
Dynamic Model Checking with Property Driven
Pruning to Detect Race Conditions⋆

Chao Wang1, Yu Yang2, Aarti Gupta1, and Ganesh Gopalakrishnan2

1 NEC Laboratories America, Princeton, New Jersey, USA
2 School of Computing, University of Utah, Salt Lake City, Utah, USA

Abstract. We present a new property driven pruning algorithm in dynamic model
checking to efficiently detect race conditions in multithreaded programs. The
main idea is to use a lockset based analysis of observed executions to help prune
the search space to be explored by the dynamic search. We assume that a state-
less search algorithm is used to systematically execute theprogram in a depth-first
search order. If our conservative lockset analysis shows that a search subspace is
race-free, it can be pruned away by avoiding backtracks to certain states in the
depth-first search. The new dynamic race detection algorithm is both sound and
complete (as precise as the dynamic partial order reductionalgorithm by Flana-
gan and Godefroid). The algorithm is also more efficient in practice, allowing it
to scale much better to real-world multithreaded C programs.

1 Introduction

Concurrent programs are notoriously hard to debug because of their often large number
of possible interleavings of thread executions. Concurrency bugs often arise in rare
situations that are hard to anticipate and handle by standard testing techniques. One
representative type of bugs in concurrent programs is a datarace, which happens when
multiple threads access a shared data variable simultaneously and at least one of the
accesses is a write. Race conditions were among the flaws in the Therac-25 radiation
therapy machine [12], which led to the death of three patients and injuries to several
more. A race condition in the energy management system of some power facilities
prevented alerts from being raised to the monitoring technicians, eventually leading to
the 2003 North American Blackout.

To completely verify a multithreaded program for a given test input, one has to
inspect all possible thread interleavings. For deterministic threads, the only source of
nondeterminism in their execution comes from the thread scheduler of the operating
system. In a typical testing environment, the user does not have full control over the
scheduling of threads; running the same test multiple timesdoes not necessarily trans-
late into a better interleaving coverage. Static analysis has been used for detecting data
races in multithreaded programs, both for a given test input[20, 16] and for all possible
inputs [6, 4, 17, 11, 22]. However, a race condition reportedby static analysis may be
bogus (there can be many false alarms); even if it is real, there is often little information
for the user to reproduce the race. Model checking [3, 18] hasthe advantage of exhaus-
tive coverage which means all possible thread interleavings will be explored. However,

⋆ Yu Yang and Ganesh Gopalakrishnan were supported in part by NSF award CNS-0509379 and
the Microsoft HPC Institutes program.



2

model checkers require building finite-state or pushdown automata models of the soft-
ware [10, 1]; they often do not perform well in the presence oflock pointers and other
heap allocated data structures.

Dynamic model checking as in [9, 5, 14, 23, 24] can directly check programs writ-
ten in full-fledged programming languages such as C and Java.For detecting data races,
these methods are sound (no bogus race) due to their concreteexecution of the pro-
gram itself as opposed to a model. While a bounded analysis isused in [14], the other
methods [9, 5, 23, 24] are complete for terminating programs(do not miss real races)
by systematically exploring the state space without explicitly storing the intermediate
states. Although such dynamic software model checking is both sound and complete,
the search is often inefficient due to the astronomically large number of thread inter-
leavings and the lack of property specific pruning. Dynamic partial order reduction
(DPOR) techniques [5, 23, 7] have been used in this context toremove the redundant
interleavings from each equivalence class, provided that the representative interleaving
has been explored. However, the pruning techniques used by these DPOR tools have
been generic, rather thanproperty-specific.

T1

...
a1 lock(f1) ;
a2 x++;
a3 unlock(f1) ;
a4 ...
a5 lock(f2) ;
a6 y++;
a7 unlock(f2) ;
a8 ...
a9 lock(f1) ;
a10 z++;
a11 unlock(f1) ;

T2

...
b1 lock(f1) ;
b2 lock(f2) ;
b3 z++;
b4 c = x;
b5 unlock(f2) ;
b6 unlock(f1) ;
b7 ...
b8 lock(f1) ;
b9 if (c==0)
b10 y++;
b11 unlock(f1) ;

Fig. 1.Race condition on accessing variabley (assume thatx = y = 0 initially)

Without a conservative or warranty type of analysis tailored toward the property to
be checked, model checking has to enumerate all the equivalence classes of interleav-
ings. Our observation is that, as far as race detection is concerned, many equivalence
classes themselves may be redundant. Fig. 1 shows a motivating example, in which
two threads use locks to protect accesses to shared variables x, y, andz. A race con-
dition betweena6 andb10 may occur whenb4 is executed beforea2, by settingc to
0. Let the first execution sequence bea1 . . . a11b1 . . . b9b11. According to the DPOR
algorithm by Flanagan and Godefroid [5], sincea10 andb3 have a read-write conflict,
we need to backtrack toa8 and continue the search froma1 . . . a8b1. As a generic prun-
ing technique, this is reasonable since the two executions are not Mazurkiewicz-trace
equivalent [13]. For data race detection, however, it is futile to search any of these ex-
ecution traces in whicha6 andb10 cannot be simultaneously reachable (which can be



3

revealed by a conservative lockset analysis). We provide a property-specific pruning
algorithm to skip such redundant interleavings and backtrack directly toa1.

In this paper, we propose a trace-based dynamic lockset analysis to prune the search
space in the context of dynamic model checking. Our main contributions are: (1) a new
lockset analysis of the observed execution trace for checking whether the associated
search subspace is race-free. (2) property driven pruning in a backtracking algorithm
using depth-first search.

We analyze the various alternatives of the current execution trace to anticipate race
conditions in the corresponding search space. Our trace-based lockset analysis relies
on both information derived from the dynamic execution and information collected
statically from the program; therefore, it is more precise than the purely static lock-
set analysis conducteda priori on the program [4, 6, 17, 11, 22]. Our method is also
different from theEraser-style dynamic lockset algorithms [20, 16], since our method
decides whether the entire search subspace related to the concrete execution generated
is race-free, not merely the execution itself. The crucial requirement for a method to be
used in our framework for pruning of the search space is completeness—pruning must
not remove real races. Therefore, neither the aforementioned dynamic lockset analysis
nor the various predictive testing techniques [21, 2] basedon happens-before causality
(sound but incomplete) can be be used in this framework. CHESS [14] can detect races
that may show up within a preemption bound; it exploits the preemption bounding for
pruning, but does not exploit the lock semantics to effect reduction.

In our approach, if the search subspace is found to be race-free, we prune it away
during the search by avoiding backtracks to the corresponding states. Recall that essen-
tially the search is conducted in a DFS order. If there is a potential race, we analyze
the cause in order to compute a proper backtracking point. Our backtracking algorithm
shares the same insights as the DPOR algorithm [5], with the additional pruning capa-
bility provided by the trace-based lockset analysis. Note that DPOR relies solely on the
independence relationto prune redundant interleavings (ift1, t2 are independent, there
is no need to flip their execution order). In our algorithm,even ift1, t2 are dependent,
we may skip the corresponding search space if flipping the order oft1, t2 does not affect
the reachability of any race condition. If there is no data race at all in the program, our
algorithm can obtain the desired race-freedom assurance much faster.

2 Preliminaries

2.1 Concurrent Programs

We consider a concurrent program with a finite number of threads as a state transition
system. LetT id = {1, . . . , n} be a set of thread indices. Threads may access local
variables in their own stacks, as well as global variables ina shared heap. The operations
on global variables are calledvisibleoperations, while those on thread local variables
are calledinvisibleoperations. We useGlobal to denote the set of states of all global
variables,Local to denote the set of local states of a thread.PC is the set of values of
the program counter of a thread. The entire system state (S), the program counters of
the threads (PCs), and the local states of threads (Locals) are defined as follows:



4

S ⊆ Global × Locals× PCs

PCs = T id → PC

Locals = T id → Local

A transitiont : S → S advances the program from one state to a subsequent state.
Following the notation of [5, 23], each transitiont consists of one visible operation,
followed by a finite sequence of invisible operations of the same thread up to (but ex-
cluding) the next visible operation. We usetid(t) ∈ T id to denote the thread index of
the transitiont. Let T be the set of all transitions of a program. A transitiont ∈ T

is enabledin a states if the next statet(s) is defined. We uses
t
→ s′ to denote that

t is enabled ins ands′ = t(s). Two transitionst1, t2 may be co-enabledif there ex-
ists a state in which botht1 andt2 are enabled. The state transition graph is denoted
〈S, s0, Γ 〉, wheres0 ∈ S is the unique initial state andΓ ⊆ S × S is the transition

relation:(s, s′) ∈ Γ iff ∃t ∈ T : s
t
→ s′. An execution sequence is a sequence of states

s0, . . . , sn such that∃ti . si−1
ti→ si for all 1 ≤ i ≤ n.

Two transitions areindependentif and only if they can neither disable nor enable
each other, and swapping their order of execution does not change the combined effect.
Two execution trace are equivalent iff they can be transformed into each other by re-
peatedly swapping adjacent independent transitions. In model checking, partial order
reduction (POR [8]) has been used to exploit the redundancy of executions from the
same equivalence class to prune the search space; in particular, model checking has to
consider only one representative from each equivalence class.

2.2 Dynamic Partial Order Reduction

Model checking of a multithreaded program can be conducted in a stateless fashion by
systematically executing the program in a depth-first search order. This can be imple-
mented by using a specialschedulerto control the execution of visible operations of
all threads; the scheduler needs to give permission to, and observe the result of every
visible operation of the program. Instead of enumerating the reachable states, as in clas-
sic model checkers, it exhaustively explores all the feasible thread interleavings. Fig. 2
shows a typical stateless search algorithm. The scheduler maintains asearch stackS
of states. Each states ∈ S is associated with a sets.enabled of enabled transitions,
a sets.done of executed transitions, and abacktracking set, consisting of the thread
indices of some enabled transitions ins that need to be explored froms. In this context,
backtracking is implemented by re-starting the program afresh under a different thread
schedule [23], while ensuring that the replay is deterministic—i.e. all external behaviors
(e.g., mallocs and IO) are also assumed to be replayable1.

The procedure DPORUPDATEBACKTRACKSETS(S, t) implements the dynamic par-
tial order reduction algorithm of [5]. It updates the backtrack set only for the last tran-
sition td in T such thattd is dependent and may be co-enabled witht (line 19). The
setsd.backtrack is also a subset of the enabled transitions, and the setE consists of

1 While malloc replayability is ensured by allocating objects in the same fashion, IO replayabil-
ity is ensured by creating suitable closed environments.



5

1: Initially: S is empty; DPORSEARCH(S, s0)

2: DPORSEARCH(S, s) {
3: if (DETECTRACE(s)) exit (S);
4: S.push(s);
5: for each t ∈ s.enabled, DPORUPDATEBACKTRACKSETS(S, t);
6: let τ ∈ T id such that∃t ∈ s.enabled : tid(t) = τ ;
7: s.backtrack ← {τ};
8: s.done← ∅;
9: while (∃t: tid(t) ∈ s.backtrack andt 6∈ s.done) {

10: s.done← s.done ∪ {t};
11: s.backtrack ← s.backtrack \ {tid(t)};

12: lets′ ∈ S such thats
t
→ s′;

13: DPORSEARCH(S, s′);
14: S.pop(s);
15: }
16: }
17: DPORUPDATEBACKTRACKSETS(S, t) {
18: letT = {t1, . . . , tn} be the sequence of transitions associated withS;
19: lettd be the latest transition inT that is dependent and may be co-enabled witht;
20: if (td 6= null){
21: letsd be the state inS from whichtd is executed;
22: letE be{q ∈ sd.enabled | eithertid(q) = tid(t), or q was executed aftertd in T and

a happens-beforerelation exists for(q, t)}
23: if (E 6= ∅)
24: choose anyq in E, addtid(q) to sd.backtrack;
25: else
26: sd.backtrack← sd.backtrack ∪ {tid(q) | q ∈ sd.enabled};
27: }
28: }

Fig. 2. Stateless search with dynamic partial order reduction (c.f. [5])

transitionsq in T such that(q, t) has ahappens-beforerelation (line 22). Intuitively,
q happens-beforet means that flipping the execution order ofq andt may lead to in-
terleavings in a different equivalence class. For a better understanding, a plain depth-
first search, with no partial order reduction at all, would correspond to an alternative
implementation of line 19 in whichtd is defined as the last transition inT such that
tid(td) 6= tid(t), regardless of whethertd andt are dependent, and an alternative im-
plementation of line 22 in whichE = ∅.

Data race detection is essentially checking the simultaneous reachability of two
conflicting transitions. The procedure DETECTRACE(s) used in line 3 of Fig. 2 checks
in each states whether there exist two transitionst1, t2 such that (1) they access the
same shared variable; (2) at least one of them is a write; and (3) both transitions are
enabled ins. If all three conditions hold, it reports a data race; in thiscase, the se-
quence of statess0, s1, . . . , s currently in the stackS serve as a counterexample. The
advantage of this race detection procedure is that it does not report bogus races (of
course, the race itself may be benign; detecting whether races are malicious is outside
the scope of our approach, as well as most other approaches inthis area). If the top-level



6

DPORSEARCH(S, s0) completes without finding any race, then the program is proved
to be race-free under the given input. As pointed out in [5], DPOR is sound and com-
plete for detecting data races (as well as deadlocks and assertion violations), although
there is no property driven pruning employed in [5].

3 Race-Free Search Subspace

Given an execution sequences0, . . . , si, . . . , sn stored in the stackS and a statesi

(0 ≤ i ≤ n), we check (conservatively) whether the search space starting from si is
race-free. This search subspace consists of all the execution traces sharing the same
prefix s0, . . . , si. During dynamic model checking, instead of backtracking for each
conflicting transition pair as in DPOR, we backtrack to statesi only if the corresponding
search subspace has potential races.

3.1 Set of Locksets

Let T = {t1, . . . , tn} be a transition sequence such thats0
t1→ s1 . . .

tn→ sn. First,
we projectT to each thread as a sequenceTτ = {tτ1

, . . . , tτk
} of thread-local tran-

sitions; that is,∀t ∈ Tτ : tid(t) = τ . For the example in Fig. 1,T is projected to
T1 = {a1, . . . , a11} andT2 = {b1, . . . , b9, b11}. Next, we partition each thread-local
sequenceTτ into smaller segments. In the extreme case, each segment would consist
of a single transition. For each segmentsegi ⊆ Tτ , we identify the global variables
that may be accessed withinsegi; for each access, we also identify the corresponding
lockset—the set of locks held by threadτ when the access happens.

Definition 1. For each segmentsegi and global variablex, the setlsSetx(segi) con-
sists of all the possible locksets that may be held whenx is accessed insegi.

By conservatively assuming that transitions of different threads can be interleaved ar-
bitrarily, we check whether it is possible to encounter a race condition. Specifically, for
each global variablex, and for each pair(segi, segj) of transition segments from dif-
ferent threads, we check whether∃set1 ∈ lsSetx(segi), set2 ∈ lsSetx(segj) such that
set1 ∩ set2 = ∅. An empty set represents a potential race condition—x is not protected
by a common lock. The result of this analysis can be refined by further partitioning
segi, segj into smaller fragments. To check whether the search space starting fromsi

is race-free, we will conservatively assume thatti+1, . . . , tn (transitions executed after
si in T ) may interleave arbitrarily, subject only to the program orders.

Note first, that the lockset analysis is thread-local, i.e.,the analysis is performed on a
single thread at a time. Second, a precise computation oflsSetx(segi) as in Definition 1
requires the inspection of all feasible execution traces (exponentially many) in which
x is accessed insegi; we do not perform this precise computation. For conservatively
checking the race-free subspace property, it suffices to consider a set of locksetsS such
that any constituent lockset ofS is a subset of the actually held locks. For instance,
the coarsest approximation islsSetx(segi) = {∅}; that is,x is not protected at all.
Under this coarsest approximation forsegi, if another thread also accessesx in segj,
our algorithm will report a potential race condition between segi andsegj.



7

Consider again the example in Fig. 1, let the first execution trace be partitioned into

seg1 = a1, . . . , a8 seg3 = b1, . . . , b7

seg2 = a9, . . . , a11 seg4 = b8, . . . , b11.

Sinceseg2 shares onlyz with seg3, andz is protected by lockf1, any execution trace
starting fromseg1 is race-free. Therefore, we do not need to backtrack toa8.

However, the concrete execution itself may not be able to provide enough informa-
tion to carry out the above analysis. Note that, by definition, lsSetx(segi) must include
all the possible locksetsthat may be formed in an interleaving execution ofsegi. In
Fig. 1, for instance, althoughy is accessed in both threads (a6 andb10), the transition
b10 does not appear inseg4 since theelse-branch was taken. However,lsSety(seg4) is
{{f1}}. In general, we need amay-setof shared variables that are accessed insegi and
the correspondingmust-setof locks protecting each access. We need the information of
all the alternative branches in order to compute these sets at runtime.

3.2 Handling the Other Branch

Our solution is to augment all branching statements in the form ofif(c)-else, through
source code instrumentation, so that the information of not-yet-executedbranches (com-
puteda priori) is readily available to our analysis during runtime. To this end, for both
branches of everyif-else statement, we instrument the program by inserting calls to
the following routines (’rec’ stands for record):

– rec-var-access-in-other-branch(x,Lacq, Lrel) for each access tox; with
the setLacq of locks acquired and the set ofLrel of locks released before the access.

– rec-lock-update-in-other-branch(Lacq, Lrel); with the setLacq of locks
acquired and the setLrel of locks released in the other branch.

The instrumentation is illustrated by a simple example in Fig. 3. In addition to the above
routines, we also add recording routines to notify the scheduler about the branch start
and end. When theif-branch is executed, the scheduler knows that, in theelse-branch,
x is accessed and lockC is acquired before the access (line 4); it also knows thatC is
the only lock acquired and no lock is released throughout that branch (line 5). Similarly,
when theelse-branch is executed, the scheduler knows that in theif-branch,x, y are
accessed and lockA is protectingx but noty. According to lines 5 and 16, lockC
will be held at the branch merge point because(Lacq \ Lrel) = {C}. Therefore, our
algorithm knows thatz is protected by bothB andC.

The information passed to these recording routines need to be collecteda priori by
a static analysis of the individual threads (in Section 5). Note that neither the set of
shared variables nor any of the corresponding locksetsLacq, Lrel has to be precise. For
a conservative analysis, it suffices to use an over-approximated set of shared variables,
a subseťLacq ⊆ Lacq of acquired locks, and supersetL̂rel ⊇ Lrel of released locks. By
usingĽacq andL̂rel, we can compute a must-set(Ľacq \ L̂rel), which is a subset of the
actually held locks.



8

1: lock(B)
2: if (c) {
3: rec-branch-begin(); //added
4: rec-var-access-in-other-branch(x,{C},{}); //added
5: rec-lock-update-in-other-branch({C},{}); //added
6: lock(A);
7: x++;
8: unlock(A);
9: y=5;
10: lock(C);
11: rec-branch-end(); //added
12: }else {
13: rec-branch-begin(); //added
14: rec-var-access-in-other-branch(x,{A},{ }); //added
15: rec-var-access-in-other-branch(y,{A},{A}); //added
16: rec-lock-update-in-other-branch({A,C},{A}); //added
17: lock(C);
18: x++;
19: rec-branch-end(); //added
20: }
21: z++;
22: unlock(C);
23: unlock(B)

Fig. 3. Instrumenting the branching statements of each thread

3.3 Checking Race-Free Subspace

The algorithm for checking whether a search subspace is race-free is given in Fig. 4.
For each transitiont ∈ T and global variablex, we maintain:

– lsSet(t), theset of locksetsheld on one of the paths byt;
– mayUse(t, x) if t is a branch begin, the set of locksets ofx in the other branch.

In statesi, the setlsτ of locks held by threadτ is known. First, we use COMPUTELOCK-
SETSto updatelsSet(t) andmayUse(t, x) for all variablesx accessed and transitions
t executed aftersi. Potential race conditions are checked by intersecting pairwise lock-
sets of the same variable in different threads. If any of the intersection in line 11 is
empty, SUBSPACERACEFREE returnsFALSE.

In Fig. 5, COMPUTELOCKSETS starts withlsτ , which comes from the concrete
execution and hence is precise.Tτ consists of the following types of transitions: (1)
instrumented recording routines; (2) lock/unlock; (3) other program statements. The
stackupdate is used for temporary storage. BothlsSet(t) andmayUse(t, x) aresets
of locksets, of which each constituent lockset corresponds to a distinct unobserved path
(a path skipped due to a false branch condition) or variable access. Note that we do not
merge locksets from different branches into a single must-lockset, but maintain them as
separate entities inlsSet(t) and then propagate to the subsequent transitions inTτ .

Multiple branches may be embedded in the observed sequenceTτ , as shown in
Fig. 6. In the left-hand-side figure, the unobserved branch itself has two branches, each
of which needs a recording routine inTτ to record the lock updates. Inside COMPUTE-
LOCKSETS, lock updates fromtl2 are stored temporarily in the stackupdate and fi-
nally used to computelsSet(ti) at the merge point. In the right-hand-side figure, the
observed branch (fromt′j to t′i) contains another observed branch (fromtj to ti). This
is why a stackupdate, rather than a set, is needed. Note thatt′l2 is executed beforetl2 ,
but lsSet(t′i) is computed afterlsSet(ti).



9

1: SUBSPACERACEFREE(si) {

2: letT = {t1, t2, . . . , tm} such thatsi
t1→ si+1 . . .

tm−→ sm+1 andsm+1.enabled = ∅;
3: for each (τ ∈ T id) {
4: letTτ = {tτ1

, . . . , tτk
} be a subsequenceTτ ⊆ T such that∀t ∈ Tτ : tid(t) = τ ;

5: let lsτ be the set of locks held by threadτ atsi;
6: COMPUTELOCKSETS(lsτ, Tτ );
7: }
8: for each (global variablex) {
9: let t1, t2 ∈ T , tid(t1) 6= tid(t2), both may accessx, and at least one is a write;

10: letls1 ∈ (lsSet(t1) ∪mayUse(t1, x)), let ls2 ∈ (lsSet(t2) ∪mayUse(t2, x));
11: if (∃ls1, ls2 such thatls1 ∩ ls2 = ∅) return FALSE;
12: }
13: return TRUE;
14: }

Fig. 4. Checking whether the search subspace fromsi is race-free at run time

1: COMPUTELOCKSETS(lsτ, Tτ ) {
2: let lsSet(t0) ={ lsτ };
3: letTτ = {t1, . . . , tk}; ∀ti ∈ Tτ , ∀x : lsSet(ti)← ∅ andmayUse(ti, x)← ∅;
4: i← 1;
5: while (i ≤ k) {
6: if (ti is rec-branch-begin)
7: update.push(∅);
8: if (ti is lock(f1))
9: lsSet(ti)← {ls ∪ {f1} | ls ∈ lsSet(ti−1);

10: else if(ti is unlock(f1))
11: lsSet(ti)← {ls \ {f1} | ls ∈ lsSet(ti−1);
12: else if(ti is rec-var-access-in-other-branch(x, Lacq, Lrel))
13: lettj be the last branch begin that precedesti;
14: mayUse(tj, x)← mayUse(tj, x) ∪ {ls ∪ Lacq \ Lrel | ls ∈ lsSet(tj)};
15: else if(ti is rec-lock-update-in-other-branch(Lacq , Lrel))
16: lettj be the last branch begin that precedesti;
17: update.top()← update.top() ∪ {ls ∪ Lacq \ Lrel | ls ∈ lsSet(tj)};
18: else if(ti is rec-branch-end)
19: lsSet(ti)← update.pop()∪ lsSet(ti−1);
20: else
21: lsSet(ti)← lsSet(ti−1);
22: i← i + 1;
23: }
24: }

Fig. 5.Computing locksets that may be held by each transition inTτ



10

Let sj

tj+1

→ sj+1 be a branch begin andsi−1
ti→ si be the matching branch end.

From the pseudo code in Fig. 5, it is clear that the following two theorems hold.

Theorem 1. lsSet(ti) contains, for each unobserved path fromsj and tosi, a must-set
of locks held atsi (if that path were to be executed).

Theorem 2. mayUse(ti, x) contains, for each access ofx in an unobserved path from
sj to si, a must-set of locks held when accessingx in that path.

if−else

branch begin

var−access
lock−update

branch end

merge point

tl2

ti

ti−1

tj

tl1

usingtl1
to computemayUse(tj , x)

usingtl2
, ti−1 to computelsSet(ti)

branch end

if−else

branch begin

branch begin

branch end

t
′

i

ti

ti−1

t
′

i−1

t
′

j

tj

t
′

l2

tl2

usingtl2
, ti−1 to compute (inner)lsSet(ti)

usingt′l2
, t′i−1 to compute (outer)lsSet(t′i)

Fig. 6. Multiple branches in an execution trace (observed and unobserved branches)

Although the standard notion of locksets is used in our analysis, the combination
of dynamically computed information of the observed execution and statically com-
puted information of not-yet-executed branches differentiates us from the existing dy-
namic [20, 16] and static [6, 4, 17, 11, 22] lockset algorithms. It differs from the Eraser-
style lockset algorithms [20, 16] in that it has to consider not only the current execution
but also the not-yet-activated branches. It differs from the purely static lockset analy-
sis [6, 4, 17, 11, 22] in that it utilizes not only the statically computed program infor-
mation, but also the more precise information derived dynamically from the execution.
In particular, our lockset computation starts with a precise locksetlsτ of the concrete
execution (line 5 of Fig. 4). In the presence of pointers to data and locks, a purely
static analysis may be imprecise; the actual set of shared variables accessed or locks
held during a concrete execution may be significantly smaller than the (conservatively
computed) points-to sets of the pointers.

4 The Overall Algorithm

We rely on the conservative lockset analysis to prune the search space, and the concrete
program execution to ensure that no bogus race is reported. The overall algorithm is
given in Fig. 7. The procedure PDPSEARCH, where PDP stands for Property-Driven
Pruning, takes the stackS and a states as input. Each time PDPSEARCH is called on



11

a new states, lines 10-24 will be executed. DETECTRACE(s) is used to detect race
conditions ins during runtime (explained in Section 2). If a race conditionis found, it
terminates with a counterexample inS. When an execution terminates (s.enabled = ∅

of line 3), we update the backtracking points for the entire trace. This is significantly dif-
ferent from the DPOR algorithm, which updates the backtracking points for each state
s when it is pushed into the stackS. Rather than updating the backtracking points in the
pre-order of DFS as in DPOR, our algorithm waits until the information pertaining to
an entire execution trace is available. In line 27, for each statetd that is dependent and
may be co-enabled witht, we check (in addition to that of DPOR) whether the search
subspace fromsd is race-free. If the answer is yes, we can safely skip the backtracking
points atsd. Otherwise, we proceed in the same fashion as DPOR.

The Running ExampleWe show how the overall algorithm works on the example in
Fig. 1. Assume that the first execution trace is

s0
a1→ s1

a2→ . . .
a6→ s6 . . . s9

a10→ s10 . . . s13
b3→ s14

b4→ s15 . . .
b9→ s20

b11→ s21 ,

produced by lines 11-20 of Fig. 7. Sinces21.enabled = ∅, the call PDPSEARCH(S, s21)
executes lines 3-9. For everysb ∈ S, we update the backtrack sets; we go through the
stack in the following order:s0, s1, . . . , s21.

– For s0, . . . , s10, there is no need to add a backtracking point, because (per line 27)
there is notd from a thread different fromtid(t).

– For s13, the enabled transitionb3:z++ is dependent and may be co-enabled with
td = a10:z++. (We assumelock-atomicityby grouping variable accesses with pro-
tecting lock/unlock and regarding each block as atomic.) However, since the search
subspace froms8 is race-free, we do not add backtracking points ats8.

– For s14, the enabled transitionb4:c=x is dependent and may be co-enabled with
td = a2:x++. Since the search subspace froms0 has a potential race condition
betweena6 and b10, we sets0.backtrack = {2} to make sure that in a future
execution, threadT2 is scheduled at states0.

After this, PDPSEARCH(S, si) keeps returning for alli > 0 as indicated by lines 20-
21. Sinces0.backtrack = {2}, PDPSEARCH(S, s0) executes lines 16-20. The next

execution starts froms0
b1→ s′.

Proof of CorrectnessThe correctness of the overall algorithm is summarized as fol-
lows: First, any race condition reported by PDPSEARCH is guaranteed to be real.

Second, if PDPSEARCH returns without finding any race condition, the program
is guaranteed to be race-free under the given input. Finally, PDPSEARCH always re-
turns a conclusive result (either race-free or a concrete race) for terminating programs.
If a program is nonterminating, PDPSEARCH can be used for bounded analysis as in
CHESS [14]—to detect bugs up to a bounded number of steps. Thesoundness is en-
sured by the fact that it is concretely executing the actual program within its target
environment. The completeness (for terminating programs)can be established by the
following arguments: (1) the baseline DPOR algorithm as in [5] is known to be sound
and complete for detecting race conditions; and (2) our trace-based lockset analysis is
conservative in checking race-free subspaces. The procedure returns ’yes’ only if no
race condition can be reached by any execution in the search subspace.



12

1: Initially: S is empty; PDPSEARCH(S, s0)

2: PDPSEARCH(S, s) {
3: if (s.enabled = ∅) {
4: for (i = 0; i < S.size(); i + +) {
5: letsb be thei-th element inS;
6: for each (t ∈ sb.enabled)
7: PDPUPDATEBACKTRACKSETS(S,t);
8: }
9: }

10: else{
11: if (DETECTRACE(s)) exit (S);
12: S.push(s);
13: letτ ∈ T id such that∃t ∈ s.enabled : tid(t) = τ ;
14: s.backtrack ← {τ};
15: s.done← ∅;
16: while (∃t: tid(t) ∈ s.backtrack andt 6∈ s.done) {
17: s.done← s.done ∪ {t};
18: s.backtrack ← s.backtrack \ {tid(t)};

19: lets′ ∈ S such thats
t
→ s′;

20: PDPSEARCH(S, s′);
21: S.pop(s);
22: }
23: }
24: }

25: PDPUPDATEBACKTRACKSETS(S, t) {
26: letT = {t1, . . . , tn} be the sequence of transitions associated withS;
27: lettd be the latest transition inT that (1) is dependent and may be co-enabled witht, and

(2) let sd ∈ S be the state from whichtd is executed,SubspaceRaceFree(sd) is FALSE;
28: if (td 6= null){
29: letE be{q ∈ sd.enabled | eithertid(q) = tid(t), or q was executed aftertd in T and

a happens-beforerelation exists for(q, t)}
30: if (E 6= ∅)
31: choose anyq in E, addtid(q) to sd.backtrack;
32: else
33: sd.backtrack← sd.backtrack ∪ {tid(q) | q ∈ sd.enabled};
34: }
35: }

Fig. 7. Property driven pruning based dynamic race detection algorithm



13

5 Experiments

We have implemented the proposed method on top of our implementation of the DPOR
algorithm, inside Inspect [23]. We use CIL [15] for parsing,whole-program static anal-
ysis, and source code instrumentation. Our tool is capable of handling multithreaded C
programs written using the Linux POSIX thread library. The source code instrumenta-
tion consists of the following steps: (1) for each shared variable access, insert a request
to the scheduler asking for permission to execute; (2) for each thread library routine,
add a wrapper function which sends a request to the schedulerbefore executing the
actual library routine; (3) for each branch, add recording routines to notify about the
branch begin and end, the shared variables and the lock updates in the other branch.

In order to control every visible operation, we need to identify the set of shared vari-
ables during the source code instrumentation. Shared variable identification requires a
conservative static analysis of the concurrent program, e.g., pointer and may-escape
analysis [19, 11]. Since this analysis [19] is an over-approximated analysis, our instru-
mentation is safe for intercepting all visible operations of the program. This ensures
that we do not miss any bug due to missing identification of a shared variable. Simi-
larly, when a whole program static analysis is either ineffective or not possible (due to
missing source code) to identify the precise locksets, during instrumentation, we resort
to subsets of acquired locks and supersets of released locks.

We have conducted experimental comparison of our new methodwith the baseline
DPOR algorithm. The benchmarks are Linux applications written in C using the POSIX
thread library; many are obtained from public domain including sourceforge.net

andfreshmeat.net. Among the benchmarks,fdrd2 andfdrd4 are variants of our
running example.qsort is a multithreaded quick sort algorithm.pfscan is a file scan-
ner implemented using multiple threads to search directories and files in parallel; the
different threads share a dynamic queue protected by a set ofmutex locks.aget imple-
ments a ftp client with the capability of concurrently downloading different segments
of a large file.bzip2smp is a multithreaded version of the Linux applicationbzip.
All benchmarks are accompanied by test cases to facilitate the concrete execution. Our
experiments were conducted on a workstation with 2.8 GHz Pentium D processor and
2GB memory running Fedora 5.

Table 1 shows the experimental results. The first seven columns show the statistics
of the test cases, including the name, the lines of C code, thenumber of threads, the
number of shared variables, the number of shared variable accesses, the number of
locks, and the number of data races. Columns 8-13 compare thetwo methods in terms
of the runtime, and the number of executed transitions, and the number of completed
execution traces. For DPOR, every completed trace (reported in Column 12) belongs to
a distinct equivalence class of interleavings; however, many of them are pruned away
by PDP since they are redundant as far as race detection is concerned. Columns 14-16
provide the following statistics of PDP: the number of race-free checks, the number of
race-free check successes, and the number of skipped backtrack points.

The results show that our PDP method is significantly more efficient than DPOR in
pruning the search space. For all examples, PDP took significantly less time in either
finding the same data race or proving the race freedom; the number of transitions/traces
that PDP has to check during the process was also significantly smaller. Although the



14

Table 1.Comparing the performance of two race detection algorithms(with 1 hour time out)

Test Program Runtime (s) # of Trans (k) # of Traces Race-free Chk
name loc thrd gvar accslock race dpor PDP dpor PDP dpor PDP chks yes skip

fdrd2 66 2 3 3 2 1 3 1 2 0.6 89 14 88 75 75
fdrd4 66 2 3 3 2 1 11 3 10 4 233 68 232 165 165
qsort 743 2 2 2000 5 0 17 8 12 8 4 1 2 2 2
pfscan-good918 2 21 118 4 0 179 15 71 10 2519 182 398 217 217
pfscan-bug 918 2 21 39 4 1 3 1 1 1 31 10 5 5 6
aget-0.4 1098 3 5 72 1 0 183 1 103 0.1 3432 1 6 6 9
aget-0.4 1098 4 5 78 1 0 >1h 1 - 0.1 - 1 9 9 18
aget-0.4 1098 5 5 84 1 0 >1h 1 - 0.1 - 1 12 12 30
bzip2smp 6358 4 9 18 3 0 128 3 63 2 1465 45 48 5 5
bzip2smp 6358 5 9 18 3 0 203 4 99 2 2316 45 48 5 7
bzip2smp 6358 6 9 18 3 0 287 4 135 2 3167 45 48 5 9
bzip2smp2 6358 4 9 269 3 0 291 136 63 21 1573 45 48 5 5
bzip2smp2 6358 5 9 269 3 0 487 155 85 21 2532 45 48 5 7
bzip2smp2 6358 6 9 269 3 0 672 164 116 21 3491 45 48 5 9
bzip2smp2 6358 10 9 269 3 0 1435 183 223 21 7327 45 48 5 17

average time for PDP to complete one execution is longer thanDPOR, e.g., 4066 ms
vs. 195 ms as indicated by data from the last row of Table 1 (dueto the overhead of
tracking branch begin/end and other auxiliary transitions), the overhead in PDP is well
compensated by the skipped executions due to property driven pruning.

6 Conclusions

We have proposed a new data race detection algorithm that combines the power of dy-
namic model checking with property driven pruning based on alockset analysis. Our
method systematically explores concrete thread interleavings of a program, and at the
same time prunes the search space with a trace-based conservative analysis. It is both
sound and complete (as precise as the DPOR algorithm); at thesame time, it is signif-
icantly more efficient in practice, allowing the technique to scale much better to real-
world applications. For future work, we would like to extendthe proposed framework
to check other types of properties. Since race detection is aproblem of simultaneous
reachability of two transitions, the techniques developedhere should be readily appli-
cable to checking deadlocks and many other simple safety properties.

References

[1] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-
plication to model-checking. InInternational Conference on Concurrency Theory, pages
135–150. Springer, 1997. LNCS 1243.

[2] F. Chen and G. Rosu. Parametric and sliced causality. InComputer Aided Verification,
pages 240–253. Springer, 2007. LNCS 4590.



15

[3] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. InProceedings Workshop on Logics of Programs, pages
52–71, Berlin, 1981. Springer-Verlag. LNCS 131.

[4] D. Engler and K. Ashcraft. RacerX: effective, static detection of race conditions and dead-
locks. InACM Symposium on Operating Systems Principles, pages 237–252. ACM, 2003.

[5] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking soft-
ware. InPrinciples of programming languages, pages 110–121, 2005.

[6] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata. Extended static
checking for java. InPLDI, pages 234–245, 2002.

[7] M. Ganai, S. Kundu, and R. Gupta. Partial order reductionfor scalable testing of SystemC
TLM designs. InDesign Automation Conference, 2008.

[8] P. Godefroid.Partial-Order Methods for the Verification of Concurrent Systems - An Ap-
proach to the State-Explosion Problem. Springer, 1996. LNCS 1032.

[9] P. Godefroid. Software model checking: The VeriSoft approach.Formal Methods in System
Design, 26(2):77–101, 2005.

[10] G. Holzmann, E. Najm, and A. Serhrouchni. SPIN model checking: An introduction.STTT,
2(4):321–327, 2000.

[11] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta. Fast and accurate static data-
race detection for concurrent programs. InComputer Aided Verification, pages 226–239.
Springer, 2007. LNCS 4590.

[12] N. Leveson and C. Turner. Investigation of the therac-25 accidents. IEEE Computer,
26(7):18–41, 1993.

[13] A. W. Mazurkiewicz. Trace theory. InAdvances in Petri Nets, pages 279–324. Springer,
1986. LNCS 255.

[14] M. Musuvathi and S. Qadeer. CHESS: Systematic stress testing of concurrent soft-
ware. InSymposium on Logic-Based Program Synthesis and Transformation, pages 15–16.
Springer, 2006. LNCS 4407.

[15] G. Necula, S. McPeak, S. Rahul, and W. Weimer. Cil: Intermediate language and tools
for analysis and transformation of c programs. InInternational Conference on Compiler
Construction, pages 213–228. Springer, 2002. LNCS 2304.

[16] N. Nethercote and J. Seward. Valgrind: A program supervision framework.Electr. Notes
Theor. Comput. Sci., 89(2), 2003.

[17] P. Pratikakis, J. Foster, and M. Hicks. LOCKSMITH: context-sensitive correlation analysis
for race detection. InPLDI, pages 320–331. ACM, 2006.

[18] J. P. Quielle and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In Proceedings of the Fifth Annual Symposium on Programming, 1981.

[19] A. Salcianu and M. Rinard. Pointer and escape analysis for multithreaded programs. In
Principles and Practices of Parallel Programming, pages 12–23. ACM Press, 2001.

[20] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic
data race detector for multithreaded programs.ACM Trans. Comput. Syst., 15(4):391–411,
1997.

[21] K. Sen, G. Rosu, and G. Agha. Detecting errors in multithreaded programs by generalized
predictive analysis of executions. InFormal Methods for Open Object-Based Distributed
Systems, pages 211–226. Springer, 2005. LNCS 3535.

[22] J. Voung, R. Jhala, and S. Lerner. RELAY: static race detection on millions of lines of code.
In Foundations of Software Engineering, pages 205–214. ACM, 2007.

[23] Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A Runtime Model Checker for Multi-
threaded C Programs. Technical Report UUCS-08-004, University of Utah, 2008.

[24] Y. Yang, X. Chen, G. Gopalakrishnan, and R. Kirby. Efficient stateful dynamic partial order
reduction. InSPIN Workshop on Model Checking Software, 2008.


