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ABSTRACT
Lack of cooperation (free riding) is one of the key problems that
confronts today’s P2P systems. What makes this problem partic-
ularly difficult is the unique set of challenges that P2P systems
pose: large populations, high turnover, asymmetry of interest, collu-
sion, zero-cost identities, and traitors. To tackle these challenges we
model the P2P system using the Generalized Prisoner’s Dilemma
(GPD), and propose the Reciprocative decision function as the ba-
sis of a family of incentives techniques. These techniques are fully
distributed and include: discriminating server selection, maxflow-
based subjective reputation, and adaptive stranger policies. Through
simulation, we show that these techniques can drive a system of
strategic users to nearly optimal levels of cooperation.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; J.4 [Social And Behavioral Sciences]: Economics

General Terms
Design, Economics

Keywords
Incentives, peer-to-peer, free-riding, reputation, collusion, cheap
pseudonyms, whitewash, prisoners dilemma

1. INTRODUCTION
Many peer-to-peer (P2P) systems rely on cooperation among self-
interested users. For example, in a file-sharing system, overall
download latency and failure rate increase when users do not share
their resources [3]. In a wireless ad-hoc network, overall packet la-
tency and loss rate increase when nodes refuse to forward packets
on behalf of others [26]. Further examples are file preservation [25],
discussion boards [17], online auctions [16], and overlay routing
[6]. In many of these systems, users have natural disincentives to
cooperate because cooperation consumes their own resources and
may degrade their own performance. As a result, each user’s at-
tempt to maximize her own utility effectively lowers the overall
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Figure 1: Example of asymmetry of interest. A wants service from B,
B wants service form C, and C wants service from A.

utility of the system. Avoiding this “tragedy of the commons” [18]
requires incentives for cooperation.

We adopt a game-theoretic approach in addressing this problem. In
particular, we use a prisoners’ dilemma model to capture the es-
sential tension between individual and social utility, asymmetric
payoff matrices to allow asymmetric transactions between peers,
and a learning-based [14] population dynamic model to specify the
behavior of individual peers, which can be changed continuously.
While social dilemmas have been studied extensively, P2P applica-
tions impose a unique set of challenges, including:

• Large populations and high turnover: A file sharing sys-
tem such as Gnutella and KaZaa can exceed 100, 000 simul-
taneous users, and nodes can have an average life-time of the
order of minutes [33].

• Asymmetry of interest: Asymmetric transactions of P2P
systems create the possibility for asymmetry of interest. In
the example in Figure 1, A wants service from B, B wants
service from C, and C wants service from A.

• Zero-cost identity: Many P2P systems allow peers to con-
tinuously switch identities (i.e., whitewash).

Strategies that work well in traditional prisoners’ dilemma games
such as Tit-for-Tat [4] will not fare well in the P2P context. There-
fore, we propose a family of scalable and robust incentive tech-
niques, based upon a novel Reciprocative decision function, to ad-
dress these challenges and provide different tradeoffs:

• Discriminating Server Selection: Cooperation requires fa-
miliarity between entities either directly or indirectly. How-
ever, the large populations and high turnover of P2P systems
makes it less likely that repeat interactions will occur with
a familiar entity. We show that by having each peer keep a



private history of the actions of other peers toward her, and
using discriminating server selection, the Reciprocative de-
cision function can scale to large populations and moderate
levels of turnover.

• Shared History: Scaling to higher turnover and mitigating
asymmetry of interest requires shared history. Consider the
example in Figure 1. If everyone provides service, then the
system operates optimally. However, if everyone keeps only
private history, no one will provide service because B does
not know that A has served C, etc. We show that with shared
history, B knows that A served C and consequently will serve
A. This results in a higher level of cooperation than with pri-
vate history. The cost of shared history is a distributed infras-
tructure (e.g., distributed hash table-based storage) to store
the history.

• Maxflow-based Subjective Reputation: Shared history cre-
ates the possibility for collusion. In the example in Figure 1,
C can falsely claim that A served him, thus deceiving B into
providing service. We show that a maxflow-based algorithm
that computes reputation subjectively promotes cooperation
despite collusion among 1/3 of the population. The basic idea
is that B would only believe C if C had already provided ser-
vice to B. The cost of the maxflow algorithm is its O(V 3)
running time, where V is the number of nodes in the system.
To eliminate this cost, we have developed a constant mean
running time variation, which trades effectiveness for com-
plexity of computation. We show that the maxflow-based al-
gorithm scales better than private history in the presence of
colluders without the centralized trust required in previous
work [9] [20].

• Adaptive Stranger Policy: Zero-cost identities allows non-
cooperating peers to escape the consequences of not cooper-
ating and eventually destroy cooperation in the system if not
stopped. We show that if Reciprocative peers treat strangers
(peers with no history) using a policy that adapts to the be-
havior of previous strangers, peers have little incentive to
whitewash and whitewashing can be nearly eliminated from
the system. The adaptive stranger policy does this without
requiring centralized allocation of identities, an entry fee for
newcomers, or rate-limiting [13] [9] [25].

• Short-term History: History also creates the possibility that
a previously well-behaved peer with a good reputation will
turn traitor and use his good reputation to exploit other peers.
The peer could be making a strategic decision or someone
may have hijacked her identity (e.g., by compromising her
host). Long-term history exacerbates this problem by allow-
ing peers with many previous transactions to exploit that his-
tory for many new transactions. We show that short-term his-
tory prevents traitors from disrupting cooperation.

The rest of the paper is organized as follows. We describe the model
in Section 2 and the reciprocative decision function in Section 3. We
then proceed to the incentive techniques in Section 4. In Section 4.1,
we describe the challenges of large populations and high turnover
and show the effectiveness of discriminating server selection and
shared history. In Section 4.2, we describe collusion and demon-
strate how subjective reputation mitigates it. In Section 4.3, we
present the problem of zero-cost identities and show how an adap-
tive stranger policy promotes persistent identities. In Section 4.4,

we show how traitors disrupt cooperation and how short-term his-
tory deals with them. We discuss related work in Section 5 and
conclude in Section 6.

2. MODEL AND ASSUMPTIONS
In this section, we present our assumptions about P2P systems and
their users, and introduce a model that aims to capture the behavior
of users in a P2P system.

2.1 Assumptions
We assume a P2P system in which users are strategic, i.e., they
act rationally to maximize their benefit. However, to capture some
of the real-life unpredictability in the behavior of users, we allow
users to randomly change their behavior with a low probability (see
Section 2.4).

For simplicity, we assume a homogeneous system in which all peers
issue and satisfy requests at the same rate. A peer can satisfy any
request, and, unless otherwise specified, peers request service uni-
formly at random from the population.1. Finally, we assume that all
transactions incur the same cost to all servers and provide the same
benefit to all clients.

We assume that users can pollute shared history with false rec-
ommendations (Section 4.2), switch identities at zero-cost (Sec-
tion 4.3), and spoof other users (Section 4.4). We do not assume
any centralized trust or centralized infrastructure.

2.2 Model
To aid the development and study of the incentive schemes, in this
section we present a model of the users’ behaviors. In particular,
we model the benefits and costs of P2P interactions (the game) and
population dynamics caused by mutation, learning, and turnover.
Our model is designed to have the following properties that charac-
terize a large set of P2P systems:

• Social Dilemma: Universal cooperation should result in op-
timal overall utility, but individuals who exploit the coopera-
tion of others while not cooperating themselves (i.e., defect-
ing) should benefit more than users who do cooperate.

• Asymmetric Transactions: A peer may want service from
another peer while not currently being able to provide the
service that the second peer wants. Transactions should be
able to have asymmetric payoffs.

• Untraceable Defections: A peer should not be able to de-
termine the identity of peers who have defected on her. This
models the difficulty or expense of determining that a peer
could have provided a service, but didn’t. For example, in the
Gnutella file sharing system [21], a peer may simply ignore
queries despite possessing the desired file, thus preventing
the querying peer from identifying the defecting peer.

• Dynamic Population: Peers should be able to change their
behavior and enter or leave the system independently and
continuously.

1The exception is discussed in Section 4.1.1
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Figure 2: Payoff matrix for the Generalized Prisoner’s Dilemma. T, R,
P, and S stand for temptation, reward, punishment and sucker, respec-
tively.

2.3 Generalized Prisoner’s Dilemma
The Prisoner’s Dilemma, developed by Flood, Dresher, and Tucker
in 1950 [22] is a non-cooperative repeated game satisfying the so-
cial dilemma requirement. Each game consists of two players who
can defect or cooperate. Depending how each acts, the players re-
ceive a payoff. The players use a strategy to decide how to act. Un-
fortunately, existing work either uses a specific asymmetric payoff
matrix or only gives the general form for a symmetric one [4].

Instead, we use the Generalized Prisoner’s Dilemma (GPD), which
specifies the general form for an asymmetric payoff matrix that pre-
serves the social dilemma. In the GPD, one player is the client and
one player is the server in each game, and it is only the decision
of the server that is meaningful for determining the outome of the
transaction. A player can be a client in one game and a server in
another. The client and server receive the payoff from a generalized
payoff matrix (Figure 2). Rc, Sc, Tc, and Pc are the client’s payoff
and Rs, Ss, Ts, and Ps are the server’s payoff. A GPD payoff ma-
trix must have the following properties to create a social dilemma:

1. Mutual cooperation leads to higher payoffs than mutual de-
fection (Rs + Rc > Ps + Pc).

2. Mutual cooperation leads to higher payoffs than one player
suckering the other (Rs + Rc > Sc + Ts and Rs + Rc >
Ss + Tc).

3. Defection dominates cooperation (at least weakly) at the in-
dividual level for the entity who decides whether to cooper-
ate or defect: (Ts ≥ Rs and Ps ≥ Ss and (Ts > Rs or
Ps > Ss))

The last set of inequalities assume that clients do not incur a cost
regardless of whether they cooperate or defect, and therefore clients
always cooperate. These properties correspond to similar properties
of the classic Prisoner’s Dilemma and allow any form of asymmet-
ric transaction while still creating a social dilemma.

Furthermore, one or more of the four possible actions (client coop-
erate and defect, and server cooperate and defect) can be untrace-
able. If one player makes an untraceable action, the other player
does not know the identity of the first player.

For example, to model a P2P application like file sharing or over-
lay routing, we use the specific payoff matrix values shown in Fig-
ure 3. This satisfies the inequalities specified above, where only the
server can choose between cooperating and defecting. In addition,
for this particular payoff matrix, clients are unable to trace server
defections. This is the payoff matrix that we use in our simulation
results.
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Figure 3: The payoff matrix for an application like P2P file sharing or
overlay routing.

2.4 Population Dynamics
A characteristic of P2P systems is that peers change their behav-
ior and enter or leave the system independently and continuously.
Several studies [4] [28] of repeated Prisoner’s Dilemma games use
an evolutionary model [19] [34] of population dynamics. An evolu-
tionary model is not suitable for P2P systems because it only spec-
ifies the global behavior and all changes occur at discrete times.
For example, it may specify that a population of 5 “100% Cooper-
ate” players and 5 “100% Defect” players evolves into a population
with 3 and 7 players, respectively. It does not specify which specific
players switched. Furthermore, all the switching occurs at the end
of a generation instead of continuously, like in a real P2P system. As
a result, evolutionary population dynamics do not accurately model
turnover, traitors, and strangers.

In our model, entities take independent and continuous actions that
change the composition of the population. Time consists of rounds.
In each round, every player plays one game as a client and one game
as a server. At the end of a round, a player may: 1) mutate 2) learn,
3) turnover, or 4) stay the same. If a player mutates, she switches to
a randomly picked strategy. If she learns, she switches to a strategy
that she believes will produce a higher score (described in more de-
tail below). If she maintains her identity after switching strategies,
then she is referred to as a traitor. If a player suffers turnover, she
leaves the system and is replaced with a newcomer who uses the
same strategy as the exiting player.

To learn, a player collects local information about the performance
of different strategies. This information consists of both her per-
sonal observations of strategy performance and the observations of
those players she interacts with. This models users communicating
out-of-band about how strategies perform. Let s be the running av-
erage of the performance of a player’s current strategy per round
and age be the number of rounds she has been using the strategy. A
strategy’s rating is

RunningAverage(s ∗ age)

RunningAverage(age)
.

We use the age and compute the running average before the ratio to
prevent young samples (which are more likely to be outliers) from
skewing the rating. At the end of a round, a player switches to high-
est rated strategy with a probability proportional to the difference
in score between her current strategy and the highest rated strategy.



3. RECIPROCATIVE DECISION
FUNCTION

In this section, we present the new decision function, Reciprocative,
that is the basis for our incentive techniques. A decision function
maps from a history of a player’s actions to a decision whether to
cooperate with or defect on that player. A strategy consists of a de-
cision function, private or shared history, a server selection mech-
anism, and a stranger policy. Our approach to incentives is to de-
sign strategies which maximize both individual and social benefit.
Strategic users will choose to use such strategies and thereby drive
the system to high levels of cooperation. Two examples of sim-
ple decision functions are “100% Cooperate” and “100% Defect”.
“100% Cooperate” models a naive user who does not yet realize
that she is being exploited. “100% Defect” models a greedy user
who is intent on exploiting the system. In the absence of incentive
techniques, “100% Defect” users will quickly dominate the “100%
Cooperate” users and destroy cooperation in the system.

Our requirements for a decision function are that (1) it can use
shared and subjective history, (2) it can deal with untraceable de-
fections, and (3) it is robust against different patterns of defection.
Previous decision functions such as Tit-for-Tat[4] and Image[28]
(see Section 5) do not satisfy these criteria. For example, Tit-for-Tat
and Image base their decisions on both cooperations and defections,
therefore cannot deal with untraceable defections . In this section
and the remaining sections we demonstrate how the Reciprocative-
based strategies satisfy all of the requirements stated above.

The probability that a Reciprocative player cooperates with a peer
is a function of its normalized generosity. Generosity measures the
benefit an entity has provided relative to the benefit it has con-
sumed. This is important because entities which consume more ser-
vices than they provide, even if they provide many services, will
cause cooperation to collapse. For some entity i, let pi and ci be the
services i has provided and consumed, respectively. Entity i’s gen-
erosity is simply the ratio of the service it provides to the service it
consumes:

g(i) = pi/ci. (1)

One possibility is to cooperate with a probability equal to the gen-
erosity. Although this is effective in some cases, in other cases, a
Reciprocative player may consume more than she provides (e.g.,
when initially using the “Stranger Defect” policy in 4.3). This will
cause Reciprocative players to defect on each other. To prevent this
situation, a Reciprocative player uses its own generosity as a mea-
suring stick to judge its peer’s generosity. Normalized generosity
measures entity i’s generosity relative to entity j’s generosity. More
concretely, entity i’s normalized generosity as perceived by entity
j is

gj(i) = g(i)/g(j). (2)

In the remainder of this section, we describe our simulation frame-
work, and use it to demonstrate the benefits of the baseline Recip-
rocative decision function.

Parameter Nominal value Section
Population Size 100 2.4
Run Time 1000 rounds 2.4
Payoff Matrix File Sharing 2.3
Ratio using “100% Cooperate” 1/3 3
Ratio using “100% Defect” 1/3 3
Ratio using Reciprocative 1/3 3
Mutation Probability 0.0 2.4
Learning Probability 0.05 2.4
Turnover Probability 0.0001 2.4
Hit Rate 1.0 4.1.1

Table 1: Default simulation parameters.

3.1 Simulation Framework
Our simulator implements the model described in Section 2. We use
the asymmetric file sharing payoff matrix (Figure 3) with untrace-
able defections because it models transactions in many P2P sys-
tems like file-sharing and packet forwarding in ad hoc and overlay
networks. Our simulation study is composed of different scenarios
reflecting the challenges of various non-cooperative behaviors. Ta-
ble 1 presents the nominal parameter values used in our simulation.
The “Ratio using” rows refer to the initial ratio of the total popula-
tion using a particular strategy. In each scenario we vary the value
range of a specific parameter to reflect a particular situation or at-
tack. We then vary the exact properties of the Reciprocative strategy
to defend against that situation or attack.

3.2 Baseline Results
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Figure 4: The evolution of strategy populations over time. “Time” the
number of elapsed rounds. “Population” is the number of players using
a strategy.

In this section, we present the dynamics of the game for the ba-
sic scenario presented in Table 1 to familiarize the reader and set
a baseline for more complicated scenarios. Figures 4(a) (60 play-
ers) and (b) (120 players) show players switching to higher scor-
ing strategies over time in two separate runs of the simulator. Each
point in the graph represents the number of players using a particu-
lar strategy at one point in time. Figures 5(a) and (b) show the cor-
responding mean overall score per round. This measures the degree
of cooperation in the system: 6 is the maximum possible (achieved
when everybody cooperates) and 0 is the minimum (achieved when
everybody defects). From the file sharing payoff matrix, a net of 6
means everyone is able to download a file and a 0 means that no one
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Figure 5: The mean overall per round score over time.

is able to do so. We use this metric in all later results to evaluate our
incentive techniques.

Figure 5(a) shows that the Reciprocative strategy using private his-
tory causes a system of 60 players to converge to a cooperation
level of 3.7, but drops to 0.5 for 120 players. One would expect the
60 player system to reach the optimal level of cooperation (6) be-
cause all the defectors are eliminated from the system. It does not
because of asymmetry of interest. For example, suppose player B
is using Reciprocative with private history. Player A may happen to
ask for service from player B twice in succession without provid-
ing service to player B in the interim. Player B does not know of the
service player A has provided to others, so player B will reject ser-
vice to player A, even though player A is cooperative. We discuss
solutions to asymmetry of interest and the failure of Reciprocative
in the 120 player system in Section 4.1.

4. RECIPROCATIVE-BASED INCENTIVE
TECHNIQUES

In this section we present our incentives techniques and evaluate
their behavior by simulation. To make the exposition clear we group
our techniques by the challenges they address: large populations
and high turnover (Section 4.1), collusions (Section 4.2), zero-cost
identities (Section 4.3), and traitors (Section 4.4).

4.1 Large Populations and High Turnover
The large populations and high turnover of P2P systems makes it
less likely that repeat interactions will occur with a familiar entity.
Under these conditions, basing decisions only on private history
(records about interactions the peer has been directly involved in)
is not effective. In addition, private history does not deal well with
asymmetry of interest. For example, if player B has cooperated with
others but not with player A himself in the past, player A has no
indication of player B’s generosity, thus may unduly defect on him.
We propose two mechanisms to alleviate the problem of few repeat
transactions: server-selection and shared history.

4.1.1 Server Selection
A natural way to increase the probability of interacting with familiar
peers is by discriminating server selection. However, the asymme-
try of transactions challenges selection mechanisms. Unlike in the
prisoner’s dilemma payoff matrix, where players can benefit one

another within a single transaction, transactions in GPD are asym-
metric. As a result, a player who selects her donor for the second
time without contributing to her in the interim may face a defection.
In addition, due to untraceability of defections, it is impossible to
maintain blacklists to avoid interactions with known defectors.

In order to deal with asymmetric transactions, every player holds
(fixed size) lists of both past donors and past recipients, and selects
a server from one of these lists at random with equal probabili-
ties. This way, users approach their past recipients and give them a
chance to reciprocate.

In scenarios with selective users we omit the complete availability
assumption to prevent players from being clustered into a lot of
very small groups; thus, we assume that every player can perform
the requested service with probability p (for the results presented in
this section, p = .3). In addition, in order to avoid bias in favor of
the selective players, all players (including the non-discriminative
ones) select servers for games.

Figure 6 demonstrates the effectiveness of the proposed selection
mechanism in scenarios with large population sizes. We fix the ini-
tial ratio of Reciprocative in the population (33%) while varying
the population size (between 24 to 1000) (Notice that while in Fig-
ures 4(a) and (b), the data points demonstrates the evolution of the
system over time, each data point in this figure is the result of an
entire simulation for a specific scenario). The figure shows that the
Reciprocative decision function using private history in conjunction
with selective behavior can scale to large populations.

In Figure 7 we fix the population size and vary the turnover rate.
It demonstrates that while selective behavior is effective for low
turnover rates, as turnover gets higher, selective behavior does not
scale. This occurs because selection is only effective as long as
players from the past stay alive for long enough such that they can
be selected for future games.

4.1.2 Shared history
In order to mitigate asymmetry of interest and scale to higher
turnover rate, there is a need in shared history. Shared history means
that every peer keeps records about all of the interactions that oc-
cur in the system, regardless of whether he was directly involved
in them or not. It allows players to leverage off of the experiences
of others in cases of few repeat transactions. It only requires that
someone has interacted with a particular player for the entire popu-
lation to observe it, thus scales better to large populations and high
turnovers, and also tolerates asymmetry of interest. Some examples
of shared history schemes are [20] [23] [28].

Figure 7 shows the effectiveness of shared history under high
turnover rates. In this figure, we fix the population size and vary the
turnover rate. While selective players with private history can only
tolerate a moderate turnover, shared history scales to turnovers of
up to approximately 0.1. This means that 10% of the players leave
the system at the end of each round. In Figure 6 we fix the turnover
and vary the population size. It shows that shared history causes
the system to converge to optimal cooperation and performance,
regardless of the size of the population.

These results show that shared history addresses all three chal-
lenges of large populations, high turnover, and asymmetry of trans-
actions. Nevertheless, shared history has two disadvantages. First,
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while a decentralized implementation of private history is straight-
forward, implementation of shared-history requires communication
overhead or centralization. A decentralized shared history can be
implemented, for example, on top of a DHT, using a peer-to-peer
storage system [36] or by disseminating information to other enti-
ties in a similar way to routing protocols. Second, and more funda-
mental, shared history is vulnerable to collusion. In the next section
we propose a mechanism that addresses this problem.

4.2 Collusion and Other Shared History
Attacks

4.2.1 Collusion
While shared history is scalable, it is vulnerable to collusion. Col-
lusion can be either positive (e.g. defecting entities claim that other
defecting entities cooperated with them) or negative (e.g. entities
claim that other cooperative entities defected on them). Collusion
subverts any strategy in which everyone in the system agrees on the
reputation of a player (objective reputation). An example of objec-
tive reputation is to use the Reciprocative decision function with
shared history to count the total number of cooperations a player
has given to and received from all entities in the system; another
example is the Image strategy [28]. The effect of collusion is mag-

nified in systems with zero-cost identities, where users can create
fake identities that report false statements.

Instead, to deal with collusion, entities can compute reputation sub-
jectively, where player A weighs player B’s opinions based on how
much player A trusts player B. Our subjective algorithm is based
on maxflow [24] [32]. Maxflow is a graph theoretic problem, which
given a directed graph with weighted edges asks what is the greatest
rate at which “material” can be shipped from the source to the target
without violating any capacity constraints. For example, in figure 8
each edge is labeled with the amount of traffic that can travel on it.
The maxflow algorithm computes the maximum amount of traffic
that can go from the source (s) to the target (t) without violating the
constraints. In this example, even though there is a loop of high ca-
pacity edges, the maxflow between the source and the target is only
2 (the numbers in brackets represent the actual flow on each edge
in the solution).

100(0)

1(1)

5(1)

s t

10(1)

100(1)

1(1)

100(1)

20(0)

Figure 8: Each edge in the graph is labeled with its capacity and the
actual flow it carries in brackets. The maxflow between the source and
the target in the graph is 2.
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Figure 9: This graph illustrates the robustness of maxflow in the pres-
ence of colluders who report bogus high reputation values.

We apply the maxflow algorithm by constructing a graph whose
vertices are entities and the edges are the services that entities have
received from each other. This information can be stored using the
same methods as the shared history. A maxflow is the greatest level
of reputation the source can give to the sink without violating “rep-
utation capacity” constraints. As a result, nodes who dishonestly
report high reputation values will not be able to subvert the reputa-
tion system.

Figure 9 illustrates a scenario in which all the colluders (labeled
with C) report high reputation values for each other. When node A
computes the subjective reputation of B using the maxflow algo-
rithm, it will not be affected by the local false reputation values,
rather the maxflow in this case will be 0. This is because no service
has been received from any of the colluders.



In our algorithm, the benefit that entity i has received (indirectly)
from entity j is the maxflow from j to i. Conversely, the benefit that
entity i has provided indirectly to j is the maxflow from i to j. The
subjective reputation of entity j as perceived by i is:

min

(

maxflow(j to i)

maxflow(i to j)
, 1

)

(3)
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Figure 10: Subjective shared history compared to objective shared his-
tory and private history in the presence of colluders.

Algorithm 1 CONSTANTTIMEMAXFLOW Bound the mean running time
of Maxflow to a constant.

method CTMaxflow(self, src, dst)
1: self.surplus← self.surplus + self.increment
{Use the running mean as a prediction.}

2: if random() > (0.5∗self.surplus/self.mean iterations) then
3: return None {Not enough surplus to run.}
4: end if
{Get the flow and number of iterations used from the maxflow alg.}

5: flow, iterations←Maxflow(self.G, src, dst)
6: self.surplus← self.surplus− iterations
{Keep a running mean of the number of iterations used.}

7: self.mean iterations← self.α ∗ self.mean iterations+(1−
self.α) ∗ iterations

8: return flow

The cost of maxflow is its long running time. The standard preflow-
push maxflow algorithm has a worst case running time of O(V 3).
Instead, we use Algorithm 1 which has a constant mean running
time, but sometimes returns no flow even though one exists. The
essential idea is to bound the mean number of nodes examined dur-
ing the maxflow computation. This bounds the overhead, but also
bounds the effectiveness. Despite this, the results below show that
a maxflow-based Reciprocative decision function scales to higher
populations than one using private history.

Figure 10 compares the effectiveness of subjective reputation to
objective reputation in the presence of colluders. In these scenar-
ios, defectors collude by claiming that other colluders that they en-
counter gave them 100 cooperations for that encounter. Also, the
parameters for Algorithm 1 are set as follows: increment = 100,
α = 0.9.

As in previous sections, Reciprocative with private history results
in cooperation up to a point, beyond which it fails. The difference

here is that objective shared history fails for all population sizes.
This is because the Reciprocative players cooperate with the col-
luders because of their high reputations. However, subjective his-
tory can reach high levels of cooperation regardless of colluders.
This is because there are no high weight paths in the cooperation
graph from colluders to any non-colluders, so the maxflow from
a colluder to any non-colluder is 0. Therefore, a subjective Recip-
rocative player will conclude that that colluder has not provided
any service to her and will reject service to the colluder. Thus, the
maxflow algorithm enables Reciprocative to maintain the scalabil-
ity of shared history without being vulnerable to collusion or re-
quiring centralized trust (e.g., trusted peers). Since we bound the
running time of the maxflow algorithm, cooperation decreases as
the population size increases, but the key point is that the subjective
Reciprocative decision function scales to higher populations than
one using private history. This advantage only increases over time
as CPU power increases and more cycles can be devoted to running
the maxflow algorithm (by increasing the increment parameter).

Despite the robustness of the maxflow algorithm to the simple form
of collusion described previously, it still has vulnerabilities to more
sophisticated attacks. One is for an entity (the “mole”) to provide
service and then lie positively about other colluders. The other col-
luders can then exploit their reputation to receive service. However,
the effectiveness of this attack relies on the amount of service that
the mole provides. Since the mole is paying all of the cost of pro-
viding service and receiving none of the benefit, she has a strong
incentive to stop colluding and try another strategy. This forces the
colluders to use mechanisms to maintain cooperation within their
group, which may drive the cost of collusion to exceed the benefit.

4.2.2 False reports
Another attack is for a defector to lie about receiving or providing
service to another entity. There are four possibile actions that can be
lied about: providing service, not providing service, receiving ser-
vice, and not receiving service. Falsely claiming to receive service
is the simple collusion attack described above. Falsely claiming not
to have provided service provides no benefit to the attacker.

Falsely claiming to have provided service or not to have received
it allows an attacker to boost her own reputation and/or lower the
reputation of another entity. An entity may want to lower another
entity’s reputation in order to discourage others from selecting it
and exclusively use its service. These false claims are clearly iden-
tifiable in the shared history as inconsistencies where one entity
claims a transaction occurred and another claims it did not. To limit
this attack, we modify the maxflow algorithm so that an entity al-
ways believes the entity that is closer to him in the flow graph. If
both entities are equally distant, then the disputed edge in the flow is
not critical to the evaluation and is ignored. This modification pre-
vents those cases where the attacker is making false claims about an
entity that is closer than her to the evaluating entity, which prevents
her from boosting her own reputation. The remaining possibilities
are for the attacker to falsely claim to have provided service to or
not to have received it from a victim entity that is farther from the
evalulator than her. In these cases, an attacker can only lower the
reputation of the victim. The effectiveness of doing this is limited
by the number of services provided and received by the attacker,
which makes executing this attack expensive.



4.3 Zero-Cost Identities
History assumes that entities maintain persistent identities. How-
ever, in most P2P systems, identities are zero-cost. This is desirable
for network growth as it encourages newcomers to join the system.
However, this also allows misbehaving users to escape the conse-
quences of their actions by switching to new identities (i.e., white-
washing). Whitewashers can cause the system to collapse if they
are not punished appropriately. Unfortunately, a player cannot tell
if a stranger is a whitewasher or a legitimate newcomer. Always co-
operating with strangers encourages newcomers to join, but at the
same time encourages whitewashing behavior. Always defecting on
strangers prevents whitewashing, but discourages newcomers from
joining and may also initiate unfavorable cycles of defection.

This tension suggests that any stranger policy that has a fixed prob-
ability of cooperating with strangers will fail by either being too
stingy when most strangers are newcomers or too generous when
most strangers are whitewashers. Our solution is the “Stranger
Adaptive” stranger policy. The idea is to be generous to strangers
when they are being generous and stingy when they are stingy.

Let ps and cs be the number of services that strangers have pro-
vided and consumed, respectively. The probability that a player us-
ing “Stranger Adaptive” helps a stranger is ps/cs. However, we do
not wish to keep these counts permanently (for reasons described in
Section 4.4). Also, players may not know when strangers defect be-
cause defections are untraceable (as described in Section 2). Conse-
quently, instead of keeping ps and cs, we assume that k = ps + cs,
where k is a constant and we keep the running ratio r = ps/cs.
When we need to increment ps or cs, we generate the current val-
ues of ps and cs from k and r:

cs = k/(1 + r)ps = cs ∗ r

We then compute the new r as follows:

r = (ps + 1)/cs, if the stranger provided service

r = ps/(cs + 1), if the stranger consumed service.

This method allows us to keep a running ratio that reflects the re-
cent generosity of strangers without knowing when strangers have
defected.
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Figures 11 and 12 compare the effectiveness of the Reciproca-
tive strategy using different policies toward strangers. Figure 11
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Figure 12: Different stranger policies for Reciprocative with private
history. The x-axis is the turnover rate on a log scale. The y-axis is the
mean overall per round score.

compares different stranger policies for Reciprocative with shared
history, while Figure 12 is with private history. In both figures,
the players using the “100% Defect” strategy change their iden-
tity (whitewash) after every transaction and are indistinguishable
from legitimate newcomers. The Reciprocative players using the
“Stranger Cooperate” policy completely fail to achieve cooperation.
This stranger policy allows whitewashers to maximize their payoff
and consequently provides a high incentive for users to switch to
whitewashing.

In contrast, Figure 11 shows that the “Stranger Defect” policy is
effective with shared history. This is because whitewashers always
appear to be strangers and therefore the Reciprocative players will
always defect on them. This is consistent with previous work [13]
showing that punishing strangers deals with whitewashers. How-
ever, Figure 12 shows that “Stranger Defect” is not effective with
private history. This is because Reciprocative requires some initial
cooperation to bootstrap. In the shared history case, a Reciprocative
player can observe that another player has already cooperated with
others. With private history, the Reciprocative player only knows
about the other players’ actions toward her. Therefore, the initial
defection dictated by the “Stranger Defect” policy will lead to later
defections, which will prevent Reciprocative players from ever co-
operating with each other. In other simulations not shown here,
the “Stranger Defect” stranger policy fails even with shared history
when there are no initial “100% Cooperate” players.

Figure 11 shows that with shared history, the “Stranger Adap-
tive” policy performs as well as “Stranger Defect” policy until the
turnover rate is very high (10% of the population turning over after
every transaction). In these scenarios, “Stranger Adaptive” is using
k = 10 and each player keeps a private r. More importantly, it is
significantly better than “Stranger Defect” policy with private his-
tory because it can bootstrap cooperation. Although the “Stranger
Defect” policy is marginally more effective than “Stranger Adap-
tive” at very high rates of turnover, P2P systems are unlikely to op-
erate there because other services (e.g., routing) also cannot tolerate
very high turnover.

We conclude that of the stranger policies that we have explored,
“Stranger Adaptive” is the most effective. By using “Stranger
Adaptive”, P2P systems with zero-cost identities and a sufficiently
low turnover can sustain cooperation without a centralized alloca-
tion of identities.



4.4 Traitors
Traitors are players who acquire high reputation scores by cooper-
ating for a while, and then traitorously turn into defectors before
leaving the system. They model both users who turn deliberately
to gain a higher score and cooperators whose identities have been
stolen and exploited by defectors. A strategy that maintains long-
term history without discriminating between old and recent actions
becomes highly vulnerable to exploitation by these traitors.

The top two graphs in Figure 13 demonstrate the effect of traitors
on cooperation in a system where players keep long-term history
(never clear history). In these simulations, we run for 2000 rounds
and allow cooperative players to keep their identities when switch-
ing to the 100% Defector strategy. We use the default values for the
other parameters. Without traitors, the cooperative strategies thrive.
With traitors, the cooperative strategies thrive until a cooperator
turns traitor after 600 rounds. As this “cooperator” exploits her rep-
utation to achieve a high score, other cooperative players notice this
and follow suit via learning. Cooperation eventually collapses. On
the other hand, if we maintain short-term history and/or discount-
ing ancient history vis-a-vis recent history, traitors can be quickly
detected, and the overall cooperation level stays high, as shown in
the bottom two graphs in Figure 13.
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Figure 13: Keeping long-term vs. short-term history both with and
without traitors.

5. RELATED WORK
Previous work has examined the incentive problem as applied to
societies in general and more recently to Internet applications and
peer-to-peer systems in particular. A well-known phenomenon in
this context is the “tragedy of the commons” [18] where resources
are under-provisioned due to selfish users who free-ride on the sys-
tem’s resources, and is especially common in large networks [29]
[3].

The problem has been extensively studied adopting a game the-
oretic approach. The prisoners’ dilemma model provides a natu-
ral framework to study the effectiveness of different strategies in
establishing cooperation among players. In a simulation environ-
ment with many repeated games, persistent identities, and no col-
lusion, Axelrod [4] shows that the Tit-for-Tat strategy dominates.
Our model assumes growth follows local learning rather than evo-
lutionary dynamics [14], and also allows for more kinds of attacks.
Nowak and Sigmund [28] introduce the Image strategy and demon-

strate its ability to establish cooperation among players despite few
repeat transactions by the employment of shared history. Players
using Image cooperate with players whose global count of coop-
erations minus defections exceeds some threshold. As a result, an
Image player is either vulnerable to partial defectors (if the thresh-
old is set too low) or does not cooperate with other Image players
(if the threshold is set too high).

In recent years, researchers have used economic “mechanism de-
sign” theory to tackle the cooperation problem in Internet applica-
tions. Mechanism design is the inverse of game theory. It asks how
to design a game in which the behavior of strategic players results
in the socially desired outcome. Distributed Algorithmic Mecha-
nism Design seeks solutions within this framework that are both
fully distributed and computationally tractable [12]. [10] and [11]
are examples of applying DAMD to BGP routing and multicast cost
sharing. More recently, DAMD has been also studied in dynamic
environments [38]. In this context, demonstrating the superiority of
a cooperative strategy (as in the case of our work) is consistent with
the objective of incentivizing the desired behavior among selfish
players.

The unique challenges imposed by peer-to-peer systems inspired
additional body of work [5] [37], mainly in the context of packet
forwarding in wireless ad-hoc routing [8] [27] [30] [35], and file
sharing [15] [31]. Friedman and Resnick [13] consider the prob-
lem of zero-cost identities in online environments and find that in
such systems punishing all newcomers is inevitable. Using a theo-
retical model, they demonstrate that such a system can converge to
cooperation only for sufficiently low turnover rates, which our re-
sults confirm. [6] and [9] show that whitewashing and collusion can
have dire consequences for peer-to-peer systems and are difficult to
prevent in a fully decentralized system.

Some commercial file sharing clients [1] [2] provide incentive
mechanisms which are enforced by making it difficult for the user
to modify the source code. These mechanisms can be circumvented
by a skilled user or by a competing company releasing a compatible
client without the incentive restrictions. Also, these mechanisms are
still vulnerable to zero-cost identities and collusion. BitTorrent [7]
uses Tit-for-Tat as a method for resource allocation, where a user’s
upload rate dictates his download rate.

6. CONCLUSIONS
In this paper we take a game theoretic approach to the prob-
lem of cooperation in peer-to-peer networks. Addressing the chal-
lenges imposed by P2P systems, including large populations, high
turnover, asymmetry of interest and zero-cost identities, we propose
a family of scalable and robust incentive techniques, based upon
the Reciprocative decision function, to support cooperative behav-
ior and improve overall system performance.

We find that the adoption of shared history and discriminating
server selection techniques can mitigate the challenge of few repeat
transactions that arises due to large population size, high turnover
and asymmetry of interest. Furthermore, cooperation can be estab-
lished even in the presence of zero-cost identities through the use of
an adaptive policy towards strangers. Finally, colluders and traitors
can be kept in check via subjective reputations and short-term his-
tory, respectively.
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