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ABSTRACT 

Software architecture descriptions are high-level models of 
software systems. Some researchers have proposed special- 
purpose architectural notations that have a great deal of 
expressive power but are not well integrated with common 
development methods. Others have used mainstream 
development methods that are accessible to developers, but 
lack semantics needed for extensive analysis. We describe an 
approach to combining the advantages of these two ways of 
modeling architectures. We present two examples of 
extending UML, an emerging standard design notation, for 
use with two architecture description languages, C2 and 
Wright. Our approach suggests a practical strategy for 
bringing architectural modeling into wider use, namely by 
incorporating substantial elements of architectural models into 
a standard design method. 
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1 INTRODUCTION 
Architecture-based software development is an approach to 
designing software in which developers focus on one or more 
high-level models of the software system rather than program 
source code. Architectural models include elements such as 
software components, communication mechanisms, states, 
processes, threads, hosts, events, external systems, and source 
code modules [6, 9, 10, 17, 23, 241. Relationships between 
these elements address such issues as message passing, data 
flow, resource usage, dependencies, state transitions, causality, 
and temporal orderings. The basic promise of software 
architecture research is that better software systems can be 
achieved by modeling their important aspects during 
development. Choosing which aspects to model and how to 
evaluate them are two decisions that frame software 
architecture research [13]. 

Part of the software architecture research community, 
primarily academics, has focused on analytic evaluation of 
architecture descriptions. Answering difficult evaluation 
questions demands powerful modeling and analysis 
techniques that address specific aspects in depth. By paying 

the cost of making a detailed model, developers gain the 
benefit of knowing the answers to these questions. In this 
sense, software architecture descriptions serve primarily as 
input to analysis tools. For example, determining the 
possibility of deadlock requires specialized, formal models of 
the possible behavior and communication of each thread of 
control [3]. However, the emphasis on depth over breadth of 
the model can make it difficult to integrate these models with 
other development artifacts, because the rigor of formal 
methods draws the modeler's attention away from day-to-day 
development concerns. The use of special-purpose modeling 
languages has made this part of the architecture community 
fairly fragmented, as revealed by a recent survey of 
architecture description languages [ 141. 

Another par1 of the community, primarily from industry, has 
focused on choosing which aspects to model. Modeling the 
wide range of issues that arise in software development 
demands a family of models that span and relate the issues of 
concern. By paying the cost of making such models, develop- 
ers gain the benefit of clarifying and communicating their 
understanding of the system. In this sense software architec- 
tures serve primarily as the "big picture" of the system under 
development. For example, upgrading a database application 
requires an understanding of the various lands of users and 
their respective tasks, the data schema, and the application's 
software components and their interfaces. However, empha- 
sizing breadth over depth potentially allows many problems 
and errors to go undetected, because lack of rigor allows 
developers to ignore certain details. Several competing nota- 
tions have been used in this part of the community, but they 
share central concepts, have been tempered by mainstream 
use, and have been formalized to some extent [4, 251. There 
now exists a concerted effort to standardize methods for 
object-oriented analysis and design [16]. 

Standardization provides an economy of scale that results in 
more and better tools, better interoperability between tools, 
more available developers who are skilled in using that 
notation, and lower overall training costs. When special- 
purpose notations are needed, they can often be based on, or 
related to, standard notations. Doing so provides them with 
some of the benefits of the standard, and allows for more 
direct comparison and evaluation in terms of the value added 
by the special-purpose notation. 

We use the Unified Modeling Language (UML) [I81 as a 
starting point for bringing architectural modeling into wider 
use. UML is well suited for this because it provides a useful 
and extensible set of predefined constructs, it is semi-formally 
defined, it has substantial tool support, and it is based on 
experience with mainstream development methods. The next 



section describes UML and our strategy for adapting it to our 
needs. Sections 3 and 4 provide examples of adapting UML 
with semantics specific to two ADLs, C2 and Wright. 
Section 5 expands on our approach and contrasts it to related 
work. Section 6 discusses the contributions of our approach: 
specifically, it is a way to integrate the power of ADLs with the 
day-to-day usefulness of UML; and more generally, it 
suggests a practical strategy for achieving partial integration of 
architectural models as needed for specific development tasks. 

2 UML AND ITS EXTENSION MECHANISMS 

2.1 UML Background 
A UML model of a software system consists of several partial 
models, each of which addresses a certain set of issues at a 
certain level of fidelity. There are eight issues addressed by 
UML models: (1) classes and their declared attributes, 
operations, and relationships; (2) the possible states and 
behavior of individual classes; (3) packages of classes and their 
dependencies; (4) example scenarios of system usage 
including kinds of users and relationships between user tasks; 
(5) the behavior of the overall system in the context of a usage 
scenario; (6) examples of object instances with actual attributes 
and relationships in the context of a scenario; (7) examples of 
the actual behavior of interacting instances in the context of a 
scenario; and (8) the deployment and communication of 
software components on distributed hosts. Fidelity refers to 
how close the model will be to the eventual implementation of 
the system: low-fidelity models tend to be used early in the 
life-cycle and be more problem-oriented and generic, whereas 
high-fidelity models tend to be used later and be more solution- 
oriented and specific. Increasing fidelity demands effort and 
knowledge to build more detailed models, but results in more 
properties of the model holding true in the system. 

The UML is a graphical language with well-defined syntax and 
semantics. The syntax of the graphical presentation is specified 
by examples and a mapping from graphical elements to ele- 
ments of the underlying semantic model [20]. The syntax and 
semantics of the underlying model are specified semi-formally 
via a meta-model, descriptive text, and constraints [19]. The 
meta-model is itself a UML model that specifies the abstract 
syntax of UML models. This is much like using a BNF gram- 
mar to specify the syntax of a programming language. For 
example, the UML meta-model states that a Class is one kind 
of model element with certain attributes, and that a Feature is 
another kind of model element with its own attributes, and that 
there is a one-to-many composition relationship between them. 
Semantic constraints are expressed in the Object Constraint 
Language (OCL) which is based on first-order predicate logic 
[21]. Each OCL expression is evaluated in the context of some 
model element (referred to as "self') and may use attributes 
and relationships of that element as terms. OCL also defines 
common oper&ons on sets and bags, and constructs for tra- 
versing relationships so that attributes of other model elements 
may also be used as terms. Traversing a one-to-many or many- 
to-many relationship results in a set of instances. Several 
examples of OCL constraints are given below. 

2.2 UML Extension Mechanisms 
UML is an extensible language in that new constructs may be 
added to address new issues in software development. Three 
mechanisms are provided to allow limited extension to new 
issues without changing the existing syntax or semantics of 

the language. (1) Constraints place semantic restrictions on 
particular design elements. (2) Tagged values allow new 
attributes to be added to particular elements of the model. 
(3) Stereotypes allow groups of constraints and tagged values 
to be given descriptive names and applied to other model 
elements; the semantic effect is as if the constraints and 
tagged values were applied directly to those elements. 

Figure 1 presents an example of using UML to model part of a 
human resources system. A company employs many workers, 
offers many training courses, and owns many robots. Robots 
and employees are workers. Labor union contracts constrain 
companies such that robots may not make up more than 10% 
of the work force. A training course contains many trainees, 
and each trainee may take from 1 to 4 courses. In this 
example, Trainee is an interface (a set of operations) rather 
than a full class. An employee is capable of performing all the 
operations of Trainee. 

Suppose we wish to impose the design constraint that "a 
person may not be a composite element of another class," in 
other words, "a person must be the whole in any whole-part 
relationships." This does not prevent a person from 
participating in containment relationships, only composite 
relationships. In UML, containment (white diamond) 
indicates that one object is temporarily subordinate to one or 
more others, whereas composition (black diamond) indicates 
that an object is subordinate to exactly one other object 
throughout its life-time. In this example, composition would 
mean that employees could not participate in any other 
aggregates and never work for another company. Constraints 
may be applied directly to a class or, as we have done here, 
constraints may be applied to a stereotype (e.g., Person) and 
the stereotype applied to a class (e.g., Employee). The 
constraint may be stated formally in OCL as: 

Stereotype Person for instances of meta-class Class 
[ I ]  If a person is in any composite relationship, it must be the composite. 
self .oclType.assccEd. form (myErd I 

mymd. association. assocW->exists (anymd I 
mymd.aggregation = ccarposite) inplies 
myi3-d.aggregation = ccnposite) 

Note: The above constraint is sufficient because the UML already 
constrains associations to have at most one composite end. 

The labor union rule uses terms from the model to constrain 
the state of the system at run-time. In contrast, the Person 
stereotype uses terms from the UML meta-model to constrain 
the model of the system. Traversing the "oclType" association 
allows us to refer to the meta-model, rather than the design at 
hand. Figure 2 shows the parts of the UML meta-model used 
in this paper. We have simplified the meta-model for purposes 
of illustration, but all the constraints we define can be easily 
rewritten for use with the complete meta-model. 

(self .robot->size) / (self .mrker->size) < 0.10 

I 

Figure 1. An example design expressed in UML 



Note: All classes are subclasses of 
ModelElement (except ModelElement itself). 
This relationship is not shown. 

Figure 2. Simplified UML Meta-Model (Adapted from 1191) 

2.3 Our Strategy for Adapting UML 

One straightforward approach to using an ADL with UML is 
to define an ADL-specific meta-model. This approach has 
been used in more comprehensive formalization of 
architectural styles [ l ,  121. Defining a new meta-model helps 
to formalize the ADL, but does not aid integration with 
standard design methods. By defining our new meta-classes as 
subclasses of existing meta-classes we would achieve some 
integration. For example, defining Component as a subclass of 
meta-class Class would give it the ability to participate in any 
relationship in which Class can participate. This is basically 
the integration that we desire. However, this integration 
approach requires modifications to the meta-model that would 
not conform to the UML standard, therefore we cannot expect 
UML-compliant tools to support it. 

For the reason above, we restrict ourselves to using UML's 
built-in extension mechanisms on existing meta-classes. This 
allows the use of existing UML-compliant tools to represent 
the desired architectural models, and style conformance 
checking when OCL-compliant tools become available. Our 
basic strategy is to 

choose an existing meta-class from the UML meta-model 
that is semantically close to an ADL construct, then 
define a stereotype that can be applied to instances of that 
meta-class to constrain its semantics to that of the ADL. 

In the next two sections, we demonstrate this strategy and 
illustrate the results with example specifications. 

3 INTEGRATING UML AND C2 

3.1 Overview of C2 

C2 is a software architecture style for user interface intensive 
systems [24]. C2 SADL is an ADL for describing C2-style 
architectures [12, 141; henceforth we use "C2" to refer to the 
combination C2 and C2 SADL. In a C2-style architecture, 
connectors transmit messages between components, while 
components maintain state, perform operations, and exchange 
messages with other components via two interfaces (named 
"top" and "bottom"). Each interface consists of a set of 
messages that may be sent and a set of messages that may be 
received. Inter-component messages are either requests for a 

component to perform an operation, or notijications that a 
given component has performed an operation or changed state. 

A C2 component consists of four internal parts. An internal 
object stores state and implements the operations that the 
component provides. A wrapper on the internal object 
monitors all requested operations and sends notifications 
through the bottom interface. A dialog specification maps 
from messages received to operations on the internal object. 
Optionally, a translator may modify some messages so as to 
match those understood by other components, thus adapting a 
component to fit into a particular architecture. 

In the C2 style, components may not directly exchange 
messages; they may only do so via connectors. Each 
component interface may be attached to at most one 
connector. A connector may be attached to any number of 
other components and connectors. Request messages may 
only be sent "upward" through the architecture, and 
notification messages may only be sent "downward." 

The C2 style further demands that components communicate 
with each other only through message-passing, never through 
shared memory. Also, C2 requires that notifications sent from 
a component correspond to the operations of its internal 
object, rather than the needs of any components that receive 
those notifications. This constraint on notifications helps to 
ensure substrate independence, which is the ability to reuse a 
C2 component in architectures with differing substrate 
components (e.g., different window systems). The C2 style 
explicitly does not make any assumptions about the language 
in which the components or connectors are implemented, 
whether or not components have their own threads of control, 
the deployment of components to hosts, or the communication 
protocol used by connectors. 

Figure 3 shows an example C2-style architecture. This system 
consists of four components and two connectors. One 
component is a database server, two are graphical user 
interfaces (GUI) to the database, and one is a window-system 
binding. One GUI is for posing queries, viewing result, and 
malung updates. The other GUI is for configuring the database 
server. When either user interface is used to request a 
modification, a request message is sent upward to the 
connector, and then to the database. When the database 
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Figure 3. An example C2 architecture for a database application 

performs an operation, a notification message is sent to the 
connector and is ultimately received by both GUI 
components. This style of component interaction is influenced 
by Model-View-Controller designs and supports multi-user 
systems and multi-view interfaces [g]. 

UML provides constructs for modeling software components, 
their interfaces, and their deployment on hosts. However, these 
built-in constructs are not suitable for describing C2-style 
software architectures because they assume both too much and 
too little. Components in UML are assumed to be concrete 
executable artifacts that take up machine resources such as 
memory. In contrast, C2 components are conceptual artifacts 
that decompose the system's state and behavior. C2 
components may be implemented by concrete components, 
but they are not themselves concrete. Furthermore, 
components in UML may have any number of interfaces and 
any internal structure, whereas C2 components must follow 
the C2-style rules. Since "vanilla" UML does not fit our needs, 
.<t: will adapt it to express several aspects of the C2 style. 

3.2 C2 Operations in UML 

The UML meta-class Operation matches the C2 concept of a 
message specification. UML Operations consist of a name and 
a parameter list (which may contain returned values). 
Operations indicate whether they will be provided or required 
(i.e., they may be received or sent). Operations may be public, 
private, or protected. To model C2 message specifications we 
add a tag to differentiate notifications from requests and 
constrain Operation to have no return values. C2 messages are 
all public, but that constraint is built into the UML meta-class 
Interface used below. 

Stereotype C20peration for instances of meta-class Operation 
[I] C20perations are tagged as either notifications or requests. 
c2MsgTyp : enun ( notification, request ) 

[2] C2 messages do not have return values. 
self .pramter->forAll (p I p. kind <> return) 

3.3 C2 Components in UML 
The UML meta-class Class is closest to C2's notion of 
component. Classes may provide multiple interfaces with 
operations, may own internal parts, and may participate in 
associations with other classes. However, there are aspects of 
Class that are not appropriate, namely, they may have methods 
and attributes. In UML, an operation is a specification of a 
procedural abstraction (i.e., a procedure signature with 
optional pre- and post-conditions), while a method is a 
procedure body. Components in C2 provide only operations, 
not methods, and those operations must be part of interfaces 
provided by the component, not directly part of the 
component. Furthermore, a C2 conceptual component is 
assumed to have no state other than the state of its internal 
parts, and thus may have no direct attributes. 

Stereotype C2Interface for instances of meta-class Interface 
[ I ]  A C2 interface has a tagged value identifying its position. 
c2pos : enurn ( tap, bottcm ) 

[2] All C2Interface operations must have stereotype C20peration. 
self . c c l W  .-tian->£om (0 I o.stereotype = amtian) 

Stereotype C2Component for instances of meta-class Class 
[I] C2Components may not directly contain features (i.e., methods, 
operations, or attributes). 
self.oclType.feature->size = 0 

[2] C2Components must implement exactly two interfaces, which 
must be C2Interfaces, one top, and the other bottom. 
self.oclType.interface->size = 2 and 
self. oclType. interf ace->forAll (i 1 
i.stereotype = C2Interface) and 

self. cclType. interface->exists (i I i . c2pos = tap) and 
self. ocll'ype. interface->exists (i I i. c2pos = bttcm) 

[3] Requests travel "upward" only. i.e., they are sent through top 
interfaces and received through bottom interfaces. 
Let topInt = self.oclType.interface->select(i I 

i . capos = tap) , 
Let btInt = self.oclType.interface->select(i I 

i .c2pos = kottan) , 
topmt. operation->fordl (o I 
(0.c2MsgType = request) inplies o.dir = require) and 

botInt. operation->ford1 (o I 
(0.c2Msg'Qpe = request) inplies o.dir = prwide) 

[4] Notifications travel "downward" only. Similar to the constraint above. 

[S] Each C2Component has one instance in the running system. 
self.dllInstances->size = 1 

[6] C2Components participate in at most four whole-part 
relationships named internalobject, wrapper, dialog, and translator. 
Let tholes = self.oclType.assocW->select( 

aggregation = ccarposite), 
(whole->size <= 4) and 
((*oles.association.m->asset) - Set ( 

"internalObjecta , "wrapper", "didlog", 
"translator"))->size = 0 

[7] Each operation on the internal object has a corresponding 
notification which is sent from the component's bottom interface. 
Let aps = self. internalobject. f eature->select ( f I 

f->isKindDf (Operation) ) , 
Let btInt = self. oclType . interface->select (i I 

i. c2pos = bttan) , 
aps->forAll(ap I 
b m t - w d s t s  (note I 
(op.nam = note.= and 
op .parameter = note .parameter) inplies 

mte.dir = rquired and mte.- =notificatim)) 

3.4 C2 Connectors in UML 

C2 connectors share many of the constraints of C2 
components. One difference is that they do not have any 
prescribed internal structure. Components and connectors are 
treated differently in the architecture composition rules 
discussed below. Another difference is that connectors may 
not define their own interfaces; instead their interfaces are 
determined by the components that they connect. 

We can model C2 connectors using a stereotype C2Connector 
that is similar to C2Component. Below, we reuse some 
constraints and add two new ones. But first. we introduce three 
stereotypes for modeling the attachments of components to 
connectors. These attachments are needed to determine 
component interfaces. 



Stereotype C2AttachOverComp for instances of meta-class Association 
[ I ]  C2 attachments are binary associations. 
self.oclType.assoc&d->size = 2 

[2] The first end of the association must be to a C2 component. 
Let ends = self. oclType . assocmd, 
ends[l] .nultiplicity = "1. .l" and 
ends[l].class.stereotype = C2Ccprponent 

[3] The second end of the association must be to a C2 connector. 
Let erds = self. oclType. assoclbd, 
ends [2] .multiplicity = "1. .I" and 
ends [2 ] .class. stereotype = C2Connector 

Stereotype C2AttachUnderComp for instances of meta-class 
Association. Same as C2AttachOverComp, except that the first end must 
be to a connector, and the second end must be to a component. 

Stereotype C2AttachConnConn for instances of meta-class Association 
[ I ]  C2 attachments are binary associations. 
self.oclType.assochd->size = 2 

121 Each end of the association must be on a C2 connector. 
self .oclType.assochd->£oral (ae I 
ae .dtiplicity = "1. .I" ard 
ae.class.stereotype = C2Cmector) 

[3] The two ends are not both on the same C2 connector. 
se l f .oclType.ass~[ l ] .c lass  o 

self.oclType.assocEr~l[21.class 

Stereotype C2Connector for instances of meta-class Class 
[I-51 Same as constraints 1-5 on C2Component. 

[6] The top interface of a connector is determined by the 
components and connectors attached to its bottom. 
Let tcplht = self .ocllLpe.interface->seled(i I i.c2p3s = tcp) , 
Let downAttach = self.oclType.assocmd.associa- 

tion->select (a I a.assocmd[2] = self.oclType) , 
Let tcpsIntsBelaw = ~ t t a c h . a s s ~ [ l ] . i n t e r -  

face->select (i I i .c2pos = top) , 
topsmtsBelow.qxzation->asset = topInt.operation->asset 

[7] The bottom interface of a Connector is determined by the components 
and connectors attached to its top. This is similar to the constraint above. 

3.5 C2 Architectures in UML 
Now we turn our attention to the overall com~osition of 
components and connectors in the architecture of a system. 
Recall that well-formed C2 architectures consist of 
components and connectors, components may be attached to 
one connector on the top and one on the bottom, and the top 
(bottom) of a connector may be attached to any number of 
other connectors' bottoms (tops). Below, we also add two new 
rules that guard against degenerate cases. 

Stereotype C2Architecture for instances of meta-class Model 
[I] A C2 architecture is made up of only C2 model elements. 
self .oclType.mJdelElanent->forAll (me I 
me.stereotype = CZCcmpnent or 
me.stereotype = C2Connector or 
m.stereotype = C2AttachCverCarp or 

[2] Each C2Component has at most one C2AttachOverComp. 
Let carps = self. oclType .rrcdelElemnt->select (me I 

me.stereotype = C2Ccmpnent) , 
ccnps->forAll(c I 

c. assocn?d. association->select (a I 
a.stereotype = C2AttachUnderCcnp)->size <= 1) 

note sent updated() 
rqst rcvd adminMode() 
note sent adminMode0 
rqst rcvd changeschema() 

r ZConn ton  
Eonn-8ne 

I 1 

note rcvd adminMode() I ,st sent changeScheia() I 
note rcvd changedSchema() 

note rcvd updated() 
note rcvd adminMode() 

Figure 4. C2 architecture from Figure 3 expressed in UML 

[3] Each C2Component has at most one C2AttachUnderComp. 
Similar to the constraint above. 

[4] C2Components do not participate in any non-C2 associations. 
Let carps = self.ocl?Lpe.mDdelElanent->select(me ( 

me. stereotype = C2Carponent) , 
carps . assocEd. association-> £oral (a I 
a. stereotype = C2AttachOveztcnp or 
a. stereotype = C2AttachVnderCw) 

[5] C2Connectors do not participate in any non-C2 associations. 
Let cams = self.oclType.rrcdelElemnt->select(me I 
me. stereotype = C2Connector) , 

conns . assocmd. association->feral (a I 
a. stereotype = C2AttachoverCcnp or 
a. stereotype = C2AttachUnderCmp or 
a.stereotype = C2AttachConnCm) 

[6] Each C2Component must be attached to some connector. 
Let carps = self. oclType.nodelElemmt->select (me I 

me. stereotype = C2Ccnponent) , 
carps->£oral (c I 

c. assocmd. association->size > 0) 

[7] Each C2Connector must be attached to some connector or component. 
Let conns = self. oclType. elmts->select (e I 

e.stereotype = C2Comector), 
corms->£oral (c I 

c.assocmd.association->size > 0) 

3.6 Example C2 Architecture 

Figure 4 shows the UML graphical notation for the same 
system shown in Figure 3 to illustrate the C2 style. We show 
some operations and omit others as needed to clarify the 
discussion below. Each element is marked with its stereotype 
in small double angle brackets. Alternatively, UML allows 
icons to be used to denote the stereotype. 

Given a C2 architecture that is modeled in UML, it can be 
related to other standard UML model elements that are 
commonly used in software development. Figure 5 makes 
explicit our assumptions about the kinds of users who will use 
this system and their tasks. Figure 6 is a sequence diagram 
showing how the system behaves in the context of a particular 
use case. Explicitly modeling these aspects of the system 
enhances C2's support for component-based development of 
systems with complex user interfaces. 
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Figure 5.  Some use cases for the example database system 

Figure 6. Sequence diagram for Disable User Access 

3.7 Benefits of Integrating UML and C2 
Adapting UML to enforce the C2-style rules has been fairly 
straightforward, because many C2 concepts are found in 
UML. Neither C2 nor UML constrain the choice of 
implementation language or require that any two components 
be implemented in the same language. Neither C2 nor UML 
constrain the choice of GUI toolkits or inter-process 
communication mechanisms. Neither C2 nor UML (as we 
have used it) assume that any two components run in the same 
thread of control or on the same host. Both C2 and UML limit 
communication to message passing and include specifications 
of messages that may be sent and received. Although we did 
not model details of the internal parts of a C2 component or 
the behavior of any C2 constructs, we feel those aspects of C2 
could be modeled in UML. In fact, we provide an example of 
modeling behavior in the next section. 

Some concepts of C2 are very different from those of UML 
and object-oriented design in general. For example, main- 
stream object-oriented design has a strict dichotomy between 
classes and instances. Since each class may have multiple 
instances, associations between classes may have multiplicity 
greater than one (e.g., there could be any number of employ- 
ees in Figure 1). Furthermore, the features of an instance are 
declared in its class. In contrast, the interface of a C2 connec- 
tor is determined by context rather than declared, and the addi- 
tion of a new component instance at run-time is considered an 
architectural change. We addressed this difference by demand- 
ing that each C2 component and connector have exactly one 
instance. If a system uses two connectors, they must each have 
their own class in the design, although they may be imple- 
mented by the same concrete components. Another concep- 

tual difference is that it is legal for C2 messages to be sent and 
not received by any component, whereas UML assumes that 
every message sent will be received. We have declined to 
address this last difference since it introduces more complex- 
ity than we feel it merits. As will be discussed more in 
Section 5, our approach allows aspects of an ADL to be 
expressed in UML or left to special purpose tools as desired. 

4 INTEGRATING UML AND WRIGHT 

The preceding section demonstrated that an ADL that 
supports a specific architectural style can be modeled in UML. 
This section shows the applicability of our approach to a 
general-purpose ADL, Wright [2,3]. A more recent version of 
Wright also supports system families, architectural styles, and 
hierarchical composition. We do not address these newer 
features here, but believe that they could be incorporated into 
our model. 

An architecture in Wright is described in three parts: 
component and connector types; 
comnonent and connector instances: and 
configurations of component and connector instances. 

Unlike C2, Wright does not enforce the rules of a particular 
style, but is applicable to multiple styles. However, it still 
places certain topological constraints on architectures. For 
example, as in C2, two components cannot be directly 
connected, but must communicate through a connector; on the 
other hand, unlike C2, Wright disallows two connectors from 
being directly attached to one another. 

The remainder of the section describes an extension to UML 
for modeling Wright architectures. For brevity, stereotypes 
and constraints are elided whenever they are obvious from the 
discussion in this or the previous section. 

4.1 Behavioral Specification in Wright 

Wright uses a subset of CSP [7] to provide a formal basis for 
specifying the behavior of components and connectors, as 
well as the protocols supported by their interface elements. 
Given that this subset "defines processes that are essentially 
finite state" [2], it is possible to model Wright's behavioral 
specifications using UML's State Machines [20]. 

CSP processes are entities that engage in communication 
events. An event, e, can be primitive, or it can input or output a 
data item x (denoted in CSP with e?x or e ! x, respectively). 
CSP events are modeled in State Machines as shown in 
Figure 7. 

These two types of state transitions can be used in modeling 
more complex CSP expressions supported by Wright. Table 1 
presents the mapping from CSP to State Machines using events 
with no actions (Figure 7a); the mapping for null events with 
actions (Figure 7b) is straightforward. It is possible for CSP 
events to have no associated data (see Figure 8 below). In such 
a case, the semantics of State Machines force us to make a 
choice as to which entities generate events and which observe 
them. We choose to model Wright ports and roles (described 
below) with event-generating actions, and computation and 
glue with transitions that observe those events. 

The state machines in Table 1 can be used as templates fiom 
which equivalents of more complex CSP expressions can be 



Figure 7. (a) A CSP event with input data, e?x, is modeled in 
U M L  State Machines a s  a state transition event with no action. 
(b) A CSP event, e ,  with output data, e!x, is modeled a s  a null 
state transition event that results in action e. 

I C& Concept I CSPNotation I UML State Machine ( 
Prefixing P = a - + Q  I I 

Alternative 
(deterministic p . b + Q O  + n 

choice) 

Decision 
(non-deterministic p = d + Q n e + R 

choice) 

Parallel 
Composition 

Success Event 

Table 1 .UML State Machine templates for Wright's CSP constructs 

formed. Therefore, a "Wright" state machine is described by 
the following stereotypes. 

Stereotype WSMTransition for instances of meta-class Transition 
[ I ]  A transition is tagged as one of the two cases shown in Figure 7. 
Wtransiti- : enum ( w e n t ,  ac t ion  ) 

[2] An "event" transition consists of an event only (Figure 7a). 
self.oclType.WSMtransitionType = went inplies 

( s e l f  .ocl?lpe. went .oclIs?lrpe0f ( C a l l E v e n t )  and 
s e l f  .ocl?lpe.ActionSequence->size = 0) 

[3] An "action" transition consists of a null event and an action 
(Figure 7b). 
self.oclType.WSMtransitionTyp= = ac t ion  inplies 
(self.ocl?lpe.went->size = 0 and 
self.oclType.ActionSequence.Action->size = 1) 

Stereotype WrightStateMachine for instances of metaclass StateMachhe 
[ l ]  A WrightStateMachine consists of one of the composite states 
discussed above, and partially depicted in Table 1. Each simple 
state may be refined as another WrightStateMachine. This 
constraint is elided in the interest of space. 

[2] All WrightStateMachine transitions must be WSMTransitions. 
s e l f .  cclType. t r a n s i t i o n - > f o r d l  (t 1 t = WMTransition) 

4.2 Wright Component and Connector Interfaces in UML 

Each Wright interface (a port in a component or a role in a 
connector) has one or  more operations. In Wright, these 
operations are modeled implicitly, as part of a port or role's 
CSP protocol. We choose to model the operations explicitly in 
UML. The CSP protocols associated with a port or role are 
modeled as WrightStateMachines. 

Stereotype WrightOperation for instances of meta-class Operation 
[ I ]  WrightOperations do not have parameters; parameters are 
implicit in the CSP specification associated with each operation 
self.parameter->size = 0 

Stereotype Wrighthterface for instances of meta-class Interface 
[ I ]  WrightInterfaces are tagged as either ports or roles. 
WrightInterfaceTyp : enum ( port, r o l e  ) 

[2] All operations in a Wrighthterface are WrightOperations. 
s e l f .  ocl'ilpe.operation->fordl (o I 

o.stereotype = Wightweration) 

[3] Exactly one WrightStateMachine is associated with each 
WrightInterface. 
self.cclType.stateMachine->size = 1 and 
self.ocl?lpe.stat~ckine->forlill(s I 

s .s tereotype = WrightStateMachine) 

[4] In a Wrightlnterface, a WrightStateMachine is expressed only 
in terms of that interface's operations; these are operations on the 
state machine's call events. 
self.oclType.stateMachine.transition->foral(t I 
(t . event. oclIsTyp4f ( C a l l h r e n t )  ) irrplies 

s e l f . o c l ~ . o p e r a t i o n - w c i s t s ( o  I 
o = t .event .operat ion))  

A WrightInterface, as modeled above, specifies the alphabet 
of a port or role. 

4.3 Wright Connectors in UML 

A connector type in Wright is described as a set of roles, 
which describe the expected behavior of the interacting 
components, and a glue, which defines the connector's 
behavior, by specifying how its roles interact. 

We will model Wright connectors with the UML meta-class 
Class. Wright connectors provide multiple interfaces (roles) 
and participate in associations with other classes (Wright 
components). Wright connector types are assumed to have no 
state other than the state of their internal parts, and thus may 
have n o  direct attributes. 

Stereotype WrightGlue for instances of rneta-class Operation 
[I] WrightGlue is modeled as a WrightOperation. 
self.oclType,operation->forlill(o 1 

o.stereotype = WrightOperation) 

[2] WrightGlue contains a single WrightStateMachine. 
self.ocl~ype.stateMachine->size = 1 and 
s e l f  ,ocl!Pype.stateMackine->forAll (s ( 

s .s tereotype = WrightStateMachine) 

Stereotype WrightConnector for instances of meta-class Class 
[ I ]  WrightConnectors must implement at least one 
WrightInterfaceType, which must be a role. 
self .ocl~e. interface->size >= 1 and 
s e l f  .oclType. interface->forAll (i I 

i . s t e reo type  = WrightInterface and. 
i.WrightInterfaceType = role) 

[2] A WrightConnector contains a single glue, 
self.oclType.operation->size = 1 and 
s e l f  .oclType .operation->forMl (o I 

o.stereotype = WrightGlue) 

[3] Operations with no data and with input data that belong to the 
different interface elements of a connector are the trigger events in 
glue's state machine. 
s e l f  .oclType .operation. stateMachine. t r a n s i t i o n - > f o r d l  ( t  I 

(t  . event. oclIsTyp0f (Callhrent) ) inplies 
s e l f .  oclTyp=. in te r face .  o p e r a t i o n - w d s t s  (o  I 

o = t.went.0peratim-1)) 

[4] Operations with output data that belong to the different interface 
elements of a connector are the actions in glue's state machine. 
Similar to the above constraint. 



[5] The semantics of a Wright connector can be described as the 
parallel interaction of its glue and roles [2]. 
self.oclType.stateMachine->size = 1 and 
self. oclType. stateMachhe->forAll (sm I 
.sm.state->size = 1 and sn.state->forllll(s I 
s .oclType = Ccnposi testate and s .isCon-ent = true and 
sstate->size = 1 + self .oclType.interface->size a d  
s.state->exists (gs I 
gs = self.ocl~.aperatim.stateMachine,tap) and 

self .oclType. interface->forAll (i I 
s.state-dsts (rs I rs = i.state?-bchine.top)))) 

[6] A WrightConnector must have at least one instance in the 
running system. 
self.allInstances->size >= 1 

4.4 Wright Components in UML 

A component type is modeled by a set of ports, which export 
the component's interface, and a computation specification, 
which defines the component's behavior. We model Wright 
components in UML with a stereotype WrightComponent. 
This stereotype has much in common with the 
WrightConnector stereotype, and is thus omitted. 

4.5 Wright Architectures in UML 

We introduce stereotypes for modeling the attachments of 
components to connectors and for Wright architectures. Unlike 
C2, which considers architectures to be networks of abstract 
placeholders, Wright architectures are composed of compo- 
nent and connector instances. One solution we considered was 
to define WrightConnectorInstance and WrightComponentIn- 
stance stereotypes and express architectural topology in terms 
of them. However. we believe that it is undesirable to introduce 
instances at this level, since we are still dealing with design 
issues. Additionallv. we have found that most of the constraints , 

on component and connector instances can be expressed in 
terms of their corresponding types. Therefore, we refer to com- 
ponent and connector types in the stereotypes below.' 

Stereotype WrightAttachment for instances of meta-class Association 
[I] Wright attachments are associations between two elements. 
self.oclType.assocEh3->size = 2 

[2] One end of the association must be to a Wright component. 
Let ends = self.oclType.assocEnd, 
ends [l] .miLtiplicity = '1. .I" and 
ends [l] .class. stereotype = WrightCcarponent 

[3] The other end of the association must be to a Wright connector. 
Let roles = self.oclType.assccEd, 
ends [2] .miltiplicity = "1. .In and 
ends[2l.class.stereotype = Wrightconnector 

Stereotype WrightArchitecture for instances of meta-class Model 
[ l ]  A WrightArchitecture is made up of only Wright model elements. 
self .oclType.elmmts->forAll (e I 
e.stereotype = WrightCcqonent or 
e.stereotype = WrightConnector or 
e. stereotype = WrighfSttachent) 

[2] Each WrightComponent port participates in at most one 
WrightConnector role. 
Let carps = self.oclType.el-ts->select(e I 
e . stereotype = WrightCcqonent ) , 

ccarps. assochd->forAIl (ae I ae. linkhd->size = 1) 

[3] Each WrightConnector role is fulfilled by at most one 
WrightComponent port. Similar to the constraint above. 

[4] WrightComponents and WrightConnectors do not participate in any 
non-Wright associations. Similar to constraints [4-51 in Section 3.5. 

1 .The one exception is in constraints 2 and 3 of the Wrighthhitectm stereo- 
type: "IinkEnd" refers to an instance of a class (type). 

connector Pipe = 
role Writer = write + Writern close + J 
role Reader = 

let ExitOnly = close + J 
in let DoRead = (read + Reader 

read-eof + ExitOnly) 
in DoRead ll ExitOniy 

glue = let ReadOnly = Reader-read + ReadOnly 
Readerxead-eof 
+ Reader.close + J 

Reader.close + J 
in let WriteOnly = Writer.write + WriteOnly 

Writer.close + J 
in Writer.write +glue 

0 Readerread + glue 
Writer.close + ReadOnly 
Reader.close + Wri teOnly 

Figure 8. A connector specified in Wright (adapted from [2]) 

Reader 
DoRead 

Figure 9. UML State Machine model of the Pipe connector 

The semantics of port-role attachments in Wright are formally 
defined [3]. However, Wright places no language-level 
constraints on port-role pairs. Instead, establishing and 
enforcing these constraints is the task of external analysis tools. 
Hence, we provide no port-role compatibility constraints. 

4.6 Example Partial Wright Architecture 

Having provided an extension to UML for modeling Wright 
architectures, we now demonstrate how that extension is 
used to describe a Wright specification. Figure 8 shows the 
Pipe connector example from [2]. The UML State Machine 
model of the Pipe is shown in Figure 9. Wright's scoping of 
events is modeled in UML by prefixing every event's name 
with the name of the role to which the event belongs. The 



class diagram for Pipe is analogous to the C2 diagram shown 
in Figure 4, and has been omitted for brevity 

4.7 Benefits of Integrating UML and Wright 

Modeling an ADL such as Wright in UML provides benefits 
both to practitioners who prefer Wright as a design notation 
and to those who are more familiar with UML. Mapping a 
Wright architecture to UML enables a Wright user to leverage 
a wide number of general-purpose UML tools (e.g., code 
generation, simulation, analysis, reverse engineering, and so 
forth). On the other hand, being able to map a UML design of 
a system to Wright (by adhering to the constraints specified in 
this section) would enable a UML designer to utilize Wright's 
powerful analysis capabilities, such as interface compatibility 
checking and deadlock detection. 

5 CORE MODELS AND EXTENSIONS 
Notational standardization has a wide range of benefits, as 
discussed in the introduction. The challenge of standardization 
is finding a language that is general enough to capture needed 
concepts without adding too much complexity. It is tempting 
to extend the UML meta-model to fully capture each feature 
of each ADL. However, such a notation would be overly 
complex and incompatible with standard UML tools. There 
has never been a single programming language that served the 
needs of all programmers, and there is no reason to expect a 
single ADL to meet the needs of all software architects. This 
has led the software architecture community to attempt 
interchange rather than standardization of ADLs. 

ACME is an architecture interchange language that supports 
automatic transformation of a system modeled in one ADL to 
an equivalent model in another ADL [S]. This allows architects 
to model and analyze their system architecture in one ADL 
and then translate the model to another ADL for further 
analysis. Architects need not work directly with ACME; they 
may instead use the ADL and toolset that is most suited to the 
current issue of concern. ACME's approach is easier than 
providing direct mappings between pairs of ADLs because the 
ACME language serves as an intermediate step and provides 
additional tool support. ACME's architectural ontology plays 
a role analogous to UML's meta-model; however it is smaller 
and focuses on structural aspects of architectures. 

Full realization of ACMES goals presents a number of chal- 
lenges. Complete, automated translation among a set of ADLs 
requires a set of semantic mappings that involve every concept 
of every ADL in the set, which may not be possible given that 
different ADLs address different system aspects and have dif- 
ferent semantics. The translation approach depends on exploit- 
ing constructs common to every ADL. At this point, the evident 
commonalities are syntactic rather than semantic [14]. For these 
reasons ACME emphasizes a partial and incremental approach. 

ACME uses a seven element architectural ontology together 
with key-value pairs to represent arbitrary, uninterpreted 
architectural features and a template mechanism that leverages 
commonalities. Like ACME, our approach uses a fixed 
ontology (the UML meta-model), key-value pairs (tagged- 
values), and templates (stereotypes). However, UML provides 
much richer semantics due to its more comprehensive meta- 
model and its first-order predicate logic constraints. 

u ~ o d e l  Extension for Specific Concerns 

w ~ r o c e s s  Excursion for Specific Concerns 
Figure 10. (a) A core model with extensions 
(b) Sketch of an associated process 

A fundamental difference is that our approach does not use 
translation between notations, but rather uses a core model with 
several independent extensions. We use UML as our core model 
and assume that developers are able to use UML constructs, 
such as classes and use cases, in day-to-day development activi- 
ties. We extend this core model with specific attributes and con- 
straints as needed for specific analyses. As new issues of 
concern arise in development, new attributes may be added to 
support analyses relevant to those concerns. The semantics of 
the core model are always enforced by UML-compliant tools. 
The semantics of each extension are enforced by the constraints 
of that extension and the constraints imposed by the desired 
analyses. Dependencies and conflicts may arise between the 
attributes in different extensions, and must be handled by devel- 
opers just as they manage the other myriad dependencies and 
potential conflicts of software development. This situation is not 
ideal, but it is practical: it uses available methods and tools that 
are well integrated into day-to-day development, and it is incre- 
mental. We feel that these features are key to bringing the bene- 
fits of architectural modeling into mainstream use. 

In using a core model and extensions, the question arises of 
what should be in the core and what should be left to 
extensions. Technical considerations play some role in this 
decision. For example, ACME's simple architectural ontology 
eases tool building, whereas UML's larger meta-model 
presents a higher barrier. Development processes also 
influence the core model. For example, object-oriented design 
and use cases are widely used by practitioners and directly 
relate to day-to-day development activities. We choose UML 
as our core model because it is grounded in mainstream 
development practices, already has substantial tool support, 
and provides explicit extension mechanisms. 

Figure 10 sketches a process in which developers use the core 
model and some available extensions for day-to-day 
development concerns and take process excursions as needed to 
address specific architectural concerns identified during the 
main process. Information learned in excursions guides later 
decisions in the main process. Different concerns will arise as 
the main process progresses and model fidelity increases. For 
example, deadlock can only be addressed once system behavior 
is specified in detail. We envision developers using UML 
normally and ADL-specific tools as needed; an alternative 
process more suited to researchers might involve using an ADL 
normally and UML tools as needed (e.g., to generate code). 

6 CONCLUSIONS 
Further research into this approach will attempt to integrate 
UML with the semantics of other ADLs, apply object-oriented 
concepts such as polymorphism and inheritance to architectural 
elements [15], exploit more formal semantics [4, 251 and 



evaluate the effectiveness of the approach in practice. In 
addition to C2  and Wright, we have also investigated 
integrating UML with Darwin [ I  11 and Rapide [lo]. Each of 
these ADLs has certain aspects in common with UML, some of 
which can be expressed with UML's extension mechanisms, 
while others may be included in a UML specification but can 
only be interpreted by ADL-specific tools. 

From our experience to date, adapting UML to address 
architectural concerns seems to require reasonable effort, be a 
useful complement to ADLs and their analysis tools, and be a 
practical step toward mainstream architectural modeling. 
Using UML has the benefits of leveraging mainstream tools, 
skills, and processes. It may also aid in comparison of ADLs 
because it forces some implicit assumptions to be explicitly 
stated in common terms. 

Integrating architectural models into mainstream development 
methods is not simply a matter of convenience. Based on 
experience in complex system design, "mismatches between 
the systems models used by the R&D design team and those 
of the system engineer, manufacturer, and user have delayed 
delivery, raised costs, entailed product rework, and led to 
faulty failure diagnoses [22]." These problems arise when 
models become out of synch with the system and current 
design concerns, or when lessons learned in modeling are not 
communicated to developers. Integrating architectural models 
with standard design methods addresses both these issues. 
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