Dynamic Model Checking with Property Driven
Pruning to Detect Race Conditions*

Chao Wang, Yu Yang, Aarti Guptd, and Ganesh Gopalakrishrfan

! NEC Laboratories America, Princeton, New Jersey, USA
2 School of Computing, University of Utah, Salt Lake City, bi&SA

Abstract. We present a new property driven pruning algorithm in dyrcamdel
checking to efficiently detect race conditions in multigied programs. The
main idea is to use a lockset based analysis of observedte®sto help prune
the search space to be explored by the dynamic search. Waagskat a state-
less search algorithm is used to systematically executgrtiggam in a depth-first
search order. If our conservative lockset analysis shoatsatlsearch subspace is
race-free, it can be pruned away by avoiding backtracks tiaicestates in the
depth-first search. The new dynamic race detection algorighboth sound and
complete (as precise as the dynamic partial order reduatgorithm by Flana-
gan and Godefroid). The algorithm is also more efficient cfice, allowing it
to scale much better to real-world multithreaded C programs

1 Introduction

Concurrent programs are notoriously hard to debug becdibeipoften large number
of possible interleavings of thread executions. Concuydugs often arise in rare
situations that are hard to anticipate and handle by stdnating techniques. One
representative type of bugs in concurrent programs is arda&g which happens when
multiple threads access a shared data variable simultalyeand at least one of the
accesses is a write. Race conditions were among the flawe iftiterac-25 radiation
therapy machine [12], which led to the death of three patiantd injuries to several
more. A race condition in the energy management system ot quower facilities
prevented alerts from being raised to the monitoring tegihns, eventually leading to
the 2003 North American Blackout.

To completely verify a multithreaded program for a givert teput, one has to
inspect all possible thread interleavings. For deterrimthreads, the only source of
nondeterminism in their execution comes from the threa@dgler of the operating
system. In a typical testing environment, the user does ae lfull control over the
scheduling of threads; running the same test multiple tidues not necessarily trans-
late into a better interleaving coverage. Static analyassiieen used for detecting data
races in multithreaded programs, both for a given test if#fyt16] and for all possible
inputs [6, 4, 17, 11, 22]. However, a race condition repohgdtatic analysis may be
bogus (there can be many false alarms); even if it is realetiseoften little information
for the user to reproduce the race. Model checking [3, 18}imadvantage of exhaus-
tive coverage which means all possible thread interleavvii be explored. However,

* Yu Yang and Ganesh Gopalakrishnan were supported in par8fyaward CNS-0509379 and
the Microsoft HPC Institutes program.

model checkers require building finite-state or pushdownraata models of the soft-
ware [10, 1]; they often do not perform well in the presenckok pointers and other
heap allocated data structures.

Dynamic model checking as in [9, 5, 14, 23, 24] can directlgathprograms writ-
ten in full-fledged programming languages such as C and Bavaletecting data races,
these methods are sound (no bogus race) due to their comxetation of the pro-
gram itself as opposed to a model. While a bounded analysiseid in [14], the other
methods [9, 5, 23, 24] are complete for terminating progréhsnot miss real races)
by systematically exploring the state space without eiplistoring the intermediate
states. Although such dynamic software model checking ik bound and complete,
the search is often inefficient due to the astronomicallgdatumber of thread inter-
leavings and the lack of property specific pruning. Dynamactipl order reduction
(DPOR) techniques [5, 23, 7] have been used in this conterdrtmve the redundant
interleavings from each equivalence class, provided tretépresentative interleaving
has been explored. However, the pruning techniques useldesg tDPOR tools have
been generic, rather thamoperty-specific

T1 T2

a1 lock(fl) ; b1 lock(fl) ;
as X++; ba lock(f2) ;
as unlock(f1) ; b3 Z++;

Qs by C=X;

as lock(f2) ; bs unlock(f2) ;
as Yyt be unlock(f1) ;
a7 unlock(f2) ; b7

as bs lock(fl) ;
ag lock(f1) ; by if (c==0)
aip Z++ b1o y++;

a11 unlock(fl) ; b11 unlock(fl) ;

Fig. 1. Race condition on accessing variabléassume that = y = 0 initially)

Without a conservative or warranty type of analysis taifioi@vard the property to
be checked, model checking has to enumerate all the equostdasses of interleav-
ings. Our observation is that, as far as race detection isezord, many equivalence
classes themselves may be redundant. Fig. 1 shows a magiatample, in which
two threads use locks to protect accesses to shared variahleandz. A race con-
dition betweenug and by may occur wherb, is executed before,, by settinge to
0. Let the first execution sequence ®g. ..a11b; ... bgb11. According to the DPOR
algorithm by Flanagan and Godefroid [5], sineg andbs have a read-write conflict,
we need to backtrack i@ and continue the search fram. . . agb;. As a generic prun-
ing technique, this is reasonable since the two executimmaat Mazurkiewicz-trace
equivalent [13]. For data race detection, however, it igefub search any of these ex-
ecution traces in whichg andbyg cannot be simultaneously reachable (which can be

revealed by a conservative lockset analysis). We provideopguty-specific pruning
algorithm to skip such redundant interleavings and backtdirectly toa;.

In this paper, we propose a trace-based dynamic locksetsisis prune the search
space in the context of dynamic model checking. Our mainrimritons are: (1) a new
lockset analysis of the observed execution trace for cingckihether the associated
search subspace is race-free. (2) property driven prumirsggbiacktracking algorithm
using depth-first search.

We analyze the various alternatives of the current exectitace to anticipate race
conditions in the corresponding search space. Our trasedblackset analysis relies
on both information derived from the dynamic execution anf@rimation collected
statically from the program; therefore, it is more precisart the purely static lock-
set analysis conductedpriori on the program [4, 6, 17, 11, 22]. Our method is also
different from theEraserstyle dynamic lockset algorithms [20, 16], since our métho
decides whether the entire search subspace related toribeet®execution generated
is race-free, not merely the execution itself. The cruaguirement for a method to be
used in our framework for pruning of the search space is cetapéss—pruning must
not remove real races. Therefore, neither the aforemesdidgnamic lockset analysis
nor the various predictive testing techniques [21, 2] basetappens-before causality
(sound but incomplete) can be be used in this framework. C3-E8] can detect races
that may show up within a preemption bound; it exploits thegpnption bounding for
pruning, but does not exploit the lock semantics to effedtiction.

In our approach, if the search subspace is found to be raeg:fre prune it away
during the search by avoiding backtracks to the correspgretates. Recall that essen-
tially the search is conducted in a DFS order. If there is &mpidl race, we analyze
the cause in order to compute a proper backtracking pointb@cktracking algorithm
shares the same insights as the DPOR algorithm [5], withdldéianal pruning capa-
bility provided by the trace-based lockset analysis. Noé DPOR relies solely on the
independence relatioto prune redundant interleavings{if, t> are independent, there
is no need to flip their execution order). In our algorittewen ift,, to are dependent
we may skip the corresponding search space if flipping therafdi , ¢, does not affect
the reachability of any race condition. If there is no datzerat all in the program, our
algorithm can obtain the desired race-freedom assuranch faster.

2 Preliminaries

2.1 Concurrent Programs

We consider a concurrent program with a finite number of tlsees a state transition
system. Letl'id = {1,...,n} be a set of thread indices. Threads may access local
variables in their own stacks, as well as global variablesshared heap. The operations
on global variables are calladsible operations, while those on thread local variables
are callednvisible operations. We us€&lobal to denote the set of states of all global
variables,Local to denote the set of local states of a threBd: is the set of values of
the program counter of a thread. The entire system s&tett{e program counters of
the threads®C's), and the local states of threadsogals) are defined as follows:

S C Global x Locals x PC's
PCs =Tid — PC
Locals = T'id — Local

A transitiont : S — S advances the program from one state to a subsequent state.
Following the notation of [5, 23], each transitierconsists of one visible operation,
followed by a finite sequence of invisible operations of tame thread up to (but ex-
cluding) the next visible operation. We uge(¢) € T'id to denote the thread index of
the transitiont. Let 7 be the set of all transitions of a program. A transitioe 7

is enabledin a states if the next statée(s) is defined. We use L ¢ to denote that

t is enabled ins ands’ = t(s). Two transitiong, ¢t may be co-enableif there ex-

ists a state in which both, andt, are enabled. The state transition graph is denoted
(S, s0,I"), wheresy € S is the unique initial state anfi C S x S is the transition
relation:(s,s’) e ['iff It € 7T : s L, &', An execution sequence is a sequence of states
80,...,8, Suchthatdt; . s;_1 LA s;foralll <i<n.

Two transitions aréndependenif and only if they can neither disable nor enable
each other, and swapping their order of execution does rmigeghthe combined effect.
Two execution trace are equivalent iff they can be transéatinto each other by re-
peatedly swapping adjacent independent transitions. ldeichecking, partial order
reduction (POR [8]) has been used to exploit the redundahexecutions from the
same equivalence class to prune the search space; in partimodel checking has to
consider only one representative from each equivalenss.cla

2.2 Dynamic Partial Order Reduction

Model checking of a multithreaded program can be conductedsiateless fashion by
systematically executing the program in a depth-first $earder. This can be imple-
mented by using a speciathedulerto control the execution of visible operations of
all threads; the scheduler needs to give permission to, badree the result of every
visible operation of the program. Instead of enumeratiegéachable states, as in clas-
sic model checkers, it exhaustively explores all the fdaghread interleavings. Fig. 2
shows a typical stateless search algorithm. The schedw@artans asearch stacks
of states. Each state € S is associated with a setenabled of enabled transitions,
a sets.done of executed transitions, andbecktracking setconsisting of the thread
indices of some enabled transitionssithat need to be explored fromIn this context,
backtracking is implemented by re-starting the prograresifrunder a different thread
schedule [23], while ensuring that the replay is deterntiiisi.e. all external behaviors
(e.g., mallocs and 10) are also assumed to be replayable

The procedure PORUPDATEBACKTRACK SETS(S, t) implements the dynamic par-
tial order reduction algorithm of [5]. It updates the baekl set only for the last tran-
sition ¢4 in T' such thatt,; is dependent and may be co-enabled witfine 19). The
setsy.backtrack is also a subset of the enabled transitions, and thé& sainsists of

L While malloc replayability is ensured by allocating obgeirt the same fashion, 10 replayabil-
ity is ensured by creating suitable closed environments.

1: Initially: S is empty; DPORSEARCH(S, s0)

2: DPORSEARCH(S, s) {
3: if (DETECTRACE(s)) exit (S);
4: S.pushg);
5: for eacht € s.enabled, DPORUPDATEBACKTRACK SETS(S, t);
6: letT € Tid such thaBlt € s.enabled : tid(t) = T,
7 s.backtrack «— {1};
8: s.done «— &,
9: while (3¢: tid(t) € s.backtrack andt ¢ s.done) {
10: s.done «— s.done U {t};
11: s.backtrack — s.backtrack \ {tid(t)};
12: lets’ € S such thats 5 s;
13: DPORSEARCH(S, 5);
14: S.popE);
15: }
16: }
17: DPORUPDATEBACKTRACKSETS(S, t) {
18: letT = {t1,...,t,} be the sequence of transitions associated @ith
19: letty be the latest transition i that is dependent and may be co-enabled with
20: if (ta #null){
21: letsq be the state itd from whicht, is executed,;
22: letE be{q € sq.enabled | eithertid(q) = tid(t), or ¢ was executed aftey; in 7" and
ahappens-beforeelation exists fofq, ¢) }
23: if (E # 2)
24: choose any in E, addtid(q) to sq.backtrack;
25: else
26: sa.backtrack «— sq.backtrack U {tid(q) | q € sq.enabled};
27: }
28: }

Fig. 2. Stateless search with dynamic partial order reduction [&])

transitionsg in T such that(q, t) has ahappens-beforeelation (line 22). Intuitively,

q happens-before means that flipping the execution orderqodnd¢ may lead to in-
terleavings in a different equivalence class. For a betteletstanding, a plain depth-
first search, with no partial order reduction at all, wouldrespond to an alternative
implementation of line 19 in whichy is defined as the last transition i such that
tid(tq) # tid(t), regardless of whethey andt are dependent, and an alternative im-
plementation of line 22 in whicliy = (.

Data race detection is essentially checking the simultas@eachability of two
conflicting transitions. The procedureEDECTRACE(s) used in line 3 of Fig. 2 checks
in each state whether there exist two transitions, t5 such that (1) they access the
same shared variable; (2) at least one of them is a write; 3ndath transitions are
enabled ins. If all three conditions hold, it reports a data race; in ttése, the se-
quence of states, s1, ..., s currently in the stacks' serve as a counterexample. The
advantage of this race detection procedure is that it doeseport bogus races (of
course, the race itself may be benign; detecting whethessrae malicious is outside
the scope of our approach, as well as most other approactigs area). If the top-level

DPORSEARCH(S, sg) completes without finding any race, then the program is @iov
to be race-free under the given input. As pointed out in [3?QR is sound and com-
plete for detecting data races (as well as deadlocks andiasséolations), although
there is no property driven pruning employed in [5].

3 Race-Free Search Subspace

Given an execution sequeneg, ..., s;, ..., s, stored in the stacls' and a states;

(0 < i < n), we check (conservatively) whether the search spacergdrom s; is
race-free. This search subspace consists of all the erecuitices sharing the same
prefix sg, ..., s;. During dynamic model checking, instead of backtrackingdach
conflicting transition pair as in DPOR, we backtrack to statenly if the corresponding
search subspace has potential races.

3.1 Set of Locksets

LetT = {t1,...,t,} be a transition sequence such thatt—]> 51... Iny Sp,. First,

we projectT to each thread as a sequerice= {t,,,...,t,, } of thread-local tran-
sitions; that isVt € T, : tid(t) = 7. For the example in Fig. 17" is projected to

Ty = {a1,...,a11} andTy = {b1,...,bg,b11}. Next, we partition each thread-local
sequencd’; into smaller segments. In the extreme case, each segmeid vansist

of a single transition. For each segmeny; C T, we identify the global variables
that may be accessed withiag;; for each access, we also identify the corresponding
lockset—the set of locks held by threadwhen the access happens.

Definition 1. For each segmenteg; and global variabler, the set sSet, (seg;) con-
sists of all the possible locksets that may be held whisraccessed iReg;.

By conservatively assuming that transitions of differdmetids can be interleaved ar-
bitrarily, we check whether it is possible to encounter &reamndition. Specifically, for
each global variable, and for each paitseg;, seg;) of transition segments from dif-
ferent threads, we check whethtet, € IsSet,(seg;), sets € lsSet,(seg;) such that
sety N sety = (). An empty set represents a potential race conditioris-not protected
by a common lock. The result of this analysis can be refinedubghér partitioning
seg;, seg; into smaller fragments. To check whether the search spacingtfroms;

is race-free, we will conservatively assume that, . . ., t,, (transitions executed after
s; iIn Ty may interleave arbitrarily, subject only to the prograrders.

Note first, that the lockset analysis is thread-local, ite analysis is performed on a
single thread at a time. Second, a precise computatibsbef . (seg;) as in Definition 1
requires the inspection of all feasible execution tracepdeentially many) in which
x is accessed ineg;; we do not perform this precise computation. For conserebti
checking the race-free subspace property, it suffices tsidena set of locksetS such
that any constituent lockset ¢f is a subset of the actually held locks. For instance,
the coarsest approximation isSet,(seg;) = {(}; that is,z is not protected at all.
Under this coarsest approximation farg;, if another thread also accessem seg;,
our algorithm will report a potential race condition betweeg; andseg;.

Consider again the example in Fig. 1, let the first executiacet be partitioned into

segy = ay,...,as segs = by, ..., b7
S€ga = a9, ...,0a11 S€g4:bg,...,b11.

Sinceseg, shares only with segs, andz is protected by lockf1, any execution trace
starting fromseg; is race-free. Therefore, we do not need to backtraekto

However, the concrete execution itself may not be able teigecenough informa-
tion to carry out the above analysis. Note that, by definjtiefiet,.(seg;) mustinclude
all the possible locksethat may be formed in an interleaving executionse;. In
Fig. 1, for instance, althoughis accessed in both threads; @ndb,), the transition
b1 does not appear iseg, since theel se-branch was taken. HoweveésSet, (segs) is
{{f1}}. In general, we needraay-sebf shared variables that are accessestip and
the correspondinmust-sebf locks protecting each access. We need the information of
all the alternative branches in order to compute these setsitime.

3.2 Handling the Other Branch

Our solution is to augment all branching statements in thafafi f (¢) - el se, through
source code instrumentation, so that the information ofedtexecuted branches (com-
puteda priori) is readily available to our analysis during runtime. Testéind, for both
branches of everyf - el se statement, we instrument the program by inserting calls to
the following routines (‘rec’ stands for record):

— rec-var-access-in-ot her-branch(z,La.q, L-;) for each access to; with
the setZ,, of locks acquired and the set bf.; of locks released before the access.
— rec-1 ock-updat e-i n- ot her - branch(Lacg, Lre:) ; With the setL,., of locks
acquired and the sét,..; of locks released in the other branch.

The instrumentation is illustrated by a simple example i Bi In addition to the above
routines, we also add recording routines to notify the salexdabout the branch start
and end. When thief -branch is executed, the scheduler knows that, irttse-branch,
x is accessed and loek is acquired before the access (line 4); it also knows ¢hat
the only lock acquired and no lock is released throughoutitanch (line 5). Similarly,
when theel se-branch is executed, the scheduler knows that in théranchz, y are
accessed and locK is protectingz but noty. According to lines 5 and 16, lock’
will be held at the branch merge point beca(fg., \ L.;) = {C}. Therefore, our
algorithm knows that is protected by botti andC.

The information passed to these recording routines need tolecteda priori by
a static analysis of the individual threads (in Section HteNthat neither the set of
shared variables nor any of the corresponding locksgts, L,.; has to be precise. For
a conservative analysis, it suffices to use an over-appeidset of shared variables,
asubseﬁacq C Lqeq of acquired locks, and supersfe,tel D L, of released locks. By
usingEacq andL,.;, we can compute a must-s{étacq \ ﬁm), which is a subset of the
actually held locks.

1: | ock(B)

2: if (c) {

3: rec-branch-begin(); / | added
4: rec-var-access-in-other-branch(x,{C,{}); / | added
5: rec-1 ock-update-in-other-branch({C,6{}); / | added
6: I ock(A);

7: X++;

8: unl ock(A);

9: y=5;

10: 1 ock(CO);

11: rec-branch-end(); / | added
12: }else {

13: rec-branch-begin(); / | added
14: rec-var-access-in-other-branch(x, {A},{ }); //added
15: rec-var-access-in-other-branch(y, {A},{A}); //added
16: rec-1 ock-update-in-other-branch({A C,{A}); //added
17: 1 ock(©O);

18: X++;

19: rec-branch-end(); / | added
20: '}

21: z++;

22: unlock(C);
23: unl ock(B)

Fig. 3. Instrumenting the branching statements of each thread

3.3 Checking Race-Free Subspace

The algorithm for checking whether a search subspace isfraeds given in Fig. 4.
For each transition € T" and global variable;, we maintain:

— 1sSet(t), theset of locksetheld on one of the paths lty
— mayUse(t, x) if t is a branch begin, the set of locksetsiah the other branch.

In states;, the sets, of locks held by thread is known. First, we use @MPUTEL OCK-
SETSto updatdsSet(t) andmayU se(t,) for all variables: accessed and transitions
t executed afteg;. Potential race conditions are checked by intersectingvise lock-
sets of the same variable in different threads. If any of titergection in line 11 is
empty, IBSPACERACEFREE returnsrALSE.

In Fig. 5, COMPUTELOCKSETS starts withls., which comes from the concrete
execution and hence is precigg. consists of the following types of transitions: (1)
instrumented recording routines; (2) lock/unlock; (3)etiprogram statements. The
stackupdate is used for temporary storage. Bd##bet(t) andmayU se(t, x) aresets
of locksetsof which each constituent lockset corresponds to a distinabserved path
(a path skipped due to a false branch condition) or variatdess. Note that we do not
merge locksets from different branches into a single matdet, but maintain them as
separate entities ity Set(t) and then propagate to the subsequent transitiofis.in

Multiple branches may be embedded in the observed sequénces shown in
Fig. 6. In the left-hand-side figure, the unobserved bratsdifihas two branches, each
of which needs a recording routine’Th to record the lock updates. Inside©@PUTE-
LocksEeTs lock updates front;, are stored temporarily in the stackpdate and fi-
nally used to computésSet(t;) at the merge point. In the right-hand-side figure, the
observed branch (frortj to ;) contains another observed branch (fronto ¢;). This
is why a stackupdate, rather than a set, is needed. Note tats executed beforg,,
butlsSet(t;) is computed aftetsSet(t;).

21:

24: }

: SUBSPACERACEFREE(s;) {

letT = {t1, to,... ,tm} such thatsi 2) Sitl e t—m> Sm+1 andsm+1.enabled = @,
for each (r € T'id) {
letT. = {t-,...,tr, } be asubsequendd C T such thatvt € T : tid(t) = T;
letis, be the set of locks held by threadat s;;
COMPUTELOCKSETYIs, T;);

for each (global variabler) {

lett:,t2 € T', tid(t1) # tid(t2), both may access, and at least one is a write;
letls: € (IsSet(t1) UmayUse(t1,x)), letlse € (IsSet(tz) UmayUse(tz, x));
if (Ais1,ls2 suchthafs; Nlsz = @) return FALSE;

}

return TRUE;

Fig. 4. Checking whether the search subspace fepis race-free at run time

COMPUTELOCKSETHIs+, T>) {

letisSet(to) ={ ls+ };
letT: = {t1,...,tr}; Vt; € T;,Va : 1sSet(t;) — 0 andmayUse(t;, z) — 0;

7+ 1;

while (i < k) {

if (¢; is rec-branch-begin)
update.push(0);
if (¢; is lock(f1))
IsSet(t;) — {lsU{f1} | ls € lsSet(ti—1);
else if(¢; is unlock(f1))
IsSet(t;) «— {Is\ {f1} | Is € IsSet(ti—1);
else if(t; is rec-var-access-in-other-branehlq.cq, Lyei))
lett; be the last branch begin that precedgs
mayUse(tj,) «— mayUse(tj,z) U{ls U Lacq \ Lrei | Is € IsSet(t;)};
else if(¢; is rec-lock-update-in-other-brandhf{.,, L.1))
lett; be the last branch begin that precedgs
update.top() «— update.top() U {ls U Lacq \ Lrei | Is € IsSet(t;)};
else if(¢; is rec-branch-end)
IsSet(t:) « update.pop() UlsSet(ti—1);
else
IsSet(t;) « lsSet(ti—1);
1— 1+ 1;

}

Fig. 5. Computing locksets that may be held by each transitidf.in

10

Let s; bi s;11 be a branch begin and_; % s; be the matching branch end.
From the pseudo code in Fig. 5, it is clear that the following theorems hold.

Theorem 1. [sSet(t;) contains, for each unobserved path frefrand tos;, a must-set
of locks held as; (if that path were to be executed).

Theorem 2. mayUse(t;, z) contains, for each accessoin an unobserved path from
s; to s;, a must-set of locks held when accessirig that path.

°
_if-else L

branch begin t g._._._._._._. ..

£ D SPR

branch begin ¢, @-._..._., t, if-else |

; =z :

var-access 7 branch begin = #; ¢ ... :

lock-update ty, i i ;

1 s i

% tiq :

tis éao branchend t; @~ :

branchend t; @< th_, i

i

branchend t) @]

usingt;, to computemayUse(t;,x) usingt;,, , t;—1 to compute (innerjsSet(t;)

usingt;, , t;—1 to computesSet(t;) usingt;,, , t;_, to compute (outer)sSet(t;)

Fig. 6. Multiple branches in an execution trace (observed and wergbd branches)

Although the standard notion of locksets is used in our aiglyhe combination
of dynamically computed information of the observed exicutind statically com-
puted information of not-yet-executed branches diffaetes us from the existing dy-
namic [20, 16] and static [6, 4, 17, 11, 22] lockset algori¢hihdiffers from the Eraser-
style lockset algorithms [20, 16] in that it has to considetranly the current execution
but also the not-yet-activated branches. It differs from plarely static lockset analy-
sis [6, 4, 17, 11, 22] in that it utilizes not only the statlgatomputed program infor-
mation, but also the more precise information derived dyinalty from the execution.
In particular, our lockset computation starts with a predtxkset s, of the concrete
execution (line 5 of Fig. 4). In the presence of pointers ttadand locks, a purely
static analysis may be imprecise; the actual set of shamedbl@s accessed or locks
held during a concrete execution may be significantly sméilen the (conservatively
computed) points-to sets of the pointers.

4 The Overall Algorithm

We rely on the conservative lockset analysis to prune thebespace, and the concrete
program execution to ensure that no bogus race is reportegloVerall algorithm is
given in Fig. 7. The procedure PDB&RCH, where PDP stands for Property-Driven
Pruning, takes the stack and a state as input. Each time PDRBRCH is called on

11

a new states, lines 10-24 will be executed. EYECTRACE(s) is used to detect race
conditions ins during runtime (explained in Section 2). If a race conditi®found, it
terminates with a counterexample$in\When an execution terminatesdnabled = &

of line 3), we update the backtracking points for the entaeé. This is significantly dif-
ferent from the DPOR algorithm, which updates the backirarkoints for each state

s when itis pushed into the staék Rather than updating the backtracking points in the
pre-order of DFS as in DPOR, our algorithm waits until theomfiation pertaining to
an entire execution trace is available. In line 27, for edates, that is dependent and
may be co-enabled with we check (in addition to that of DPOR) whether the search
subspace from, is race-free. If the answer is yes, we can safely skip thetbaaking
points ats;. Otherwise, we proceed in the same fashion as DPOR.

The Running Example We show how the overall algorithm works on the example in
Fig. 1. Assume that the first execution trace is

a az ag aig b3 4 by b1y
s /81 —~...—~>8¢...8 — S10...813 — S14 — S15... — S20 — S21 ,
produced by lines 11-20 of Fig. 7. Sineq .enabled = (), the call PDP8ARCH(.S, s21)
executes lines 3-9. For evesy € S, we update the backtrack sets; we go through the
stack in the following ordersg, s1, . . ., So1.

— Forsg, ..., s10, there is no need to add a backtracking point, because (e H)
there is na, from a thread different fromid(t).

— For s13, the enabled transitiobts:z++ is dependent and may be co-enabled with
tq = ayp:z++. (We assuméock-atomicityby grouping variable accesses with pro-
tecting lock/unlock and regarding each block as atomicyyéier, since the search
subspace fromg is race-free, we do not add backtracking pointssat

— For sy14, the enabled transitioby:c=x is dependent and may be co-enabled with
tqy = a9:x++. Since the search subspace fregnhas a potential race condition
betweenag andbyg, we setsg.backtrack = {2} to make sure that in a future
execution, thready, is scheduled at statg.

After this, PDP&ARCH(S, s;) keeps returning for all > 0 as indicated by lines 20-
21. Sincesg.backtrack = {2}, PDPEARCH(S, s¢) executes lines 16-20. The next

. b
execution starts fromg — s’.

Proof of CorrectnessThe correctness of the overall algorithm is summarized ks fo
lows: First, any race condition reported by PDEA®CH is guaranteed to be real.

Second, if PDPBARCH returns without finding any race condition, the program
is guaranteed to be race-free under the given input. FineDP SEARCH always re-
turns a conclusive result (either race-free or a concrei®) f@r terminating programs.
If a program is nonterminating, PDBSRCH can be used for bounded analysis as in
CHESS [14]—to detect bugs up to a bounded number of stepssdimedness is en-
sured by the fact that it is concretely executing the actwag@m within its target
environment. The completeness (for terminating prograzae)be established by the
following arguments: (1) the baseline DPOR algorithm asing known to be sound
and complete for detecting race conditions; and (2) ouetizased lockset analysis is
conservative in checking race-free subspaces. The proeediurns 'yes’ only if no
race condition can be reached by any execution in the seabspace.

12

1: Initially: S is empty; PDP8ARCH(S, s0)
2: PDPEARCH(S, s) {
3: if (s.enabled = @) {
4: for (i = 0;i < S.size();i++) {
5: let s, be thei-th element inS;
6: for each (t € s,.enabled)
7 PDPWDATEBACKTRACKSETS(S, t);
8: }
9 }
10: else{
11: if (DETECTRACE(s)) exit (.S);
12: S.pushg);
13: letT € T'id such thaBt € s.enabled : tid(t) = T;
14: s.backtrack — {7};
15: s.done +— I,
16: while (3t: tid(t) € s.backtrack andt ¢ s.done) {
17: s.done «— s.done U {t};
18: s.backtrack «— s.backtrack \ {tid(t)};
19: lets’ € S such thats > s;
20: PDP%ARCH(S, 5');
21: S.pop(s);
22: }
23: }
24: }

25 PDPUWDATEBACKTRACKSETS(S, t) {

26: letT = {ti1,...,tn} be the sequence of transitions associated #jth

27: letty be the latest transition ifi that (1) is dependent and may be co-enabled wignd
(2) letsq € S be the state from whicty is executedSubspaceRaceFrge,) is FALSE;

28: if (tq # null){

29: letE be{q € sq.enabled | eithertid(q) = tid(t), or ¢ was executed aftey; in 7" and
ahappens-beforeelation exists fofq, ¢) }

30: if (B # @)

31: choose any in E, addtid(q) to sq.backtrack;

32: else

33: sa.backtrack — sq.backtrack U {tid(q) | ¢ € sq.enabled};

34: }

35 }

Fig. 7. Property driven pruning based dynamic race detection ihgor

13

5 Experiments

We have implemented the proposed method on top of our impitatien of the DPOR
algorithm, inside Inspect [23]. We use CIL [15] for parsimdole-program static anal-
ysis, and source code instrumentation. Our tool is capdiiamdling multithreaded C
programs written using the Linux POSIX thread library. Tharge code instrumenta-
tion consists of the following steps: (1) for each sharedade access, insert a request
to the scheduler asking for permission to execute; (2) fchaharead library routine,
add a wrapper function which sends a request to the schebledere executing the
actual library routine; (3) for each branch, add recordiogtines to notify about the
branch begin and end, the shared variables and the lockagoiethe other branch.

In order to control every visible operation, we need to idfgtihe set of shared vari-
ables during the source code instrumentation. Sharedblaiidentification requires a
conservative static analysis of the concurrent program, pointer and may-escape
analysis [19, 11]. Since this analysis [19] is an over-apijmnated analysis, our instru-
mentation is safe for intercepting all visible operatiofightee program. This ensures
that we do not miss any bug due to missing identification ofaresth variable. Simi-
larly, when a whole program static analysis is either ingffe or not possible (due to
missing source code) to identify the precise locksets nduristrumentation, we resort
to subsets of acquired locks and supersets of released locks

We have conducted experimental comparison of our new metithdhe baseline
DPOR algorithm. The benchmarks are Linux applicationstemiin C using the POSIX
thread library; many are obtained from public domain inglgcsour cef or ge. net
andf r eshneat . net . Among the benchmarkggdr d2 andf dr d4 are variants of our
running examplegsor t is a multithreaded quick sort algorithpf.scan is a file scan-
ner implemented using multiple threads to search direzscaind files in parallel; the
different threads share a dynamic queue protected by a saitefk locksaget imple-
ments a ftp client with the capability of concurrently doaadling different segments
of a large file.bzi p2snp is a multithreaded version of the Linux applicatibai p.
All benchmarks are accompanied by test cases to facilit@tedncrete execution. Our
experiments were conducted on a workstation with 2.8 GHzitrarD processor and
2GB memory running Fedora 5.

Table 1 shows the experimental results. The first seven ewighow the statistics
of the test cases, including the name, the lines of C codenthgber of threads, the
number of shared variables, the number of shared varialdesaes, the number of
locks, and the number of data races. Columns 8-13 compate/theethods in terms
of the runtime, and the number of executed transitions, hachtimber of completed
execution traces. For DPOR, every completed trace (report€olumn 12) belongs to
a distinct equivalence class of interleavings; howevenyra them are pruned away
by PDP since they are redundant as far as race detectionésicad. Columns 14-16
provide the following statistics of PDP: the number of rdiee checks, the number of
race-free check successes, and the number of skipped delckwints.

The results show that our PDP method is significantly moreiefit than DPOR in
pruning the search space. For all examples, PDP took significless time in either
finding the same data race or proving the race freedom; théauaf transitions/traces
that PDP has to check during the process was also signifjcemthller. Although the

14

Table 1. Comparing the performance of two race detection algorittwiih 1 hour time out)

Test Program Runtime (s)# of Trans (k) # of Traces||Race-free Chk
name [loc [thrd]gvaf accglock]racd] dpor[PDP| dpor| PDP| dpor| PDP [[chkd yeq skip
fdrd2 66 | 2 3l 3 21 3 1 2| 0.6 89 14| 88 75 75
fdrd4 66 | 2 3l 3 21 11 3| 10 41 233 68|| 232165 165
gsort 743| 2 2(2000 5| 0 17, 8| 12 8 4 1 2 2| 2
pfscan-goofd918| 2 | 21 118 4| 0 179 15/ 71 10| 2519 182| 398217 21
pfscan-bug| 918| 2 | 21] 39 4| 1 3 1 1 1 3y 10| 5/ 5 6
aget-0.4 |1098 3 5 720 1/ 0 183 1) 103 0.1 3432 1| 6/ 6 9
aget-0.4 109§ 4 5 78 1/ 0 >1h 1 -l 0.1 - 1 9] 9 18
aget-0.4 (1098 5 5 84 1/ 0 >1h 1 -l 0.1 - 1| 12| 12| 30
bzip2smp (6358 4 9] 18 3| 0 128 3 63 2| 1465 45| 48 5 5
bzip2smp (6358 5 9| 18 3|0 203 4 99 2| 231§ 45| 48 5 7
bzip2smp (6358 6 9| 18 3|0 287 4| 135 2| 3167 45| 48 5 9
bzip2smp2 |6358 4 9/ 269 3|0 291 136 63 21| 1573 45| 48 5/ 5
bzip2smp2|6358 5 9l 269 3|0 487 155 85| 21 2532 45| 48 5| 7
bzip2smp2 (6358 6 91269 30 672 164 116 21| 3491 45| 48 5 9
bzip2smp2|63589 10| 9| 269 3| 0 || 1435 183 223 21| 7327 45| 48 5| 17

average time for PDP to complete one execution is longer BROR, e.g., 4066 ms
vs. 195 ms as indicated by data from the last row of Table 1 {dube overhead of
tracking branch begin/end and other auxiliary transitjotie overhead in PDP is well
compensated by the skipped executions due to propertyrpieing.

6 Conclusions

We have proposed a new data race detection algorithm thatinesthe power of dy-
namic model checking with property driven pruning based dochkset analysis. Our
method systematically explores concrete thread interlgawf a program, and at the
same time prunes the search space with a trace-based cathaeanalysis. It is both
sound and complete (as precise as the DPOR algorithm); aathe time, it is signif-
icantly more efficient in practice, allowing the techniqoestale much better to real-
world applications. For future work, we would like to extetiné proposed framework
to check other types of properties. Since race detectiorpi®blem of simultaneous
reachability of two transitions, the techniques developec: should be readily appli-
cable to checking deadlocks and many other simple safepepties.

References

[1] A. Bouajjani, J. Esparza, and O. Maler. Reachabilitylgsia of pushdown automata: Ap-
plication to model-checking. Iimternational Conference on Concurrency Thegogges
135-150. Springer, 1997. LNCS 1243.

[2] F. Chen and G. Rosu. Parametric and sliced causalityCdmputer Aided Verificatiogn
pages 240-253. Springer, 2007. LNCS 4590.

(3]

[4]
[5]
(6]
[7]
(8]
[9]
(10]

(11]

(12]
(13]

(14]

(15]

(16]
(17]
(18]
(19]

(20]

(21]

(22]
(23]

(24]

15

E. M. Clarke and E. A. Emerson. Design and synthesis o€lsgamnization skeletons using
branching time temporal logic. IRroceedings Workshop on Logics of Programpages
52-71, Berlin, 1981. Springer-Verlag. LNCS 131.

D. Engler and K. Ashcraft. RacerX: effective, staticeletton of race conditions and dead-
locks. INACM Symposium on Operating Systems Principeges 237-252. ACM, 2003.
C. Flanagan and P. Godefroid. Dynamic partial-ordeuntidn for model checking soft-
ware. InPrinciples of programming languagesages 110-121, 2005.

C. Flanagan, K. Leino, M. Lillibridge, G. Nelson, J. Saxend R. Stata. Extended static
checking for java. IfPLDI, pages 234-245, 2002.

M. Ganai, S. Kundu, and R. Gupta. Partial order reductiorscalable testing of SystemC
TLM designs. InDesign Automation Conferenc2008.

P. Godefroid. Partial-Order Methods for the Verification of ConcurrentsBsms - An Ap-
proach to the State-Explosion Proble@pringer, 1996. LNCS 1032.

P. Godefroid. Software model checking: The VeriSoftiageh.Formal Methods in System
Design 26(2):77-101, 2005.

G. Holzmann, E. Najm, and A. Serhrouchni. SPIN modet&irgy: An introductionSTTT,
2(4):321-327, 2000.

V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Guptast Bnd accurate static data-
race detection for concurrent programs. domputer Aided Verificatigrpages 226—239.
Springer, 2007. LNCS 4590.

N. Leveson and C. Turner. Investigation of the ther&ca2cidents. IEEE Computer
26(7):18-41, 1993.

A. W. Mazurkiewicz. Trace theory. |Advances in Petri Netpages 279-324. Springer,
1986. LNCS 255.

M. Musuvathi and S. Qadeer. CHESS: Systematic strestingeof concurrent soft-
ware. InSymposium on Logic-Based Program Synthesis and Transfionmpages 15-16.
Springer, 2006. LNCS 4407.

G. Necula, S. McPeak, S. Rahul, and W. Weimer. Cil: Imiediate language and tools
for analysis and transformation of ¢ programs. Iiternational Conference on Compiler
Construction pages 213-228. Springer, 2002. LNCS 2304.

N. Nethercote and J. Seward. Valgrind: A program suigesa framework. Electr. Notes
Theor. Comput. Sgi89(2), 2003.

P. Pratikakis, J. Foster, and M. Hicks. LOCKSMITH: cexttsensitive correlation analysis
for race detection. IIPLDI, pages 320-331. ACM, 2006.

J. P. Quielle and J. Sifakis. Specification and verifaabf concurrent systems in CESAR.
In Proceedings of the Fifth Annual Symposium on Programniifg1l.

A. Salcianu and M. Rinard. Pointer and escape analysisnultithreaded programs. In
Principles and Practices of Parallel Programmingages 12-23. ACM Press, 2001.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, andnide&son. Eraser: A dynamic
data race detector for multithreaded programGM Trans. Comput. SysiL5(4):391-411,
1997.

K. Sen, G. Rosu, and G. Agha. Detecting errors in mukigllled programs by generalized
predictive analysis of executions. Formal Methods for Open Object-Based Distributed
Systemgpages 211-226. Springer, 2005. LNCS 3535.

J.Voung, R. Jhala, and S. Lerner. RELAY: static racec@on on millions of lines of code.
In Foundations of Software Engineeringpges 205-214. ACM, 2007.

Y. Yang, X. Chen, and G. Gopalakrishnan. Inspect: A RnatModel Checker for Multi-
threaded C Programs. Technical Report UUCS-08-004, Usityesf Utah, 2008.

Y. Yang, X. Chen, G. Gopalakrishnan, and R. Kirby. Effiti stateful dynamic partial order
reduction. INSPIN Workshop on Model Checking Softwa@08.

