs/teams on their own). Students will develop and test their 

project code together with the other member of their programming pair. 



64 

Sample Project Methodology 
Very eXtreme Programming (VXP) 

 After teams formed, 1/2 week to Project 

Concept 

 1/2 week to Revised Project Concept 

 2 to 3 iterations 

 For each iteration: 

»1/2 week to plan 

»1 week to iteration report and demo 



65 

Sample Project Methodology 
Very eXtreme Programming (VXP) - (continued) 

 Requirements: Your project focuses on two application 
services 

 Planning: User stories and work breakdown 

 Doing: Pair programming, write test cases before coding, 
automate testing 

 Demoing: 5 minute presentation plus 15 minute demo 

 Reporting: What got done, what didn’t, what tests show 

 1st iteration: Any 

 2nd iteration: Use some component model framework 

 3rd iteration: Refactoring, do it right this time 



66 

Revised Project Concept (Tips) 

1. Cover page (max 1 page) 

2. Basic concept (max 3 pages): Briefly 

describe the system your team 

proposes to build.  Write this 

description in the form of either user 

stories or use cases (your choice). 

Illustrations do not count towards page 

limits. 

3. Controversies (max 1 page) 



67 

First Iteration Plan (Tips) 

 Requirements (max 2 pages): 

 Select user stories or use cases to implement 
in your first iteration, to produce a demo by 
the last week of class 

 Assign priorities and points to each unit - A 
point should correspond to the amount of 
work you expect one pair to be able to 
accomplish within one week 

 You may optionally include additional medium 
priority points to do “if you have time” 

 It is acceptable to include fewer, more or 
different use cases or user stories than 
actually appeared in your Revised Project 
Concept 



68 

First Iteration Plan (Tips) 

 Work Breakdown (max 3 pages):  

 Refine as engineering tasks and assign to 
pairs 

 Describe specifically what will need to be 
coded in order to complete each task 

 Also describe what unit and integration tests 
will be implemented and performed 

 You may need additional engineering tasks 
that do not match one-to-one with your user 
stories/use cases 

 Map out a schedule for the next weeks 

 Be realistic – demo has to been shown before 
the end of the semester 



69 

2nd Iteration Plan (Tips): Requirements 

 Max 3 pages 

 Redesign/reengineer your system to use a 
component framework (e.g., COM+, EJB, 
CCM, .NET or Web Services) 

 Select the user stories to include in the new 
system 
» Could be identical to those completed for your 1st 

Iteration 

» Could be brand new (but explain how they fit) 

 Aim to maintain project velocity from 1st 
iteration 

 Consider what will require new coding vs. 
major rework vs. minor rework vs. can be 
reused “as is” 



70 

2nd Iteration Plan (Tips): Breakdown 

 Max 4 pages 

 Define engineering tasks, again try to 
maintain project velocity 

 Describe new unit and integration testing 

 Describe regression testing 
» Can you reuse tests from 1st iteration? 

» If not, how will you know you didn’t break 
something that previously worked? 

 2nd iteration report and demo to be presented 
before the end of the semester 



71 

2nd Iteration Report (Tips): Requirements 

 Max 2 pages 

 For each engineering task from your 2nd 
Iteration Plan, indicate whether it succeeded, 
partially succeeded (and to what extent), 
failed (and how so?), or was not attempted 

 Estimate how many user story points were 
actually completed (these might be fractional) 

 Discuss specifically your success, or lack 
thereof, in porting to or reengineering for your 
chosen component model framework(s) 



72 

2nd Iteration Report (Tips): Testing 

 Max 3 pages 

 Describe the general strategy you followed 
for unit testing, integration testing and 
regression testing 

 Were you able to reuse unit and/or integration 
tests, with little or no change, from your 1st  
Iteration as regression tests? 

 What was most difficult to test?   

 Did using a component model framework 
help or hinder your testing? 



73 

Project Presentation and Demo 

 All Iterations Due 

 Presentation slides (optional) 



74 

Assignments & Readings 

 Readings 

 Slides and Handouts posted on the course web site 

 Textbook: Part Two-Chapters 6-8 

 Individual Assignment (due) 

 See Session 5 Handout: “Assignment #2” 

 Individual Assignment (assigned) 

 See Session 8 Handout: “Assignment #3” 

 Team Project #1 (ongoing) 

 Team Project proposal (format TBD in class) 

 See Session 2 Handout: “Team Project Specification” (Part 1) 

 Team Exercise #1 (ongoing) 

 Presentation topic proposal (format TBD in class) 

 Project Frameworks Setup (ongoing) 

 As per reference provided on the course Web site 



75 

Any Questions? 



76 

Next Session: From Analysis and Design to Software Architecture (Part II) 


