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Abstract

Maps can be used to display the relationship between location and a response variable. In
this basic form, there is one map to be displayed. Often times there are additional factors that
could a�ect the response variable. In this case, it is of interest to simultaneously view the spatial
relationships and the dependence of the response variable on the additional factors. Because
the additional factors will be multi-valued, the number of maps to display can be very large.
This large number of maps presents a challenge for e�ectively presenting the information on the
discrete plane of the computer screen. We propose a method that addresses this problem. The
method draws one map whose display depends on the values of one or more factors (conditioning
variables). As the values of the conditioning variables change, the information displayed on the
map is calibrated in real-time.

1 Introduction

The conditional density function accurately represents the variation of one variable, z1, given the
value of a second variable, z2. This conditional density,

f(z2jz1) = f(z1; z2)=
Z
f(z1; z2)dz2;

may be explored graphically or algebraically. If a parametric form is not known for the joint density
f(z1; z2), from which f(z2jz1) is derived, then nonparametric multivariate density estimation (Scott,
1992) may be used to accurately estimate the density.

Spatial data present some interesting opportunities and challenges. Here, the variables z1 and z2
vary over space (x; y) and may be re-written as z1(x; y) and z2(x; y). Often, these data are collected
on an irregular mesh (such as county boundaries) and are presented as a choropleth map (Tufte,
1990; Tobler, 1978). Choropleth maps are constant over the counties, and hence discontinuous
between counties. The result can be a map that misrepresents the underlying spatial process. A
more accurate approach would be to smooth the data.
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Two issues arise. First, when may one smooth such data? Certainly the choropleth map is accu-
rate, but if in fact the data values are subject to measurement error, or if the underlying process may
be usefully viewed as continuous, then smoothing may be appropriate. A nonparametric smooth is
provided by the Nadaraya-Watson estimator (Watson, 1964; Altman, 1993). Such an estimator is
similar to kriging procedures, but does not invoke a number of spatial process assumptions.

The second and more challenging question is the simultaneous consideration of z1(x; y) and
z2(x; y). For example, in the Atlas of United States Mortality (Pickle et al 1996), an appendix
is provided on pages 208-209 of "correlate variables by county" (poverty level, college education,
hispanic origin, and urbanization level). One might imagine that certain cancers are related to
these variables, but as separate maps, the "correlation" is left to the sophisticated reader. Nu-
merous attempts to use two aspects of display (such as hue and saturation, or color gridding) to
indicate simultaneous levels of z1 and z2 are often surprisingly di�cult to "read". For example,
cancer incidence might be grouped into terciles, and poverty rates grouped into terciles, giving 9
"simultaneous conditions" that can be represented on a choropleth map. A "smooth" map would
be interesting, provide more detail, and give a broader view of the "correlation". Here we discuss
one such mapping technique based upon the averaged shifted histogram, and we illustrate its use.
Our basic idea is to extend and combine the estimates z1(x; y) and z2(x; y) into a single multivariate
quantity z1(x; y; z2) which can be displayed for several values of z2 over a regular mapping surface.
The utility of this idea is explored below.

2 Averaged Shifted Histogram

A basic and familiar graphic for displaying the probability density function of continuous data is the
histogram. The appearance of a histogram is determined by three items: the data, bin-width, and
origin. Because the ASH is the average of many histograms, each with a di�erent origin, it removes
the need to select a starting point. The averaged histograms use the same data and bin-width.
The basics of the ASH as a density estimator and regressor are covered below. The theoretical and
computational properties of this estimator have also been studied (Scott 1992). We chose to use
the ASH because it is both computationally and statistically e�cient.

2.1 ASH Density Estimation

Let f̂1; f̂2; : : : ; f̂m be a set of m histograms, each having bin width h. The origin of f̂i is equal to
(i � 1)h=m. By convention, the initial bin origin is equal to 0. The most basic de�nition of the
ASH is given by

f̂ASH(x) =
1

m

nX
i=1

f̂i(x):

Because the ASH is piecewise constant over the intervals [k�; (k+1)�], it is possible to generalize
the ASH. In the above notation, � � h=m. The interval above is de�ned to be Bk , the kth bin, and
has height, or bin count, �k . Using these de�nitions, the height of the ASH in B0 is an average of
the heights from m shifted histograms. Therefore, the height of bin B0 is

�1�m + : : :+ �0
nh

;



where n is the number of data points. Following from this, a general form for the ASH is

f̂(x;m) = 1

nh

Pm�1
i=1�m(1�

jij
m
)�k+1 for x 2 Bk :

If (1� jij
m
) is regarded as a weight, then the general ASH can use arbitrary weights. In this case,

the ASH is calculated using

f̂(x;m) = 1

nh

Pm�1
i=1�m wm(i)�k+1 for x 2 Bk :

In order that the ASH integrates to 1, the wm(i) must sum to m. A simple way to achieve this is
to de�ne the weights as

wm(i) = m
K(i=m)Pm�1

j=1�mK(j=m)
;

where K is a continuous function de�ned on (�1; 1).

2.2 ASH Regression

Non-parametric regression, or smoothing (Scott, 2000; Scott and Whittaker, 1996), has seen a large
amount of attention in statistical literature. These smoothing techniques have also been applied to
spatial data (Whittaker and Scott, 1994; Whittaker and Scott, 1999). We propose to expand this
work by implementing animated maps instead of static maps. The computational and statistical
properties of the ASH make it ideal for spatial data.

Because the ASH is usually associated with density estimation, the regression case will be
formulated as a density estimation problem. In particular, the conditional density of z given
another variable x is of interest. This conditional density can be written as

f(zjx) =
f(z; x)

f(x)
:

In a regression setting, the expected value of Z given X (E[ZjX ]) is to be predicted. Using the
conditional density formula, the conditional expected value is

r(x) = E[ZjX = x] =
Z
zf(zjx)dz =

R
zf(z; x)dz

f(x)
:

To formulate an ASH estimator of r(x), additional notation is necessary. Let hx be the bin
width and mx be the number of shifts. Then, using hx and mx, de�ne �x = hx=mx. Let x1; : : : ; xn
represent the midpoints on a mesh separated by a distance of �x. Let �j represent the number of
data points falling in bin j. The weights are given by

wa =
K(a=mx)P
aK(a=mx)

;

where �mx < a < mx. Let zj be the average of the z values that correspond to all data points x
falling in bin j.

Using the above notation, the ASH estimate of E[ZjX = x] is calculated by

r̂(x) =
P

a
wa�j+azj+aP
a
wa�j+a

for x 2 Bj :



This notation is easily extended to a two dimensional grid representing coordinates on a map.
Furthermore, the extension to a grid of any number of dimensions is straight forward. Because the
grid can be in any dimension, the ASH is not limited to using only location to predict a response.
Additional covariates, such as time or demographic data, can be used in conjunction with location.
Theoretical results and algorithms for the ASH regressor have been developed (Scott, 1992).

3 Mapping Challenges

Often times theoretical results consider cases that are much less complex than those encountered
in applications. The challenges presented by map data are not an exception. In the proceeding
sections, some of these challenges are described. At this time, the optimal solutions to these
challenges are not known. These open problems are areas for interesting research.

3.1 Conditioning

From the previous sections, it was seen that regression can be formulated as a conditional density
estimation problem. The x and y location variables are two conditioning variables. These condi-
tioning variables are di�erent in the sense that their values will always be visualized on the map
display. However, when other conditioning variables (covariates) are considered, how should one
display the map to accurately represent the value of the conditioning variables and the response?

There are several known methods for implementing conditioning with statistical graphics. The
most basic is slicing. Slicing considers a single value of the conditioning variable. The graphic is
then drawn keeping the conditioning variable �xed at that value. Although this technique can be
useful, there are drawbacks to its use. Because conditioning variables are often continuous, there
are an in�nite number of graphics that can be drawn. Which of these in�nite possibilities should
be displayed? By using animation, a �nite number of graphics can be displayed. Animation is
achieved in the following manner. As the value of the conditioning variable changes, the graphic
is updated to reect the current value of the conditioning variable. If the changes are updated in
real-time, an animation e�ect will be produced.

Another conditioning technique is coplots (Cleveland, 1993). Instead of a single value of the
conditioning variable, Cleveland considers a subset. The observations that fall within this subset
are used to create the graphic. Several subsets that span the range of the conditioning variable are
considered. A graphic is drawn for each of these subsets. How are the subsets selected? The equal-
count algorithm (Cleveland, 1993) is one method for creating the subsets. For one conditioning
variable, the equal-count algorithm creates subsets that are overlapping line segments. The union
of the line segments spans the range of the conditioning variable. The subsets are overlapping
hyper-boxes for many conditioning variables. Because coplots creates a �nite number of graphics,
it possible to create static graphics that span the range of a conditioning variable. The static nature
of coplots has two attractive properties. First, a static graphic can be printed. Second, because the
entire range of the conditioning variable is visualized in a single view, one does not have to rely on
memory to make comparisons.

A technique that combines animation and coplots is dynamic coplots (Wojciechowski and
Harner, 1995). This method combines coplots and animation, receiving the bene�ts of both meth-
ods. A �nite number of subsets are calculated by the equal-count algorithm. As the subsets are



cycled through, the graphic is updated to reect the current subset value. This cycling creates an
animation e�ect across a �nite number of graphics.

Another technique that is a generalization of coplots and dynamic coplots is continous con-
ditioning (Wojciechowski and Scott, 2000). Similar to dynamic coplots, this technique combines
coplots with animation. However, continuous conditioning generalizes the conditioning subset. In-
stead of a line segment or hyper-box, continuous conditioning allows the subset to be of any form.
Thus, the conditioning subset could be a point, ellipsoid, or a union of disjoint sets. The distances
the observations are from the subset determine the appearance of the graphic.

Although these conditioning methods have been used for statistical graphics, such as the scatter-
plot. Their use in mapping applications is limited. Therefore, there is an open frontier for applying
these conditioning methods to displaying spatial relationships on maps. This is an opportunity for
inventive and exciting research.

3.2 Border Constraints

Often times in statistics, observations are assumed to take on values within a well-de�ned range. Al-
though, borders on maps can be accurately determined, they are not the typical types of boundaries
found in statistics. Not accounting for boundaries can result in a less accurate representation of the
data. Although, irregular boundaries has been studied for kernel density estimation (Staniswallis,
Messer, and Finston, 1990), it is not clear how to implement a solution that is both statistically
and computationally e�cient for an animated mapping application.

3.3 Aggregated Data

Related to border constraints is aggregated data. Often times map data is available only at certain
levels of resolution. The resolution could be at the country, state, county, or census tract level.
In this case, there would be one measurement for each unit. This poses an interesting question.
Where is the data located? An obvious answer is to place the data points at the centers of the
polygons representing the units. However, this can clearly misrepresent the data. As an example,
consider population on a state level. It would not be accurate to place New York's population at
the center. This creates two scenarios that are open for investigation. First, if no extra information
is available, is it optimal to place the data point at the center? Second, if extra related information
is available, how can this information be used to more accurately place the data point?

3.4 Performance

Because the goal is to produce animated maps, performance is a critical issue. To begin with, the
ASH produces a grid across the range of the location space. It is possible that a large portion of
the location space contains bins without data. To save on computational burden, it is desirable to
eliminate these bins from being drawn or stored in memory. Because the ASH algorithm allows an
empty bin to be easily detected, there is no need to add an additional procedure that searches and
eliminates empty bins.

With using an o�-the-shelf geographic information system, peformance of the software is an
issue. Currently, the ASH has been implemented for predicting a response only using location. The
o�-the-shelf software is relatively slow at producing a static graphic. The speed is not adequate for



animation and either the o�-the-shelf software will have to be extended, or a customized solution
will have to be produced. These options are currently being pursued.

4 Summary

Creating a map that accurately represents the spatial relationships and dependence on other co-
variates is a challenging task. These challenges invoke several interesting topics to be studied. One
of these is the optimal method for accounting for borders. Although, some work has been done in
this area, it is not known how to implement this in an e�cient and accurate manner for animating
maps. Another area is aggregated data. Where should the data points be place when the data
corresponds to an area and not to a single location? A third issue is computation. Because the
ASH relies on binning, it has performance advantages for spatial data. Furthermore, the ASH is
also statistically e�cient, resulting in a relatively accurate estimate. Even with these advantages,
the computational burden of producing an animation, will require some in-house software to be
developed. Creating animations based on other covariates also presents several interesting areas of
study. Exploring di�erent methods of conditioning is anticipated to provide interesting results for
mapping applications.

5 Future Directions

The initial stage of this project explored di�erent options for smoothing maps and implemented a
basic demo using o�-the-shelf software. This demo created a static map that has been smoothed
using the ASH. The next obvious step is to implement an animated map that allows additional
covariates to be used for prediction. Because the o�-the-shelf software had relatively slow perfor-
mance for the static maps, it is necessary to explore other options for creating the animations.
Developing conditioning techniques will be a part of implementing the animation.

To produce \good" graphics, one inherently assumes that the data is \good". If the quality of
the data is in question, so is the message delivered by the graphic. Therefore, statistical methods
that perform well even when the data contains anomalies are necessary. Robust methods have
this type of stability and are a solution to this problem. This problem is recognized and work
has been done on two general robust methods. One of these is the L2E estimator (Scott, 2001;
Wojciechowski and Scott, 1999). Another method is a simulation technique (Wojciechowski, 2001).
These methods are useful for two separate, but related, purposes. First, it is desirable to reduce
the e�ect of anomalous observations. Second, it is of interest to identify observations that are
outlying. For instance, identify which regions of the country have relatively large cancer rates. It
is anticipated that these methods will pre-process the data in the background.
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