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Figure 1: Images of a scene with smooth surfaces and constant
isotropic radiance. Although pictorially simple, these scenes chal-
lenge most SFM algorithms because of the lack of photometrically
distinct “features”.

Abstract

We describe an algorithm for reconstructing the 3D shape
of the scene and the relative pose of a number of cameras
from a collection of images under the assumption that the
scene does not contain photometrically distinct “features”.
We work under the explicit assumption that the scene is
made of a number of smooth surfaces that radiate constant
energy isotropically in all directions, and setup a region-
based cost functional that we minimize using local gradient
flow techniques.

1 Introduction

We address the problem of estimating the shape of a scene
and the relative pose of a collection of cameras from a num-
ber of images. This is one of the classical problems of com-
puter vision, known as structure from motion (SFM), and
extensive literature exists, for which we refer the reader to

∗Work supported by NSF IIS-0208197/CCR-0133736, ONR N00014-
02-1-0720, and AFOSR F49620-03-1-0095.

the textbook [4]. Most of the existing work1 in SFM con-
centrates on the case where the scene contains a number of
photometrically distinct “features”, that can be associated to
geometric primitives, such as points or lines, in the scene.
When this is the case, feature correspondence across im-
ages can be established in a number of ways (again, see [4]
for details), at which point the problem becomes purely ge-
ometric, and the framework of epipolar geometry captures
the essential relationships among corresponding points in
the images and their relation to the three-dimensional struc-
ture of the scene.

In this paper, we concentrate on scenes that do not fit
in this general scheme, in the sense of not having any pho-
tometrically distinct “point features”, such as the scene in
figure 1. We operate under the explicit assumption that the
scene is composed of smooth surfaces that support a con-
stant radiance function, which projects onto the image to
yield a piecewise smooth irradiance. These scenes chal-
lenge the most common algorithms for recovering SFM2.
We assume that the internal parameters of the cameras are
known, and we seek to infer the shape of the scene, rep-
resented by a description of the surface of each object in
some Euclidean reference frame, as well as the relative pose
of the cameras. Since we cannot rely on individual point
correspondences, we set up a cost functional that aims at
matching regions, and integrate the irradiance over the en-
tire domain of each image. We then develop gradient-based
algorithms to estimate both the shape of the scene and the
relative pose of the cameras.

1.1 Relation to previous work

In [25], a method is proposed to solve the multi-frame shape
reconstruction of a smooth shape with constant radiance
as the joint region segmentation of a collection of cali-
brated images. The reconstruction was remarkably robust
with respect to image noise and deviation from the assumed

1There are exceptions, which we discuss in section 1.1.
2Techniques that address this type of scenes by checking the photo-

consistency of each “voxel” are available, although most require precise
knowledge of the position of the cameras (algorithms that exploit the oc-
cluding boundaries to estimate both shape and camera pose are also avail-
able; see section 1.1 for more details).
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piecewise constant radiance assumption, but also particu-
larly sensitive to (extrinsic) calibration errors, thereby re-
quiring precise positioning of the cameras. We extend their
results to allow the position and orientation of each camera
to be unknown, and therefore part of the inference process.
Therefore, we estimate simultaneously surface shape, con-
stant radiance, and camera motion. Our work is also closely
related to the variational approach to stereo reconstruction,
championed by Faugeras and Keriven [3]. They also as-
sume the camera positions to be known, and therefore our
work can be interpreted as a special case of of [3], extended
to allow arbitrary camera pose. It should be note that our
approach, like [3, 25, 16], is based on gradient descent al-
gorithms, and therefore we always assume that the rough
positioning of the cameras is available to be used as initial
conditions to the algorithms. Therefore, our algorithm can
be interpreted as a “refinement step” of the results of any
multi-frame stereo calibration or structure from motion al-
gorithm. However, the initialization needs not be precise.
In section 4 we will show results obtained by initializing
the camera positions and orientation by hand. Similarly,
this work relates to shape carving techniques [5], since the
reconstruction is achieved by evolving a volume in a way
that is consistent with the image data. We explicitly en-
force smoothness constraints, and therefore our approach
does not work for arbitrary objects. However, for objects
that satisfy the assumptions, our approach exhibits signifi-
cant robustness to measurement noise. Furthermore, to the
best of our knowledge, motion estimation has not been ad-
dressed within the context of shape carving, where the cam-
eras are assumed to be calibrated. Since we assume constant
or smooth radiance, most of the shape information concen-
trates at the occluding boundaries, and therefore our work
relates to the literature on shape from silhouettes [2]. That
work has indeed been extended to allow inference of camera
motion as well as scene shape [1], although that was done
within the framework of epipolar geometry. We estimate
motion directly using a gradient procedure, and therefore
do not require establishing correspondence between (real
or virtual) points. Nevertheless, it should be noticed that
the conditions for unique reconstruction are, of course, the
same, and therefore we are subject to the same constraints as
in silhouette-based methods. For instance, a unique camera
motion cannot be recovered in the presence of symmetries
of the object. Nevertheless, the shape can still be recovered,
albeit relative to an unknown reference frame.

For the computational methods it uses, this paper is also
related to a wealth of contributions in the field of region-
based segmentation, starting from Mumford and Shah’s pi-
oneering work [6], and including [11, 24, 14, 15, 18, 20,
21, 22, 23, 13]. Our numerical implementation is based on
Osher and Sethian’s level set methods [8].

1.2 Outline and contributions of this paper

In Section 2, we will review the model proposed in [25]
for joint image segmentation and shape reconstruction for a
calibrated stereo rig. In section 3 we will extend this model
to estimate motion parameters. Although this extension is
conceptually straightforward, in practice its implementation
is entirely non trivial; we report the calculations in section
3, which constitutes the original contribution of this paper,
and discuss the implications in section 3.1. The resulting
algorithms are tested on real and synthetic image sequences
in section 4.

2 Reconstruction for calibrated cam-
eras (review)

In [25], a model for joint image segmentation and shape
reconstruction has been proposed. It is assumed that the
scene is composed of a number of smooth, closed surfaces
supporting smooth Lambertian radiance functions (or dense
textures with spatially smooth statistics) and the back-
ground, which occupies the rest of the image. Under these
assumptions, a subset of brightness (or texture) discontinu-
ities correspond to occluding boundaries. These assump-
tions make the image segmentation problem well-posed, al-
though not general.

2.1 Notation

Let S to be a smooth surface inR3 with local coordi-
nates(u, v) ∈ R2. Let dA be its Euclidean area ele-
ment, i.e. dA = ‖Su × Sv‖; X = [X, Y, Z]T the co-
ordinates of a generic point onS. We measuren images,
Ii, i = 1, 2, . . . , n and are given the internal calibration pa-
rameters, so that the camera is modeled as an ideal per-
spective projection:πi : R3 → Ωi;X 7→ xi, where
xi = [xi, yi]T = [Xi/Zi, Yi/Zi]T , Ωi ⊂ R2 is the do-
main of the imageIi, with area elementdΩi. We will use
Xi = [Xi, Yi, Zi]T to representX in the “camera coordi-
nates” with respect to thei-th camera.X andXi are related
by a rigid body transformation, described by an element of
the Euclidean groupgi ∈ SE(3), represented in coordi-
nate by a rotation matrixRi ∈ SO(3) and a translation
vectorTi ∈ R3, so that3 Xi = giX = RiX + Ti. We
describe the backgroundB as a sphere with angular coordi-
natesΘ = (θ, η) ∈ R2 that may be related in a one-to-one
manner with the coordinatesxi of each image domainΩi

through the mappingΘi. We assume that the background
supports a radiance functionh : Θ → R+ and the sur-
face supports another radiance functionf : S → R+. We

3The reader will pardon an abuse of notation, since we mix the motion
gi and its representation(Ri, Ti); this is done for convenience of notation.
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define the regioñΩi = πi(S) ⊂ Ωi and denote its comple-
ment byΩ̃c

i . Although the perspective projectionπi is not
one-to-one (and therefore not invertible), the operation of
back-projecting a pointxi from Ω̃i onto the surfaceS can
be defined by tracing the ray starting from thei-th camera
center and passing throughxi, and defining the first inter-
section point as the back-projection ofxi ontoS. Therefore,
with an abuse of notation we denote this back-projection by
π−1

i : Ω̃i → S;xi 7→ X.
In order to infer the shape of a surfaceS, one can

impose a cost on the discrepancy between the projection
of a model surface and the actual measurements. Such
a cost,E, depends upon the surfaceS as well as upon
the radiance of the surfacef and of the backgroundh, as
well as the motiongi (through the projectionπi): E =
E(f ,h, S, g1, . . . , gn). For simplicity, we indicate byg the
collection of camera motionsg1, . . . , gn. One can then ad-
just the shape of the model surface and radiances to match
the measured images. Since the unknowns (surfaceS and
radiancesf ,h) live in an infinite-dimensional space, we
need to impose regularization. Therefore, the cost func-
tional is a weighted average of three terms:E(f ,h, S) =
Edata(f ,h, S) + αEgeom(S) + βEsmooth(f ,h, S) where
α, β ∈ R+. The data fidelity termEdata(f ,h, S, g)
quantifies the discrepancy between measured images and
the images predicted by the model. For simplicity, we
compute it in the sense ofL2 on the image domain
by Edata =

∑n
i=1

∫
Ω̃i

(
f(π−1

i (xi)) − Ii(xi)
)2

dxi +
∑n

i=1

∫
Ω̃c

i

(
h(Θi(xi))−Ii(xi)

)2
dxi. Esmooth(f ,h, S) and

Egeom(S) measure the smoothness of the radiance func-
tions and the surface respectively. They are given
by Egeom =

∫
S

dA = area(S), and Esmooth =∫
S
‖∇Sf‖2dA +

∫
B
‖∇h‖2dΘ, where∇S denotes the in-

trinsic gradient on the manifoldS. (The exact definition and
details on its computation can be found in [10]).

2.2 Computation of the gradient flow (re-
view)

The data fidelity term may be measured To facilitate the
computation of the variation with respect toS, we express
these integrals over the surfaceS. This can be done using
the characteristic functionsχi(X) = 1 if X visible from the
i-th camera andχi(X) = 0 otherwise. The data termEdata

is therefore given by:

nX
i=1

Z
Ωi

ρ2
i (xi) dxi +

Z
Ω̃i

��
f(π−1

i (xi))− Ii(xi)
�2 − ρ2

i (xi)
�

dxi

=
nX

i=1

Z
Ωi

ρ2
i (xi) dxi +

Z
S
χi(X)(ρ̃2

i (X)− ρ2
i (πi(X)))σi(X, N) dA

where ρ̃i(X) = f(X) − Ii(πi(X)) and ρi(xi) =
h(Θi(xi))−Ii(xi). We use the fact that̃Ωi is the projection

of S in the i-th image and that the area measuredxi of the
image is related to the area measuredA of the surface by
dxi = (Xi ·Ni)/Z3

i dA, whereN is the inward unit normal
to S, andNi is N with respect to the coordinates of thei-th
camera.σi(X, N) is a shorthand notation for(Xi ·Ni)/Z3

i .
In the simpler case where both radiance functionsf andh
are constant, the overall cost functional can be simplified to:

Econstant = α

∫

S

dA +
n∑

i=1

∫

Ωi

ρ2
i (xi) dxi

+
n∑

i=1

∫

S

χi(X)(ρ̃2
i (X)− ρ2

i (πi(X)))σi(X, N)dA.

This simplification relates to the approach of Chan and Vese
[24] who considered a piece-wise constant version of the
Mumford-Shah functional for 2-D images in the level set
framework [17, 19].

The gradient flow of the cost functionalE has been de-
rived in [25]. The flow corresponding to the data fidelity
term is given by

dS

dt
=

1

z3

�
(f−h)

�
(I−f)+(I−h)

�
(∇χ·S)+2χ(I−f)(∇f ·S)

�
N

(1)

Notice that this flow depends only upon the image values,
not the image gradient, which makes it more robust to im-
age noise when compared to other variational approaches to
stereo (i.e. less prone to become “trapped” in local minima).

The gradient flow corresponding to the smoothness term,
also derived in [25], is given by

dS

dt
=

(
II(∇Sf ×N)− ‖∇Sf‖2H)

N (2)

where the second fundamental form of∇Sf × N is com-
puted as

II(∇Sf ×N) =
f2
ug − 2fufvf + f2

v e

EG− F 2

and the coefficientse, f , g of the second fundamental
form are given bye = 〈N, Suu〉, f = 〈N,Suv〉, and
g = 〈N, Svv〉 and the coefficients of the first fundamental
form areE =Su · Su, F =Su · Sv, G=Sv · Sv.

The term∇χ · S must be defined in the distributional
sense because the characteristic functionχ is discontinuous.
It can be shown that

∇χ · S = −κu‖S‖2δ(S ·N) (3)

where κu denotes the normal curvature ofS in the u-
direction (the directionS whereS · N = 0). The overall
flow can be computed by summing the flow corresponding
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to each component of the cost functional. For the case of
constant radiance, for instance, one gets

dS

dt
=

1
z3

(f − h)
[
(I − f) + (I − h)

]
(∇χ · S)N

= −κu‖S‖2
z3

(f − h)
[
(I − f) + (I − h)

]
δ(S ·N)N.

3 Evolving the motion parameters

We now consider the same energy functionalE as a func-
tion of the motion parametersgi ∈ SE(3). We will use the
exponential parameterization ofSE(3) via the twist coor-
dinatesξi ∈ R6. The parameterization is established by a
map fromR6 to the Lie algebrase(3) via ξi 7→ ξ̂i, which
is exponentiated to lead the motiongi = exp(ξ̂i) ∈ SE(3).
The reader can consult [7] for more details on twists and
exponential coordinates for rigid motions.

What matters, however, is that we can represent locally
g with a six-parameter vectorξ. We will denote the local
parameterization viagi = gi(ξ) whereξ = (ξi1, . . . , ξi6)
for each camera imageIi. Notice that the only term in our
energy functionalE which depends uponξi is the corre-
sponding fidelity term inEdata (due to the dependence of
π−1

i andΘi onξi): Edata,i(S, f ,h, ξi) is therefore given by
∫

Ω̃i

(
f(π−1

i (x̄))−Ii(x̄)
)2

dxi+
∫

Ω̃c
i

(
h(Θi(x̄))−Ii(x̄)

)2
dxi

(4)
If we let c̄i = ∂Ω̃i denote the boundary of̃Ωi then we may
express the partial derivative ofE with respect to one of
the calibration parametersξij . ∂E

∂ξij
is given by the sum of

three terms: a boundary term, a foreground term and a back-
ground term, given respectively byZ

c̄i

��
f(π−1

i (x̄))− Ii(x̄)
�2 − �h(Θi(x̄))− Ii(x̄)

�2�
 ∂ c̄i

∂ξij
, n̄i

�
ds̄

2

Z
Ω̃i

�
f(π−1

i (x̄))− Ii(x̄)
��∇S f

�
π−1

i (x̄)
�
,

∂

∂ξij
π−1

i (x̄)

�
dxi

2

Z
Ω̃c

i

�
h(Θi(x̄))− Ii(x̄)

��∇Bh
�
Θi(x̄)

�
,

∂

∂ξij
Θi(x̄)

�
dxi

In the boundary term,ds̄ denotes the arc-length measure
of c̄i, andn̄i denotes its outward unit normal. In the fore-
ground term,∇S denotes the natural gradient operator on
the surfaceS, while in the background term,∇

B
denotes the

gradient operator with respect to the angular coordinates of
the backgroundB.

It is convenient to express the contour integral around
c̄i(s̄) in the image plane as a contour integral aroundCi(s)
on the surfaceS instead, (whereπi(Ci)= c̄i and wheres is
the arc-length parameter ofCi). They are related by

〈 ∂ c̄i

∂ξij
, n̄i

〉
ds̄ =

〈
∂

∂ξij
πi(Ci),

∂

∂s
Jπi(Ci)

〉
ds,

where J =
[

0 1
−1 0

]
and, therefore, the expression

above is given by

1

z3
i

*
∂xi

∂s
,

24 0 −zi yi

zi 0 −xi

−yi xi 0

35 ∂xi

∂ξij

+
ds

=
1

z3
i

D∂xi

∂s
,

∂xi

∂ξij
× xi

E
ds =

1

z3
i

D ∂xi

∂ξij
,xi × ∂xi

∂s

E
ds

=
‖xi‖
z3

i

D ∂xi

∂ξij
, Ni

E
ds

sincexi and ∂xi

∂s are perpendicular tangent vectors toS.
Thus, the boundary term written as an integral on the sur-
faceS (along the occluding contourCi) has the following
form.

∫

Ci

((
f − Ii

)2 − (
h− Ii

)2
)‖xi‖

z3
i

〈 ∂gi

∂ξij
, Ni

〉
ds (5)

The first step in rewriting the foreground/background inte-
grals is to re-express the derivative of the back-projected
3D point x = π−1

i (x̄, gi) with respect to the calibration
parameterξij in terms of the derivative of the forward pro-
jection πi(x, gi) = π(gi(x, gi)), sinceπi has an analytic
form while π−1

i does not. We begin by fixing a 2D im-
age point x̄ and note that̄x = πi

(
x(x̄, gi), gi

)
where

x(x̄, gi) = π−1
i (x̄, gi) = g−1

i

(
π−1(x̄), gi

)
and thus dif-

ferentiation with respect toξij yields:

0 =
∂

∂ξij
πi

�
x, gi

�
=

∂πi

∂x

∂x

∂ξij
+

∂πi

∂ξij

=
1

z2
i

�
zi 0 −xi

0 zi −yi

�
∂gi

∂x

∂x

∂ξij
+

1

z2
i

�
zi 0 −xi

0 zi −yi

�
∂gi

∂ξij�
zi 0 −xi

0 zi −yi

�
∂gi

∂x

∂x

∂ξij
= −

�
zi 0 −xi

0 zi −yi

�
∂gi

∂ξij
(6)

Notice, though, that (6) does not uniquely specify∂x/∂ξij

but merely gives a necessary condition. We must supple-
ment (6) with the additional constraint that∂x/∂ξij must
be orthogonal to the unit normalN of S at the pointx in
order to obtain a unique solution.

∂x
∂ξij

·N = 0 (7)

Now, combining equations (6) and (7), we have24 zi 0 −xi

0 zi −yi

Nix Niy Niz

35 ∂gi

∂x

∂x

∂ξij
= −

24 zi 0 −xi

0 zi −yi

0 0 0

35 ∂gi

∂ξij

∂x

∂ξij
= −

�
∂gi

∂x

�−1 �
I − xi ⊗Ni

xi ·Ni

�
∂gi

∂ξij
(8)

The second step proceeds in the same manner as outlined
earlier in rewriting the data fidelity terms inEdata by noting
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that the measure in the image domaindxi and the area mea-
sure on the surfacedA are related bydxi = σ(xi, Ni) dA
whereσ(xi, Ni) = (xi ·Ni)/z3

i .

2

Z
Ω̃i

�
f − Ii

��∇S f
�
π−1

i (x̄)
�
,

∂

∂ξij
π−1

i (x̄)

�
dxi

= 2

Z
π−1

i (Ω̃i)

�
f − Ii

��∇S f(x),
∂x

∂ξij

�
xi ·Ni

z3
i

dA

The integrand above can be written more explicitly as

−
�
f−Ii

�
z3

i

�
∇S f(x),

�
∂gi
∂x

�−1 �
(xi ·Ni)

∂gi
∂ξij

−
�

∂gi
∂ξij

·Ni

�
xi

��
A similar derivation can be followed for the background
term. The calculations above yield the gradient of the cost
functionalE with respect to the local coordinates of the mo-
tion parametersξ, ∂E

∂ξ . This is transformed into a vector in
the tangent space to the motion parametersg via the lifting

to the Lie algebra,̂(∂E
∂ξ ) ∈ se(3). The evolution of the mo-

tion parameters is finally given by The final expression for
the flow with respect to the local coordinates of the motion
parameters is given by

dg

dt
=

(̂
∂E

∂ξ

)
gdt (9)

To complete the algorithm, one or more steps of the flow (9)
are alternated to one or more steps of the flow (1), until the
value of the cost functional reaches steady state (it is easy
to prove that, with an appropriate choice of step-size, every
step lowers the value of the cost functional).

3.1 Uniqueness, or lack thereof

Note that the flow converging to steady-state guarantees that
the shape and motion parameters convergesomewhere, but
in general it does not guarantee that they converge to the
correct shape or relative pose of the camera. For instance,
consider the case of a sphere, imaged by a number of cam-
eras distributed around a circumference centered at the cen-
ter of the sphere. The image of the scene in each camera
is identical, and therefore there is no way to tell where the
cameras are. Nevertheless, one can conclude from the im-
ages that the scene is a sphere (assuming the cameras are
in general position), and minimize the discrepancy of the
model image (the projection of the estimated sphere) from
the measured images.

More in general, Euclidean symmetries in shape will
generate ambiguities in the estimates of relative pose. One
can have continuous symmetries (such as in the example of
the sphere) or discrete symmetries (such as in the case of a
homogeneous cube).

Nevertheless, if one is interested in the shape of the
scene, regardless of the positioning of the camera, the alter-
nation of the flow (9) and (1) will indeed provide an estimate
of shape that simultaneously explains each given image.
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Figure 2:Value of total squared reprojection error (Edata in our
cost functional) initially as only the shape is evolved while fix-
ing the camera poses given by an external calibration procedure
(solid line, 500 steps) and subsequently as the camera poses are
also evolved (dotted line, 150 steps). Units are the sum over all
pixels in each image of the squared intensity differences between
the pixel and model intensities (units are109).

In general, a full-fledged analysis of the uniqueness of
the minimizers of the functional we describe is well beyond
the scope of this paper. However, some conclusions may
be drawn from the analysis of SFM for the case of point
features, for which we refer the reader to [4].

Naturally, since the algorithm we propose is a gradient
flow, convergence is only guaranteed locally, since the al-
gorithm can get trapped in local minima. However, in every
experiment we have performed, some of which are reported
in the next section, we have seldom experienced conver-
gence to local minima despite coarse initialization.

4 Experiments

In figure 1 we show a few images of a test scene meant
to challenge the assumptions common to most SFM algo-
rithms. Our scheme is design to work under these assump-
tions.

In figure 3 we show the evolution of the estimate of shape
if the pose of the cameras is taken to be the result of an
external calibration procedure, and the significant improve-
ment that follows when the camera pose is allowed to vary
and is part of the inference process. This improvement is
quantified in figure 2.

In figure 4 we show the reprojection error, i.e. the best
estimate of shape projected onto the image according to the
best estimate of the camera pose, for when the camera pa-
rameters are fixed (top) or allowed to vary (middle). To
emphasize the improvement that follows the evolution of
the motion parameters, we also show the reprojection error
when the true shape, but wrong parameters, are used.

Finally, to emphasize the importance of incorporating
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Figure 3:Evolution of the estimate of shape when the camera pose is fixed with an external calibration procedure (top, after 0, 50, 100,
300 and 500 steps); evolution of estimate of shape joined with the estimate of the motion parameters (middle, after 30, 60, 90, 110 and 150
steps); final estimate from several viewpoints (bottom).

Figure 4:Reprojection error when the camera pose is fixed with an external calibration procedure (top), and when camera pose is estimated
along with scene shape (middle). Reprojection error for the correct shape if the camera parameters were fixed (bottom).
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the segmentation procedure behind our model asduring the
process of shape reconstruction and pose estimation rather
than as a “first step”, we show in figure 4 the results of con-
structing the visual hull directly from the segmented im-
ages. Such a procedure, which relates much more directly to
space carving and shape-from-silhouettes than our approach
may seem quite tempting since the images are individually
easy to segment. However, as can be seen in the figure,
the final reconstruction obtained using this serial method of
“first segment then reconstruct” suffers terribly in the pres-
ence of calibration errors. To highlight this point we also
show the visual hull reconstruction using the final updated
camera poses obtained after the evolution illustrated in the
previous figures.

5 Conclusions

We have presented an algorithm to estimate the shape of
a scene composed of smooth surfaces with constant radi-
ance as well as the relative pose of a collection of cameras.
We define a cost functional that penalizes the discrepancy
between the measured images and the projection of the es-
timated model onto the image, as well as regularizing terms
to enforce the smoothness assumptions. We define a gradi-
ent flow procedure that is guaranteed to minimize (locally)
the cost functional. As the experiments show, our algorithm
is very robust to image noise and to the initialization of the
scene shape. It does require initialization of the relative
pose of the cameras, although a manually inputed guess is
usually sufficient. It performs well under the assumptions it
is designed for. It does not work when the scene has non-
smooth radiance, a condition that allows other algorithms
for SFM to work well.
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