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Abstract— We present a laser range-finder-based system
for tracking people in an outdoor environment and detecting
interactions between them. The system does not use identities
of people for tracking. Observed tracks are automatically
segmented into individual activities using an entropy-based
measure (Jensen-Shannon divergence [12]). Two people sit-
uated close to each other throughout the duration of an
activity represents an interaction. The observed activities
are combined using a hierarchical clustering algorithm to
generate a representative set. The frequency of occurrence of
these activities is modeled by a Poisson distribution. During
the monitoring phase, this model is used to compute the prob-
ability of observing the detected activities and interactions; an
anomaly is flagged if this probability falls below a threshold.
Experimental results from an outdoor courtyard environment
are described where the system indicates anomalies when
there is a sudden increase in the number of people in the
environment or in the number of interactions. This detection
occurs without giving the system any a priori concepts of
space occupancy.

I. INTRODUCTION

The ability to detect and model interactions between
people has many applications, especially in surveillance
where the goal is to detect anomalous behavior. Such
behavior may be defined as activity that occurs more or
less frequently than is the norm for a given environment.
Consequently, a system capable of detecting anomalous
behavior must first identify the different types of activities
for the given environment, including interactions between
people. Next, it must build a model of the normal patterns
of those activities. Anomalous behavior is then identified
as activity not fitting the learned model.

We use laser range-finders for tracking people in an
outdoor environment [7]. Unlike vision systems, laser
range-finders cannot be readily used to uniquely identify
people. The sequences of positions obtained from the
laser-based tracker represent a series of different activities
performed by a single person. We segment the track
into distinct subsequences using a recursive algorithm that
maximizes the Jensen-Shannon divergence [12] between
the subsequences. By comparing the concurrent positions
of different tracks, we can determine if the correspond-
ing persons are interacting. In this work, we focus on
modeling the frequency of occurrence of the observed
activities and interactions. We assume that activities are
generated by a Poisson process and model the number of

occurrences of each activity type as a Poisson distribution.
This enables us to compute the probability of detecting
a given number of activities per unit time and flagging
anomalous observations based on low probability. We
tested this system in a courtyard outside a lecture hall
which features a large increase in people exiting the lecture
hall after each class. Our system is able to detect this
infrequent occurence without any pre-defined concept of
the occupancy of an environment. Conversations between
people standing in this courtyard occur rarely and thus
when such conversations do occur, they are also flagged
as anomalous. This is because we do not provide any
high level notion of a “conversation”. Instead, we let the
system classify all activities based solely on location in an
unsupervised manner.

Figure 1 shows the main components comprising our
system. During the learning phase, the system segments
tracks into distinct activities and clusters these into a set
of representative activities seen in that environment. The
rate of occurrence of those activities is also computed in
this stage. During the monitoring phase, observed activities
are classified into one of the representative activities. The
probability of observing the activities is computed from
the expected rate that was calculated during the learning
phase. An activity is then marked as anomalous if this
probability is very low. These steps are described in detail
in the following sections. The Results section describes our
experiments in the outdoor courtyard environment.

II. RELATED WORK

The problem of recognizing actions and activities of
humans has been studied using vision [4, 9, 8, 5]. The
tracks of foreground objects in an image are often classified
into activity primitives such as hand gestures [4]. The
recognition of these low level actions is usually performed
by defining a hidden Markov model (HMM) for each
action. More complex activities are defined as sequences
of lower level ones, which may be considered as symbols
serving as input into a higher level representation. Such
higher level representations may be a stochastic grammar
[4], Bayesian network [8], or another higher level HMM
[9].

Detecting real-world interactions has been studied using
mainly vision [13, 11]. The type of interactions that are
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Fig. 1. Block diagram: (A) Learning Poisson model phase. (B) Anomaly detection phase.

detected include meetings between people in an open
outdoor area [13] and pick-ups and drop-offs at a park-
ing lot [11]. In these works, the tracks of individuals
are segmented into predefined low level actions such as
walking, stopping, and entering the parking lot. Thus, all
the interactions that can be detected by the system are
predefined. Moreover, no model of the observed frequency
of activities or interactions is defined. Anomaly detection
using these methods reduces to detecting if the observed
behavior corresponds to one of the predefined models.
Consequently, a behavior which happens much more often
than expected will not be seen as unusual.

Laser range-finders have been used to track people for
activity modeling [2, 16, 1]. Bennewitz et al. [2] use the
Expectation-Maximization algorithm to build models of
tracks in an indoor environment. A model is a sequence
of positions with an associated Gaussian probability dis-
tribution for each position. The positions that comprise a
learned motion track are then used as states in a HMM
which can be used to estimate the positions of people
in that environment [6]. Patterson et al. [15] use this
approach to model activity patterns at a city level. Yan
and Matarić [16] use a laser range-finder tracker to study
which parts of a laboratory environment are occupied
the most. Arbuckle et al. [1] extend occupancy grids to
take into account the differences in occupancy of a space
over different time-scales. However, these systems neither
consider interactions between people nor do they model
time.

III. LASER TRACKING

Our tracking system has been described in previous
work [14] and is summarized here. Two laser range-finders
placed along the edges of a courtyard are used to track
movements of people. The readings from different range-
finders are transformed into a common coordinate system
using Mesh Relaxation [10]. The range scans are used to
maintain a model of the objects in the environment. The
measurements are divided into background and foreground
readings. Background readings arise from static objects
such as walls; they are used to update a background
model [7]. Readings that are not explained by the back-
ground model are assumed to come from objects that are

to be tracked. The foreground model consists of a set of
particle filters, one for each object being tracked.

Each particle filter tracks an object using a probability
distribution represented as a set of discrete samples or
particles. Each particle is a 4-tuple 〈x, y, θ, v〉 representing
an estimate of the object’s position (x, y), orientation θ,
and velocity v. The position of the tracked object is given
by the mean of the positions of all the particles comprising
its probability distribution.

IV. SEGMENTING TRACKS

A person’s track may span more than one activity. For
instance, two people could stop and talk to each other
in the courtyard before exiting the courtyard again. In
this case, their tracks consist of three activities: entering
the courtyard, having the conversation, and exiting. We
have developed a method for automatic segmentation that
considers every activity as a distinct probability distri-
bution [14]. Activities within a track can be discovered
by splitting the track in such a way as to maximize
the difference (in a probabilistic sense) of the individual
segments.

The output of the laser tracker is a sequence of x, y
positions (in global coordinates) for each tracked object.
Every sequence of positions is then converted into a
sequence of displacements. Let (xi, yi), i = 0, 1, . . . , n
be a sequence of positions obtained from the tracker. The
corresponding displacements are (ri, θi), i = 1, 2, . . . , n
where

ri =
√

(xi − xi−1)2 + (yi − yi−1)2, i > 0

θi = tan−1 yi − yi−1

xi − xi−1

, i > 0

The displacements are then discretized into one of nine
canonical values, as shown in Figure 2. If ri < 0.2m,
then it is discretized as displacement “0”. If ri ≥ 0.2m
(minimum distance moved in one time-step), then it is
discretized as one of displacements “1-8”, depending on the
sector in which θi lies. Thus, the continuous 2-dimensional
space of displacements is reduced into a discrete space with
9 values.

Note that this scheme of discretizing displacements
ignores the magnitude of the velocity of a person (provided



the displacement is above the threshold used to distinguish
stationary people). We found that the velocity of the people
in our environment did not vary much while walking. This
is consistent with the observation made in [6].
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Fig. 2. Discretizing displacements into one of nine canonical displace-
ments. Displacement d1 is discretized into bin “0”, while displacement
d2 is discretized into bin “1”.

We denote the set of canonical displacements by X .
Given a sequence D = {d1, d2, . . . , dN}, di ∈ X of
discrete displacements, the Maximum Likelihood (ML)
probability distribution p is obtained by counting each type
of displacement and dividing by the total number of dis-
placements in the sequence. Let C(i), i ∈ X represent the
number of occurrences of displacement i in the sequence
D. Then

p(i) = C(i)/N

We define an activity to be a set of canonical dis-
placements drawn from a fixed distribution. We assume
that different activities give rise to different probability
distributions of displacements. The task of segmentation
is to then divide a track into is split into a number of
consecutive subsequences such that these subsequences are
distinct from each other in a probabilistic sense.

We measure the difference between subsequences us-
ing an entropic measure known as the Jensen-Shannon
divergence [12]. Let p1, p2 be two probability distributions
defined over the discrete space of canonical displacements,
X . Define the weighted average distribution p12 as follows

p12(x) = w1p1(x) + w2p2(x)∀x ∈ X

where the weights w1, w2 ≥ 0 and w1 + w2 = 1. Let
H(p) be the entropy for a distribution p, defined as

H(p) = −
∑

x∈X

p(x)log(p(x))

The Jensen-Shannon divergence between the two prob-
ability distributions p1, p2 is defined as

JS(p1, p2) = H(p12) − (w1H(p1) + w2H(p2))

The Jensen-Shannon divergence has the property that it
is always positive, symmetric, and zero only when the two
distributions are equal.

We obtain all activity subsequences from a track of
displacements by recursively splitting the track at the point
that gives rise to maximum Jensen-Shannon divergence of
the two component tracks. Let D = {d1, d2, . . . , dN}, di ∈
X be a sequence of displacements comprising a track. D
is split into two subsequences Dl, Dr

Dl = {d1, d2, . . . , dk}, Dr = {dk+1, dk+2, . . . , dN}

such that k = argmaxi(JS(p1,i, pi+1,N )), where pi,j

is the probability distribution over X obtained from the
displacements di, di+1, . . . , dj .

The Jensen-Shannon divergence can weight the two
probability distributions differently. We utilize the lengths
of the sequences giving rise to the probability distributions
pl, pr to weight the divergence. Thus, w1 = k/N and
w2 = (N − k)/N . This choice of weighting the left
and right subsequences in the calculation of the Jensen-
Shannon divergence is also used for segmenting DNA
sequences [3].

The recursive segmenting procedure is terminated when
the confidence of seeing the Jensen-Shannon divergence
between the left and right subsequences due to a real
difference in their underlying probability distributions falls
below a certain threshold. Since we assume that each
displacement is an independent identically distributed ran-
dom variable, we can use the approximation given in [3]
to estimate the minimum value of the Jensen-Shannon
divergence for a given confidence value.

A. Detecting interactions

In earlier work, we used an entropy-based method for
detecting interactions in an indoor environment [14]. In our
current work on outdoor environments, we use distance
between two people to determine if they are interacting.
Proximity between people is sufficient to detect interac-
tions in the outdoor environment that we considered as
interacting people were always close to each other, unlike
indoors, where they could be close (for example, due
to cluttered seating), but not interacting. In our current
system, two people are said to be interacting if the distance
between them always falls below a predefined threshold
(2m). Examples of such interactions are people following
one another, and holding a conversation while standing
close to each other.

V. DETECTING ANOMALOUS ACTIVITIES

To identify anomalous behavior in the environment, we
build a model of the frequency at which similar activities
and interactions are observed. During the monitoring phase,
we count the number of times different activities are
observed in a small interval. If the probability of observing
the detected number of activities in that interval falls below
a certain threshold, an anomalous behavior is flagged.

To construct such a model, we first need to recognize
similar activities. In our setup, two activities are said to
be similar if their corresponding tracks are close. The
number of points in any two tracks is generally different.
Moreover, even two tracks arising from the same activity



do not exactly match, due to the probabilistic nature of
the tracker. Hence, tracks are normalized before they are
compared to each other: a cubic spline is fitted through
all the points in a track. The fitted spline is then sampled
at 20 equidistant points to generate the normalized track.
Two normalized tracks are compared by measuring the sum
of the distances between corresponding points on the two
tracks. This divergence measure is then used to cluster
similar tracks together.

We use hierarchical clustering to generate the activity
clusters. At every step in the clustering algorithm, the two
(normalized) tracks with the smallest divergence measure
between them are replaced by a new track that is obtained
by taking the mean of the corresponding points in the two
tracks. This step is repeated until the minimum divergence
among all pairs of tracks exceeds a pre-fixed threshold, ε. A
track is said to belong to a cluster if the divergence measure
between the track and that cluster is minimal relative to all
other clusters. The final set of track clusters thus map all
observed activities seen in the environment into a smaller
number of representative activity types.

We assume that the number of similar activities per-
formed in a given time period follow a Poisson distribution.
The probability p(n) of observing n activities in a given
time interval is then given by

p(n) =
µne−µ

n!

where µ is the mean number of activities expected to occur
in that time interval. The Poisson distribution is completely
specified by the parameter µ. This parameter is computed
for each activity cluster by counting the total occurrences
of activities from that cluster and dividing by the duration
of the observation period.

Interactions are also assumed to follow a Poisson dis-
tribution. Since interactions are defined as two people
maintaining a close distance, two interacting tracks are also
mapped into the same cluster. Thus, the number of distinct
types of interactions detected by our system is equal to
the number of activity clusters. The µ parameter (mean
number of interactions per unit time) is computed for all
distinct interaction types by counting the total number
of interactions mapped into that cluster divided by the
duration of the observation period.

VI. RESULTS

We monitored people in an outdoor courtyard measuring
approximately 10m × 10m (Figure 3). The courtyard is
enclosed on all sides. People can enter/exit the courtyard
through from the doors of the surrounding building or
through a walkway passing through the courtyard. Most
of the activities in this environment consisted of people
crossing the courtyard from one of the entrances to one of
the exits. Such activities often happened in small groups.
Occasionally, a small group of people stopped in the
courtyard for a conversation before exiting the courtyard.

Two SICK laser range-finders were placed at the corners
of the courtyard, at waist level, to capture position data. The

Fig. 3. People crossing the courtyard where we monitored activity.

motion capture session lasted 3.5 hours. Normal activity
proceeded throughout the tracking session. The number of
occupants of the environment during the experiment varied
widely from none to tens of people crossing the courtyard
at the end of a class.

The resulting tracks were segmented (recursive segmen-
tation was continued until the confidence in the Jensen-
Shannon divergence fell below 90%) and clustered into
20 representative activity segments using the hierarchical
clustering algorithm (Figure 4). The laser tracker does not
track perfectly, especially when there is a large number
of people in the environment. Moreover, objects such as
large bicycles are not always distinguishable from peo-
ple. Hence, not all the clustered segments correspond to
complete tracks. A detailed analysis of the quality of
segmentation is given in our previous work [14].

Door

Door

Laser 2

Laser 1

Activity 11

Fig. 4. The thick lines indicate the 20 clusters of activity in the
environment. The shaded areas indicate the building and bicycle rack
enclosing the courtyard. Activity 11 is depicited in Figures 5 and 6. The
interactions depicted in Figures 7 and 8 also occur along this activity.



To test our system, we computed the mean number of
activities performed per unit time for each activity cluster
by dividing the total number of such activities by the total
duration of the experiment. The Poisson distribution then
gave us the probability of seeing a particular number of
activities performed in any 5-minute interval. Figure 5
shows the number of activities performed in 5-minute
intervals for one of the 20 activity clusters shown in
Figure 4. Figure 6 shows the corresponding probability
of seeing that number of activities. The probability drops
sharply at t = 4850s, where the number of activities in
the 5-minute interval goes up to 30, well over the number
of activities seen at other times. This time corresponds to
the end of a class and the number of students exiting the
building into the courtyard suddenly increases.
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Fig. 5. Number of activities observed in 5-minute intervals (x-axis shows
time in seconds).
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Fig. 6. Expected probability of seeing the number of activities in 5-
minute intervals according to the learned Poisson distribution (x-axis
shows time in seconds).

A similar analysis can be performed for the observed
interactions. The mean number of interactions observed per
unit time for each cluster type is calculated from the total
number of interactions observed of that type divided by the
total duration. Figure 7 shows the number of interactions
observed in 5-minute intervals along the track shown in

Figure 4 (corresponds to two people exiting the building
together). Figure 8 shows the corresponding probability of
seeing that number of interactions. The probability drops
sharply at t = 4800s when the number of activities in
the 5-minute interval goes up to 6, a higher number of
interactions than seen at other times. Note that the sudden
increase in interactions at t = 4800s corresponds to the end
of the class as in the previous experiment. This is expected
since, in our system, interactions are defined by proximity.
Thus, a large number of people in a confined area is likely
to lead to an increase in detected interactions.
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Fig. 7. Number of interactions in a 5-minute interval (x-axis shows time
in seconds).
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Fig. 8. Expected probability of seeing the number of interactions in
a 5-minute interval according to the learned Poisson distribution (x-axis
shows time in seconds).

Conversations between stationary people occurred only
thrice during the length of the experiment (from t = 4100s
to t = 4241s, from t = 6232 to t = 6557, and from
t = 10632 to t = 10819). These occurred at different
locations in the courtyard and were thus clustered as
separate activities (with only one occurrence each). During
the monitoring phase, when these conversations took place,
they were all shown as low probability activities.



VII. CONCLUSION

We presented a system that tracks people in an outdoor
environment and automatically segments tracks of indi-
viduals into sub-tracks representing distinct activities. The
tracked movements were classified into a small number of
representative activities and interactions. We constructed a
model of the occurrences of these activities and interactions
in an outdoor courtyard over a large time-scale (3.5 hours).
The model was then used to identify periods of time when
the observed frequency of activities or interactions ex-
ceeded what was usually observed, thus flagging an anoma-
lous occurrence. The detected anomalies corresponded to
sudden increases in the number of people in the courtyard
and also a related increase in the number of interactions
(that occurred due to a real-world event: students leaving
a large lecture hall after a class). However, all interactions
are clustered based on location, and therefore our system
does not have the ability to recognize all conversations as
belonging to one activity type. Thus, every conversation
that took place was marked as anomalous.
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