
In Proceedings of the 20th International Conference on Software Engineering (ICSEJ98), Kyoto, Japan, April 19-25, 1998.

Integrating Architecture Description Languages
with a Standard Design Method

Jason E. Robbins Nenad Medvidovic David F. Redmiles David S. Rosenblum
Dept. of Information and Computer Science

University of California, Irvine
Irvine, CA 92697

{jrobbins,neno,redmiles,dsr) @ics.uci.edu

ABSTRACT

Software architecture descriptions are high-level models of
software systems. Some researchers have proposed special-
purpose architectural notations that have a great deal of
expressive power but are not well integrated with common
development methods. Others have used mainstream
development methods that are accessible to developers, but
lack semantics needed for extensive analysis. We describe an
approach to combining the advantages of these two ways of
modeling architectures. We present two examples of
extending UML, an emerging standard design notation, for
use with two architecture description languages, C2 and
Wright. Our approach suggests a practical strategy for
bringing architectural modeling into wider use, namely by
incorporating substantial elements of architectural models into
a standard design method.

Keywords

Software architecture, object-oriented design, architecture
description languages, constraint languages, incremental
development

1 INTRODUCTION
Architecture-based software development is an approach to
designing software in which developers focus on one or more
high-level models of the software system rather than program
source code. Architectural models include elements such as
software components, communication mechanisms, states,
processes, threads, hosts, events, external systems, and source
code modules [6, 9, 10, 17, 23, 241. Relationships between
these elements address such issues as message passing, data
flow, resource usage, dependencies, state transitions, causality,
and temporal orderings. The basic promise of software
architecture research is that better software systems can be
achieved by modeling their important aspects during
development. Choosing which aspects to model and how to
evaluate them are two decisions that frame software
architecture research [13].

Part of the software architecture research community,
primarily academics, has focused on analytic evaluation of
architecture descriptions. Answering difficult evaluation
questions demands powerful modeling and analysis
techniques that address specific aspects in depth. By paying

the cost of making a detailed model, developers gain the
benefit of knowing the answers to these questions. In this
sense, software architecture descriptions serve primarily as
input to analysis tools. For example, determining the
possibility of deadlock requires specialized, formal models of
the possible behavior and communication of each thread of
control [3]. However, the emphasis on depth over breadth of
the model can make it difficult to integrate these models with
other development artifacts, because the rigor of formal
methods draws the modeler's attention away from day-to-day
development concerns. The use of special-purpose modeling
languages has made this part of the architecture community
fairly fragmented, as revealed by a recent survey of
architecture description languages [141.

Another par1 of the community, primarily from industry, has
focused on choosing which aspects to model. Modeling the
wide range of issues that arise in software development
demands a family of models that span and relate the issues of
concern. By paying the cost of making such models, develop-
ers gain the benefit of clarifying and communicating their
understanding of the system. In this sense software architec-
tures serve primarily as the "big picture" of the system under
development. For example, upgrading a database application
requires an understanding of the various lands of users and
their respective tasks, the data schema, and the application's
software components and their interfaces. However, empha-
sizing breadth over depth potentially allows many problems
and errors to go undetected, because lack of rigor allows
developers to ignore certain details. Several competing nota-
tions have been used in this part of the community, but they
share central concepts, have been tempered by mainstream
use, and have been formalized to some extent [4, 251. There
now exists a concerted effort to standardize methods for
object-oriented analysis and design [16].

Standardization provides an economy of scale that results in
more and better tools, better interoperability between tools,
more available developers who are skilled in using that
notation, and lower overall training costs. When special-
purpose notations are needed, they can often be based on, or
related to, standard notations. Doing so provides them with
some of the benefits of the standard, and allows for more
direct comparison and evaluation in terms of the value added
by the special-purpose notation.

We use the Unified Modeling Language (UML) [I81 as a
starting point for bringing architectural modeling into wider
use. UML is well suited for this because it provides a useful
and extensible set of predefined constructs, it is semi-formally
defined, it has substantial tool support, and it is based on
experience with mainstream development methods. The next

section describes UML and our strategy for adapting it to our
needs. Sections 3 and 4 provide examples of adapting UML
with semantics specific to two ADLs, C2 and Wright.
Section 5 expands on our approach and contrasts it to related
work. Section 6 discusses the contributions of our approach:
specifically, it is a way to integrate the power of ADLs with the
day-to-day usefulness of UML; and more generally, it
suggests a practical strategy for achieving partial integration of
architectural models as needed for specific development tasks.

2 UML AND ITS EXTENSION MECHANISMS

2.1 UML Background
A UML model of a software system consists of several partial
models, each of which addresses a certain set of issues at a
certain level of fidelity. There are eight issues addressed by
UML models: (1) classes and their declared attributes,
operations, and relationships; (2) the possible states and
behavior of individual classes; (3) packages of classes and their
dependencies; (4) example scenarios of system usage
including kinds of users and relationships between user tasks;
(5) the behavior of the overall system in the context of a usage
scenario; (6) examples of object instances with actual attributes
and relationships in the context of a scenario; (7) examples of
the actual behavior of interacting instances in the context of a
scenario; and (8) the deployment and communication of
software components on distributed hosts. Fidelity refers to
how close the model will be to the eventual implementation of
the system: low-fidelity models tend to be used early in the
life-cycle and be more problem-oriented and generic, whereas
high-fidelity models tend to be used later and be more solution-
oriented and specific. Increasing fidelity demands effort and
knowledge to build more detailed models, but results in more
properties of the model holding true in the system.

The UML is a graphical language with well-defined syntax and
semantics. The syntax of the graphical presentation is specified
by examples and a mapping from graphical elements to ele-
ments of the underlying semantic model [20]. The syntax and
semantics of the underlying model are specified semi-formally
via a meta-model, descriptive text, and constraints [19]. The
meta-model is itself a UML model that specifies the abstract
syntax of UML models. This is much like using a BNF gram-
mar to specify the syntax of a programming language. For
example, the UML meta-model states that a Class is one kind
of model element with certain attributes, and that a Feature is
another kind of model element with its own attributes, and that
there is a one-to-many composition relationship between them.
Semantic constraints are expressed in the Object Constraint
Language (OCL) which is based on first-order predicate logic
[21]. Each OCL expression is evaluated in the context of some
model element (referred to as "self') and may use attributes
and relationships of that element as terms. OCL also defines
common oper&ons on sets and bags, and constructs for tra-
versing relationships so that attributes of other model elements
may also be used as terms. Traversing a one-to-many or many-
to-many relationship results in a set of instances. Several
examples of OCL constraints are given below.

2.2 UML Extension Mechanisms
UML is an extensible language in that new constructs may be
added to address new issues in software development. Three
mechanisms are provided to allow limited extension to new
issues without changing the existing syntax or semantics of

the language. (1) Constraints place semantic restrictions on
particular design elements. (2) Tagged values allow new
attributes to be added to particular elements of the model.
(3) Stereotypes allow groups of constraints and tagged values
to be given descriptive names and applied to other model
elements; the semantic effect is as if the constraints and
tagged values were applied directly to those elements.

Figure 1 presents an example of using UML to model part of a
human resources system. A company employs many workers,
offers many training courses, and owns many robots. Robots
and employees are workers. Labor union contracts constrain
companies such that robots may not make up more than 10%
of the work force. A training course contains many trainees,
and each trainee may take from 1 to 4 courses. In this
example, Trainee is an interface (a set of operations) rather
than a full class. An employee is capable of performing all the
operations of Trainee.

Suppose we wish to impose the design constraint that "a
person may not be a composite element of another class," in
other words, "a person must be the whole in any whole-part
relationships." This does not prevent a person from
participating in containment relationships, only composite
relationships. In UML, containment (white diamond)
indicates that one object is temporarily subordinate to one or
more others, whereas composition (black diamond) indicates
that an object is subordinate to exactly one other object
throughout its life-time. In this example, composition would
mean that employees could not participate in any other
aggregates and never work for another company. Constraints
may be applied directly to a class or, as we have done here,
constraints may be applied to a stereotype (e.g., Person) and
the stereotype applied to a class (e.g., Employee). The
constraint may be stated formally in OCL as:

Stereotype Person for instances of meta-class Class
[I] If a person is in any composite relationship, it must be the composite.
self .oclType.assccEd. form (myErd I

mymd. association. assocW->exists (anymd I
mymd.aggregation = ccarposite) inplies
myi3-d.aggregation = ccnposite)

Note: The above constraint is sufficient because the UML already
constrains associations to have at most one composite end.

The labor union rule uses terms from the model to constrain
the state of the system at run-time. In contrast, the Person
stereotype uses terms from the UML meta-model to constrain
the model of the system. Traversing the "oclType" association
allows us to refer to the meta-model, rather than the design at
hand. Figure 2 shows the parts of the UML meta-model used
in this paper. We have simplified the meta-model for purposes
of illustration, but all the constraints we define can be easily
rewritten for use with the complete meta-model.

(self .robot->size) / (self .mrker->size) < 0.10

I

Figure 1. An example design expressed in UML

Note: All classes are subclasses of
ModelElement (except ModelElement itself).
This relationship is not shown.

Figure 2. Simplified UML Meta-Model (Adapted from 1191)

2.3 Our Strategy for Adapting UML

One straightforward approach to using an ADL with UML is
to define an ADL-specific meta-model. This approach has
been used in more comprehensive formalization of
architectural styles [l , 121. Defining a new meta-model helps
to formalize the ADL, but does not aid integration with
standard design methods. By defining our new meta-classes as
subclasses of existing meta-classes we would achieve some
integration. For example, defining Component as a subclass of
meta-class Class would give it the ability to participate in any
relationship in which Class can participate. This is basically
the integration that we desire. However, this integration
approach requires modifications to the meta-model that would
not conform to the UML standard, therefore we cannot expect
UML-compliant tools to support it.

For the reason above, we restrict ourselves to using UML's
built-in extension mechanisms on existing meta-classes. This
allows the use of existing UML-compliant tools to represent
the desired architectural models, and style conformance
checking when OCL-compliant tools become available. Our
basic strategy is to

choose an existing meta-class from the UML meta-model
that is semantically close to an ADL construct, then
define a stereotype that can be applied to instances of that
meta-class to constrain its semantics to that of the ADL.

In the next two sections, we demonstrate this strategy and
illustrate the results with example specifications.

3 INTEGRATING UML AND C2

3.1 Overview of C2

C2 is a software architecture style for user interface intensive
systems [24]. C2 SADL is an ADL for describing C2-style
architectures [12, 141; henceforth we use "C2" to refer to the
combination C2 and C2 SADL. In a C2-style architecture,
connectors transmit messages between components, while
components maintain state, perform operations, and exchange
messages with other components via two interfaces (named
"top" and "bottom"). Each interface consists of a set of
messages that may be sent and a set of messages that may be
received. Inter-component messages are either requests for a

component to perform an operation, or notijications that a
given component has performed an operation or changed state.

A C2 component consists of four internal parts. An internal
object stores state and implements the operations that the
component provides. A wrapper on the internal object
monitors all requested operations and sends notifications
through the bottom interface. A dialog specification maps
from messages received to operations on the internal object.
Optionally, a translator may modify some messages so as to
match those understood by other components, thus adapting a
component to fit into a particular architecture.

In the C2 style, components may not directly exchange
messages; they may only do so via connectors. Each
component interface may be attached to at most one
connector. A connector may be attached to any number of
other components and connectors. Request messages may
only be sent "upward" through the architecture, and
notification messages may only be sent "downward."

The C2 style further demands that components communicate
with each other only through message-passing, never through
shared memory. Also, C2 requires that notifications sent from
a component correspond to the operations of its internal
object, rather than the needs of any components that receive
those notifications. This constraint on notifications helps to
ensure substrate independence, which is the ability to reuse a
C2 component in architectures with differing substrate
components (e.g., different window systems). The C2 style
explicitly does not make any assumptions about the language
in which the components or connectors are implemented,
whether or not components have their own threads of control,
the deployment of components to hosts, or the communication
protocol used by connectors.

Figure 3 shows an example C2-style architecture. This system
consists of four components and two connectors. One
component is a database server, two are graphical user
interfaces (GUI) to the database, and one is a window-system
binding. One GUI is for posing queries, viewing result, and
malung updates. The other GUI is for configuring the database
server. When either user interface is used to request a
modification, a request message is sent upward to the
connector, and then to the database. When the database

(Database Component I
I

I
[User GUI I

I

I Window System I
Figure 3. An example C2 architecture for a database application

performs an operation, a notification message is sent to the
connector and is ultimately received by both GUI
components. This style of component interaction is influenced
by Model-View-Controller designs and supports multi-user
systems and multi-view interfaces [g].

UML provides constructs for modeling software components,
their interfaces, and their deployment on hosts. However, these
built-in constructs are not suitable for describing C2-style
software architectures because they assume both too much and
too little. Components in UML are assumed to be concrete
executable artifacts that take up machine resources such as
memory. In contrast, C2 components are conceptual artifacts
that decompose the system's state and behavior. C2
components may be implemented by concrete components,
but they are not themselves concrete. Furthermore,
components in UML may have any number of interfaces and
any internal structure, whereas C2 components must follow
the C2-style rules. Since "vanilla" UML does not fit our needs,
.<t: will adapt it to express several aspects of the C2 style.

3.2 C2 Operations in UML

The UML meta-class Operation matches the C2 concept of a
message specification. UML Operations consist of a name and
a parameter list (which may contain returned values).
Operations indicate whether they will be provided or required
(i.e., they may be received or sent). Operations may be public,
private, or protected. To model C2 message specifications we
add a tag to differentiate notifications from requests and
constrain Operation to have no return values. C2 messages are
all public, but that constraint is built into the UML meta-class
Interface used below.

Stereotype C20peration for instances of meta-class Operation
[I] C20perations are tagged as either notifications or requests.
c2MsgTyp : enun (notification, request)

[2] C2 messages do not have return values.
self .pramter->forAll (p I p. kind <> return)

3.3 C2 Components in UML
The UML meta-class Class is closest to C2's notion of
component. Classes may provide multiple interfaces with
operations, may own internal parts, and may participate in
associations with other classes. However, there are aspects of
Class that are not appropriate, namely, they may have methods
and attributes. In UML, an operation is a specification of a
procedural abstraction (i.e., a procedure signature with
optional pre- and post-conditions), while a method is a
procedure body. Components in C2 provide only operations,
not methods, and those operations must be part of interfaces
provided by the component, not directly part of the
component. Furthermore, a C2 conceptual component is
assumed to have no state other than the state of its internal
parts, and thus may have no direct attributes.

Stereotype C2Interface for instances of meta-class Interface
[I] A C2 interface has a tagged value identifying its position.
c2pos : enurn (tap, bottcm)

[2] All C2Interface operations must have stereotype C20peration.
self . c c l W .-tian->£om (0 I o.stereotype = amtian)

Stereotype C2Component for instances of meta-class Class
[I] C2Components may not directly contain features (i.e., methods,
operations, or attributes).
self.oclType.feature->size = 0

[2] C2Components must implement exactly two interfaces, which
must be C2Interfaces, one top, and the other bottom.
self.oclType.interface->size = 2 and
self. oclType. interf ace->forAll (i 1
i.stereotype = C2Interface) and

self. cclType. interface->exists (i I i . c2pos = tap) and
self. ocll'ype. interface->exists (i I i. c2pos = bttcm)

[3] Requests travel "upward" only. i.e., they are sent through top
interfaces and received through bottom interfaces.
Let topInt = self.oclType.interface->select(i I

i . capos = tap) ,
Let btInt = self.oclType.interface->select(i I

i .c2pos = kottan) ,
topmt. operation->fordl (o I
(0.c2MsgType = request) inplies o.dir = require) and

botInt. operation->ford1 (o I
(0.c2Msg'Qpe = request) inplies o.dir = prwide)

[4] Notifications travel "downward" only. Similar to the constraint above.

[S] Each C2Component has one instance in the running system.
self.dllInstances->size = 1

[6] C2Components participate in at most four whole-part
relationships named internalobject, wrapper, dialog, and translator.
Let tholes = self.oclType.assocW->select(

aggregation = ccarposite),
(whole->size <= 4) and
((*oles.association.m->asset) - Set (

"internalObjecta , "wrapper", "didlog",
"translator"))->size = 0

[7] Each operation on the internal object has a corresponding
notification which is sent from the component's bottom interface.
Let aps = self. internalobject. f eature->select (f I

f->isKindDf (Operation)) ,
Let btInt = self. oclType . interface->select (i I

i. c2pos = bttan) ,
aps->forAll(ap I
b m t - w d s t s (note I
(op.nam = note.= and
op .parameter = note .parameter) inplies

mte.dir = rquired and mte.- =notificatim))

3.4 C2 Connectors in UML

C2 connectors share many of the constraints of C2
components. One difference is that they do not have any
prescribed internal structure. Components and connectors are
treated differently in the architecture composition rules
discussed below. Another difference is that connectors may
not define their own interfaces; instead their interfaces are
determined by the components that they connect.

We can model C2 connectors using a stereotype C2Connector
that is similar to C2Component. Below, we reuse some
constraints and add two new ones. But first. we introduce three
stereotypes for modeling the attachments of components to
connectors. These attachments are needed to determine
component interfaces.

Stereotype C2AttachOverComp for instances of meta-class Association
[I] C2 attachments are binary associations.
self.oclType.assoc&d->size = 2

[2] The first end of the association must be to a C2 component.
Let ends = self. oclType . assocmd,
ends[l] .nultiplicity = "1. .l" and
ends[l].class.stereotype = C2Ccprponent

[3] The second end of the association must be to a C2 connector.
Let erds = self. oclType. assoclbd,
ends [2] .multiplicity = "1. .I" and
ends [2] .class. stereotype = C2Connector

Stereotype C2AttachUnderComp for instances of meta-class
Association. Same as C2AttachOverComp, except that the first end must
be to a connector, and the second end must be to a component.

Stereotype C2AttachConnConn for instances of meta-class Association
[I] C2 attachments are binary associations.
self.oclType.assochd->size = 2

121 Each end of the association must be on a C2 connector.
self .oclType.assochd->£oral (ae I
ae .dtiplicity = "1. .I" ard
ae.class.stereotype = C2Cmector)

[3] The two ends are not both on the same C2 connector.
se l f .oclType.ass~[l] .c lass o

self.oclType.assocEr~l[21.class

Stereotype C2Connector for instances of meta-class Class
[I-51 Same as constraints 1-5 on C2Component.

[6] The top interface of a connector is determined by the
components and connectors attached to its bottom.
Let tcplht = self .ocllLpe.interface->seled(i I i.c2p3s = tcp) ,
Let downAttach = self.oclType.assocmd.associa-

tion->select (a I a.assocmd[2] = self.oclType) ,
Let tcpsIntsBelaw = ~ t t a c h . a s s ~ [l] . i n t e r -

face->select (i I i .c2pos = top) ,
topsmtsBelow.qxzation->asset = topInt.operation->asset

[7] The bottom interface of a Connector is determined by the components
and connectors attached to its top. This is similar to the constraint above.

3.5 C2 Architectures in UML
Now we turn our attention to the overall com~osition of
components and connectors in the architecture of a system.
Recall that well-formed C2 architectures consist of
components and connectors, components may be attached to
one connector on the top and one on the bottom, and the top
(bottom) of a connector may be attached to any number of
other connectors' bottoms (tops). Below, we also add two new
rules that guard against degenerate cases.

Stereotype C2Architecture for instances of meta-class Model
[I] A C2 architecture is made up of only C2 model elements.
self .oclType.mJdelElanent->forAll (me I
me.stereotype = CZCcmpnent or
me.stereotype = C2Connector or
m.stereotype = C2AttachCverCarp or

[2] Each C2Component has at most one C2AttachOverComp.
Let carps = self. oclType .rrcdelElemnt->select (me I

me.stereotype = C2Ccmpnent) ,
ccnps->forAll(c I

c. assocn?d. association->select (a I
a.stereotype = C2AttachUnderCcnp)->size <= 1)

note sent updated()
rqst rcvd adminMode()
note sent adminMode0
rqst rcvd changeschema()

r ZConn ton
Eonn-8ne

I 1

note rcvd adminMode() I ,st sent changeScheia() I
note rcvd changedSchema()

note rcvd updated()
note rcvd adminMode()

Figure 4. C2 architecture from Figure 3 expressed in UML

[3] Each C2Component has at most one C2AttachUnderComp.
Similar to the constraint above.

[4] C2Components do not participate in any non-C2 associations.
Let carps = self.ocl?Lpe.mDdelElanent->select(me (

me. stereotype = C2Carponent) ,
carps . assocEd. association-> £oral (a I
a. stereotype = C2AttachOveztcnp or
a. stereotype = C2AttachVnderCw)

[5] C2Connectors do not participate in any non-C2 associations.
Let cams = self.oclType.rrcdelElemnt->select(me I
me. stereotype = C2Connector) ,

conns . assocmd. association->feral (a I
a. stereotype = C2AttachoverCcnp or
a. stereotype = C2AttachUnderCmp or
a.stereotype = C2AttachConnCm)

[6] Each C2Component must be attached to some connector.
Let carps = self. oclType.nodelElemmt->select (me I

me. stereotype = C2Ccnponent) ,
carps->£oral (c I

c. assocmd. association->size > 0)

[7] Each C2Connector must be attached to some connector or component.
Let conns = self. oclType. elmts->select (e I

e.stereotype = C2Comector),
corms->£oral (c I

c.assocmd.association->size > 0)

3.6 Example C2 Architecture

Figure 4 shows the UML graphical notation for the same
system shown in Figure 3 to illustrate the C2 style. We show
some operations and omit others as needed to clarify the
discussion below. Each element is marked with its stereotype
in small double angle brackets. Alternatively, UML allows
icons to be used to denote the stereotype.

Given a C2 architecture that is modeled in UML, it can be
related to other standard UML model elements that are
commonly used in software development. Figure 5 makes
explicit our assumptions about the kinds of users who will use
this system and their tasks. Figure 6 is a sequence diagram
showing how the system behaves in the context of a particular
use case. Explicitly modeling these aspects of the system
enhances C2's support for component-based development of
systems with complex user interfaces.

A A
Administrator End User

Figure 5. Some use cases for the example database system

Figure 6. Sequence diagram for Disable User Access

3.7 Benefits of Integrating UML and C2
Adapting UML to enforce the C2-style rules has been fairly
straightforward, because many C2 concepts are found in
UML. Neither C2 nor UML constrain the choice of
implementation language or require that any two components
be implemented in the same language. Neither C2 nor UML
constrain the choice of GUI toolkits or inter-process
communication mechanisms. Neither C2 nor UML (as we
have used it) assume that any two components run in the same
thread of control or on the same host. Both C2 and UML limit
communication to message passing and include specifications
of messages that may be sent and received. Although we did
not model details of the internal parts of a C2 component or
the behavior of any C2 constructs, we feel those aspects of C2
could be modeled in UML. In fact, we provide an example of
modeling behavior in the next section.

Some concepts of C2 are very different from those of UML
and object-oriented design in general. For example, main-
stream object-oriented design has a strict dichotomy between
classes and instances. Since each class may have multiple
instances, associations between classes may have multiplicity
greater than one (e.g., there could be any number of employ-
ees in Figure 1). Furthermore, the features of an instance are
declared in its class. In contrast, the interface of a C2 connec-
tor is determined by context rather than declared, and the addi-
tion of a new component instance at run-time is considered an
architectural change. We addressed this difference by demand-
ing that each C2 component and connector have exactly one
instance. If a system uses two connectors, they must each have
their own class in the design, although they may be imple-
mented by the same concrete components. Another concep-

tual difference is that it is legal for C2 messages to be sent and
not received by any component, whereas UML assumes that
every message sent will be received. We have declined to
address this last difference since it introduces more complex-
ity than we feel it merits. As will be discussed more in
Section 5, our approach allows aspects of an ADL to be
expressed in UML or left to special purpose tools as desired.

4 INTEGRATING UML AND WRIGHT

The preceding section demonstrated that an ADL that
supports a specific architectural style can be modeled in UML.
This section shows the applicability of our approach to a
general-purpose ADL, Wright [2,3]. A more recent version of
Wright also supports system families, architectural styles, and
hierarchical composition. We do not address these newer
features here, but believe that they could be incorporated into
our model.

An architecture in Wright is described in three parts:
component and connector types;
comnonent and connector instances: and
configurations of component and connector instances.

Unlike C2, Wright does not enforce the rules of a particular
style, but is applicable to multiple styles. However, it still
places certain topological constraints on architectures. For
example, as in C2, two components cannot be directly
connected, but must communicate through a connector; on the
other hand, unlike C2, Wright disallows two connectors from
being directly attached to one another.

The remainder of the section describes an extension to UML
for modeling Wright architectures. For brevity, stereotypes
and constraints are elided whenever they are obvious from the
discussion in this or the previous section.

4.1 Behavioral Specification in Wright

Wright uses a subset of CSP [7] to provide a formal basis for
specifying the behavior of components and connectors, as
well as the protocols supported by their interface elements.
Given that this subset "defines processes that are essentially
finite state" [2], it is possible to model Wright's behavioral
specifications using UML's State Machines [20].

CSP processes are entities that engage in communication
events. An event, e, can be primitive, or it can input or output a
data item x (denoted in CSP with e?x or e ! x, respectively).
CSP events are modeled in State Machines as shown in
Figure 7.

These two types of state transitions can be used in modeling
more complex CSP expressions supported by Wright. Table 1
presents the mapping from CSP to State Machines using events
with no actions (Figure 7a); the mapping for null events with
actions (Figure 7b) is straightforward. It is possible for CSP
events to have no associated data (see Figure 8 below). In such
a case, the semantics of State Machines force us to make a
choice as to which entities generate events and which observe
them. We choose to model Wright ports and roles (described
below) with event-generating actions, and computation and
glue with transitions that observe those events.

The state machines in Table 1 can be used as templates fiom
which equivalents of more complex CSP expressions can be

Figure 7. (a) A CSP event with input data, e?x, is modeled in
U M L State Machines a s a state transition event with no action.
(b) A CSP event, e , with output data, e!x, is modeled a s a null
state transition event that results in action e.

I C& Concept I CSPNotation I UML State Machine (
Prefixing P = a - + Q I I

Alternative
(deterministic p . b + Q O + n

choice)

Decision
(non-deterministic p = d + Q n e + R

choice)

Parallel
Composition

Success Event

Table 1 .UML State Machine templates for Wright's CSP constructs

formed. Therefore, a "Wright" state machine is described by
the following stereotypes.

Stereotype WSMTransition for instances of meta-class Transition
[I] A transition is tagged as one of the two cases shown in Figure 7.
Wtransiti- : enum (w e n t , ac t ion)

[2] An "event" transition consists of an event only (Figure 7a).
self.oclType.WSMtransitionType = went inplies

(s e l f .ocl?lpe. went .oclIs?lrpe0f (C a l l E v e n t) and
s e l f .ocl?lpe.ActionSequence->size = 0)

[3] An "action" transition consists of a null event and an action
(Figure 7b).
self.oclType.WSMtransitionTyp= = ac t ion inplies
(self.ocl?lpe.went->size = 0 and
self.oclType.ActionSequence.Action->size = 1)

Stereotype WrightStateMachine for instances of metaclass StateMachhe
[l] A WrightStateMachine consists of one of the composite states
discussed above, and partially depicted in Table 1. Each simple
state may be refined as another WrightStateMachine. This
constraint is elided in the interest of space.

[2] All WrightStateMachine transitions must be WSMTransitions.
s e l f . cclType. t r a n s i t i o n - > f o r d l (t 1 t = WMTransition)

4.2 Wright Component and Connector Interfaces in UML

Each Wright interface (a port in a component or a role in a
connector) has one or more operations. In Wright, these
operations are modeled implicitly, as part of a port or role's
CSP protocol. We choose to model the operations explicitly in
UML. The CSP protocols associated with a port or role are
modeled as WrightStateMachines.

Stereotype WrightOperation for instances of meta-class Operation
[I] WrightOperations do not have parameters; parameters are
implicit in the CSP specification associated with each operation
self.parameter->size = 0

Stereotype Wrighthterface for instances of meta-class Interface
[I] WrightInterfaces are tagged as either ports or roles.
WrightInterfaceTyp : enum (port, r o l e)

[2] All operations in a Wrighthterface are WrightOperations.
s e l f . ocl'ilpe.operation->fordl (o I

o.stereotype = Wightweration)

[3] Exactly one WrightStateMachine is associated with each
WrightInterface.
self.cclType.stateMachine->size = 1 and
self.ocl?lpe.stat~ckine->forlill(s I

s .s tereotype = WrightStateMachine)

[4] In a Wrightlnterface, a WrightStateMachine is expressed only
in terms of that interface's operations; these are operations on the
state machine's call events.
self.oclType.stateMachine.transition->foral(t I
(t . event. oclIsTyp4f (C a l l h r e n t)) irrplies

s e l f . o c l ~ . o p e r a t i o n - w c i s t s (o I
o = t .event .operat ion))

A WrightInterface, as modeled above, specifies the alphabet
of a port or role.

4.3 Wright Connectors in UML

A connector type in Wright is described as a set of roles,
which describe the expected behavior of the interacting
components, and a glue, which defines the connector's
behavior, by specifying how its roles interact.

We will model Wright connectors with the UML meta-class
Class. Wright connectors provide multiple interfaces (roles)
and participate in associations with other classes (Wright
components). Wright connector types are assumed to have no
state other than the state of their internal parts, and thus may
have n o direct attributes.

Stereotype WrightGlue for instances of rneta-class Operation
[I] WrightGlue is modeled as a WrightOperation.
self.oclType,operation->forlill(o 1

o.stereotype = WrightOperation)

[2] WrightGlue contains a single WrightStateMachine.
self.ocl~ype.stateMachine->size = 1 and
s e l f ,ocl!Pype.stateMackine->forAll (s (

s .s tereotype = WrightStateMachine)

Stereotype WrightConnector for instances of meta-class Class
[I] WrightConnectors must implement at least one
WrightInterfaceType, which must be a role.
self .ocl~e. interface->size >= 1 and
s e l f .oclType. interface->forAll (i I

i . s t e reo type = WrightInterface and.
i.WrightInterfaceType = role)

[2] A WrightConnector contains a single glue,
self.oclType.operation->size = 1 and
s e l f .oclType .operation->forMl (o I

o.stereotype = WrightGlue)

[3] Operations with no data and with input data that belong to the
different interface elements of a connector are the trigger events in
glue's state machine.
s e l f .oclType .operation. stateMachine. t r a n s i t i o n - > f o r d l (t I

(t . event. oclIsTyp0f (Callhrent)) inplies
s e l f . oclTyp=. in te r face . o p e r a t i o n - w d s t s (o I

o = t.went.0peratim-1))

[4] Operations with output data that belong to the different interface
elements of a connector are the actions in glue's state machine.
Similar to the above constraint.

[5] The semantics of a Wright connector can be described as the
parallel interaction of its glue and roles [2].
self.oclType.stateMachine->size = 1 and
self. oclType. stateMachhe->forAll (sm I
.sm.state->size = 1 and sn.state->forllll(s I
s .oclType = Ccnposi testate and s .isCon-ent = true and
sstate->size = 1 + self .oclType.interface->size a d
s.state->exists (gs I
gs = self.ocl~.aperatim.stateMachine,tap) and

self .oclType. interface->forAll (i I
s.state-dsts (rs I rs = i.state?-bchine.top))))

[6] A WrightConnector must have at least one instance in the
running system.
self.allInstances->size >= 1

4.4 Wright Components in UML

A component type is modeled by a set of ports, which export
the component's interface, and a computation specification,
which defines the component's behavior. We model Wright
components in UML with a stereotype WrightComponent.
This stereotype has much in common with the
WrightConnector stereotype, and is thus omitted.

4.5 Wright Architectures in UML

We introduce stereotypes for modeling the attachments of
components to connectors and for Wright architectures. Unlike
C2, which considers architectures to be networks of abstract
placeholders, Wright architectures are composed of compo-
nent and connector instances. One solution we considered was
to define WrightConnectorInstance and WrightComponentIn-
stance stereotypes and express architectural topology in terms
of them. However. we believe that it is undesirable to introduce
instances at this level, since we are still dealing with design
issues. Additionallv. we have found that most of the constraints ,

on component and connector instances can be expressed in
terms of their corresponding types. Therefore, we refer to com-
ponent and connector types in the stereotypes below.'

Stereotype WrightAttachment for instances of meta-class Association
[I] Wright attachments are associations between two elements.
self.oclType.assocEh3->size = 2

[2] One end of the association must be to a Wright component.
Let ends = self.oclType.assocEnd,
ends [l] .miLtiplicity = '1. .I" and
ends [l] .class. stereotype = WrightCcarponent

[3] The other end of the association must be to a Wright connector.
Let roles = self.oclType.assccEd,
ends [2] .miltiplicity = "1. .In and
ends[2l.class.stereotype = Wrightconnector

Stereotype WrightArchitecture for instances of meta-class Model
[l] A WrightArchitecture is made up of only Wright model elements.
self .oclType.elmmts->forAll (e I
e.stereotype = WrightCcqonent or
e.stereotype = WrightConnector or
e. stereotype = WrighfSttachent)

[2] Each WrightComponent port participates in at most one
WrightConnector role.
Let carps = self.oclType.el-ts->select(e I
e . stereotype = WrightCcqonent) ,

ccarps. assochd->forAIl (ae I ae. linkhd->size = 1)

[3] Each WrightConnector role is fulfilled by at most one
WrightComponent port. Similar to the constraint above.

[4] WrightComponents and WrightConnectors do not participate in any
non-Wright associations. Similar to constraints [4-51 in Section 3.5.

1 .The one exception is in constraints 2 and 3 of the Wrighthhitectm stereo-
type: "IinkEnd" refers to an instance of a class (type).

connector Pipe =
role Writer = write + Writern close + J
role Reader =

let ExitOnly = close + J
in let DoRead = (read + Reader

read-eof + ExitOnly)
in DoRead ll ExitOniy

glue = let ReadOnly = Reader-read + ReadOnly
Readerxead-eof
+ Reader.close + J

Reader.close + J
in let WriteOnly = Writer.write + WriteOnly

Writer.close + J
in Writer.write +glue

0 Readerread + glue
Writer.close + ReadOnly
Reader.close + Wri teOnly

Figure 8. A connector specified in Wright (adapted from [2])

Reader
DoRead

Figure 9. UML State Machine model of the Pipe connector

The semantics of port-role attachments in Wright are formally
defined [3]. However, Wright places no language-level
constraints on port-role pairs. Instead, establishing and
enforcing these constraints is the task of external analysis tools.
Hence, we provide no port-role compatibility constraints.

4.6 Example Partial Wright Architecture

Having provided an extension to UML for modeling Wright
architectures, we now demonstrate how that extension is
used to describe a Wright specification. Figure 8 shows the
Pipe connector example from [2]. The UML State Machine
model of the Pipe is shown in Figure 9. Wright's scoping of
events is modeled in UML by prefixing every event's name
with the name of the role to which the event belongs. The

class diagram for Pipe is analogous to the C2 diagram shown
in Figure 4, and has been omitted for brevity

4.7 Benefits of Integrating UML and Wright

Modeling an ADL such as Wright in UML provides benefits
both to practitioners who prefer Wright as a design notation
and to those who are more familiar with UML. Mapping a
Wright architecture to UML enables a Wright user to leverage
a wide number of general-purpose UML tools (e.g., code
generation, simulation, analysis, reverse engineering, and so
forth). On the other hand, being able to map a UML design of
a system to Wright (by adhering to the constraints specified in
this section) would enable a UML designer to utilize Wright's
powerful analysis capabilities, such as interface compatibility
checking and deadlock detection.

5 CORE MODELS AND EXTENSIONS
Notational standardization has a wide range of benefits, as
discussed in the introduction. The challenge of standardization
is finding a language that is general enough to capture needed
concepts without adding too much complexity. It is tempting
to extend the UML meta-model to fully capture each feature
of each ADL. However, such a notation would be overly
complex and incompatible with standard UML tools. There
has never been a single programming language that served the
needs of all programmers, and there is no reason to expect a
single ADL to meet the needs of all software architects. This
has led the software architecture community to attempt
interchange rather than standardization of ADLs.

ACME is an architecture interchange language that supports
automatic transformation of a system modeled in one ADL to
an equivalent model in another ADL [S]. This allows architects
to model and analyze their system architecture in one ADL
and then translate the model to another ADL for further
analysis. Architects need not work directly with ACME; they
may instead use the ADL and toolset that is most suited to the
current issue of concern. ACME's approach is easier than
providing direct mappings between pairs of ADLs because the
ACME language serves as an intermediate step and provides
additional tool support. ACME's architectural ontology plays
a role analogous to UML's meta-model; however it is smaller
and focuses on structural aspects of architectures.

Full realization of ACMES goals presents a number of chal-
lenges. Complete, automated translation among a set of ADLs
requires a set of semantic mappings that involve every concept
of every ADL in the set, which may not be possible given that
different ADLs address different system aspects and have dif-
ferent semantics. The translation approach depends on exploit-
ing constructs common to every ADL. At this point, the evident
commonalities are syntactic rather than semantic [14]. For these
reasons ACME emphasizes a partial and incremental approach.

ACME uses a seven element architectural ontology together
with key-value pairs to represent arbitrary, uninterpreted
architectural features and a template mechanism that leverages
commonalities. Like ACME, our approach uses a fixed
ontology (the UML meta-model), key-value pairs (tagged-
values), and templates (stereotypes). However, UML provides
much richer semantics due to its more comprehensive meta-
model and its first-order predicate logic constraints.

u ~ o d e l Extension for Specific Concerns

w ~ r o c e s s Excursion for Specific Concerns
Figure 10. (a) A core model with extensions
(b) Sketch of an associated process

A fundamental difference is that our approach does not use
translation between notations, but rather uses a core model with
several independent extensions. We use UML as our core model
and assume that developers are able to use UML constructs,
such as classes and use cases, in day-to-day development activi-
ties. We extend this core model with specific attributes and con-
straints as needed for specific analyses. As new issues of
concern arise in development, new attributes may be added to
support analyses relevant to those concerns. The semantics of
the core model are always enforced by UML-compliant tools.
The semantics of each extension are enforced by the constraints
of that extension and the constraints imposed by the desired
analyses. Dependencies and conflicts may arise between the
attributes in different extensions, and must be handled by devel-
opers just as they manage the other myriad dependencies and
potential conflicts of software development. This situation is not
ideal, but it is practical: it uses available methods and tools that
are well integrated into day-to-day development, and it is incre-
mental. We feel that these features are key to bringing the bene-
fits of architectural modeling into mainstream use.

In using a core model and extensions, the question arises of
what should be in the core and what should be left to
extensions. Technical considerations play some role in this
decision. For example, ACME's simple architectural ontology
eases tool building, whereas UML's larger meta-model
presents a higher barrier. Development processes also
influence the core model. For example, object-oriented design
and use cases are widely used by practitioners and directly
relate to day-to-day development activities. We choose UML
as our core model because it is grounded in mainstream
development practices, already has substantial tool support,
and provides explicit extension mechanisms.

Figure 10 sketches a process in which developers use the core
model and some available extensions for day-to-day
development concerns and take process excursions as needed to
address specific architectural concerns identified during the
main process. Information learned in excursions guides later
decisions in the main process. Different concerns will arise as
the main process progresses and model fidelity increases. For
example, deadlock can only be addressed once system behavior
is specified in detail. We envision developers using UML
normally and ADL-specific tools as needed; an alternative
process more suited to researchers might involve using an ADL
normally and UML tools as needed (e.g., to generate code).

6 CONCLUSIONS
Further research into this approach will attempt to integrate
UML with the semantics of other ADLs, apply object-oriented
concepts such as polymorphism and inheritance to architectural
elements [15], exploit more formal semantics [4, 251 and

evaluate the effectiveness of the approach in practice. In
addition to C2 and Wright, we have also investigated
integrating UML with Darwin [I 11 and Rapide [lo]. Each of
these ADLs has certain aspects in common with UML, some of
which can be expressed with UML's extension mechanisms,
while others may be included in a UML specification but can
only be interpreted by ADL-specific tools.

From our experience to date, adapting UML to address
architectural concerns seems to require reasonable effort, be a
useful complement to ADLs and their analysis tools, and be a
practical step toward mainstream architectural modeling.
Using UML has the benefits of leveraging mainstream tools,
skills, and processes. It may also aid in comparison of ADLs
because it forces some implicit assumptions to be explicitly
stated in common terms.

Integrating architectural models into mainstream development
methods is not simply a matter of convenience. Based on
experience in complex system design, "mismatches between
the systems models used by the R&D design team and those
of the system engineer, manufacturer, and user have delayed
delivery, raised costs, entailed product rework, and led to
faulty failure diagnoses [22]." These problems arise when
models become out of synch with the system and current
design concerns, or when lessons learned in modeling are not
communicated to developers. Integrating architectural models
with standard design methods addresses both these issues.

ACKNOWLEDGEMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. CCR-9624846 and Grant
No. CCR-9701973. Effort also sponsored by the Defense
Advanced Research Projects Agency, Rome Laboratory, Air
Force Materiel Command, USAF under agreement numbers
F30602-97-2-002 1 and F30602-94-C-0218, and Air Force
Office of Scientific Research under grant number F49620-98-
1-0061. Additional support is provided by Rockwell
International and Northrop Gmmman Corp. The U.S.
Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced
Research Projects Agency, Rome Laboratory or the U.S.
Government.

REFERENCES
1. Abowd, G., Allen, R., and Garlan, D. Formalizing style to under-

stand descriptions of software architecture. Trans. Software Engi-
neering and Methodology. October 1995. pp. 3 19-364.

2. Allen, R. and Garlan, D. Formalizing Architectural Connection.
Proceedings of the 1994 International Conference on Software
Engineering, Somnto, Italy, May 1994. pp. 7 1-80.

3. Allen, R. and Garlan, D. A Formal Basis for Architectural Comec-
tion. ACM Transactions on Software Engineering and Methodol-
ogy. vol. 6. no. 3. July 1997. pp. 213-249.

4. Bourdeau, R. and Cheng, B. A formal semantics for object model
diagrams. IEEE Trans. on Software Engineering. vol. 21. no. 10.
October 1995. pp. 799-821.

5. Garlan, D., Monroe, R. and Wile D. ACME: An architectural inter-
connection language. Proc. of CASCON'97. Toronto, Canada.
November 1997.

6. Garlan. D. and Shaw M. An introduction to software architecture:
Advances in software engineering and knowledge engineering, vol-
ume I. World Scientific Publishing, 1993.

7. Hoare, C. A. R. Communicating Sequential Processes. Prentice
Hall, 1985.

8. Krasner, G. E. and Pope, S. T. A cookbook for using the model-
view-controller user interface paradigm in smalltalk-80. J. Object-
Oriented Programming. vol. 1. no. 3, Aug/Sept 1988. pp. 26-49.

9. Kruchten, I? B. The 4+1 view model of architecture. IEEE Soft-
ware. Nov. 1995. pp. 42-50.

IO.Luckham, D. C., and Vera, J. An event-based architecture definition
language. EEE Transactions on Software Engineering. vol. 21. no.
9. September 1995. pp. 717-734.

I l.Magee, J. and Kramer, J. Dynamic structures in software architec-
ture. Roc. of SIGSOFT'96. San Francisco, CA, October 1996.

12.Medvidovic N., Taylor, R. N.. Whitehead, Jr. E. J. Formal modeling
of software architectures at multiple levels of abstraction. Proc. Cali-
fornia Software Symposium, Los Angeles, April 1996. pp. 29-40.

13.Medvidovic, N. and Rosenblum, D. S. Domains of concern in soft-
ware architectures and architecture description languages. Proc.
USENIX Conf. on Domain Specific Languages, Santa Barbara,
CA, October. 1997. pp. 199-212.

14.Medvidovic, N. and Taylor, R. N. A framework for classifying and
comparing architecture description languages. The Sixth European
Software Engineering Conference together with SIGSOFT'97. Zur-
ich, Switzerland, September 1997. pp. 60-76.

15.Medvidovic, N., Oreizy, P., Robbins, J. E., and Taylor, R. N. Using
object-oriented typing to support architectural design in the C2
style. SIGSOFT'96. pp 24-32. San Francisco, CA, October 1996.

16.0bject Management Group. Object analysis and design RFP-I.
Object Management Group document ad/96-05-01. June 1996.
Available from http://www.omg.org/docs/ad/96-05-01 .pdf.

17.Perry, D. E. and Wolf, A. L. Foundations for the study of software
architectures. Software Engineering Notes. October 1992.

18.Rational Partners (Rational, IBM, HP, Unisys, MCI, Microsoft.
ObjecTime, Oracle, i-Logix, etc.). Proposal to the OMG in response
to OA&D RFP-1. Object Management Group document ad97-07-
03. July 1997. Available from http://www.omg.org/docs/ad/.

19.Rational Partners. UML Semantics. Object Management Group
document ad/97-08-04. Sept. 1997. Available from http://
www.omg.org/docs/ad/97-08-04.pdf.

20.Rational Partners. UML Notation Guide. Object Management
Group document ad97-08-05. Sept. 1997. Available from http://
www.omg.org/docs/ad/97-08-05.pdf.

21.Rational Software Corporation and IBM. Object constraint lan-
guage specification. Object Management Group document ad/97-
08-08. Sept. 1997. Available from http://www.omg.org/docs/ad/.

22.Rechtin, E. The synthesis of complex systems. IEEE Spectrum,
July 1997. pp. 51-55.

23.Soni, D.. Nord, R., and Hofmeister C. Software architecture in
industrial applications. Roc. of the 17th International Conference
on Software Engineering. Seattle, WA. 1995. pp. 196-207.

24.Taylor, R. N., Medvidovic, N., Anderson, K., Whitehead. Jc, E. J.,
Robbins, J. E., Nies, K. A., Oreizy, F'., and Dubrow, D. L. A compo-
nent and message-based architectural style for GUI software. IEEE
Trans. Software Engineering, June 1996, vo1.22, no.6, pp.390-406.

25.Wang, E., Richter, H., and Cheng, B. Formalizing and integrating
the dynamic model within OMT. Proc. IEEE International Confer-
ence on Software Engineering (ICSE'97). Boston, MA. May 1997.
pp. 45-55.

