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ABSTRACT. We prove an effective Weierstrass Division Theorem for algebraic restricted
power series with p-adic coefficients. The complexity of such power series is measured
using a certain height function on the algebraic closure of the field of rational functions
over Q. The paper includes a construction of this height function, following an idea of
Kani. We apply the effective Weierstrass Division Theorem to obtain a number-theoretic
criterion for membership in ideals of polynomial rings with integer coefficients.
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INTRODUCTION

Let f1, . . . , fn ∈ Z[X], where X = (X1, . . . , XN ) is an N -tuple of indeterminates.
The starting point for this paper was the following criterion for membership in the ideal of
Z[X] generated by f1, . . . , fn (implicit in [37]): there exist positive integers δ and e such
that for every polynomial f0 ∈ Z[X]:

f0 ∈ (f1, . . . , fn)Z[X] ⇐⇒
f0 ∈ (f1, . . . , fn)Q[X] and f0 ∈ (f1, . . . , fn)(Z/δeZ)[X]. (0.1)

Here and below, for a ∈ Z we denote by f the polynomial in (Z/aZ)[X] obtained by ap-
plying the canonical surjection Z → Z/aZ to the coefficients of f ∈ Z[X]. The existence
of such δ and e can be easily seen as follows. Put I := (f1, . . . , fn)Z[X], and for a ∈ Z
denote by I : (a) the ideal of Z[X] consisting of all f ∈ Z[X] such that af ∈ I . The ring
Z[X] being noetherian, the ideal J := IQ[X]∩Z[X] is finitely generated, so there exists a
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positive integer δ such that δf ∈ I for all f ∈ J , or in other words, such that J = I : (δ).
Consider now the ascending chain of ideals

I ⊆ I : (δ) ⊆ · · · ⊆ I : (δi) ⊆ · · ·
in Z[X]. Again, since Z[X] is noetherian, there exists an integer e > 0 such that

I : (δe) = I : (δe+i) for all i ∈ N.

With this e it is easy to check that

I =
(
I : (δ)

)
∩
(
I + (δe)

)
,

hence δ and e have the required properties.
It is well-known that an integer δ with the property that J = I : (δ) can be effectively

computed from f1, . . . , fn. In fact, we may take δ = P (c) for some polynomial P (C) ∈
Z[C] in the coefficient tuple c of f1, . . . , fn. This is a byproduct of Hermann’s classical
algorithm [18] for deciding ideal membership in polynomial rings over fields. (See [8],
Section 3.) The smallest positive integer δI = δ such that I : (δ) = J is the exponent
of the torsion subgroup of the abelian group Z[X]/I . (An abelian group G is said to have
finite exponent if there exists a positive integer m with mG = {0}, and the smallest such
m is called the exponent of G.) An algorithm to compute δI was given by Clivio [12]
(based on earlier work of Ayoub [6]).

The computability of δ can be used to turn the criterion (0.1) into a (hopelessly in-
efficient) procedure, due to Simmons [37], for deciding whether a given polynomial f0 ∈
Z[X] lies in the ideal I: First we check whether f0 ∈ IQ[X], say using Hermann’s method;
if the answer is negative, we already know that f0 /∈ I . Otherwise, we begin running two
effective procedures simultaneously. In the first one, we enumerate all n-tuples of polyno-
mials in Z[X], and for each such n-tuple (g1, . . . , gn) we compute f1g1 + · · ·+ fngn. We
stop when we find that f0 = f1g1 + · · ·+ fngn. In the second procedure, we successively
check, for each e = 1, 2, . . . , whether f0 ∈ (f1, . . . , fn)(Z/δeZ)[X]. As shown in [37]
(see also Section 6 below), the ideal membership problem for (Z/δeZ)[X] can be eas-
ily, and elementary recursively in the data, reduced to solving systems of linear equations
with coefficients in Fp[X] (with p ranging over the prime divisors of δ), where Hermann’s
method applies. The first procedure stops if f0 ∈ I , and by (0.1), the second algorithm
terminates if f0 /∈ I .

All this raises the obvious question:
Can one compute an exponent e such that (0.1) holds for every polynomial
f0 ∈ Z[X] and every positive integer δ with the property that I : (δ) = J?

One of the aims of this paper is to answer this question positively. In fact, we will exhibit an
explicit number-theoretic function (N, β) 7→ e(N, β) such that if f1, . . . , fn are polynomi-
als in Z[X] = Z[X1, . . . , XN ] with deg f1, . . . ,deg fn ≤ β and ||f1||∞, . . . , ||fn||∞ ≤ β,
then the equivalence (0.1) holds for every f0 ∈ Z[X] and every positive δ ∈ Z such that
I : (δ) = J , if one takes e = e(N, β). Here, deg f denotes the (total) degree of f ∈ Z[X],
and ||f ||∞ denotes the maximum of the absolute values of the coefficients of f .

Our exponent e(N, β) is most likely highly excessive: it takes the form of an N -times
iterated exponential in N and β. However, it still seems worth discussing, for two reasons:
First, because of the inherent non-primitive recursive features of Hilbert’s Basis Theorem
exemplified in [16], [28]. (This theorem, in the form of noetherianity of Z[X], was used
above to establish the existence of e.) The class of primitive recursive functions forms a
proper subclass of all algorithmically computable (also called recursive) functions. The
function (N, β) 7→ e(N, β) is primitive recursive (and in fact, for fixed N , belongs to the
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smaller class of functions which are elementary recursive in the sense of Kalmár [19]).
Second, because some of the results obtained en route might be of independent interest
and useful for further investigations of the properties of finitely generated commutative
rings (such as Z[X]/I). With this in mind, we now explain our method to construct the
exponent e.

Let p1, . . . , pK be the distinct prime factors of δ. A short argument using the Euclidean
Algorithm (see [8], pp. 409–410) shows that then for f0 ∈ Z[X]:

f0 ∈ (f1, . . . , fn)Z[X] ⇐⇒
f0 ∈ (f1, . . . , fn)Q[X] and f0 ∈ (f1, . . . , fn)Z(pk)[X] for k = 1, . . . ,K. (0.2)

Here Z(p) denotes the localization of Z at the prime ideal (p) = pZ, where p is a prime
number. We write Zp〈X〉 for the ring of restricted power series with p-adic integer coef-
ficients, that is, the completion of Z[X] at the ideal pZ[X] generated by p. (See [10] for
basic facts about Zp〈X〉.) We also let Zp〈X〉alg be the subring of Zp〈X〉 consisting of the
restricted power series that are algebraic over the rational function field Q(X). (This is the
henselization of Z[X] with respect to the ideal pZ[X], see [35], p. 126.) A faithful flatness
argument ([8], Lemma 2.6) yields

f0 ∈ (f1, . . . , fn)Z(p)[X] ⇐⇒
f0 ∈ (f1, . . . , fn)Q[X] and f0 ∈ (f1, . . . , fn)Zp〈X〉. (0.3)

Hence in (0.2) we may replace each ring Z(pk)[X] by Z(pk)〈X〉. Moreover, since Zp〈X〉
is faithfully flat over Zp〈X〉alg, in (0.3) we may further replace Zp〈X〉 by its subring
Zp〈X〉alg. Thus we can improve (0.2) as follows:

f0 ∈ (f1, . . . , fn)Z[X] ⇐⇒
f0 ∈ (f1, . . . , fn)Q[X] and f0 ∈ (f1, . . . , fn)Z(pk)〈X〉alg for all k.

What we have gained is that the rings Zp〈X〉 have some very nice properties: besides being
noetherian and henselian, they also satisfy Weierstraß Division and Preparation Theorems.
These properties continue to hold for Zp〈X〉alg; for example, the ring Zp〈X〉alg is closed
under Weierstraß Division in Zp〈X〉. Moreover, in Zp〈X〉alg the complexity of quotient
and remainder obtained through Weierstraß Division can be explicitly bounded.

In order to formulate this fact precisely, we employ a certain height function

h : Q(X)alg → R≥0

on the algebraic closure Q(X)alg of Q(X), a variant of which was constructed by Kani in
his Ph.D. thesis [20]. We have not found a suitable analogue in the literature (for example,
in [32], Section B, one only finds something like local height functions on Q(X)alg); since
it is fundamental for our work, this paper includes an account of Kani’s (unpublished)
construction. Based on ideas of Arakelov [4], it is nevertheless quite elementary, in contrast
to the constructions of height functions in (higher-dimensional) Arakelov theory, which
usually heavily rely on algebraic geometry (Chow forms, intersection theory etc.).

The height function h extends the usual (absolute logarithmic) height on the algebraic
closure of Q (as defined in [23]). For non-zero f ∈ Z[X] we have

h(f) = degX1
f + · · ·+ degXN

f+∫ 1

0

· · ·
∫ 1

0

max
{

log |f(e2πiθ1 , . . . , e2πiθN )|, 0
}
dθ1 · · · dθN ,
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where degXi
is the degree in the variable Xi. The restriction of h to Z[X] is related to

Mahler’s measure (see Section 1.2 below), which has been used before in the context of
ideal membership problems in Z[X], see, e.g., [30], [31]. The function h behaves well with
respect to algebraic operations in Q(X)alg, and also has the following finiteness property:
there are only finitely many f ∈ Q(X)alg with given bounds on the height h(f) and the
degree ∆(f) :=

[
Q(X, f) : Q(X)

]
of f . Here now is the “effective” Weierstraß Division

Theorem alluded to in the title of this paper, which will be established in Section 4. Recall
that g ∈ Zp〈X〉 is said to be regular in XN of degree s ∈ N if there exist a monic
polynomial g0 ∈ Zp〈X ′〉[XN ] of degree s and a unit u of Zp such that g−ug0 ∈ pZp〈X〉.
Here and below X ′ := (X1, . . . , XN−1).

Theorem 0.1. Let f, g ∈ Zp〈X〉alg, and suppose that g is regular of degree s > 0 in XN .
Let (q, r) be the unique pair consisting of q ∈ Zp〈X〉alg and r ∈ Zp〈X ′〉alg[XN ] such that
f = qg + r and degXN

r < s. Then, writing

r = r0 + r1XN + · · ·+ rs−1X
s−1
N (r0, . . . , rs−1 ∈ Zp〈X ′〉alg),

we have

∆(ri) ≤
(
∆(f)∆(g)

(
h(g) + log 2

))s
,

h(ri) ≤ O(1)s
(
∆(f)

)s∆(g)
(
h(f) + log 2

)(
h(g) + log 2

)
.

Similar results are known for the ring K[[X]] of formal power series with coefficients
in a field K. See [22], [25] for a Weierstraß Division Theorem for the subring of K[[X]]
consisting of those power series which are algebraic over K(X). In [33], [34] a com-
plexity measure for Nash functions is defined and used to prove an effective version of
Bézout’s Theorem for these functions, and, in [13], an effectivization of the Artin-Mazur
Theorem. In [1], [2], related measures for the complexity of algebraic formal power series
are introduced, and bounds for the complexity of quotient and remainder in the Weierstraß
Division Theorem in terms of the complexity of dividend and divisor are deduced. The
bounds obtained there (by very different methods) are also of a single exponential nature,
like ours.

The effective Weierstraß Division Theorem above can be used to adapt Hermann’s
method to treat ideal membership problems for ideals in Zp〈X〉alg. Here, the role played
by the Euclidean Algorithm (for polynomials) in Hermann’s method is taken over by the
Weierstraß Division Theorem in Zp〈X〉alg. Using the height function on Q(X)alg, bounds
for the complexity of the power series occurring in the individual steps can be found. This
allows us to show the following “effective” p-adic analogue of (0.1). Here f denotes the
image of f ∈ Zp〈X〉 under the canonical homomorphism Zp〈X〉 → Zp〈X〉/pEZp〈X〉 ∼=
(Z/pEZ)[X]. As before, let β ∈ N be such that ||fi||∞ ≤ β and deg fi ≤ β for all i, and
suppose β > 0.

Theorem 0.2. There exists a positive integer E with

E ≤ 22·
··
2O(1)N (2Nβ+log β+1)N+1

(N many 2’s),

such that for all f0 ∈ Zp〈X〉:

f0 ∈ (f1, . . . , fn)Zp〈X〉 ⇐⇒
f0 ∈ (f1, . . . , fn)Qp〈X〉 and f0 ∈ (f1, . . . , fn)(Z/pEZ)[X].
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Together with the discussion above, this theorem leads to the computation of the expo-
nent e(N, β). The upper bound on the exponent E in the last theorem is probably far from
optimal. It would be interesting to obtain a qualitatively better (say, doubly-exponential)
bound on E, and hence improve e(N, β). (The bottleneck here is Theorem 0.1.) Note
however that e(N, β) has the advantage of being independent of f0. If we are willing to
also bound the complexity of f0 and the degrees of the solutions of the reduced equation
f0 = f1y1 + · · ·+ fnyn, then using the results of [8] we obtain the following membership
criterion:

Theorem 0.3. There exists a positive integer D = (2β)2
O(N log(N+1))

with the following
property: let f0, . . . , fn ∈ Z[X] with deg fi, ||fi||∞ ≤ β for i = 0, . . . , n and f0 ∈
(f1, . . . , fn)Q[X]; then f0 ∈ (f1, . . . , fn)Z[X] if and only if and there exist g1, . . . , gn ∈
Z[X] of degree at most D such that

f0 = f1g1 + · · ·+ fngn mod δD.

For ideal membership in polynomial rings over residue class rings of Z one shows rather
easily:

Proposition 0.4. Let f0, . . . , fn ∈ Z[X] such that deg fi ≤ d for i = 0, . . . , n, and let
a ∈ N, a > 0. If f0 ∈ (f1, . . . , fn)(Z/aZ)[X], then there exist g1, . . . , gn ∈ Z[X] of
degree at most (log2 a)(2d)aN+1

such that

f0 = f1g1 + · · ·+ fngn mod a.

Unfortunately, however, the bound in this proposition does not enable us to straight
away remove the bounds on the degrees of the gi in Theorem 0.3.

Organization of the paper. Section 1 has preliminary character and collects some defini-
tions and basic results concerning absolute values and norms of polynomials. In Section 2
we introduce height functions, in the general context of Kani’s theory of arithmetic fields
[20], and in Section 3 we construct a height function on the algebraic closure of Q(X).
We also go beyond [20] and discuss height on projective and affine space, and height of
matrices. In Section 4 we prove Theorem 0.1. In Section 5 we adapt Hermann’s method
to Zp〈X〉, leading to a proof of Theorem 0.2. Finally, Section 6 contains the proofs of
Theorem 0.3 and Proposition 0.4.

Conventions and notations. Throughout this paper, N , m and n range over the set N =
{0, 1, 2, . . . } of natural numbers.

Acknowledgments. This paper derives from a part of my Ph.D. thesis [7], written under
the guidance of Lou van den Dries, whose advice I gratefully acknowledge. In particular,
the idea of using Kani’s height function to compute the exponent e is due to him. I also
thank Ernst Kani for the permission to include the construction of his height function.

1. ABSOLUTE VALUES AND NORMS OF POLYNOMIALS

For the convenience of the reader, and to fix notations, we first collect a few definitions
and basic results concerning absolute values. (See [11], Chapitre VI for more facts about
absolute values.) We then discuss several measures for the complexity of polynomials,
most notably the (logarithmic) Mahler measure [26] from transcendental number theory.
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1.1. Absolute values. Let K be a field and | · | be an absolute value on K, that is, a
function x 7→ |x| : K → R≥0 with |0| = 0, whose restriction to K× = K \{0} is a homo-
morphism K× → R>0 of (multiplicative) groups which satisfies the triangle inequality

|x + y| ≤ |x|+ |y| for all x, y ∈ K.

We always assume that absolute values are non-trivial, i.e., |x| 6= 1 for some x ∈ K×. If
instead of the triangle inequality the stronger ultrametric triangle inequality

|x + y| ≤ max
{
|x|, |y|

}
for all x, y ∈ K

holds, then | · | is called ultrametric, and otherwise, archimedean. The absolute value | · |
is ultrametric if and only if |n · 1| ≤ 1 for all n. (In particular, if char(K) > 0, then each
absolute value on K is ultrametric.) The map

(x, y) 7→ |x− y| : K ×K → R≥0 (1.1)

is a metric on K and makes K into a topological field. Two absolute values | · |1 and | · |2
on K induce the same topology on K if and only if | · |1 = (| · |2)r for some r ∈ R>0. In
this case, | · |1 and | · |2 are called equivalent. For example, the only absolute values on Q,
up to equivalence, are

(1) the usual (archimedean) absolute value, given by |x|∞ := max{x,−x} for x ∈ Q,
and

(2) for each prime number p, the (ultrametric) p-adic absolute value |x|p := p−vp(x),
where k = vp(x) ∈ Z is such that x = pk a

b with a, b ∈ Z \ {0} not divisible by p,
and |0|p := 0.

We associate to | · | its corresponding additive absolute value
v = v| · | : K× → R, v(x) := − log |x|,

a homomorphism of the multiplicative group of K into the additive group of R. (Here
and below, “log” will always stand for the natural logarithm.) We put Γv := v(K×), an
additive subgroup of R. From v we can reconstruct | · | = | · |v , since

|x|v = exp
(
−v(x)

)
for x ∈ K×, |0|v = 0. (1.2)

This justifies the usual practice (which we will also adopt) of speaking of an “absolute
value v”, if one in fact means that “v is the additive absolute value corresponding to the
absolute value | · |v .” Note that if | · | is ultrametric, then v is a (real) valuation on K with

Ov :=
{
x ∈ K : |x| ≤ 1

}
and mv :=

{
x ∈ K : |x| < 1

}
(1.3)

as the corresponding valuation ring and its maximal ideal, respectively. Conversely, if
v : K× → R is a valuation on K, then | · |v as given by (1.2) is an ultrametric absolute
value on K. This gives a bijection v 7→ | · |v (with inverse | · | 7→ v| · |) between the set of
all real valuations on K and the set of all ultrametric absolute values on K. An important
class of absolute values arises from unique factorization:

Example 1.1. Suppose that K = Frac(R) is the fraction field of a unique factorization
domain R. Every irreducible element p ∈ R determines the (discrete) p-adic valuation
vp : K× → Z by the rule

vp(pna) = n for 0 6= a ∈ R, p does not divide a.

Clearly, for irreducible p, q ∈ R we have vp = vq if and only if p = uq for some unit u
of R. The p-adic valuations vp are called the essential valuations of R. Each essential
valuation vp determines an essential absolute value | · |vp

on K by |x|vp
:= exp

(
−vp(x)

)
for x ∈ K×. For instance, the essential valuations of R = Z are the p-adic valuations on
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Q, p a prime number. Note that | · |p = | · |log p
vp

. We also write v∞ for the absolute value
v| · |∞ on Q.

Addition and multiplication of K extend continuously to the completion K̂ of K with
respect to the metric (1.1), making K̂ a field. The absolute value | · | on K extends con-
tinuously to an absolute value on K̂, also denoted by | · |. Ostrowski’s Theorem says that
if | · | is archimedean, then either (K̂, | · |) ∼= (R, | · |rR) for some real number r ∈ (0, 1], or
(K̂, | · |) ∼= (C, | · |rC) for some real number r ∈ (0, 1]. Here | · |R and | · |C are the usual
absolute values on R and C, respectively.

For convenience, we put

εv :=

{
|1|v if v is ultrametric,
|2|v if v is archimedean.

Then 1 ≤ εv ≤ 2, with εv = 1 if and only if v is ultrametric, and for all x, y ∈ K we have
|x + y|v ≤ εv max

{
|x|v, |y|v

}
. (All this is clear if v is ultrametric; if v is archimedean,

use Ostrowski’s Theorem and the triangle inequality for | · |C.)
The next lemma contains some inequalities that will become useful for later estimates.

Lemma 1.2. Let A = (aij) ∈ Kn×n be an n × n-square matrix over K, where n > 0.
Suppose r1, . . . , rn ∈ R are such that |aij |v ≤ rj for all i, j = 1, . . . , n. Then:

(1) if v is ultrametric, then |detA|v ≤ r1 · · · rn;
(2) if v is archimedean, then |det A|v ≤ |n|n/2

v r1 · · · rn.

Proof. Part (1) is clear from the ultrametric triangle inequality. For (2), by Ostrowski’s
Theorem, we may assume that K = C and | · |v = | · |r for some r ∈ (0, 1], where | · |
denotes the usual absolute value on C. Let A have rows a1, . . . , an. By Hadamard’s
inequality (see [17], §2.12),

|detA|v = |det A|r ≤ ||a1||r2 · · · ||an||r2,

where ||b||2 =
(∑

j |bj |2
)1/2

for b = (b1, . . . , bn) ∈ Cn. We have

||b||2 ≤
√

n max
{
|b1|, . . . , |bn|

}
for all b ∈ Cn.

This implies (2). �

Finally, let us recall that the absolute value | · | on K always extends to an absolute
value on the algebraic closure Kalg of K, and any two such extensions | · |1 and | · |2 are
conjugate, that is: there exists σ ∈ Gal(Kalg|K) such that |x|1 = |σ(x)|2 for all x ∈ Kalg.
This fact will turn out to be crucial for the construction of a height function on Kalg in the
next section.

1.2. Norms of polynomials. We now discuss several different measures for the size of
polynomials, the most important among them the so-called logarithmic Mahler measure.
We first introduce some notations used throughout the paper. Let R be a commutative ring,
X = (X1, . . . , XN ) an N -tuple of indeterminates over R, and

f(X) =
∑

ν

aνXν (1.4)

a polynomial in R[X]. Here the multiindex ν = (ν1, . . . , νN ) ranges over NN , Xν =
Xν1

1 · · ·XνN

N , and aν ∈ R. For i = 1, . . . , N , the degree of f in Xi will be denoted by
degXi

f , and the (total) degree of f by deg f or degX f , with degXi
0 = deg 0 = −∞ <
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N. We also set deg(X) f :=
∑N

i=1 degXi
f for non-zero f , and deg(X) 0 := −∞. Note

that with m = max {degX1
f, . . . , degXN

f} we have

m ≤ degX f ≤ deg(X) f ≤ Nm. (1.5)

Below, we let R = K be a field and v be an absolute value on K, and we let f as in (1.4)
range over K[X].

First recall that the absolute value | · |v extends to a norm on the polynomial ring K[X],
again denoted by | · |v , by |f |v := maxν |aν |v . The norm | · |v is called the Gauß norm on
K[X]. We also write v(f) := − log |f |v for non-zero f . If the absolute value | · |v of K is
ultrametric, then by Gauß’s Lemma, the norm | · |v on K[X] is multiplicative:

|f · g|v = |f |v · |g|v for all f, g ∈ K[X]. (1.6)

So | · |v extends uniquely to an absolute value on the fraction field K(X) of K[X], and
v extends to a valuation on K(X). If | · |v on K is archimedean, then the Gauß norm
on K[X] is no longer multiplicative. However, for f1, . . . , fn ∈ K[X], we do have the
following fundamental inequality (known as Gelfond’s Lemma):

|2−df1 · · · fn|v ≤ |f1|v · · · |fn|v ≤ |2df1 · · · fn|v, d = deg(X) f1 · · · fn (1.7)

(See [23], Chapter 3, §2.) Note that (1.6) and (1.7) may be combined to the inequality

ε−d
v

n∏
i=1

|fi|v ≤ |f1 · · · fn|v ≤ εd
v

n∏
i=1

|fi|v. (1.8)

The proof of the next lemma is straightforward from the definitions:

Lemma 1.3. Suppose that f is non-zero, let d = degX f and mon f = the number of
monomials occurring in f with a non-zero coefficient, so mon f ≤

(
N+d

d

)
. Then, for all

x ∈ KN with maxi|xi|v ≥ 1:
(1) |f(x)|v ≤ maxi |xi|dv · |f |v if v is ultrametric,
(2) |f(x)|v ≤ maxi |xi|dv · |f |v · |mon f |v if v is archimedean.

For archimedean | · |v there are other measures for the size of a polynomial in K[X],
which fit different purposes. By Ostrowski’s Theorem, we may restrict our attention to the
field K = C of complex numbers with its usual absolute value |z| =

√
zz, for z ∈ C. The

maps

f 7→ ||f ||1 :=
∑

ν

|aν |, f 7→ ||f ||2 :=

(∑
ν

|aν |2
)1/2

are norms on the C-vector space C[X] extending the absolute value on C, called the l1-
norm (or length) and the l2-norm (or euclidean norm) on C[X], respectively. We also
denote the Gauß norm (sometimes called the l∞-norm) on C[X] by | · | = || · ||∞. These
norms are connected by the following relations, valid for f 6= 0:

||f ||∞ ≤ ||f ||1 ≤
(
1 + degX1

f
)
· · ·
(
1 + degXN

f
)
||f ||∞,

||f ||∞ ≤ ||f ||2 ≤
(
1 + degX1

f
)1/2 · · ·

(
1 + degXN

f
)1/2||f ||∞,

||f ||2 ≤ ||f ||1 ≤
(
1 + degX1

f
)1/2 · · ·

(
1 + degXN

f
)1/2||f ||2.

(1.9)

A more subtle measure for the complexity of a non-zero polynomial f is its Mahler mea-
sure

m(f) =
∫ 1

0

· · ·
∫ 1

0

log |f(e2πiθ1 , . . . , e2πiθN )| dθ1 · · · dθN , (1.10)
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where the integral in (1.10) is taken in the sense of Lebesgue. See [15], §3.3 for a proof
that m(f) ∈ R. Note that m( · ) is additive, i.e., m(fg) = m(f) + m(g) for non-zero
f, g ∈ C[X]. In the next lemma, we collect a few other well-known properties of Mahler
measure. (For a proof see [15].) We write log+ x = max{0, log x}, for any positive real
number x.

Lemma 1.4. Let f 6= 0, dj = degXj
f for j = 1, . . . , N , and d =

∑
j dj = deg(X) f .

(1) If N = 1 and α1, . . . , αd ∈ C are the zeros of f , with multiplicities, then

m(f) = log |ad|+
d∑

j=1

log+ |αj |.

(2) m(f) ≥ log |aν | for some non-zero coefficient aν of f . (In particular, m(f) ≥ 0
if all aν ∈ Z.)

(3) m(f) ≤ log ||f ||2. (Landau’s Inequality.)
(4) m(f)− 1

2

∑
j log(dj + 1) ≤ log ||f ||∞ ≤ m(f) + d log 2.

(5) m(f) ≤ log ||f ||1 ≤ m(f) + d log 2.
(6) If j ∈ {1, . . . , N} and dj > 0, then m(∂f/∂Xj) ≤ m(f) + log dj .

Let us also introduce the notation

m+(f) =
∫ 1

0

· · ·
∫ 1

0

log+ |f(e2πiθ1 , . . . , e2πiθN )| dθ1 · · · dθN

for non-zero f . Note that by Jensen’s Formula∫ 1

0

· · ·
∫ 1

0

log+ |f(e2πiθ1 , . . . , e2πiθN )| dθ1 · · · dθN =∫ 1

0

· · ·
∫ 1

0

log |f(e2πiθ1 , . . . , e2πiθN ) + e2πiθ| dθdθ1 · · · dθN ,

so that m+(f) = m
(
f(X) + Y

)
, where Y is a new indeterminate, different from each of

X1, . . . , XN . It is convenient to define m+(0) := 0. For N = 1, the function m+ as a
complexity measure for polynomials has been introduced in [27], and was further studied
in [3].

For non-zero polynomials f, f1, . . . , fn ∈ C[X], n > 0 and k ∈ N, we have:

m+(f1 · · · fn) ≤ m+(f1) + · · ·+ m+(fn), (1.11)

m+(f1 + · · ·+ fn) ≤ m+(f1) + · · ·+ m+(fn) + log n, (1.12)

m+(fk) = km+(f). (1.13)

The next lemma compares m+( · ) with m( · ), || · ||1 and || · ||∞:

Lemma 1.5. Let f(X) ∈ Z[X], f 6= 0, d = deg(X) f . Then

m(f) ≤ m+(f) ≤ log ||f ||1 ≤ m(f) + d log 2 (1.14)

and
log ||f ||∞ − d log 2 ≤ m+(f) ≤ log ||f ||∞ + d. (1.15)

In the proof, we use the following estimate. Here, Y = (Y1, . . . , YM ) is a tuple of
distinct indeterminates over Z.
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Lemma 1.6. Suppose f(X) ∈ Z[X] and g1(Y ), . . . , gN (Y ) ∈ Z[Y ]. Then

m+
(
f(g1, . . . , gN )

)
≤ log ||f ||1 + d1m

+(g1) + · · ·+ dNm+(gN ),

where d1 = degX1
f, . . . , dN = degXN

f .

Proof. Write f as in (1.4), with all aν ∈ Z. Then for all z = (z1, . . . , zN ) ∈ CN∣∣f(g1(z), . . . , gN (z)
)∣∣ ≤∑

ν

|aν |max
{
|g1(z)|d1 , 1

}
· · ·max

{
|gN (z)|dN , 1

}
,

for 1 ≤ j ≤ N . Thus

log+
∣∣f(g1(z), . . . , gN (z)

)∣∣ ≤ log ||f ||1 + d1 log+|g1(z)|+ · · ·+ dN log+|gN (z)|.

Taking zj = e2πiθj with 0 ≤ θj ≤ 1 for j = 1, . . . , N and integrating both sides over
[0, 1]N with respect to (θ1, . . . , θN ) gives the desired inequality. �

The first inequality in (1.14) is clear since log x ≤ log+ x for all x ∈ R>0, and the last
one is part of Lemma 1.4, (5). For the second one, apply the lemma above, taking gj = Xj

for j = 1, . . . , N . The inequalities in (1.15) now follow from (1.14), Lemma 1.4, (4), and
(1.9).

2. HEIGHT FUNCTIONS

In this section we first give a brief treatment of the relevant facts from Kani’s theory of
arithmetic fields, divisors, degree functions, and height functions, in a less general setting
than in [20]. Its purpose is to abstract the main features of the theory of height functions on
algebraic number fields (as presented in [23], say) to “non-classical” arithmetic fields, such
as the function field Q(X1, . . . , XN ). (See Definition 2.2 below.) We give a self-contained
proof of Kani’s theorem about the extension of a degree function on an arithmetic field to
its algebraic closure. Using this theorem, in the next section we obtain a height function on
the algebraic closure of Q(X1, . . . , XN ), which will be the main tool for the computations
in the sections to follow. In the later part of this section we discuss height on projective
and affine space, and establish a few basic estimates used later.

2.1. Arithmetic fields and divisors. An arithmetic field is a pair (K, M) consisting of a
field K and a collection M of mutually non-equivalent absolute values on K. (This is less
general than the notion of arithmetic field in [20], Kapitel I, Definition 1.6.)

Examples 2.1.
(1) The collection M = {vp : p prime} ∪ {v∞} makes (Q,M) an arithmetic field,

and we refer to this also as the arithmetic field Q.
(2) Let R be a unique factorization domain, K = Frac(R), and

MR := {vp : p irreducible element of R}.
The pair (K, MR) is an arithmetic field.

(3) Given an arithmetic field (K, M), let Malg be the set of absolute values on Kalg

extending an absolute value in M . Then (Kalg,Malg) is an arithmetic field.

We call an arithmetic field (K1,M1) an extension of the arithmetic field (K, M), in
symbols (K, M) ⊆ (K1,M1), if K is a subfield of K1 and M1 consists of all extensions
of the absolute values in M to absolute values on K1. Given any intermediate field K ⊆
L ⊆ Kalg, we can make L into an arithmetic field (L,ML) with (K, M) ⊆ (L,ML) in
a unique way by setting ML := {v � L : v ∈ Malg}. (So (K, M) ⊆ (Kalg,Malg) and
Malg = MKalg .)
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Definition 2.2. An arithmetic field (K, M) is called classical if for each a ∈ K×, the
support of a,

supp(a) :=
{
v ∈ M : v(a) 6= 0

}
,

is a finite set.

Examples 2.3. The arithmetic field Q is classical. If R is a unique factorization domain,
K = Frac(R), then (K, MR) is a classical arithmetic field. If (K, M) is classical, so is
(L,ML) for each finite extension L|K. (Hence in particular, every algebraic number field,
as an arithmetic field extending the arithmetic field Q, is classical.) In the next section we
will encounter examples of non-classical arithmetic fields.

Let (K, M) be an arithmetic field. We let

Df(K, M) :=
∏

v∈M

Γv,

a product of additive subgroups of R. Its elements D = (v(D))v∈M are called formal
divisors on (K, M). Since each Γf is a linearly ordered additive group, the (additively
written) group Df(K, M) is a lattice-ordered group: for D1, D2 ∈ Df(K, M)

D1 ≤ D2 ⇐⇒ v(D1) ≤ v(D2) for all v ∈ M ,

and for all v ∈ M :

v(D1 ∧D2) = min
{
v(D1), v(D2)

}
, v(D1 ∨D2) = max

{
v(D1), v(D2)

}
.

In particular, every formal divisor D is of the form

D = D0 −D∞, where D0 = D ∨ 0 and D∞ = (−D) ∨ 0.

We also put

|D| := D ∨ (−D) = D0 + D∞ for D ∈ Df(K, M).

Every element a ∈ K× determines a formal divisor, written div(a) = div(K,M)(a) or just
(a), by

v
(
div(a)

)
= v(a) for all v ∈ M .

We call (a)0 and (a)∞ the divisor of zeros of a and the divisor of poles of a, respectively.

Example 2.4. We have (2)∞ = (log εv)v∈M , using the notation introduced in the previous
section. Thus (2)∞ = 0 if M contains only ultrametric absolute values.

The formal divisors of the form (a) for a ∈ K× are called principal divisors. Note that
(ab) = (a) + (b) and (a−1) = −(a) for a, b ∈ K×, so we have a group homomorphism

a 7→ div(a) : K× → Df(K, M)

whose image we denote by P(K, M). We let D(K, M) be the smallest subgroup of
Df(K, M) closed under the operation ∧ and containing P(K, M). (Then D(K, M) is
also closed under ∨.) We call D(K, M) the divisor group of (K, M) and its elements
divisors. The quotient group

Cl(K, M) = D(K, M)/P(K, M)

is called the divisor class group of (K, M), and its elements divisor classes.

Lemma 2.5. D(K, M) =
{∧

1≤i≤m

∨
1≤j≤n(aij) : m,n ≥ 1, aij ∈ K×

}
.
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Proof. Let S be the set on the right hand side. Then S is closed under ∧ and contains
P(K, M); in order to show S = D(K, M), it therefore suffices to prove that S is a sub-
group ofDf(K, M). This follows immediately from the following two easily verified facts:
if

D =
∧

1≤i≤m

∨
1≤j≤n

(aij) and D′ =
∧

1≤k≤m′

∨
1≤l≤n′

(a′kl)

with m,n,m′, n′ ≥ 1 and aij , a
′
kl ∈ K×, then

D + D′ =
∧

1≤i≤m,
1≤k≤m′

∨
1≤j≤n,
1≤l≤n′

(aija
′
kl) (2.1)

and
−D =

∧
ϕ

∨
1≤i≤m

(1/ai,ϕ(i)),

where ϕ runs through all maps {1, . . . ,m} → {1, . . . , n}. �

In the classical case, D(K, M) admits an even simpler representation:

Lemma 2.6. If (K, M) is a classical arithmetic field, then

D(K, M) =
⊕
v∈M

Γv,

where
⊕

v Γv is viewed as a subgroup of Df(K, M) =
∏

v Γv .

Proof. Since suppD is finite for each D ∈ D(K, M), we have D(K, M) ⊆
⊕

v Γv . For
the reverse inclusion, it suffices to show: for every v ∈ M and γ ∈ Γv there exists a divisor
D ∈ D(K, M) with v(D) = γ and w(D) = 0 for w 6= v in M . For this, we may assume
γ = v(x) > 0 with x ∈ K×. By the Approximation Theorem for absolute values (see
[11], Chapitre VI, §7, Théorème 2), we find y ∈ K× with v(y) > 0 and w(y) < 0 for all
w 6= v in M with w(x) > 0. Set D′ = (x)0 ∧ (y)0. If v(y) ≥ v(x), then D := D′ is the
desired divisor; otherwise, replace y by a suitable power yn, n > 0. �

2.2. Extensions of arithmetic fields. Suppose (K, M), (K1,M1) are arithmetic fields
with (K, M) ⊆ (K1,M1). The restriction map

v 7→ %(v) := v � K : M1 → M

induces an embedding of ordered groups

%∗ : Df(K, M) → Df(K1,M1)

between the formal divisor groups via the rule

v
(
%∗(D)

)
=
(
%(v)

)
(D) for all D ∈ Df(K, M), v ∈ M1.

We have
%∗
(
div(K,M)(a)

)
= div(K1,M1)(a) for a ∈ K×,

hence %∗
(
P(K, M)

)
⊆ P(K1,M1); moreover, for all D1, D2 ∈ Df(K, M) we have

%∗(D1 ∨D2) = %∗(D1) ∨ %∗(D2), %∗(D1 ∧D2) = %∗(D1) ∧ %∗(D2),

therefore %∗
(
D(K, M)

)
⊆ D(K1,M1). Below, we will always identify the ordered groups

Df(K, M), P(K, M) andD(K, M) with their respective images under the embedding %∗.
Let now (K, M) be an arithmetic field and L|K be a normal field extension. The group

Gal(L|K) acts on ML in a natural way from the right: for v ∈ ML and σ ∈ Gal(KL|K)



AN EFFECTIVE WEIERSTRASS DIVISION THEOREM 13

put vσ := v ◦ σ ∈ ML. This action induces a left action (σ,D) 7→ σD of Gal(L|K) on
Df(L,ML):

(σD)(v) := vσ(D) for D ∈ Df(L,ML), σ ∈ Gal(L|K), v ∈ ML.

The map D 7→ σD is an automorphism of the ordered group Df(L,ML), with inverse
D 7→ σ−1D. Every divisor D ∈ Df(K, M) is invariant under Gal(L|K): σD = D for all
σ ∈ Gal(L|K). Note that for each σ ∈ Gal(L|K) we have

σ div(a) = div(σ(a)) for a ∈ L×

and, for all D1, D2 ∈ Df(L,ML):

σ(D1 ∨D2) = σD1 ∨ σD2, σ(D1 ∧D2) = σD1 ∧ σD2.

Hence for every intermediate field K ⊆ F ⊆ L:

σP(F,MF ) = P
(
σ(F ),Mσ(F )

)
, σD(F,MF ) = D

(
σ(F ),Mσ(F )

)
.

In particular, σD(L, ML) = D(L, ML).

2.3. Degree functions and height functions. A degree function on an arithmetic field
(K, M) is a function deg : D(K, M) → R satisfying

(D1) deg(D + E) = deg(D) + deg(E) (additivity)
(D2) D ≥ 0 ⇒ deg(D) ≥ 0 (monotonicity)
(D3) deg(div x) = 0 for all x ∈ K× (product formula).

Because of (D3), deg induces a homomorphism Cl(K, M) → R, which we also denote
by deg. A global field (K, M, deg) is an arithmetic field (K, M) equipped with a degree
function deg on D(K, M).

Remark 2.7. Suppose (K, M) is classical. Then by Lemma 2.6, every divisor D ∈
D(K, M) is completely determined by v 7→ v(D) : M → R, a function of finite sup-
port. So every real-valued function deg on D(K, M) satisfying (D1) and (D2) is of the
form

deg(D) =
∑
v∈M

v(D)λv for D ∈ D(K, M), (2.2)

where the λv ∈ R≥0 are independent of D and uniquely determined by (2.2). Conversely,
given any λv ∈ R≥0 for v ∈ M , we obtain a function deg : D(K, M) → R satisfying (D1)
and (D2) by defining deg as in (2.2). So in this case, (D3) is equivalent to the product
formula ∏

v∈M

|a|λv
v = 1 for all a ∈ K×.

The construction of a degree function via (2.2) will be generalized below to the case of
non-classical (K, M).

Example 2.8. For the classical arithmetic field Q we have the product formula∏
v∈M

|a|λv
v = 1 (a ∈ Q×),

with λv∞ = 1 and λvp
= log p for all primes p. By (2.2), we obtain a degree function on

the arithmetic field Q, and we call (Q,M,deg) the global field Q. (By [5] and Remark 2.7,
deg is the only degree function on Q, up to multiplication by a non-negative real number.)
More generally, for an algebraic number field K, we have the product formula∏

v∈MK

|a|λv
v = 1 (a ∈ K×),
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where the λv are determined as follows: For v ∈ MK , we let nv = [Kv : Qv], where Kv

denotes the v-adic completion of K and Qv ⊆ Kv is the (v � Q)-adic completion of Q.
(So either Qv = R or Qv = Qp for a prime p.) Now

λv =

{
nv if v is archimedean,
nv log κv if v is non-archimedean,

where κv is the cardinality of the (finite) residue field Ov/mv of v.

To a global field (K, M, deg) we associate a height function h : K → R by

h(x) := deg
(
(x)∞

)
for x ∈ K.

Here and below, (0)∞ := 0 by convention. One verifies easily the following properties,
for elements x, y, x1, . . . , xn ∈ K and n > 0:

h(x) ≥ 0, h(0) = h(1) = 0, (2.3)

h(x) = h(−x) (2.4)

h(xk) = |k|h(x) for all k ∈ Z, x 6= 0, (2.5)

h(xy) ≤ h(x) + h(y), (2.6)

h(x1 + · · ·+ xn) ≤ max
{
h(x1), . . . , h(xn)

}
, (2.7)

if M consists only of ultrametric absolute values,

h(x1 + · · ·+ xn) ≤ h(x1) + · · ·+ h(xn) + h(n), (2.8)
if M contains an archimedean absolute value.

Remark 2.9. By (2.3), (2.5) and (2.6), the subset of K× consisting of the elements of
height 0 is a subgroup of K× containing each root of unity of K. If M consists only of
ultrametric absolute values, then, using also (2.7), one can show that the elements of K of
height 0 form a subfield of K which is algebraically closed in K. (See [21], (2.17).)

Example 2.10. The height function of the global field Q is given by

h(a/b) = max
{
log |a|∞, log |b|∞

}
for relatively prime a, b ∈ Z \ {0}.

By Example 2.8, for every global field (K, M, deg) with K of characteristic zero there
exists c ∈ R≥0 such that

h(a/b) = c ·max
{
log |a|∞, log |b|∞

}
for relatively prime a, b ∈ Z \ {0}.

Let (K, M) be an arithmetic field and L|K be a normal field extension. We say that
a degree function deg on (L,ML) is Gal(L|K)-invariant if deg(σD) = deg(D) for all
σ ∈ Gal(L|K) and D ∈ D(L,ML). In this case, h

(
σ(x)

)
= h(x) for all x ∈ L. To

construct degree and height functions, the following is essential:

Theorem 2.11. (Kani, [20].) Let (K, M, deg) be a global field. Then deg extends uniquely
to a Gal(Kalg|K)-invariant degree function on (Kalg,Malg).

We give a direct proof of this theorem, avoiding the non-standard methods used in the
original proof (in order to obtain the auxiliary Proposition 2.12 below). We also close a
small gap in [20], see remark (1) at the end of the proof. First, we have to introduce another
basic concept in the theory of divisors.

Let (K, M) be an arithmetic field, L|K a finite normal field extension. By

NL|K(D) := [L : K]ins

∑
σ∈Gal(L|K)

σD,
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where [L : K]ins = degree of inseparability of L|K, we define a homomorphism

NL|K : D(L,ML) → D(L,ML),

called the norm map. It is clear that for all D ∈ D(L,ML)

(N1) D ≥ 0 ⇒ NL|K(D) ≥ 0,
(N2) D ∈ D(K, M) ⇒ NL|K(D) = [L : K]D.

By (N1) we have, for D,D′ ∈ D(L,ML):

(N3) NL|K(D ∧D′) ≤ NL|K(D) ∧NL|K(D′),
(N4) NL|K(D ∨D′) ≥ NL|K(D) ∨NL|K(D′).

Moreover, for all x ∈ L×

(N5) NL|K
(
div(x)

)
= div

(
NL|K(x)

)
,

where NL|K(x) is the field-theoretic norm of the element x. In particular, we have

NL|K
(
P(L,ML)

)
⊆ P(K, M).

This raises the question whether we also have NL|K
(
D(L, ML)

)
⊆ D(K, M). This turns

out to be false (unless M consists of ultrametric absolute values only), but we can show
a weaker statement, sufficient for our purposes. To formulate it, let D(N)(L,ML), for
N ≥ 1, denote the set of all divisors D ∈ D(L, ML) admitting a representation of the
form D =

∧N
i=1

∨N
j=1(aij) with aij ∈ L× for 1 ≤ i, j ≤ N . For D,D′ ∈ D(L,ML) we

also set [D,D′] :=
{
E ∈ D(L,ML) : D ≤ E ≤ D′}.

Proposition 2.12. For all N ≥ 1 there exists a divisor DN ∈ D(K, M) such that DN ≥ 0
and

NL|K
(
D(N)(L,ML)

)
⊆ D(K, M) + [−DN , DN ].

If all absolute values in M are ultrametric, then

NL|K
(
D(L,ML)

)
⊆ D(K, M).

The last statement (for which also see [21], Satz 1.9) immediately implies:

Corollary 2.13. Suppose that all absolute values in M are ultrametric. If L′|L is another
finite normal field extension, then NL′|K = NL|K ◦NL′|L. �

For the proof of Proposition 2.12, we letD(N)
∨ (L,ML) denote the set of all divisors D ∈

D(L,ML) of the form D =
∨N

i=1(ai), where ai ∈ L×. Similarly we defineD(N)
∧ (L,ML).

We also define

D∨(L, ML) =
⋃

N≥1

D(N)
∨ (L,ML) and D∧(L,ML) =

⋃
N≥1

D(N)
∧ (L, ML).

Both sets are sub-semigroups ofD(L,ML), by the identity (2.1) in the proof of Lemma 2.5.

Lemma 2.14. Let N ≥ 1 and put D′
N = (2N2

)∞. Then for all D ∈ D(N)(L, ML) we
have

−D′
N + D1 −D2 ≤ D ≤ D′

N + D1 −D2

for certain D1, D2 ∈ D(N2)
∨ (L,ML). If all absolute values in M are ultrametric, then

D′
N = 0, so in this case every D ∈ D(L,ML) is a difference of divisors fromD∨(L,ML).
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Proof. Suppose D =
∧N

i=1 Ei with Ei =
∨N

j=1(aij). We let, for 1 ≤ i ≤ N ,

fi(T ) :=
N∑

j=1

a−1
ij T j ∈ L[T ],

and f := f1 · · · fN . Then for each v ∈ ML, we have v(Ei) = −v(fi), so v(D) =
mini−v(fi). By the inequality (1.8) in the last section applied to the polynomials f/fi

and fi in L[T ], we have

−N2 log εv − v(f) ≤ −v(f/fi)− v(fi) ≤ N2 log εv − v(f)

and thus

−N2 log εv − v(f) + v(f/fi) ≤ −v(fi) ≤ N2 log εv − v(f) + v(f/fi),

for i = 1, . . . , N . Hence

−N2 log εv − v(f) + min
i

v(f/fi) ≤ min
i
−v(fi) ≤

N2 log εv − v(f) + min
i

v(f/fi).

Since this holds for all v ∈ ML, we get

−D′
N + D1 −D2 ≤ D ≤ D′

N + D1 −D2,

where D′
N = (2N2

)∞ and D1, D2 ∈ D(N2)
∨ (L,ML). If M contains only ultrametric

absolute values, then D′
N = 0. (See Example 2.4.) �

Lemma 2.15. Let N ≥ 1 and put D′′
N = (2N ·[L:K])∞. Then for each divisor D ∈

D(N)
∨ (L,ML) we have

−D′′
N + E ≤ NL|K(D) ≤ D′′

N + E

for some E ∈ D∨(K, M), and for each D ∈ D(N)
∧ (L, ML) we have

−D′′
N + E′ ≤ NL|K(D) ≤ D′′

N + E′

for some E′ ∈ D∧(K, M). If all absolute values in M are ultrametric, then

NL|K
(
D∨(L,ML)

)
⊆ D∨(K, M) and NL|K

(
D∧(L,ML)

)
⊆ D∧(K, M).

Proof. Since D ∈ D(N)
∨ (L,ML) ⇔ −D ∈ D(N)

∧ (L,ML) for all N ≥ 1 and D ∈
D(L, ML), it obviously suffices to prove the statement about D(N)

∧ (L, ML). Let D =∧N
i=1(ai) with a1, . . . , aN ∈ L× be an element of D(N)

∧ (L,ML). Put

f(T ) =
N∑

i=1

aiT
i, g(T ) =

 ∏
σ∈Gal(L|K)

(σf)(T )

[L:K]ins

,

where for σ ∈ Gal(L|K) we let (σf)(T ) :=
∑N

i=1 σ(ai)T i. Then g(T ) ∈ K[T ], and for
all v ∈ ML

v
(
NL|K(D)

)
= [L : K]ins

∑
σ

v(σD) = [L : K]ins

∑
σ

v(σf).

By (1.8) we have, for all v ∈ ML:

−N ′ log εv + v(g) ≤ [L : K]ins

∑
σ

v(σf) ≤ N ′ log εv + v(g),
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where N ′ = deg g = N · [L : K]. Hence

−D′′
N + E ≤ NL|K(D) ≤ D′′

N + E

where E ∈ D∧(K, M) and D′′
N = (2N ′

)∞, with D′′
N = 0 if M contains only ultrametric

absolute values. �

Proof of Proposition 2.12. Let D ∈ D(L,ML). By Lemma 2.14,

−D′
N + D1 −D2 ≤ D ≤ D′

N + D1 −D2

with D′
N = (2N2

)∞ and certain D1, D2 ∈ D(N2)
∨ (L,ML). By Lemma 2.15, there are

E1, E2 ∈ D∨(K, M) such that

−D′′
N2 + Ei ≤ NL|K(Di) ≤ D′′

N2 + Ei for i = 1, 2,

with D′′
N2 = (2N2[L:K])∞. It now follows easily that

−DN + (E1 − E2) ≤ NL|K(D) ≤ DN + (E1 − E2)

where DN = [L : K]D′
N +2D′′

N2 ∈ D(K, M), with DN ≥ 0, and DN = 0 if M contains
no archimedean absolute value. �

Now we turn to the proof of Theorem 2.11. It clearly suffices to show that for each finite
normal extension L|K, the degree function on (K, M) extends uniquely to a Gal(L|K)-
invariant degree function degL on (L,ML). Hence suppose that L|K is a finite normal
extension. Put, for D ∈ D(L, ML):

deg(D) := inf
{
deg(E) : E ∈ D(K, M), E ≥ NL|K(D)

}
, (2.9)

deg(D) := sup
{
deg(E) : E ∈ D(K, M), E ≤ NL|K(D)

}
. (2.10)

Note that for each D ∈ D(L, ML) we have D ∈ D(N)(L,ML) for some N ≥ 1, and thus
−DN ≤ NL|K(D) − E ≤ DN for some E ∈ D(K, M), by Proposition 2.12. Hence the
infimum (2.9) and the supremum (2.10) exist and are finite. Note that we have

D ∈ D(K, M) ⇒ deg(D) = deg(D) = d deg(D) (2.11)

by (N2), where d = [L : K]. Moreover, for D,D′ ∈ D(L, ML),

deg(D) ≤ deg(D), (2.12)

deg(D + D′) ≥ deg(D) + deg(D′), (2.13)

deg(D + D′) ≤ deg(D) + deg(D′), (2.14)

and hence, by induction,

deg(D) ≤ 1
n

deg(nD) ≤ 1
n

deg(nD) ≤ deg(D) for all n ≥ 1.

Let D ∈ D(N)(L,ML). Since 2nD ∈ D(N)(L, ML) for all n, we obtain in particular
1
2n

deg(2nD) ≤ 1
2n+1

deg(2n+1D) and
1
2n

deg(2nD) ≥ 1
2n+1

deg(2n+1D)

for all n, and, by Proposition 2.12,

0 ≤ deg(2nD)− deg(2nD) ≤ 2 deg(DN ) for all n.

Hence the sequences
{
deg(2nD)/2n

}
n

and
{
deg(2nD)/2n

}
n

of real numbers converge
and have the same limit. Put

degL(D) :=
1
d

lim
n→∞

deg(2nD)
2n

=
1
d

lim
n→∞

deg(2nD)
2n

.
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We claim that degL is the required degree function on (L, ML): from (2.13) and (2.14)
we see that degL is additive, from (N1) we get that deg(D) ≥ 0 and deg(D) ≥ 0 if
D ≥ 0, and by (N5) we have for a principal divisor D = (x), x ∈ L×, that deg(nD) =
deg
(
div
(
NL|K(xn)

))
= 0. So degL is a degree function on (L,ML) which extends deg,

by (2.11).
To prove uniqueness of degL, let deg′L be another Gal(L|K)-invariant degree function

on (L,ML) extending deg. Then for all D ∈ D(L,ML)

deg′L(D) =
1
d

deg′L
(
NL|K(D)

)
,

hence deg′L(D) ≤ deg(E)/d whenever E ∈ D(K, M) is such that E ≥ NL|K(D),
and thus deg′L(D) ≤ deg(D)/d. Similarly we get deg′L(D) ≥ deg(D)/d and hence
degL = deg′L. This finishes the proof of Theorem 2.11.

Remarks 2.16.
(1) In the proof of Theorem 2.11 given in [20], Kani defines degL(D) as the limit

limn→∞
1
d

deg(nD)
n . Note however that it is not clear a priori that the sequence{

deg(nD)/n
}

n>0
has a limit in R.

(2) Suppose that all absolute values in M are ultrametric. Then the extension of deg
to a Gal(Kalg|K)-invariant degree function on (Kalg,Malg) admits a simple de-
scription involving the norm map: For a divisor D ∈ D(Kalg,Malg) choose a
finite normal extension L of K such that D ∈ D(L,ML). By Proposition 2.12,
we have NL|K(D) ∈ D(K, M), so we may set

deg(D) :=
1
d

deg
(
NL|K(D)

)
where d := [L : K].

Using (N2) and Corollary 2.13 one shows that this definition does not depend on
the choice of L. Clearly the map deg : D(Kalg,Malg) → R so defined is a degree
function which is Gal(Kalg|K)-invariant and extends the one on D(K, M).

We denote the unique extension of deg to a Gal(Kalg|K)-invariant degree function on
(Kalg,Malg) also by deg, and the corresponding height function by h.

Example 2.17. The height function which is associated to the extension of the degree
function on the global field Q to a Gal(Qalg|Q)-invariant degree function on (Qalg,Malg)
is the usual (logarithmic) height function on Qalg used in diophantine geometry [23]. For
an element α of an algebraic number field K we have

h(α) =
1

[K : Q]

∑
v∈MK

λv log+ |α|v, (2.15)

where the λv are as in Example 2.8. It is also well-known that if f(T ) ∈ Z[T ] is a non-zero
irreducible polynomial and α ∈ Qalg a zero of f , then h(α) = m(f)/ deg f . (See, e.g.,
[23], Chapter 3, §1.)

2.4. Height on projective and affine space. Until the end of this section, let (K, M, deg)
be a global field. Given a point P = [x0 : · · · : xn] of projective space Pn = Pn(Kalg)
over Kalg, we have

∧
xi 6=0(λxi) =

∧
xi 6=0(xi)+ (λ) for all λ ∈ K×

alg. Hence to P we may
associate a divisor class

div [x0 : · · · : xn] :=
∧

xi 6=0

(xi) (modulo principal divisors).
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We define the projective height function h : Pn → R associated to (K, M, deg) by

h
(
[x0 : · · · : xn]

)
:= −deg

(
div [x0 : · · · : xn]

)
.

Note that h
(
[x0 : · · · : xn]

)
≥ 0. (Since one can always assume that one of the xi is 1.)

We record a few more basic properties:

Lemma 2.18. Let P = [x0 : · · · : xn] and Q be points in Pn. Then:

(1) For every permutation π of the set {0, . . . , n},

h
(
[xπ(0) : · · · : xπ(n)]

)
= h

(
[x0 : · · · : xn]

)
.

(2) If σ ∈ Gal(Kalg|K), then h(σP ) = h(P ), where

σP :=
[
σ(x0) : · · · : σ(xn)

]
∈ Pn.

(3) If div P ≤ div Q, then h(P ) ≥ h(Q). In particular: If xn+1 ∈ Kalg, then

h
(
[x0 : · · · : xn]

)
≤ h

(
[x0 : · · · : xn+1]

)
.

(4) For all x ∈ K, h(x) = h
(
[1 : x]

)
.

(5) h
(
[x0 : · · · : xn]

)
≥ max

{
h(xi/xj) : xj 6= 0

}
.

Proof. Self-evident, except maybe for (5). Note that both sides of the inequality remain
unchanged if we multiply each xi with a non-zero constant. Hence, by (1) we may assume
x0 = 1 and h(x1) = h(x1/x0) ≥ h(xi/xj) for all 0 ≤ i, j ≤ n with xj 6= 0, so
h
(
[1 : x1 : · · · : xn]

)
≥ h

(
[1 : x1]

)
= h(x1) ≥ h(xi/xj) for all such i, j, by (3) and

(4). �

Example 2.19. For the global field Q, the height of a point P = [x0 : · · · : xn] ∈ Pn(Qalg)
is the so-called absolute logarithmic height of P (see [23]), given by

h(P ) =
1

[Q(P ) : Q]

∑
v∈MQ(P )

λv max
xi 6=0

log |xi|v.

We now want to prove some results that are analogous to the ones proved for the height
function on Pn(Qalg) in [23]. The first one (Corollary 2.22) connects the height of the
coefficient tuple of a univariate polynomial (considered as a point in projective space) and
the height of its zeros (as elements of Kalg). We will deduce it from a global version of
Gelfond’s Lemma. First we define a height function for polynomials:

Definition 2.20. Let f(X) =
∑

ν aνXν be a non-zero polynomial in the indeterminates
X = (X1, . . . , XN ) with coefficients aν ∈ Kalg. We put

coeff(f) =
∧

aν 6=0

(aν),

a divisor in D(Kalg,Malg), and

hcoeff(f) := −deg coeff(f).

Note that hcoeff(f) is nothing but the height of the tuple consisting of the non-zero
coefficients of f (in any order), considered as a point in a projective space over Kalg.
Similarly to hcoeff(f) for a single polynomial f , we define hcoeff(f1, . . . , fn) for a finite
sequence of polynomials (f1, . . . , fn) in Kalg[X], where n > 0 and not all fi = 0.
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Lemma 2.21. (Gelfond’s Lemma, global version.) Let f1, . . . , fn ∈ Kalg[X] be non-zero,
where n > 0, and put f = f1 · · · fn 6= 0 and d = deg(X) f . Then

−dh(2) +
n∑

i=1

hcoeff(fi) ≤ hcoeff(f) ≤ dh(2) +
n∑

i=1

hcoeff(fi).

Proof. By (1.8), in D(Kalg,Malg) we have

−d(2)∞ +
n∑

i=1

coeff(fi) ≤ coeff(f) ≤ d(2)∞ +
n∑

i=1

coeff(fi).

Applying −deg to these inequalities gives the desired result. �

Corollary 2.22. Let f(T ) = a0 +a1T + · · ·+adT
d ∈ Kalg[T ], ad 6= 0, and α1, . . . , αd ∈

Kalg with f(T ) = ad

∏d
j=1(T − αj). Then

−dh(2) +
d∑

j=1

h(αj) ≤ hcoeff(f) ≤ dh(2) +
d∑

j=1

h(αj).

So if all v ∈ M are ultrametric, then

hcoeff(f) = h
(
[a0 : · · · : ad]

)
=

d∑
j=1

h(αj),

and if a0, . . . , ad ∈ K, then for every α = αj:

d
(
h(α)− h(2)

)
≤ hcoeff(f) ≤ d

(
h(α) + h(2)

)
.

Proof. Note that the inequalities to be proved remain unchanged if f(T ) is replaced by
(1/ad)f(T ). Therefore we may assume ad = 1. Now the desired result follows from
the previous lemma, applied to the polynomials f1, . . . , fd with fj(T ) = T − αj for
j = 1, . . . , d. �

We say that (K, M, deg) has the finiteness property if for every real number C, there
are only finitely many α ∈ K with h(α) ≤ C. Note that if (K, M, deg) has the finiteness
property, then for every real number C there are only finitely many P ∈ Pn(K) such that
h(P ) ≤ C. (By (5) in Lemma 2.18.) We now use the corollary above to show:

Proposition 2.23. If (K, M, deg) has the finiteness property, then for all real numbers C
and d, there are only finitely many α ∈ Kalg such that h(α) ≤ C and [K(α) : K] ≤ d.

Proof. Suppose α ∈ Kalg is such that h(α) ≤ C. Let α1, . . . , αd be the conjugates of α
in Kalg, where d := [K(α) : K]. The minimal polynomial of α over K is given by

(T − α1) · · · (T − αd) = T d + ad−1T
d−1 + · · ·+ a0

for certain a0, . . . , ad−1 ∈ K. Now by Corollary 2.22:

h
(
[1 : ad−1 : · · · : a0]

)
≤ dh(2) +

d∑
j=1

h(αj) = dh(2) + dh(α) ≤ d
(
h(2) + C

)
.

So there are only finitely many possibilities for choosing a0, . . . , ad−1 ∈ K, and for given
a0, . . . , ad−1 ∈ K, the polynomial T d + ad−1T

d−1 + · · ·+ a0 has at most d distinct zeros
in Kalg. Hence there are only finitely many α ∈ Kalg with h(α) ≤ C and [K(α) : K] ≤
d. �
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Example 2.24. The global field Q has the finiteness property. In this case, Proposition 2.23
is due to Northcott [29].

For a point P = [x0 : · · · : xn] ∈ Pn, we let

K(P ) := K(x0/xi, . . . , xn/xi) for any i with xi 6= 0.

If K is perfect, then K(P ) is the fixed field in Kalg of the subgroup of Gal(Kalg|K)
consisting of all σ such that σP = P .

Corollary 2.25. Suppose that (K, M, deg) has the finiteness property.

(1) For all real numbers C and d, there are only finitely many P ∈ Pn(Kalg) with
h(P ) ≤ C and [K(P ) : K] ≤ d.

(2) A non-zero element of Kalg has height 0 if and only if it is a root of unity.

Proof. Part (1) follows from the last proposition and part (5) of Lemma 2.18. If x ∈ K×
alg

is a root of unity, then h(x) = 0 by (2.5). For the converse, let x ∈ K×
alg with h(x) = 0,

and L := K(x), d := [L : K]. By the proposition, the subgroup of L× consisting of all
elements of height 0 is finite. Therefore xm = 1 for some positive m. �

The embedding of affine space An = An(Kalg) over Kalg into projective space

An(Kalg) ↪→ Pn(Kalg), (x1, . . . , xn) 7→ [1 : x1 : · · · : xn],

can be used to define the affine height of a point P = (x1, . . . , xn) ∈ An: if xi 6= 0 for
some i, then

h(P ) := h
(
[1 : x1 : · · · : xn]

)
= deg

∨
xi 6=0

(xi)∞,

and h(P ) := 0 if all xi = 0. It is also convenient to introduce the abbreviation

hmax(P ) := max
i

h(xi) for P = (x1, . . . , xn) ∈ An,

with the convention that the maximum is 0 for n = 0. Here are some properties of h (affine
height) and hmax on An:

Lemma 2.26. Let P = (x1, . . . , xn), Q ∈ An.

(1) For every permutation π of the set {1, . . . , n}, we have

h
(
xπ(1), . . . , xπ(n)

)
= h(x1, . . . , xn),

and similarly for hmax in place of h.
(2) If σ ∈ Gal(Kalg|K), then h(σP ) = h(P ) and hmax(σP ) = hmax(P ), where

σP :=
(
σ(x1), . . . , σ(xn)

)
.

(3) h(x1, . . . , xn) ≥ h
(
[x1 : · · · : xn]

)
, if P 6= 0.

(4) hmax(x1, . . . , xn) ≤ h(x1, . . . , xn) ≤ h(x1) + · · ·+ h(xn).
(5) hmax(P + Q) ≤ hmax(P ) + hmax(Q) + h(2).
(6) For λ ∈ K, we have hmax(λP ) ≤ h(λ) + hmax(P ).

Proof. Parts (1)–(3) are clear. For (4), note that
∨

xi 6=0(xi)∞ ≤
∑

xi 6=0(xi)∞. Now take
deg on both sides of this inequality to get the second inequality in (4). The first inequality
follows from (3) and Lemma 2.18, (5). Items (5) and (6) follow from (2.6) and (2.8),
respectively. �
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Let f = (f0, . . . , fm) be a sequence of homogeneous polynomials of degree d ∈ N in
Kalg[Y0, . . . , Yn], not all f0, . . . , fm equal to zero. Then f defines a rational map

f : Pn \ Z → Pm, P 7→ f(P ),

where Z =
{
P ∈ Pn : f0(P ) = · · · = fm(P ) = 0

}
. For a point P ∈ Pn \ Z we have the

inequality
h
(
f(P )

)
≤ d h(P ) + hcoeff(f) + h

(
mon(f)

)
, (2.16)

where mon(f) := maxi mon(fi) and mon(fi) is as defined in Lemma 1.3. If M contains
only ultrametric absolute values, then we have

h
(
f(P )

)
≤ d h(P ) + hcoeff(f).

All this follows easily from Lemma 1.3.
A sequence f = (f1, . . . , fm) of polynomials of degree ≤ d in Kalg[Y1, . . . , Yn] gives

rise to a rational map
f : An → Am, P 7→ f(P ).

Homogenizing, we obtain from (2.16) an upper bound on the affine height of f(P ):

h
(
f(P )

)
≤ d h(P ) + hcoeff(f) + h

(
mon(f)

)
, (2.17)

where mon(f) := maxi mon(fi). If M contains no archimedean absolute value, then
h
(
f(P )

)
≤ d h(P ) + hcoeff(f).

Until the end of this section we assume that K has characteristic zero. This has the
pleasant consequence (by Example 2.10) that the height function h is increasing on N (for
all a, b ∈ N, if a ≤ b, then h(a) ≤ h(b)), which we use tacitly below.

Corollary 2.27. Let f, g ∈ K[T ], m = deg f , n = deg g, and let r = res(f, g) ∈ K be
the resultant of f and g. Then

h(r) ≤ n hcoeff(f) + m hcoeff(g) + m h(1 + n) + mn log 2.

Proof. We may assume that f is monic. Let α1, . . . , αm be the zeros of f in Kalg. Then
r = (−1)mng(α1) · · · g(αm), hence by (2.17) and Corollary 2.22

h(r) ≤
m∑

i=1

h
(
g(αi)

)
≤

m∑
i=1

(
n h(αi) + hcoeff(g) + h(1 + n)

)
≤ n hcoeff(f) + m hcoeff(g) + m h(1 + n) + mn log 2

as claimed. �

2.5. Height of matrices. We identify each square matrix A ∈ Kn×n over K with a point
in An2

(K). The next lemma contains two inequalities which allow us to estimate the height
of the determinant of A in terms of hmax(A) and h(A), respectively.

Lemma 2.28. Let A ∈ Kn×n. Then
(1) h(detA) ≤ n

(
h(n) + hmax(A)

)
;

(2) h(detA) ≤ n
(

1
2h(n) + h(A)

)
.

If M contains no archimedean absolute value, then h(detA) ≤ nhmax(A).

Proof. Write A = (aij). By estimating h(detA) using (2.6) and (2.8), we obtain the
bound

h(detA) ≤ nhmax(A) + h(n!) ≤ nhmax(A) + nh(n),
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showing (1). In fact, if M consists only of ultrametric absolute values, one gets similarly
h(detA) ≤ nhmax(A) by (2.7), which shows the last statement. For each v ∈ M , by
Lemma 1.2, (2)

max
{
|detA|v , 1

}
≤ max

{
|n|n/2

v , 1
}∏

j

max
i

max
{
|aij |v, 1

}
.

Since this is valid for all v ∈ M , we have

(detA)∞ ≤ n

2
(n)∞ +

∑
j

∨
i

(aij)∞.

Taking deg on both sides of the inequality yields (2). �

Suppose f is an invertible linear transformation

Pn → Pn, P = [x0 : · · · : xn] 7→ P ′ = [x′0 : · · · : x′n],

given by

x′i =
n∑

j=0

aijxj for i = 0, . . . , n, (2.18)

with A = (aij) ∈ GLn+1(Kalg). Note that hcoeff(f) is the height of A considered as a
point in the projective space Pn(n+2).

Lemma 2.29. For the height of the inverse transformation f−1 of f we have

hcoeff(f−1) ≤ n

(
1
2
h(n) + hcoeff(f)

)
,

and the heights of the corresponding points P and P ′ = f(P ) satisfy

h(P )− hcoeff(f−1)− h(n + 1) ≤ h(P ′) ≤ h(P ) + hcoeff(f) + h(n + 1).

Proof. By Cramer’s Rule the inverse f−1 of f is given by the adjoint matrix Aad of A,
whose entries are the signed n×n-minors of A. Let B be range over the n×n-submatrices
of A. By Lemma 1.2, (2), for each v ∈ M we have

|detB|v ≤ max
{
|n|n/2

v , 1
}∏

j

max
i
|aij |v,

and hence in D(Kalg,Malg):

2 (detB) ≥ n(n)∞ + 2
∑

j

∧
i

(aij) ≥ n

(n)∞ + 2
∧
i,j

(aij)


Therefore, construing Aad as a point in Pn(n+2):

2 div Aad ≥ n

(n)∞ + 2
∧
i,j

(aij)

 .

The first inequality now follows by taking −deg on both sides of this inequality, and the
rest is a consequence of (2.16). �

The following lemma gives an estimate for the height of the product of two matrices in
terms of the heights of the two factors.

Lemma 2.30. Let A ∈ Km×n, B ∈ Kn×p, with m,n, p ≥ 1. Then
(1) h(A ·B) ≤ h(A) + h(B) + h(n);
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(2) hmax(A ·B) ≤ n
(
hmax(A) + hmax(B)

)
+ h(n).

Proof. Write A = (aij), and consider A as a point in Amn and B as a point in Anp. Apply
(2.17) to the map f : Anp → Amp given by f(xjk) =

∑
j aijxjk, and P = B, and use

that hcoeff(f) ≤ h(A) by Lemma 2.26, (3) to obtain (1). For (2) just compute hmax(A ·B)
using (2.6), (2.8). �

Now consider A = (aij) ∈ GLn(Kalg), n > 0, and the invertible linear transformation

An → An, P = (x1, . . . , xn) 7→ P ′ = (x′1, . . . , x
′
n)

given by

x′i =
n∑

j=1

aijxj for i = 1, . . . , n.

Corollary 2.31. We have h(A−1) ≤ n
(

1
2h(n) + h(A)

)
and

h(P )− h(A−1)− h(n) ≤ h(P ′) ≤ h(P ) + h(A) + h(n). (2.19)

Proof. Put A∗ := [ 1
A ] ∈ GLn+1(Kalg) and let f∗ be the linear automorphism of Pn

with coefficient matrix A∗ as in (2.18). Note that (f∗)−1 is given by the matrix (A−1)∗,
and hcoeff(f∗) = h(A), hcoeff((f∗)−1) = h(A−1). The first inequality now follows from
Lemma 2.29, and (2.19) from the previous lemma. �

2.6. Generalized Vandermonde matrices. For ξ ∈ K and µ, s ∈ N with 1 ≤ µ ≤ s we
define the µ× s-matrix

A(ξ, µ, s) :=


1 ξ ξ2 · · · · · · ξi · · · ξs−1

0 1 2ξ · · · · · · iξi−1 · · · (s− 1)ξs−2

...
. . .

...
...

0 · · · 0 (µ− 1)! · · · (i−1)!
(i−µ)! ξi−µ · · · (s−1)!

(s−µ)! ξs−µ

 ,

and given ξ = (ξ0, . . . , ξn) ∈ Kn+1, µ = (µ0, . . . , µn) ∈ Nn+1 and s ∈ N with 1 ≤
µi ≤ s for all i, we define the generalized Vandermonde matrix A(ξ, µ, s) corresponding
to (ξ, µ, s) as follows:

A(ξ, µ, s) :=


A(ξ0, µ0, s)
A(ξ1, µ1, s)

...
A(ξn, µn, s)

 ∈ Ks×s.

These matrices will play an important role in the proof of Theorem 0.1. If all µi = 1, then

A(ξ, µ, s) =


1 ξ0 . . . ξs−1

0

1 ξ1 . . . ξs−1
1

...
...

. . .
...

1 ξn . . . ξs−1
n

 .

So if in addition n = s − 1, then A(ξ, µ, s) is just the usual Vandermonde matrix for
ξ0, . . . , ξs−1. At any rate, in this case we have

h
(
A(ξ, µ, s)

)
= (s− 1)h(ξ0, . . . , ξn),
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since ∨
0≤i≤n
ξi 6=0

∨
1≤j<s

(ξj
i )∞ = (s− 1)

∨
0≤i≤n
ξi 6=0

(ξi)∞. (2.20)

In general, we have the following upper bound on the height of matrices of this type:

Proposition 2.32. With A = A(ξ, µ, s) as above, we have

h(A) ≤ (s− 1)h(ξ0, . . . , ξn) + (µmax − 1)h
(
[1 : 2 : · · · : s− 1]

)
,

where µmax := max{µ0, . . . , µn}.

In the proof we use the lemma below. Here f(T ) ∈ K[T ] is a polynomial of degree
d > 0, and for j ∈ N we write f (j) for the j-th formal derivative of f , as usual.

Lemma 2.33. For ξ ∈ K× and 0 ≤ j ≤ d:

coeff
(
f (j)(ξT )

)
≥ coeff

(
f(ξT )

)
+ j ·

(
div [1 : 2 : · · · : d]− (ξ)

)
.

In particular, we have hcoeff(f (j)) ≤ hcoeff(f) + j · h
(
[1 : 2 : · · · : d]

)
.

Proof. By induction on j, it only suffices to consider the case j = 1. We write f(T ) =
a0 + a1T + · · ·+ adT

d with a0, . . . , ad ∈ K and compute:

coeff
(
f ′(ξT )

)
=

∧
1≤i≤d
ai 6=0

(iaiξ
i−1) ≥

∧
1≤i≤d
ai 6=0

(aiξ
i−1) +

d∧
i=1

(i)

=
∧

1≤i≤d
ai 6=0

(aiξ
i) +

d∧
i=1

(i)− (ξ) = coeff
(
f(ξT )

)
+ div [1 : 2 : · · · : d]− (ξ)

as required. �

Let s ∈ N and f(T ) := 1 + T + · · ·+ T s−1 ∈ K[T ]. Note that for ξ ∈ K× and µ ∈ N
with 1 ≤ µ ≤ s we have

div
(
A(ξ, µ, s)

)
=

µ−1∧
j=0

coeff
(
f (j)(ξT )

)
.

(Here we construe A(ξ, µ, s) as a point in As2
↪→ Ps2−1.) Hence by the lemma, in

Cl(K, M) we get:

div
(
A(ξ, µ, s)

)
≥

µ−1∧
j=0

(
coeff

(
f(ξT )

)
+ j ·

(
div [1 : 2 : · · · : s− 1]− (ξ)

))
= coeff

(
f(ξT )

)
+

µ−1∧
j=0

j · div [1 : 2 : · · · : s− 1]

≥ coeff
(
f(ξT )

)
+ (µ− 1) · div [1 : 2 : · · · : s− 1]. (2.21)
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We now prove Proposition 2.32. For this, let ξ = (ξ0, . . . , ξn) ∈ Kn+1 and µ =
(µ0, . . . , µn) ∈ Nn+1, and let s be an integer with 1 ≤ µi ≤ s for all i. We may as-
sume that ξi 6= 0 for all i. Then, by (2.21):

div
(
A(ξ, µ, s)

)
=

n∧
i=0

div
(
A(ξi, µi, s)

)
≥

n∧
i=0

coeff
(
f(ξiT )

)
+ (µi − 1) · div [1 : 2 : · · · : s− 1]

≥
n∧

i=0

s−1∧
j=0

(ξj
i ) + (µmax − 1) · div [1 : 2 : · · · : s− 1].

Applying −deg on both sides of this inequality and using (2.20) yields the claim.

3. A HEIGHT FUNCTION ON THE ALGEBRAIC CLOSURE OF Q(X)

Throughout this section X = (X1, . . . , XN ) is a tuple of indeterminates, where N ≥ 1.
In this section we construct a height function on the algebraic closure Q(X)alg of the
rational function field Q(X), following [20]. We begin by giving Q(X) the structure of a
global field with the finiteness property: given a bound C ∈ R, there are only finitely many
elements of Q(X) with height at most C. Using Theorem 2.11, we then extend the degree
function on Q(X) to a Gal

(
Q(X)alg|Q(X)

)
-invariant degree function on Q(X)alg, and

establish a few of its properties needed later on.

3.1. The arithmetic field
(
Q(X),March

)
. Let March be the set of all archimedean abso-

lute values on Q(X) which extend the usual archimedean absolute value v∞ on Q. There
is a bijective correspondence between March and the subset

U :=
{
(z1, . . . , zN ) ∈ CN : trdeg

(
Q(z1, . . . , zN )|Q

)
= N

}
of CN as follows: each z ∈ U defines an archimedean absolute value vz ∈ March on Q(X)
by

|f/g|z = |f/g|vz := |f(z)/g(z)| for f, g ∈ Z[X], g 6= 0,

and conversely, by Ostrowski’s Theorem, each v ∈ March is of the form v = vz for a
uniquely determined z ∈ U . Let C(U, R) be the lattice-ordered group of continuous func-
tions U → R (pointwise operations and ordering). The map z 7→ ϕ(z) := vz : U → March
induces a homomorphism of lattice-ordered groups

ϕ∗ : D
(
Q(X),March

)
→ C(U, R),

ϕ∗(D)(z) := ϕ(z)(D) = vz(D) for all z ∈ U .

The homomorphism ϕ∗ maps the principal divisor (f/g), for non-zero f, g ∈ Z[X], to the
function

z 7→ − log |f(z)/g(z)| : U → R.

The arithmetic field
(
Q(X),March

)
is not classical.
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3.2. Integration of divisors on
(
Q(X),March

)
. Our next goal is to define a height func-

tion on the field Q(X), as a measure for the complexity of elements of Q(X). The height of
an element of Q(X) should take into account its values under the various (archimedean and
non-archimedean) absolute values on Q(X). It turns out that when it comes to archimedean
absolute values, it suffices to restrict our attention to those absolute values vz ∈ March that
come from elements z ∈ U ∩ TN , where TN = (S1)N . We let µ1 be the (non-atomic,
positive) measure on S1 = {z ∈ CN : ||z||1 = 1} with density function (in polar coordi-
nates)

dµ1 =
dθ

2π
,

and we let µN := µ1⊗· · ·⊗µ1 be the N -fold product measure of µ1 on TN . Then µN is a
non-atomic probability measure on TN . Let µ = ϕ(µN � U ∩ TN ) be the image measure
of the restriction of µN to U ∩ TN under the map ϕ, that is,

µ(S) = µN

(
ϕ−1(S) ∩ TN

)
for all S ⊆ March. (3.1)

Each D ∈ D
(
Q(X),March

)
is µ-measurable and ϕ∗(D) � TN is defined µN -almost ev-

erywhere, since the set

TN \ U =
⋃

f∈Z[X]\{0}

{
z ∈ TN : f(z) = 0

}
has measure zero. Therefore,∫

March

D dµ =
∫

U∩TN

ϕ∗(D) � U ∩ TN dµN =
∫

TN

ϕ∗(D) � TN dµN .

For non-zero f(X) ∈ Z[X], we have

m(f) =
∫

TN

log |f | dµN = −
∫

March

(f) dµ, (3.2)

where m(f) is the Mahler measure of f . We also have∫
March

(f)∞ dµ =
∫

TN

(
−ϕ∗

(
(f)
)
∨ 0
)
dµN =

∫
TN

log+ |f | dµN = m+(f), (3.3)

using the notation m+ introduced in Section 1.2. In fact:

Lemma 3.1. D
(
Q(X),March

)
⊆ L1(µ).

Proof. Since L1(µ) is closed under ∧ and ∨, it is enough to verify that div(f) ∈ L1(µ)
for all f(X) ∈ Z[X], f 6= 0. But |D| = D0 + D∞ = D + 2D∞ for all divisors D, so∫

March
|div(f)| dµ = −m(f)+2m+(f) ∈ R by (3.2) and (3.3), and hence div(f) ∈ L1(µ)

as claimed. �

Example 3.2. For N = 1 and f(X) = X , we get∫
March

(X)∞ dµ =
∫

S1
log+ |z| dµ1(z) = 0. (3.4)

Therefore, for any monomial Xν = Xν1
1 · · ·XνN

N with ν = (ν1, . . . , νN ) ∈ NN ,∫
March

(Xν)∞ dµ = 0. (3.5)

(By (3.4), (1.11) and (1.13).)
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3.3. A method to construct height functions. The following is a general procedure for
constructing degree functions on the fraction field K of a unique factorization domain
R. Let MR be the set of essential absolute values of R, as defined in Example 2.1, and
suppose that M∞ is a set of pairwise non-equivalent absolute values on K, each v ∈ M∞
non-equivalent to all absolute values in MR. We write div∞(a) for the principal divisor
of a ∈ K× in D(K, M∞). Assume that deg∞ : D(K, M∞) → R is a map satisfying, for
each D,E ∈ D(K, M∞):

deg∞(D + E) = deg∞(D) + deg∞(E), (3.6)

D ≥ 0 ⇒ deg∞(D) ≥ 0, (3.7)

deg∞
(
div∞(a)

)
≤ 0 for all 0 6= a ∈ R. (3.8)

Note that then deg∞
(
div∞(u)

)
= 0 for all units u of R. We set M := MR ∪M∞ and

define a degree function on the arithmetic field (K, M) as follows: for v = vp ∈ MR,
where p ∈ R is irreducible, put

λv := −deg∞
(
div∞(p)

)
.

Clearly this definition does not depend on the choice of p, and λv ≥ 0. Let

π∞ : D(K, M) → D(K, M∞), π∞(D) = D � M∞

be the canonical homomorphism, and define deg : D(K, M) → R by

deg(D) :=
∑

v∈MR

v(D)λv + deg∞
(
π∞(D)

)
. (3.9)

Then deg is a degree function on (K, M), as one easily verifies. (For (D3), note that this
holds trivially if x is a unit or an irreducible element of R, and these elements generate
K×.) Its associated height function h is given by

h(x/y) = deg∞
((
− div∞(x)

)
∨
(
− div∞(y)

))
, (3.10)

if x and y are relatively prime elements of R, since

h(x/y) = deg
(
(x/y)∞

)
=
∑

v∈MR

v(y)λv + deg∞
((
−div∞(x/y)

)
∨ 0
)

= −deg∞
(
div∞(y)

)
+ deg∞

((
−div∞(x/y)

)
∨ 0
)

= deg∞
((
− div∞(x)

)
∨
(
− div∞(y)

))
.

In particular, for f ∈ K×:

h(f) ≥
∑

v∈MR

λvp
log+ |f |vp

. (3.11)

For a0, . . . , an ∈ R, not all zero, the projective height of the point [a0 : · · · : an] of Pn(K)
is given by

h
(
[a0 : · · · : an]

)
=

−
∑

v∈MR

min
i

v(ai)λv + deg∞
((
− div∞(a0)

)
∨ · · · ∨

(
− div∞(ad)

))
,

hence

h
(
[a0 : · · · : an]

)
≤ deg∞

((
− div∞(a0)

)
∨ · · · ∨

(
− div∞(ad)

))
,
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with equality if the a0, . . . , an have no common factor.
Here are some applications of this construction:

Example 3.3. Let R = Z, K = Q, M∞ = {v∞}, and

deg∞ : D(K, M∞) → R, deg∞(D) := v∞(D).

Then deg∞ satisfies (3.6)–(3.8) from above, so (3.9) defines a degree function on the arith-
metic field Q, agreeing with the one defined in Example 2.8.

In the next two examples, we let R = F [X] be the polynomial ring in the indeterminates
X = (X1, . . . , XN ) over a field F , and K = F (X).

Example 3.4. Put M∞ := {vX}, where vX : K× → Z is the total degree valuation on
K, given by

vX(f/g) := degX g − degX f for f, g ∈ R \ {0}.

We let

deg∞ : D(K, M∞) → R, deg∞(D) := vX(D).

Then deg∞ satisfies the conditions (3.6)–(3.8) above, so (3.9) defines a degree function
on (K, M), which we denote by degX . The height function hX corresponding to degX is
given by

hX(f/g) = max
{
degX f,degX g

}
,

if f, g ∈ R \ {0} are relatively prime. By (2.3) and (2.5)–(2.7), the extension of hX to
a Gal(Kalg|K)-invariant height function on Kalg is an “F [X]-stable degree function on
Kalg” (as defined in [36]) satisfying hX(f) = deg(f) for all non-zero f ∈ F [X]. (The
existence of such a “degree function” is shown in [36], Corollary 3.2, by different methods,
and used to compute degree bounds in the real Nullstellensatz.)

Example 3.5. Let M∞ := {vX1 , . . . , vXN
}, where vXi : K× → Z is the Xi-degree valu-

ation on K, given by

vXi
(f/g) := degXi

(g)− degXi
(f) for f, g ∈ R \ {0}.

Then (K, M∞) is a classical arithmetic field, so we can define the function

deg∞ : D(K, M∞) → R, deg∞(D) :=
N∑

i=1

vXi
(D).

Then deg∞ satisfies (3.6)–(3.8), so we have a degree function deg(X) on (K, M) whose
height function h(X) is given by

h(X)(f/g) =
N∑

i=1

max
{
degXi

f,degXi
g
}
,

where f, g ∈ R are non-zero and relatively prime.

In the previous example, note that h(X)(f) = deg(X)(f) for all f ∈ R \ {0}; in
particular, the global field

(
Q(X),M,deg(X)

)
does not have the finiteness property. Next

we show how, following the general pattern above, one can turn Q(X) into a global field
which does have the finiteness property.
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3.4. Turning Q(X) into a global field with the finiteness property. As in the last ex-
ample, let R = Z[X], K = Q(X), but now put

M∞ := March ∪ {vX1 , . . . , vXN
},

where March as above is the set of all archimedean absolute values of K which extend the
usual archimedean absolute value v∞ on Q. Let µ be a positive measure on the set March
satisfying

D(K, March) ⊆ L1(µ), (3.12)∫
March

(f) dµ ≤ 0 for all 0 6= f ∈ R. (3.13)

The measure µ = ϕ(µN � U ∩ TN ) defined in (3.1), which is concentrated on the subset
ϕ(U ∩TN ) of March, has these properties, by Lemma 3.1, part (2) of Lemma 1.4, and (3.2).
(Here, as before, ϕ(z) = vz for z ∈ U .) Kani in [20] uses instead the measure ϕ(µsp,N ),
where µsp,N is the N -fold product of the so-called spherical measure µsp on C, given by
the density function (in polar coordinates)

dµsp =
rdrdθ

π(1 + r2)2
.

Then µsp,N is a non-atomic probability measure on CN , and analogues of Lemmas 3.1 and
1.4 hold for µsp,N in place of µN . Note that µN = 2N (µsp,N � TN ). We prefer to use
µN , since this naturally gives a connection to Mahler’s measure of transcendental number
theory and simplifies some calculations.

For any positive measure µ on March satisfying (3.12) and (3.13), we define deg∞ =
deg∞,µ by

deg∞(D) :=
N∑

i=1

vXi(D) +
∫

March

D dµ

for all D ∈ D(K, M∞). Any such deg∞,µ satisfies (3.6)–(3.8) from above and hence gives
rise to a degree function degµ on M = MR ∪ M∞. According to (3.10), its associated
height function hµ is given by

hµ(f/g) = h(X)(f/g)−
∫

March

(div f ∧ div g) dµ,

for relatively prime f, g ∈ R \ {0}. Here, h(X) is as in Example 3.5.
From now on, we fix µ = ϕ(µN � U ∩ TN ) and write deg = degµ, h = hµ. In this

case we have, for relatively prime f, g ∈ R \ {0}:

h(f/g) = h(X)(f/g) +
∫

TN

max
{
log |f |, log |g|

}
dµN . (3.14)

In particular, for non-zero f ∈ R we have

h(f) = deg(X) f +
∫

TN

log+ |f(z)| dµN (z) = deg(X) f + m+(f). (3.15)

So for example, using (3.5), we see that

h(Xν) = ν1 + · · ·+ νN for every ν = (ν1, . . . , νN ) ∈ NN .
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We have the following useful bounds for h on Q(X), immediate from Lemma 1.5: if
f, g ∈ Z[X] are non-zero and relatively prime, then

h(f/g) ≥ (1− log 2) max
{
h(f), h(g)

}
, (3.16)

(1− log 2) deg(X) f + log ||f ||1 ≤ h(f) ≤ deg(X) f + log ||f ||1, (3.17)

(1− log 2) deg(X) f + log ||f ||∞ ≤ h(f) ≤ 2 deg(X) f + log ||f ||∞. (3.18)

These estimates imply that the global field
(
Q(X),M,deg

)
has the finiteness property.

By Theorem 2.11, deg extends uniquely to a Gal(Kalg|K)-invariant degree function on
(Kalg,Malg), which we also denote by deg. Its corresponding height function, also de-
noted by h, extends the absolute logarithmic height on Qalg. Moreover, if N > 1,
then the height function on Q(X1, . . . , XN )alg so defined extends the height function on
Q(X1, . . . , XN−1)alg obtained in the same way but with N replaced by N − 1. Propo-
sition 2.23 implies that for all real numbers C and d, there are only finitely many α ∈
Q(X)alg with h(α) ≤ C and

[
Q(X, α) : Q

]
≤ d.

3.5. Height of polynomials with integer coefficients. For later use, we collect some facts
about the behavior of h on R = Z[X]. First a version of the inequality in Lemma 1.4, (6),
for the height:

Lemma 3.6. Let f(X) ∈ Z[X] be a polynomial in which the variable Xj occurs, where
j ∈ {1, . . . , N}. Then h(∂f/∂Xj) ≤ h(f) + log degXj

f .

Proof. Let Y be an indeterminate different from X1, . . . , XN . Then

h(∂f/∂Xj) = deg(X)(∂f/∂Xj) + m(∂f/∂Xj + Y )

≤
(
deg(X)(f)− 1

)
+ m

(
f(X) + XjY

)
+ log degXj

(f)

by Lemma 1.4, (6). Using Jensen’s Formula, one sees easily that

m
(
f(X) + XjY

)
= 1 + m+

(
f(X)

)
,

proving the claim. �

By the remarks preceding Example 3.3:

Lemma 3.7. For a0, . . . , an ∈ Z[X], not all zero, we have

h
(
[a0 : · · · : an]

)
≤ max

i
deg(X) ai +

∫
TN

max
i

log |ai(z)| dµN (z),

with equality if the a0, . . . , an have no common factor. �

Example 3.8. Let s ∈ N, s > 0. Then

h
(
[1 : XN : · · · : Xs−1

N ]
)

= s− 1

by the previous lemma and (3.4).

Example 3.9. Let e ∈ N, N > 0. Then

h
([

X1 + XeN−1

N : · · · : XN−1 + Xe
N : XN : 1

])
≤ eN−1 + 1 + log 2.

To see this note that

log+
∣∣∣zi + zeN−i

N

∣∣∣ ≤ log 2 for (z1, . . . , zN ) ∈ TN , 1 ≤ i ≤ N − 1,

and
deg(X)

(
Xi + XeN−i

N

)
= eN−i + 1,

and apply Lemma 3.7.
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Let f(X, Y ) ∈ Z[X, Y ], Y = (Y1, . . . , YM ), be non-zero, and write f(X, Y ) =∑
ν aν(X)Y ν with aν ∈ Z[X]. (Here ν ranges over NM .) We have two ways of mea-

suring the “height” of f : first, the height h(f) of f as an element of the global field
Q(X, Y ) as defined earlier in this section, and second, the height hcoeff(f) of f considered
as a polynomial in the variables Y with coefficients aν ∈ Z[X]. The next proposition
compares these two:

Proposition 3.10. With d = degY f , we have

hcoeff(f) ≤ h(f) ≤ hcoeff(f) + d + log
(

M + d

d

)
.

Proof. To see the first inequality, note that for z ∈ TN , we have, by (1.15) in Lemma 1.5:

max
ν

log|aν(z)| = log ||f(z, Y )||∞ ≤ m+
(
f(z, Y )

)
+ deg(Y ) f.

Integrating over TN with respect to z gives∫
TN

max
ν

log|aν(z)| dµN (z) ≤
∫

TN+M

log+|f(z, w)| dµN+M (z, w) + deg(Y ) f.

Since
max

ν
deg(X) aν ≤ deg(X) f,

the inequality now follows from Lemma 3.7 and (3.15). The second inequality is immedi-
ate from the estimate (2.17) and h(Y1, . . . , YM ) = 1. �

Remark 3.11. In general hcoeff(f) < h(f), as the example f(T ) = 2 + T ∈ Z[T ] shows.
(Here h(f) = 1 + log 2 > log 2 = hcoeff(f).)

If the indeterminate Xj (where j ∈ {1, . . . , N}) occurs in the polynomial f , then by
Lemma 3.6 and Proposition 3.10:

hcoeff(∂f/∂Xj) ≤ hcoeff(f) + d + log(d + 1) + log degXj
(f). (3.19)

Corollary 2.27 and Proposition 3.10 yield:

Corollary 3.12. Let f, g ∈ Z[X, T ] be non-zero of degrees m = degT f and n = degT g
in the indeterminate T , respectively. Let r = resT (f, g) ∈ Z[X] be the resultant of f and
g with respect to the indeterminate T . Then

h(r) ≤ n h(f) + m h(g) + mn log 4.

�

4. RESTRICTED POWER SERIES

Let K be a field of characteristic zero and let | · | = | · |v be an ultrametric absolute value
on K. We assume that K is complete with respect to the metric (1.1) induced by | · |. In
the following we write O = Ov and m = mv for the valuation ring of v and its maximal
ideal, respectively, as defined in (1.3). The residue field of O is denoted by O = O/m,
with residue homomorphism a 7→ a : O → O. The subset

K〈X〉 :=

{∑
ν

aνXν ∈ K[[X]] : aν ∈ K, |aν | → 0 as |ν| → ∞

}
of the ring K[[X]] = K[[X1, . . . , XN ]] of all formal power series with coefficients in
K is a subring of K[[X]], called the ring of restricted power series with coefficients in
K. Here, as earlier, ν = (ν1, . . . , νN ) ranges over all multiindices in NN , and |ν| =
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ν1 + · · · + νN . The Gauß norm on K[X] extends to an ultrametric absolute value on the
domain K〈X〉 (called the Gauß norm on K〈X〉) by setting

|f | := max
ν

|aν | for f =
∑

ν

aνXν ∈ K〈X〉, f 6= 0.

(See [10], p. 44, Corollary 2.) The set of all f ∈ K〈X〉 with |f | ≤ 1 forms a subring
O〈X〉 of K〈X〉 (the ring of restricted power series with coefficients in O). We identify
O〈X〉/mO〈X〉 with O[X] in the natural way, and we denote the image of f ∈ O〈X〉
under the canonical surjection O〈X〉 → O〈X〉/mO〈X〉 = O[X] by f .

Suppose from now on that N ≥ 1, and let X ′ := (X1, . . . , XN−1). We have K〈X ′〉 ⊆
K〈X〉 and O〈X ′〉 ⊆ O〈X〉 in a natural way. Every element f ∈ O〈X〉 can be written
uniquely in the form

f =
∞∑

i=0

fiX
i
N with fi(X ′) ∈ O〈X ′〉 for all i ∈ N, (4.1)

where the infinite sum converges with respect to the Gauß norm on K〈X〉. An element
f of O〈X〉, written as in (4.1), is called regular in XN of degree s ∈ N if its reduction
f ∈ O[X] is a unit-monic polynomial of degree s in XN , that is,

(1) fs is a unit in O[X ′], and
(2) fi = 0 for all i > s.

If f ∈ O〈X ′〉[XN ] is monic of XN -degree s (so that in particular f is regular in XN of
degree s, as an element of O〈X〉), then f is called a Weierstraß polynomial (in XN ) of
degree s. For proofs of the following standard facts see, e.g., [10].

Theorem 4.1. (Weierstraß Division Theorem forO〈X〉.) Let g ∈ O〈X〉 be regular in XN

of degree s. Then for each f ∈ O〈X〉 there are uniquely determined elements q ∈ O〈X〉
and r ∈ O〈X ′〉[XN ] with degXN

r < s such that f = qg + r.

Applying Weierstraß Division with f = Xs
N , we obtain:

Corollary 4.2. (Weierstraß Preparation Theorem for O〈X〉.) Let g ∈ O〈X〉 be regular in
XN of degree s. There are a unique Weierstraß polynomial w ∈ O〈X ′〉[XN ] of degree s
and a unique unit u ∈ O〈X〉 such that g = u · w.

Regularity can achieved by a change of variables:

Lemma 4.3. (Noether Normalization.) Let e > 1 and f ∈ O〈X〉, and suppose that
f ∈ O[X] is non-zero of degree < e. Let Te : O〈X〉 → O〈X〉 be the O-automorphism
defined by

Xi 7→ Xi + XeN−i

N (for 1 ≤ i < N )
XN 7→ XN .

Then Te(f) is regular in XN of degree < eN .

A non-zero element f ∈ K〈X〉 is called regular in XN of degree s ∈ N if there exists
b ∈ O such that bf ∈ O〈X〉 and bf is regular in XN of degree s (as defined above). From
Theorem 4.1 and Corollary 4.2 we get:

Corollary 4.4. (Weierstraß Division and Preparation Theorems for K〈X〉.) Let g ∈ K〈X〉
be regular in XN of degree s. Then every f ∈ K〈X〉 can be uniquely written as f = qg+r
with q ∈ K〈X〉 and r ∈ K〈X ′〉[XN ], degXN

r < s. In particular, there are a unique
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Weierstraß polynomial w ∈ O〈X ′〉[XN ] of degree s and a unique unit u ∈ K〈X〉 such
that g = u · w.

The rings K〈X〉 and O〈X〉 are local, with maximal ideal (X1, . . . , XN )K〈X〉 and
(m, X1, . . . , XN )O〈X〉, respectively. Corollary 4.4 and Lemma 4.3 imply that K〈X〉 is
noetherian. (If O is a discrete valuation ring, then O〈X〉 is also noetherian.)

In the rest of this section we fix a subring D of O, with fraction field F (a subfield of
K).

Notation. For elements α1, . . . , αn of an algebraic closure F (X)alg of F (X), we write

∆X(α1, . . . , αn) :=
[
F (X, α1, . . . , αn) : F (X)

]
.

If X is understood, then we also write ∆ for ∆X , and we abbreviate ∆X′ to ∆′.

We have the following simple rules, for all α, β, α1, . . . , αn ∈ F (X)alg:

(1) ∆(α1), . . . ,∆(αn) ≤ ∆(α1, . . . , αn);
(2) ∆(α1, . . . , αn) ≤ ∆(α1) · · ·∆(αn), with equality if and only if the fields

F (X, α1), . . . , F (X, αn)

are pairwise linearly disjoint over F (X), in particular, if the ∆(αi) are pairwise
relatively prime;

(3) if α1, . . . , αn are zeros of a common polynomial P (X ′, T ) ∈ F (X)[T ] of degree
d > 0, then ∆(α1, . . . , αn) is bounded from above by the degree of the splitting
field of P over F (X ′); so ∆(α1, . . . , αn) divides d!;

(4) ∆(α + β, α1, . . . , αn),∆(α · β, α1, . . . , αn) ≤ ∆(α, β, α1, . . . , αn);
(5) ∆(α−1, α1, . . . , αn) = ∆(α, α1, . . . , αn) if α 6= 0;
(6) ∆(λα, α1, . . . , αn) = ∆(α, α1, . . . , αn) for all λ ∈ F (X), λ 6= 0;
(7) if α1, . . . , αn ∈ F (X ′)alg, then ∆(α1, . . . , αn) = ∆′(α1, . . . , αn).

Let α ∈ F (X)alg. Then there exists a non-zero polynomial P (T ) ∈ F [X, T ] such that
P (α) = 0. Here, T is a new indeterminate, distinct from each of X1, . . . , XN . Among the
non-zero polynomials P (T ) =

∑d
i=0 aiT

i with coefficients a0, . . . , ad ∈ F [X], ad 6= 0,
such that P (α) = 0, there exists one of lowest possible degree d in T whose non-zero co-
efficients ai have no common non-trivial factor in F [X]. The polynomial P is irreducible
in F [X, T ] and uniquely determined, up to multiplication by a non-zero element of F . We
say that such a polynomial P is a minimal polynomial for α.

Lemma 4.5. Suppose that F = Q (or more generally, a Hilbertian field), and let

α = α0 + α1XN + · · ·+ αsX
s
N with α0, . . . , αs ∈ F (X ′)alg, s ∈ N.

Then ∆(α) = ∆′(α0, . . . , αs).

Proof. Let P (X, T ) ∈ Q[X, T ] be a minimal polynomial for α, and let d := degT P =
∆(α). By Hilbert’s Irreducibility Theorem (see [23], Chapter XIX) there exist infinitely
many elements xN of Q such that the polynomial Q(X ′, T ) := P (X ′, xN , T ) ∈ Q[X ′, T ]
is irreducible of degree d in T . Then Q

(
X ′, α(xN )

)
= 0, so d = ∆′(α(xN )

)
. The

standard proof of the Primitive Element Theorem (as given in [24], say) shows that all
but finitely many xN have the additional property that α(xN ) is a primitive element of the
finite field extension Q(X ′, α0, . . . , αs) ⊇ Q(X ′), so ∆′(α0, . . . , αs) = ∆′(α(xN )

)
. The

lemma follows. �
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We now turn our attention to the power series in K〈X〉 which are algebraic over F (X).
The set K〈X〉alg of such power series forms a subring of K〈X〉, the ring of algebraic
restricted power series with coefficients in K. (Note the potential notational confusion:
for N = 0, the ring K〈X〉alg denotes Falg ∩K, and not an algebraic closure Kalg of K.)
We put

O〈X〉alg := K〈X〉alg ∩ O〈X〉.
Note that O〈X〉alg = Frac

(
O〈X〉alg

)
∩ O〈X〉. The O-automorphism Te of O〈X〉 in

Lemma 4.3 extends uniquely to a K-automorphism of K〈X〉. This automorphism of
K〈X〉, which we again denote by Te, maps F [X] into itself, so by restriction we get an
F -automorphism of K〈X〉alg (which in turn restricts to a D-automorphism of O〈X〉alg).

In view of the applications in the later sections, we now make the following simplifying
assumption: for every a ∈ O there exists b ∈ O ∩ Falg with |a| = |b|. (So for every
f ∈ K〈X〉alg which is regular in XN of degree s ∈ N there exists b ∈ O ∩ Falg such that
bf ∈ O〈X〉alg is regular in XN of degree s.) We want to prove the following version of
Weierstraß Division for algebraic restricted power series:

Theorem 4.6. (Weierstraß Division Theorem for K〈X〉alg.) In Corollary 4.4, if in addition
f and g are in K〈X〉alg, then q ∈ K〈X〉alg and r ∈ K〈X ′〉alg[XN ]. If moreover we write

r = r0 + r1XN + · · ·+ rs−1X
s−1
N with r0, . . . , rs−1 ∈ K〈X ′〉alg,

and Q(T ) ∈ F [X, T ] is a minimal polynomial for g, then

∆′(r0, . . . , rs−1) ≤
(
∆(f) degXN

Q(0)
)s

.

We deduce Theorem 4.6 from the usual Weierstraß Division Theorem for K〈X〉 using
an idea from [14], §3. Before we give the proof, we collect a few useful results about
substitution, along the lines of [9], §8.2 (which deals with the case of algebraic formal
power series).

4.1. Substitution into restricted power series. Let g ∈ K〈X〉 be regular in XN of de-
gree s, and write g = uw with u ∈ K〈X〉 a unit and w ∈ O〈X ′〉[XN ] a Weierstraß
polynomial of degree s. We denote by Ω an algebraic closure of Frac

(
K〈X ′〉

)
, and we fix

a zero ξ ∈ Ω of w. (We will sometimes just say that ξ is a zero of g.) For f ∈ K〈X〉, let
rf = rf (XN ) ∈ K〈X ′〉[XN ] be the remainder of f obtained through Weierstraß Division
by g. We put

f(X ′, ξ) := rf (X ′, ξ) ∈ Ω.

For f ∈ K〈X ′〉[XN ], Euclidean division of f by the monic polynomial w in K〈X ′〉[XN ]
yields that rf ∈ K〈X ′〉[XN ]; so in this case the element f(X ′, ξ) of Ω is indeed just
obtained by substitution of ξ for XN into the polynomial f . For notational simplicity,
from now on we just write f(ξ) for f(X ′, ξ). The map f 7→ f(ξ) : K〈X〉 → Ω clearly is
K〈X ′〉-linear. In fact, we have:

Lemma 4.7. The map f 7→ f(ξ) : K〈X〉 → Ω is a K〈X ′〉-algebra homomorphism. If
there exists a non-zero f ∈ K〈X〉alg with f(ξ) = 0, then ξ is algebraic over F (X ′).
Conversely, if ξ is algebraic over F (X ′), then for all f ∈ K〈X〉alg, the element f(ξ) of Ω
is algebraic over F (X ′, ξ) and hence over F (X ′).

Proof. We have to show that

(f1f2)(ξ) = f1(ξ)f2(ξ) for all f1, f2 ∈ K〈X〉.
Let q1, q2 ∈ K〈X〉 be the quotients obtained by Weierstraß Division of f1, f2, respectively,
by g; thus fi = qig + rfi

for i = 1, 2. Let also q ∈ K〈X〉 be the quotient obtained by
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dividing f1f2 by g, so f1f2 = qg+rf1f2 . We also have f1f2 = (q1g+rf1)(q2g+rf2), and
subtracting these two representations of f1f2 one sees that rf1f2 − rf1rf2 ∈ K〈X ′〉[XN ]
is a multiple of g in K〈X〉, hence

(f1f2)(ξ)− f1(ξ)f2(ξ) = rf1f2(ξ)− rf1(ξ)rf2(ξ) = (rf1f2 − rf1rf2)(ξ) = 0

as required.
Now let f ∈ K〈X〉alg be non-zero, and let P (T ) =

∑d
i=0 aiT

i ∈ F [X, T ], with
a0, . . . , ad ∈ F [X], ad 6= 0, be a minimal polynomial for f . Note that a0 6= 0. Since
P (f) = 0 and f 7→ f(ξ) is a K〈X ′〉-algebra homomorphism, we have

0 =
(
P (f)

)
(ξ) =

d∑
i=0

ai(ξ)
(
f(ξ)

)i =
d∑

i=0

ai(X ′, ξ)
(
f(ξ)

)i
. (4.2)

Suppose f(ξ) = 0; then (4.2) implies a0(X ′, ξ) = 0, which shows that ξ is algebraic over
F (X ′). Assume conversely that ξ is algebraic over F (X ′). Not all the ai(X ′, ξ) vanish:
otherwise, ξ would be algebraic over F (X ′) and all ai(X ′, XN ) would be F [X]-multiples
of the minimal polynomial of ξ over F (X ′), in contradiction to a0, . . . , ad having no com-
mon factor in F [X]. So by (4.2), f(ξ) is algebraic over F

(
a0(X ′, ξ), . . . , ad(X ′, ξ), X ′),

and hence f(ξ) is algebraic over F (X ′, ξ). �

In particular, if g ∈ K〈X〉alg, then we have ξ ∈ F (X ′)alg, since g(ξ) = 0. Inspection
of the proof of Lemma 4.7 also gives the following degree bounds, with 0 6= f ∈ K〈X〉alg
and P (T ) ∈ F [X, T ] a minimal polynomial for f as in that proof, and ξ0, . . . , ξs−1 the
zeros of g in Ω.

(1) If f(ξ0) = · · · = f(ξs−1) = 0, then

∆′(ξ0, . . . , ξs−1) ≤
(
degXN

P (0)
)s

. (4.3)

(2) If ξ0, . . . , ξs−1 are algebraic over F (X ′), then[
F
(
X ′, ξ0, . . . , ξs−1, f(ξ0), . . . , f(ξs−1)

)
: F (X ′, ξ0, . . . , ξs−1)

]
≤ ∆(f)s. (4.4)

Moreover:

Lemma 4.8. Let f1, . . . , fm ∈ K〈X〉alg, m ≥ 1. There exists α ∈ K〈X〉alg such that
∆(α) ≤ ∆(f1, . . . , fm) and

F
(
X ′, f1(ξ), . . . , fm(ξ)

)
= F

(
X ′, α(ξ)

)
for every zero ξ ∈ F (X ′)alg of g.

Proof. Put α = f1+c2f2+· · ·+cmfm ∈ K〈X〉alg with as yet undetermined c2, . . . , cm ∈
F . Then ∆(α) ≤ ∆(f1, . . . , fm). Moreover, α(ξ) is a primitive element of the field exten-
sion F

(
X ′, f1(ξ), . . . , fm(ξ)

)
⊇ F (X ′) for all but finitely many (c2, . . . , cm) ∈ Fm−1.

Since g only has finitely (namely, at most s) many zeros, we can choose (c2, . . . , cm) ∈
Fm−1 such that α(ξ) has the required property for every zero ξ of g. �

In the next lemma, we let Y1, . . . , YM be a new set of pairwise distinct indeterminates,
each Yi distinct from X1, . . . , XN , and Y := (Y1, . . . , YM ). For f =

∑
ν aνXν ∈ K〈X〉

and g1, . . . , gN ∈ O〈Y 〉, the infinite sum∑
ν

aνgν1
1 · · · gνN

N

converges to an element f(g1, . . . , gN ) in K〈Y 〉. With these notations and remarks:
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Lemma 4.9. Let f ∈ K〈X〉alg and g1, . . . , gN ∈ O〈Y 〉alg. Then f(g1, . . . , gN ) ∈
K〈Y 〉alg with ∆Y

(
f(g1, . . . , gN )

)
≤ ∆(f)∆Y (g1) · · ·∆Y (gN ).

Proof. We prove the following slightly more general statement, by induction on N : if
f ∈ K〈X, Y 〉alg and g1, . . . , gN ∈ O〈Y 〉alg, then f(g1, . . . , gN , Y ) ∈ K〈Y 〉alg with
∆Y

(
f(g1, . . . , gN , Y )

)
≤ ∆(X,Y )(f)∆Y (g1) · · ·∆Y (gN ). For N = 0, this is trivial. Let

N > 0 and assume the corresponding statement is true for N − 1 instead of N . Let f ∈
K〈X, Y 〉alg and g1, . . . , gN ∈ O〈Y 〉alg. We set p(XN ) := XN − gN ∈ O〈X ′, Y 〉[XN ],
a Weierstraß polynomial of degree 1, having the unique zero gN . By Weierstraß Divi-
sion in K〈X, Y 〉 we obtain q ∈ K〈X, Y 〉 and r ∈ K〈X ′, Y 〉 with f = qp + r, thus
f(X ′, gN , Y ) = r ∈ K〈X ′, Y 〉. By Lemma 4.7 and the remarks following it we get
f(X ′, gN , Y ) = r ∈ K〈X ′, Y 〉alg with ∆(X′,Y )

(
f(X ′, gN , Y )

)
≤ ∆(X,Y )(f)∆Y (gN ).

Now apply the inductive hypothesis to f(X ′, gN , Y ). �

Lemma 4.10. If f ∈ K〈X〉alg, then ∂f/∂Xj ∈ F (X, f) for j = 1, . . . , N . (So in
particular, ∂f/∂Xj ∈ K〈X〉alg, with ∆(∂f/∂Xj) ≤ ∆(f).)

Proof. Let f ∈ K〈X〉alg and j ∈ {1, . . . , N}. Let P (T ) =
∑d

i=0 aiT
i ∈ F [X, T ],

a0, . . . , ad ∈ F [X], be a minimal polynomial for f . We then have

0 =
∂P (f)
∂Xj

=
d∑

i=0

∂ai

∂Xj
f i +

∂f

∂Xj

d∑
i=1

iaif
i−1

Then
∑d

i=1 iaif
i−1 6= 0 (by virtue of char F = 0), and since ∂ai/∂Xj ∈ F [X] for

i = 0, . . . , d, this shows that ∂f/∂Xj ∈ F (X, f). �

Corollary 4.11. Let f ∈ K〈X〉alg and let ξ ∈ F (X ′)alg be a zero of g. Then(
∂if/∂Xi

N

)
(ξ) ∈ F

(
X ′, ξ, f(ξ)

)
for all i ∈ N.

Proof. By Lemma 4.10 and induction, it is enough to consider the case i = 1. By
Lemma 4.7, f(ξ) is algebraic over F (X ′, ξ). Let P (X, T ) =

∑d
i=0 ai(X)T i ∈ F [X, T ],

a0, . . . , ad ∈ F [X], ad(X ′, ξ) 6= 0, be a polynomial of minimal degree in T such that
P
(
X ′, ξ, f(ξ)

)
= 0. We have

∂P (X, f)
∂XN

=
d∑

i=0

∂ai

∂XN
f i +

∂f

∂XN

d∑
i=1

iaif
i−1,

hence after applying the F -algebra homomorphism “substitution of ξ for XN ”:(
∂P (X, f)

∂XN

)
(ξ) =

d∑
i=0

(
∂ai

∂XN

)
(X ′, ξ)f(ξ)i +

(
∂f

∂XN

)
(ξ)

d∑
i=1

iai(X ′, ξ)f(ξ)i−1.

Now % :=
∑d

i=1 iai(X ′, ξ)f(ξ)i−1 is non-zero by choice of P , and hence(
∂f

∂XN

)
(ξ) =

1
%

(
∂P (X, f)

∂XN
−

d∑
i=0

(
∂ai

∂XN

)
f i

)
(ξ) ∈ F

(
X ′, ξ, f(ξ)

)
as required. �

Corollary 4.12. If f =
∑∞

i=0 fiX
i
N ∈ K〈X〉alg with fi ∈ K〈X ′〉 for all i ∈ N, then

fi ∈ K〈X ′〉alg with ∆′(fi) ≤ ∆(f) for all i ∈ N.
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Proof. This follows from fi = 1
i!

∂if
∂Xi

N
(X ′, 0) and Lemmas 4.9 and 4.10. (If f is a polyno-

mial in XN and F = Q, then degree estimate can be strengthened, see Lemma 4.5.) �

The multiplicity of a zero ξ ∈ Ω of g is its multiplicity as a zero of the polynomial w.
Equivalently, ξ ∈ Ω is a zero of g of multiplicity n if and only if

g(ξ) =
(

∂g

∂XN

)
(ξ) = · · · =

(
∂n−1g

∂Xn−1
N

)
(ξ) = 0,

(
∂ng

∂Xn
N

)
(ξ) 6= 0.

4.2. Proof of the Weierstraß Division Theorem for K〈X〉alg. Let f and g be as in
Theorem 4.6. By Weierstraß Division in K〈X〉,

f = qg + r with q ∈ K〈X〉, r ∈ K〈X ′〉[XN ], degXN
r < s. (4.5)

Write r = r(XN ) =
∑s−1

j=0 rjX
j
N with r0, . . . , rs−1 ∈ K〈X ′〉. For the first statement in

Theorem 4.6, it suffices to show r ∈ K〈X ′〉alg[XN ], since then

q = (f − r)/g ∈ Frac
(
K〈X〉alg

)
∩K〈X〉 = K〈X〉alg.

Let now Q(T ) ∈ F [X, T ] be a minimal polynomial for g. We need to prove that

r0, . . . , rs−1 ∈ F (X ′)alg
and

∆′(r0, . . . , rs−1) ≤
(
∆(f) degXN

Q(0)
)s

.

To see this, let ξ0, . . . , ξs−1 be the zeros of g in F (X ′)alg. Using Lemma 4.7 and (4.5), we
get

f(ξi) = r(ξi) =
s−1∑
j=0

rjξ
j
i for i = 0, . . . , s− 1.

We have f(ξi) ∈ F (X ′)alg by Lemma 4.7, since f ∈ K〈X〉alg and ξi ∈ F (X ′)alg. Hence
by (4.3), (4.4) it suffices to show that

r0, . . . , rs−1 ∈ F
(
f(ξ0), . . . , f(ξs−1), ξ0, . . . , ξs−1

)
. (4.6)

If ξ0, . . . , ξs−1 are distinct, then r0, . . . , rs−1 are uniquely determined by the system of
linear equations: 

1 ξ0 . . . ξs−1
0

1 ξ1 . . . ξs−1
1

...
...

. . .
...

1 ξs−1 . . . ξs−1
s−1




r0

r1

...
rs−1

 =


f(ξ0)
f(ξ1)

...
f(ξs−1)

 (4.7)

(The Vandermonde matrix in (4.7) is non-singular.) So (4.6) follows by Cramer’s Rule.
Consider now the case that the zero ξ0 of g has multiplicity 2, and ξ1, . . . , ξs−2 each

has multiplicity 1. Then we may use the identity
∂f

∂XN
= q · ∂g

∂XN
+

∂q

∂XN
· g +

(
r1 + 2r2XN + · · ·+ (s− 1)rs−1X

s−2
N

)
to get the following system of linear equations:

1 ξ0 ξ2
0 . . . ξs−1

0

0 1 2ξ0 . . . (s− 1)ξs−2
0

1 ξ1 ξ2
1 . . . ξs−1

1
...

...
...

. . .
...

1 ξs−2 ξ2
s−2 . . . ξs−1

s−2




r0

r1

r2

...
rs−1

 =


f(ξ0)

(∂f/∂XN )(ξ0)
f(ξ1)

...
f(ξs−2)

 (4.8)
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The matrix here is again non-singular. (The homogeneous system with this matrix has only
the trivial solution.) By Corollary 4.11 we again get (4.6).

The other (finitely many) possible configurations of the multiplicities of the zeros of
g are treated similarly. They are in one-to-one correspondence with the finite sequences
µ = (µ0, . . . , µn) ∈ Nn+1, where µ0 ≥ µ1 ≥ · · · ≥ µn ≥ 1 and µ0 + · · · + µn = s.
For each such µ, suppose that each ξi has multiplicity µi, and let ξ = (ξ0, . . . , ξn).
Then [r0, . . . , rs−1]tr is the unique solution to a system of linear equations with the in-
vertible matrix A(ξ, µ, s) as its coefficient matrix; here A(ξ, µ, s) is as introduced in
Section 2.5. (For example, the matrices in (4.7) and (4.8) are A(ξ, (1, 1, . . . , 1), s) and
A(ξ, (2, 1, . . . , 1), s), respectively.) �

The following strengthening of Theorem 4.6 will become useful:

Corollary 4.13. (Simultaneous Weierstraß Division.) Suppose that the restricted power
series g is regular in XN of degree s. Let m ≥ 1, and for every i = 1, . . . ,m let fi, qi ∈
K〈X〉alg and ri0, . . . , ri,s−1 ∈ K〈X ′〉alg such that

fi = qig + ri with ri = ri0 + ri1XN + · · ·+ ri,s−1X
s−1
N ∈ K〈X〉alg.

Then
∆′(rij : 1 ≤ i ≤ m, 0 ≤ j < s) ≤

(
∆(f1, . . . , fm) degXN

Q(0)
)s

,

where Q(X, T ) ∈ F [X, T ] is a minimal polynomial for g.

Proof. By (4.6) we have, for every i:

ri0, . . . , ri,s−1 ∈ F
(
fi(ξ0), . . . , fi(ξs−1), ξ0, . . . , ξs−1

)
.

Now choose α ∈ K〈X〉alg with the properties stated in Lemma 4.8. Then

F
(
X ′, fi(ξj) : 1 ≤ i ≤ m, 0 ≤ j < s

)
= F

(
X ′, α(ξj) : 0 ≤ j < s

)
and ∆(α) ≤ ∆(f1, . . . , fm). The claim now follows from (4.3), (4.4). �

As in the case of Weierstraß Division over K〈X〉, from Theorem 4.6 we get:

Corollary 4.14. (Weierstraß Preparation Theorem for K〈X〉alg) Let g ∈ K〈X〉alg be
regular in XN of degree s ∈ N, and let u be the unit of K〈X〉 and w ∈ O〈X ′〉[XN ]
be the Weierstraß polynomial of degree s such that g = u · w. Then u ∈ K〈X〉alg and
w ∈ O〈X ′〉alg[XN ], and if w0, . . . , ws−1 ∈ O〈X ′〉alg are such that

w = w0 + w1XN + · · ·+ ws−1X
s−1
N + Xs

N

and Q(T ) ∈ F [X, T ] is a minimal polynomial for g, then

∆′(w0, . . . , ws−1) ≤
(
degXN

Q(0)
)s

.

As a consequence, the local ring K〈X〉alg is noetherian.

4.3. Effective Weierstraß Division. We now apply the discussion in the last subsection
to the field K = Cp of p-adic complex numbers, that is, the completion of the algebraic
closure (Qp)alg of the field Qp of p-adic numbers. We denote by vp the unique extension
of the p-adic valuation on Q to a valuation on Cp, and we put | · |p = | · |log p

vp
. We take

D = Z; then the ring Cp〈X〉alg consists of all power series in Cp〈X〉 which are algebraic
over Q(X). Let f ∈ Cp〈X〉alg be non-zero. Put d := ∆(f) and let P ∈ Q[X, T ] be a
minimal polynomial for f . We may choose P of the form

P (T ) = a0 + a1T + · · ·+ adT
d
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with a0, . . . , ad ∈ Z[X] without common factor in Z[X]. By Corollary 2.22

hcoeff(P ) = h
(
[a0 : · · · : ad]

)
≤ d
(
h(f) + log 2

)
. (4.9)

On the other hand, for all j = 0, . . . , d with aj 6= 0,

h
(
[a0 : · · · : ad]

)
≥ deg(X) aj + m(aj) (4.10)

≥ (1− log 2) deg(X) aj + log ||aj ||1
≥ (1− log 2)

(
deg(X) aj + log ||aj ||1

)
,

by Lemmas 3.7 and 1.4, (5). Combining (4.9) and (4.10) we get

deg(X) aj ≤ d
(
h(f) + log 2

)
, log ||aj ||1 ≤ d

(
h(f) + log 2

)
. (4.11)

Using (3.17) we also obtain from (4.10):

h(aj) ≤
d

1− log 2
(
h(f) + log 2

)
for all j = 0, . . . , d.

Moreover, by Proposition 3.10

h(P ) ≤ d
(
h(f) + log 2 + 1

)
+ log(d + 1)

≤ 4d
(
h(f) + log 2

)
. (4.12)

The main goal for this subsection is to show the following generalization of Theorem 0.1
stated in the introduction:

Theorem 4.15. (Effective Weierstraß Division.) Let f1, . . . , fm, g ∈ Cp〈X〉alg, m ≥ 1,
and suppose g is regular in XN of degree s ∈ N. For each i = 1, . . . ,m let qi ∈ Cp〈X〉alg
and ri ∈ Cp〈X ′〉alg[XN ] such that fi = qig + ri and degXN

ri < s. Write

ri = ri0 + ri1XN + · · ·+ ri,s−1X
s−1
N with rij ∈ Cp〈X ′〉alg for all i, j. (4.13)

Then

∆′(rij : 1 ≤ i ≤ m, 0 ≤ j < s) ≤
(
∆(f1, . . . , fm)∆(g)

(
h(g) + log 2

))s
and

hmax

(
rij : 1 ≤ i ≤ m, 0 ≤ j < s) ≤

O(1)s
(
∆(f1, . . . , fm)

)s∆(g)
(
hmax(f1, . . . , fm) + log 2

)(
h(g) + log 2

)
.

We need the following auxiliary fact, with f as above:

Lemma 4.16. For each j ∈ N, we have

h
(
∂jf/∂Xj

N

)
+ log 2 ≤ (6d)j

(
h(f) + log 2

)
.

Proof. We first consider the case j = 1. We have

∂f

∂XN
= −P ∗(f)

P ′(f)
,

where

P ∗(T ) =
d∑

i=0

∂ai

∂XN
T i =

∂P

∂XN
and P ′(T ) =

d∑
i=1

iaiT
i−1 =

∂P

∂T
,

see proof of Lemma 4.10. We may assume that P ∗ 6= 0. By Lemma 2.33 and (4.9)

hcoeff(P ′) ≤ hcoeff(P ) + log d ≤ d
(
h(f) + log 2

)
+ log d.
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Hence by (2.17)

h
(
P ′(f)

)
≤ (d− 1)h(f) + hcoeff(P ′) + log d ≤ (2d− 1)h(f) + log(2dd2).

By (3.19) and (4.11) we have

hcoeff(P ∗) ≤ hcoeff(P ) + d + log(d + 1) + log d
(
h(f) + log 2

)
and hence by (2.17), (4.9) and using that log(x+log 2) ≤ x and x ≤ log 2x for all x ∈ R≥0

we get

h
(
P ∗(f)

)
≤ d h(f) + hcoeff(P ∗) + log(d + 1)

≤ d h(f) + hcoeff(P ) + d + 2 log(d + 1) + log d
(
h(f) + log 2

)
≤ 2d h(f) + d + log

(
2d(d + 1)2d

)
+ log

(
h(f) + log 2

)
≤ (2d + 1) h(f) + log

(
2d+1(d + 1)2d

)
.

So we have

h(∂f/∂XN ) ≤ h
(
P ∗(f)

)
+ h
(
P ′(f)

)
≤ 4d h(f) + log

(
22d+1d3(d + 1)2

)
.

A computation shows that log
(
22d+1d3(d + 1)2

)
≤ (6d− 1) log 2, hence

h(∂f/∂XN ) + log 2 ≤ 6d
(
h(f) + log 2

)
.

The lemma now follows by induction on j ≥ 1. �

For the proof of Theorem 4.15, we let g ∈ Cp〈X〉alg be regular in XN of degree s. Let

Q(T ) = b0 + b1T + · · ·+ beT
e

be a minimal polynomial for g, where e := ∆(g) and b0, . . . , be ∈ Z[X] are without
common factor in Z[X]. So we have

deg(X) bj ≤ ∆(g)
(
h(g) + log 2

)
, log ||bj ||1 ≤ ∆(g)

(
h(g) + log 2

)
(4.14)

and

h(bj) ≤
∆(g)

1− log 2
(
h(g) + log 2

)
(4.15)

for all j = 0, . . . , e. (By (4.11), applied to g in place of f .)
For each i = 1, . . . ,m let qi ∈ Cp〈X〉alg and let ri ∈ Cp〈X ′〉alg[XN ] be of degree < s

such that fi = qig + ri, and write ri as in (4.13). By Corollary 4.13 and (4.14) we get

∆′(rij : 1 ≤ i ≤ m, 0 ≤ j < s) ≤
(
∆(f1, . . . , fm)∆(g)

(
h(g) + log 2

))s
.

This is the first estimate in Theorem 4.15.
Let ξ0, . . . , ξs−1 be the zeros of g in Q(X ′)alg. Recall that for h ∈ Cp〈X〉 we write

h(ξi) for rh(ξi), where rh ∈ Cp〈X ′〉[XN ] is the remainder obtained through Weierstraß
Division of h by g. For each ξi we have b0(X ′, ξi) = 0. (See proof of Lemma 4.7.) So by
Corollary 2.22, Proposition 3.10, and (4.14), (4.15)

s−1∑
i=0

h(ξi) ≤ hcoeff(b0) + degXN
b0 log 2 ≤ 4e

(
h(g) + log 2

)
.

(Here, hcoeff(b0) is the height of the polynomial b0(X ′, XN ) in the variable XN with
coefficients in Z[X ′].) By Corollary 2.22, this already allows us to conclude:
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Proposition 4.17. (Effective Weierstraß Preparation.) Let u be a unit of Cp〈X〉alg and

w = w0 + · · ·+ ws−1X
s−1
N + Xs

N with w0, w1, . . . , ws−1 ∈ Cp〈X ′〉alg
be a Weierstraß polynomial of degree s such that g = u · w. Then

∆′(w0, . . . , ws−1) ≤
(
∆(g)

(
h(g) + log 2

))s
,

h(w0, . . . , ws−1) ≤ s log 2 + 4∆(g)
(
h(g) + log 2

)
.

Remark 4.18. It is unclear whether the degree bound in Proposition 4.17 is sharp. (Often
much better estimates are possible, e.g., if u ∈ Q[X], see Lemma 4.5.)

More work is necessary to obtain the upper bound on h(rij) claimed in Theorem 4.15.

Lemma 4.19. There exists a real constant C0 > 0 with the following property: if ξ = ξi

for some i, then

h
(
f(ξ)

)
≤ C0 ·∆(f)∆(g)

(
h(f) + log 2

)(
h(g) + log 2

)
.

Hence for all j ∈ N

h
(
(∂jf/∂Xj

N )(ξ)
)
≤ C0 · 6j∆(f)j+1∆(g)

(
h(f) + log 2

)(
h(g) + log 2

)
.

Proof. We have b0(X ′, ξ) = P
(
X ′, ξ, f(ξ)

)
= 0. So if r(T ) = resXN

(b0, P ) ∈ Z[X ′, T ]
denotes the resultant of b0 ∈ Z[X] and P ∈ Z[X, T ] with respect to the indeterminate
XN , then r

(
f(ξ)

)
= 0. Note that r(T ) 6= 0, since a0, . . . , ad are relatively prime. Hence

degT (r) > 0. By Corollary 3.12

h(r) ≤ degXN
(P ) h(b0) + degXN

(b0) h(P ) + degXN
(b0) degXN

(P ) log 4.

Construing r as a polynomial in the indeterminate T with coefficients in X ′ we therefore
obtain, using Proposition 3.10 and (4.11), (4.12), (4.14), (4.15):

hcoeff(r) ≤ 9de
(
h(f) + log 2

)(
h(g) + log 2

)
.

So by Corollary 2.22, for some constant C0 > 0:

h
(
f(ξ)

)
≤ hcoeff(r) + log 2 ≤ C0 · de

(
h(f) + log 2

)(
h(g) + log 2

)
as desired. The second estimate follows from Lemma 4.16. �

We may assume that ξ0, . . . , ξn (0 ≤ n < s) are the distinct zeros of g. For 0 ≤ i ≤ n
put µi := the multiplicity of ξi. (So µ0 + · · · + µn = s.) Set ξ := (ξ0, . . . , ξn), µ :=
(µ0, . . . , µn), and A := A(ξ, µ, s) (an invertible s× s-matrix with entries in Q(X ′)alg). If
s = 1 then h(A) = 0; otherwise, from Proposition 2.32, Lemma 2.26, (4), and h

(
[1 : 2 :

· · · : s− 1]
)

= log(s− 1) we get that

h(A) ≤ (s− 1)
(
h(ξ0, . . . , ξn) + log(s− 1)

)
≤ (s− 1)

(
4e
(
h(g) + log 2

)
+ log(s− 1)

)
.

Hence from Corollary 2.31 we obtain

h(A−1) ≤ s

(
1
2

log s + h(A)
)

≤ 1
2
s log s + s(s− 1) log(s− 1) + s(s− 1)4e

(
h(g) + log 2

)
≤ s(s− 1/2) log s + s(s− 1)4e

(
h(g) + log 2

)
≤ s(s− 1/2)

(
log s + 4e

(
h(g) + log 2

))
,
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hence there exists a universal constant C1 > 0 with

h(A−1) + log s ≤ C1s
3e
(
h(g) + log 2

)
.

Consider the s×m-matrices

R :=

 r10 · · · rm0

...
. . .

...
r1,s−1 · · · rm,s−1


and B := [b1 · · · bm] where bi is the transpose of the vector[

fi(ξ0),
∂fi

∂XN
(ξ0), . . . ,

∂µ0−1fi

∂Xµ0−1
N

(ξ0), . . . , fi(ξn),
∂fi

∂XN
(ξn), . . . ,

∂µn−1fi

∂Xµn−1
N

(ξn)

]
.

From Lemma 4.19 we get

hmax(B) = max
1≤i≤m, 0≤j≤n

0≤k<µj

h
(
(∂kfi/∂Xk

N )(ξj)
)

≤ C0s · (6d)se
(
hmax(f1, . . . , fm) + log 2

)(
h(g) + log 2

)
.

Since R = A−1B, by Lemma 2.30 therefore

hmax(R) ≤ s
(
hmax(A−1) + hmax(B)

)
+ log s

≤ (C2d)se
(
hmax(f1, . . . , fm) + log 2

)(
h(g) + log 2

)
for some universal constant C2 > 0. This finishes the proof of Theorem 4.15. �

Remarks 4.20.
(1) Let y = y0 + y1XN + · · · + ys−1X

s−1
N with y0, . . . , ys−1 ∈ Cp〈X ′〉alg, s > 0.

Then
h(y) ≤ h(y0, . . . , ys−1) + (s− 1 + log s)

by (2.17), Example 3.8 and Lemma 2.26, (3). Therefore the bound on the quantity
h(ri0, . . . , hi,s−1) in Theorem 4.15 also entails an upper bound on h(ri).

(2) Theorem 4.15 in conjunction with Lemma 2.26 immediately gives a bound on the
affine heights in the Weierstraß Division Theorem:

h(rij : 1 ≤ i ≤ m, 0 ≤ j < s) ≤

mO(1)s
(
∆(f1, . . . , fm)

)s∆(g)
(
h(f1, . . . , fm) + log 2

)(
h(g) + log 2

)
.

4.4. Height and degree bounds for algebraic restricted power series. In the rest of this
section we construct a few bounds which will be used in the next section. We fix a non-zero
f ∈ Cp〈X〉alg, and as in the last subsection we choose a minimal polynomial

P (T ) = a0 + a1T + · · ·+ adT
d

of f with relatively prime a0, . . . , ad ∈ Z[X]. For the next proposition suppose that N >
0, and let Te (e ∈ N, e > 1) be the Cp-automorphism of Cp〈X〉 given by

Xi 7→ Xi + XeN−i

N for 1 ≤ i < N , XN 7→ XN .

(See Lemma 4.3.) The power series Te(f) satisfies the equation

Te(ad)Te(f)d + Te(ad−1)Te(f)d−1 + · · ·+ Te(a0) = 0,

with Te(a0), . . . , Te(ad) ∈ Z[X] and Te(ad) 6= 0. In particular, ∆
(
Te(f)

)
= d.

Proposition 4.21. h
(
Te(f)

)
= O

(
eN−1

(
h(f) + log 2

))
.
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Proof. Let φ = (φ0, . . . , φd) be the rational map PN → Pd given by φi = homogenization
of ai, for i = 0, . . . , d. Then

φ
([

X1 + XeN−1

N : · · · : XN−1 + Xe
N : XN : 1

])
=
[
Te(a0) : · · · : Te(ad)

]
.

Lemma 3.7 and (4.11) yield

hcoeff(φ0, . . . , φd) = max
i

log ||ai||∞ ≤ d
(
h(f) + log 2

)
.

Moreover deg φi ≤ d
(
h(f)+ log 2

)
for all i. Applying (2.16) and using Example 3.9 now

gives
h
([

Te(a0) : · · · : Te(ad)
])

= O
(
eN−1

(
h(f) + log 2

))
,

hence by Corollary 2.22 we get

h
(
Te(f)

)
≤ 1

d
h
([

Te(a0) : · · · : Te(ad)
])

+ log 2 = O
(
eN−1

(
h(f) + log 2

))
,

as claimed. �

Remark 4.22. Similarly, one shows that h
(
T−1

e (f)
)

= O
(
eN−1

(
h(f) + log 2

))
, where

T−1
e is the inverse automorphism to Te.

Next we establish an upper bound on the p-adic valuation of f :

Lemma 4.23. |vp(f)| ≤ ∆(f)
(
h(f) + log 2

)
/ log p.

Let j ∈ {0, . . . , d}. For every non-zero coefficient a ∈ Z of aj , we have log |a| ≥
vp(aj) log p. So by (4.11) we get for non-zero aj :

0 ≤ vp(aj) ≤ d
(
h(f) + log 2

)
/ log p.

The claim now follows from a simple observation about valuations:

Lemma 4.24. Let v be a valuation on a field K. Let α ∈ K× be a zero of a polynomial

Q(T ) = b0 + b1T + · · ·+ bnTn ∈ K[T ] (b0, . . . , bn ∈ K, bn 6= 0).

If all non-zero v(bi) have the same sign, then |v(α)| ≤ max
{
|v(bi)| : bi 6= 0

}
.

Proof. We have

|v(α)| ≤ max
{∣∣∣∣v(bj)− v(bi)

i− j

∣∣∣∣ : i 6= j, bi, bj 6= 0
}
≤ max

{
|v(bi)| : bi 6= 0

}
,

as required. �

Remark 4.25. If f lies in (Cp)alg or in Q(X), then we can sharpen the estimate in Lem-
ma 4.23 to:

|vp(f)| ≤ ∆(f)h(f)
log p

.

Proof. By passing from f to 1/f , if necessary, we may assume vp(f) ≤ 0, so |f |vp
≥ 1.

Now if f ∈ (Cp)alg, then by (2.15)

dh(f) =
∑

v∈MQ(f)

λv log+ |f |v ≥ −vp(f) log p,

so |vp(f)| ≤ dh(f)
log p as required. If f ∈ Q(X), then by (3.11) we see that h(f) ≥

−vp(f) log p as claimed. �
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Lemma 4.26. Suppose |f |p = 1. Then

deg(X) f ≤ 3d
(
h(f) + log 2

)
, degX f ≤ d

(
h(f) + log 2

)
.

Proof. Let F be an algebraic closure of Fp. We use the height function h(X) on F (X)
defined in Example 3.5. For non-zero a ∈ F [X] we have h(X)(a) = deg(X) a. Now
the image f of f in F [X] under the residue homomorphism is a zero of the non-zero
polynomial

P = a0 + a1T + · · ·+ adT
d ∈ F [X, T ].

Moreover, for all j = 0, . . . , d with aj 6= 0,

h(X)(aj) = deg(X) aj ≤ deg(X) aj ≤ d
(
h(f) + log 2

)
,

by (4.11). Therefore, by Corollary 2.22:

deg(X) f = h(X)(f) ≤ 1
d
h(X)

(
[a0 : · · · : ad]

)
+ log 2

≤ 1
d

∑
j

deg(X)(aj) + log 2 ≤ (d + 1)
(
h(f) + log 2

)
+ log 2.

The first inequality follows. For the second inequality use Lemma 4.24, applied to the total
degree valuation on K = F (X), the non-zero polynomial Q(T ) = P (T ) ∈ K[T ], and
α = f . �

Now assume that f ∈ Zp〈X〉alg. Then there are uniquely determined polynomials
f(0), f(1), . . . in Z[X] such that ||f(j)||∞ < p for all j and

f = f(0) + pf(1) + p2f(2) + · · · in Zp〈X〉.
If f ∈ Z[X], then f(j) = 0 for all j > h(f)/ log p, by (3.18). We want to produce a bound
on deg(X) f(j) in terms of ∆(f), h(f), p, N and j. (This is not used in the later sections.)
By the previous lemma

deg(X) f(0) = deg(X) f ≤ 3∆(f)
(
h(f) + log 2

)
,

so by (3.18):

h
(
f(0)

)
≤ 2 deg(X) f(0) + log ||f(0)||∞ ≤ 6d

(
h(f) + log 2

)
+ log p.

Now put f1 :=
(
f − f(0)

)
/p ∈ Zp〈X〉alg. Then

h(f1) ≤ h(f) + h
(
f(0)

)
+ log 2 + log p

≤ h(f) + 6d
(
h(f) + log 2

)
+ log 2 + 2 log p.

It follows that for some constant C > 0:

h(f1) + log 2 ≤ C log p ∆(f)
(
h(f) + log 2

)
and hence, inductively,

deg(X) f(j) ≤ (C log p)j∆(f)j+1
(
h(f) + log 2

)
for all j ∈ N. (4.16)

Now let j ≥ 1 and put fj := f(0)+pf(1)+· · ·+pj−1f(j−1) ∈ Z[X]. Then f ≡ fj mod pj

and ||fj || < pj , and by (3.18), (4.16):

h(fj) ≤ 2 deg(X) fj + log ||fj ||∞ = O(log p)j−1∆(f)j
(
h(f) + log 2

)
.

These bounds may be used to show that power series like
∑∞

i=0 piX2i ∈ Zp〈X〉 (where
X is a single indeterminate) are not algebraic over Q(X).
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5. HERMANN’S METHOD FOR RESTRICTED POWER SERIES

Consider a system of linear equations Ay = b, where the matrix

A = (aij)1≤i≤m
1≤j≤n

and the vector b = [b1, . . . , bm]tr have entries from the ring Zp〈X〉 of restricted power
series with coefficients in Zp. A necessary condition for solvability of the system Ay = b
in Zp〈X〉 is certainly that this system is solvable in Qp〈X〉, and that for all e ≥ 1, the
system Ay = b, obtained from Ay = b by applying the canonical homomorphism a 7→
a = a mod pe to the coefficients of A and b, is solvable in Zp〈X〉 mod pe = (Z/peZ)[X].
(For the latter state of affairs, we will from now on just say “the system Ay = b is solvable
mod pe.”) In this section, we want to prove a partial converse to this: if all entries aij of A
are algebraic over Q(X), then solvability of Ay = b in Qp〈X〉 and in Zp〈X〉 mod pe for
large enough e implies solvability of Ay = b in Zp〈X〉. The following theorem contains
the precise statement. As before m, n and N range over N; we also let d range over N and
h over R.

Theorem 5.1. For every tuple (N, d, h, m) with d, m ≥ 1, h ≥ 0 there exists a positive
integer E = E(N, d, h, m) with

E = 2·
··
2O(1)N (m2d(h+1))N+1

(N many 2’s)

such that the following holds: for every A ∈ (Zp〈X〉alg)m×n with ∆(A) ≤ d and h(A) ≤
h and every b ∈ Zp〈X〉m, the system

Ay = b

is solvable in Zp〈X〉 if and only if it is solvable in Qp〈X〉 and solvable mod pE .

Provided that b ∈
(
Zp〈X〉alg

)n
, we will also show: if Ay = b is solvable in Zp〈X〉,

then there exists a solution y ∈
(
Zp〈X〉alg

)n
whose height and degree can be explicitly

bounded in terms of N , ∆(A, b), h(A, b), m and n. (See (5.10) below.) From the theorem,
we get as the special case m = 1:

Corollary 5.2. For all f0, f1, . . . , fn ∈ Zp〈X〉alg with f0 ∈ (f1, . . . , fn)Qp〈X〉 and
∆(f1, . . . , fn) ≤ d, h(f1, . . . , fn) ≤ h, we have

f0 ∈ (f1, . . . , fn)Zp〈X〉 ⇐⇒ f0 ∈ (f1, . . . , fn)(Z/pEZ)[X],

where E = E(N, d, h, 1). (Together with (3.18), this yields Theorem 0.2.)

To discuss our strategy for the proof of Theorem 5.1, let D be an integral domain with
fraction field F , and let A = (aij) be an m × n-matrix with entries aij ∈ D and b =
[b1, . . . , bm]tr ∈ Dm. We are mostly interested in the case where D = Zp〈X〉 or D =
Zp〈X〉alg; the ideas explained below were first used by Hermann [18] in the case where D
is a polynomial ring over a field. We want to determine whether the systema11 · · · a1n

...
. . .

...
am1 · · · amn


y1

...
yn

 =

 b1

...
bm

 (I)

(or: Ay = b) has a solution y = [y1, . . . , yn]tr ∈ Dn, and if it does, effectively find such a
solution. Of course, we may assume A 6= 0, so the rank r = rankF (A) of A (considered
as a matrix over F ) is ≥ 1. Let ∆ be an r × r-submatrix of A with δ = det ∆ 6= 0.
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After rearranging the order of the equations and permuting the unknowns y1, . . . , yn in (I)
we may assume that ∆ = (aij)1≤i,j≤r. A necessary condition for (I) to have a solution
y ∈ Dn is clearly that

rankF (A) = rankF (A, b). (NC)

Assume (NC) holds. Then (I) has the same solutions in Dn as the system:a11 · · · a1n

...
. . .

...
ar1 · · · arn


y1

...
yn

 =

b1

...
br


Changing notation, we assume from now on that r = m. Multiplying both sides of Ay = b
on the left by the adjoint ∆ad of ∆, (I) turns into the system

δ c1,r+1 · · · c1,n

δ c2,r+1 · · · c2,n

. . .
...

. . .
...

δ cr,r+1 · · · crn




y1

y2

...
yn

 =


d1

d2

...
dr

 (S)

(with cij , di ∈ D for 1 ≤ i ≤ r < j ≤ n) which has the same solutions in every
domain extending D as (I). Clearly, a sufficient condition for (S) to have a solution y =
[y1, . . . , yn]tr ∈ Dn is that d1, . . . , dr are each divisible by δ. This will be the case if δ is
a unit; then a solution to (S) (and hence to (I)) is given by

yj =

{
dj/δ for 1 ≤ j ≤ r,
0 for r < j ≤ n.

Suppose δ is not a unit, so D = D/δD 6= 0. Then, reducing the coefficients in (S) modulo
δ, the system (S) turns intoc1,r+1 · · · c1n

...
. . .

...
cr,r+1 · · · crn


yr+1

...
yn

 =

d1

...
dr

 (S)

over D. (Here a denotes the image of a ∈ D in D.) For any yr+1, . . . , yn ∈ D with the
property that [yr+1, . . . , yn]tr is a solution of the reduced system (S) there are uniquely
determined y1, . . . , yr ∈ D such that

[y1, . . . , yr, yr+1, . . . , yn]tr ∈ Dn

is a solution of (S), and hence of (I). In particular, (I) is solvable in D if and only if (S) is
solvable in D.

Now we specialize to the case D = Zp〈X〉 with N > 0. The procedure above can be
used to reduce solving a system (I) over D to solving an equivalent system over D′ :=
Zp〈X ′〉. For this, suppose that the system Ay = b is solvable in Qp〈X〉; in particular,
the necessary condition (NC) holds. Assume moreover that A has an r × r-minor δ with
δ mod p 6= 0. Then, after applying the Zp-automorphism Td of D given by Lemma 4.3,
where d > degX(δ mod p), to all coefficients of (S), we may even assume that δ is regular
in XN of some degree s. By Weierstraß Division we now have

D = D/δD ∼= D′ ⊕D′XN ⊕ · · · ⊕D′XN
s−1
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as D′-algebras. This allows us to replace the system (S) with an equivalent system over D′

as follows. Each cij can be written uniquely as

cij = cij,0 + cij,1XN + cij,2XN
2

+ · · ·+ cij,s−1XN
s−1

with cij,0, . . . , cij,s−1 ∈ D′, 1 ≤ i ≤ r < j ≤ n. We also write each di and each power
XN

t
(t ≥ s) in this way,

di = di0 + di1XN + di2XN
2

+ · · ·+ di,s−1XN
s−1

with dik ∈ D′, 1 ≤ i ≤ r, 0 ≤ k < s,

XN
t
= ξt0 + ξt1XN + · · ·+ ξt,s−1XN

s−1
(5.1)

with ξtk ∈ D′, and also each unknown yj as

yj = yj0 + yj1XN + · · ·+ yj,s−1XN
s−1

with new unknowns yjk (r < j ≤ n, 0 ≤ k < s) ranging over D′. The coefficient matrix
of the system (S) above may then be written as

C(0) + C(1)XN + · · ·+ C(s− 1)XN
s−1

,

where
C(k) = (cijk)1≤i≤r

r<j≤n
∈ (D′)r×(n−r) for k = 0, . . . , s− 1.

Similarly we may writed1

...
dr

 = d(0) + d(1)XN + · · ·+ d(s− 1)XN
s−1

, d(k) =

d1k

...
drk

 ,

and alsoyr+1

...
yn

 = y(0) + y(1)XN + · · ·+ y(s− 1)XN
s−1

, y(k) =

yr+1,k

...
ynk

 .

So our system may be rewritten as
2(s−1)∑

k=0

(
k∑

l=0

C(k − l)y(l)

)
XN

k
= d(0) + d(1)XN + · · ·+ d(s− 1)XN

s−1
. (5.2)

Using the identities (5.1), the left-hand side reduces to

s−1∑
k=0

 k∑
l=0

C(k − l) +
2(s−1)∑

t=s

C(t− l)ξtk

 y(l)+

s−1∑
l=k+1

2(s−1)∑
t=s

C(t− l)ξtk

 y(l)

XN
k
.

Comparing the coefficients of equal powers of XN in (5.2) we thus obtain s systems of
linear equations over D′:

s−1∑
l=0

C(k − l) +
2(s−1)∑

t=s

C(t− l)ξtk

 y(l) = d(k)
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for k = 0, . . . , s − 1, where we put C(t) := 0 for t < 0. Combining these systems into a
single one, we obtain a system

A′y′ = b′, (I′)

where
A′ ∈ (D′)m′×n′ , b′ ∈ (D′)m′

, m′ = rs, n′ = s(n− r),

whose solutions in D′ are in one-to-one correspondence with the solutions in D of Ay = b.
Note that the new system is solvable in Qp〈X ′〉, by Weierstraß Division for Qp〈X〉. (Here
the right choice of rings is essential: if we replace Qp〈X〉 by Qp[X] or by the fraction field
of Zp〈X〉, say, there is no such “preservation of solvability.”) Moreover, if the original
system Ay = b is solvable modulo some power of p, then A′y′ = b′ is solvable modulo
the same power of p. Setting Dalg := Zp〈X〉alg, D′

alg := Zp〈X ′〉alg we also have: if
A ∈ (Dalg)m×n, then A′ ∈ (D′

alg)
m′×n′ , and if in addition b ∈ (Dalg)m, then also

b′ ∈ (D′
alg)

m′
.

The reduction from Zp〈X〉 to Zp〈X ′〉 described above breaks down if δ mod p = 0 for
all r × r-minors δ of A, since then Weierstraß Division by δ is inapplicable. To overcome
this obstacle, in this case we shall first transform the system (I) into an equivalent system
for which δ mod p 6= 0 for a suitable r × r-minor δ of the new coefficient matrix, which
is of rank r.

5.1. Desingularization. This process, which we call p-desingularization, can be formu-
lated in the quite general context that D is an integral domain and p ∈ D a non-zero
generator of a prime ideal (p) = pD such that

⋂
e∈N peD = (0). We write v for the p-adic

valuation on D, given by v(a) = e ∈ N if a ∈ (pe) \ (pe+1), for non-zero a ∈ D, and
v(0) := −∞ < N. We also put F = Frac(D) and F (p) = Frac

(
D/pD

)
.

Let A = (aij) be an m × n-matrix over D, of rank r = rankF (A), and let b =
[b1, . . . , bm]tr ∈ Dm. We shall show how to construct an m × n-matrix B over D, de-
pending only on A (and not on b), and a vector c = [c1, . . . , cm]tr ∈ Dm with the following
properties:

(1) r = rankF (B) = rankF (p)(B mod p), and
(2) the systems Ay = b and By = c have the same solutions (in every domain con-

taining D).
It may happen that one of the steps of the algorithm to construct (B, c) cannot be carried
out, but then we will know that Ay = b has no solution y ∈ Dn.

We may assume A 6= 0, since otherwise we may just take (B, c) = (A, b). By removing
superfluous rows from A we may of course assume that the rows of A are F -linearly
independent, i.e., m = r. Let ∆ be an r×r-submatrix of A such that the value v(det∆) is
minimal among all r × r-submatrices of A. Without loss of generality, ∆ = (aij)1≤i,j≤r.
As above, consider now the system

δ c1,r+1 · · · c1,n

δ c2,r+1 · · · c2,n

. . .
...

. . .
...

δ cr,r+1 · · · crn




y1

y2

...
yn

 =


d1

d2

...
dr

 (5.3)

which is obtained by multiplying both sides of Ay = b from the left with the adjoint of ∆.
It has the same solutions as Ay = b, in any domain extending D. Here, δ = det∆, the
cij are certain signed r × r-minors of A, and the di are certain signed r × r-minors of the
extended matrix (A, b). In particular, v(cij) ≥ v(δ) for all i, j, by choice of ∆. Therefore,
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if v(di) < v(δ) for some i ∈ {1, . . . ,m}, then (5.3) and hence the original system Ay = b
are not solvable in D. Suppose v(di) ≥ v(δ) = e for all i = 1, . . . ,m. Dividing all
coefficients δ, cij and di in (5.3) by pe, we obtain a system By = c as required.

Put e(A) = maxS v(detS), with S ranging over all r × r-submatrices of A. The p-
desingularization process described above can be successfully performed on the system
Ay = b provided this system is solvable mod pe, where e = v(δ) ≤ e(A). If y ∈ Dn

is a solution to Ay = b mod pt, where t ≥ e, then clearly y is also a solution to By =
c mod pt−e. Hence:

Lemma 5.3. If Ay = b is solvable mod pt, where t ≥ e(A), then the p-desingulariza-
tion process may be successfully performed on (A, b), and the resulting system By = c is
solvable mod pt−e(A). �

5.2. Desingularization and height. Let us now return to D = Zp〈X〉. In the remainder
of this section, A = (aij) will always denote an m× n-matrix with coefficients in Dalg =
Zp〈X〉alg, of rank r over F = Frac(D), and b = [b1, . . . , bm]tr will denote a vector with
b1, . . . , bm ∈ D. Note that the entries of the matrix B produced by p-desingularization
lie in Dalg, and if b ∈ (Dalg)m, then c ∈ (Dalg)m as well. We now want to estimate the
height of B. For every r × r-submatrix S of A we have

h(detS) + log 2 ≤ r
(
log r + hmax(S)

)
+ log 2 ≤ r2

(
hmax(A) + log 2

)
. (5.4)

(By Lemma 2.28 and the crude estimate r log r + log 2 ≤ r2 log 2.) Hence

e(A) ≤ r2∆(A)
(
hmax(A) + log 2

)
/ log p (5.5)

by Lemma 4.23. Therefore, if Ay = b is solvable mod pt, with t ≥ s, where s is the
integral part

s =
[
m2∆(A)

(
hmax(A) + log 2

)
/ log p

]
,

then p-desingularization can be carried out, and the system By = c resulting from this
process is solvable mod pt−s.

The heights of the entries of the coefficient matrix of the system (5.3) above are bounded
from above by m2

(
hmax(A) + log 2

)
− log 2, by (5.4). So the matrix B produced by p-

desingularization satisfies:

hmax(B) + log 2 ≤ e(A) log p + m2
(
hmax(A) + log 2

)
≤ 2m2∆(A)

(
hmax(A) + log 2

)
.

Similarly, if all entries b1, . . . , bm of the vector b are algebraic over Q(X), one gets

hmax(B, c) + log 2 ≤ 2m2∆(A, b)
(
hmax(A, b) + log 2

)
.

We summarize this discussion:

Proposition 5.4. If the system Ay = b is solvable mod pt, where

t ≥ s =
[
m2∆(A)

(
hmax(A) + log 2

)
/ log p

]
,

then the p-desingularization algorithm for (A, b) can be carried out, and the resulting
system By = c is solvable mod pt−s. Moreover, we have

hmax(B) ≤ 2m2∆(A)
(
hmax(A) + log 2

)
− log 2

and if the entries of b are from Dalg, then so are the entries of c, with

hmax(B, c) ≤ 2m2∆(A, b)
(
hmax(A, b) + log 2

)
− log 2.

�
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5.3. Height and degree bounds in Hermann’s method. We now want to determine how
m′, hmax(A′) and ∆′(A′) depend on m, hmax(A) and ∆(A). In order to do this efficiently,
we introduce the following ad-hoc notation:

Notation. We call the real number

c(A) := ∆(A)
(
hmax(A) + 1

)
the complexity of A.

Note that always c(A) ≥ 1, and c(S) ≤ c(A) for every submatrix S of A (in particular
∆(a)

(
h(a) + 1

)
≤ c(A) for every entry a of A). For given real number β and integers

m,n > 0, there exist only finitely many m×n-matrices A over Zp〈X〉alg with c(A) ≤ β.
We also abbreviate m2 c(A) by c∗(A).

Rather than studying how ∆(A) and hmax(A) change during the Hermann algorithm,
we will now concentrate on estimating the complexity of the matrices constructed during
this process.

5.3.1. Complexity of p-desingularization. By Proposition 5.4, the p-desingularization al-
gorithm can be performed on (A, b) provided the system Ay = b is solvable mod ps,
where s =

[
c∗(A)/ log p

]
, and the matrix B obtained in this way satisfies hmax(B) ≤

2 c∗(A)− log 2. If b ∈ (Dalg)m, then similarly hmax(B, c) ≤ 2 c∗(A, b)− log 2.

5.3.2. Complexity of Td(B). We now want to bound c
(
Td(B)

)
. Recall that the system

By = c obtained from Ay = b by p-desingularization has the shape (5.3), where δ mod
p 6= 0. By Lemma 4.26 we have

degX(δ mod p) ≤ ∆(δ)
(
h(δ) + log 2

)
≤ c(B) ≤ 2∆(A) c∗(A). (5.6)

Let d =
[
2∆(A) c∗(A)

]
+ 1 (so that d > degX(δ mod p) by (5.6)). Then Td(δ) is XN -

distinguished of some degree s with s < dN ≤
(
4∆(A) c∗(A)

)N
, and by Proposition 4.21,

h
(
Td(f)

)
= O(1)N−1

(
∆(A) c∗(A)

)N−1(
h(f) + log 2

)
for all f ∈ Dalg.

We conclude that
c
(
Td(B)

)
= O(1)N−1

(
∆(A) c∗(A)

)N
. (5.7)

Similarly, if b ∈ (Dalg)m, then applying Td to all coefficients of By = c yields a
system of linear equations over Dalg whose extended coefficient matrix has complexity
O(1)N−1

(
∆(A, b) c∗(A, b)

)N
.

5.3.3. Complexity of A′. From the system obtained by applying Td to all coefficients of
the desingularized system By = c, we now construct A′ ∈ (D′

alg)
m′×n′ and b′ ∈ (D′)m′

as above. Let f1, . . . , fK ∈ Dalg = Zp〈X〉alg, and write each fk = canonical image of fk

in Dalg/Td(δ)Dalg as

fk = fk0 + fk1XN + · · ·+ fk,s−1XN
s−1

with fkl ∈ D′
alg.

Then by Theorem 4.15 and the estimate (5.7):

∆′(fkl : 1 ≤ k ≤ K, 0 ≤ l < s) = O(1)(N−1)s∆(f1, . . . , fK)s
(
∆(A) c∗(A)

)Ns

and

hmax(fkl : 1 ≤ k ≤ K, 0 ≤ l < s) =

O(1)N+s−1
(
∆(f1, . . . , fK)

)s(
hmax(f1, . . . , fK) + log 2

)(
∆(A) c∗(A)

)N
.
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Hence

∆′(C(k), ξtk : 0 ≤ k < s ≤ t ≤ 2(s− 1)
)

= O(1)Ns∆(A)(N+1)s c∗(A)Ns

and

hmax

(
C(k) : 0 ≤ k < s

)
= O(1)Ns∆(A)2N+s c∗(A)2N , (5.8)

and since hmax(Xs
N , . . . , X

2(s−1)
N ) = 2(s− 1), we also have

hmax

(
ξtk : 0 ≤ k < s ≤ t ≤ 2(s− 1)

)
= O(1)Ns

(
∆(A) c∗(A)

)N
. (5.9)

Moreover, for 0 ≤ k, l < s we get

hmax

C(k − l) +
2(s−1)∑

t=s

C(t− l)ξtk


≤ hmax

(
C(k − l)

)
+

2(s−1)∑
t=s

hmax

(
C(t− l)

)
+ h(ξtk) + log s.

The right-hand side in this inequality may be bounded from above by

s · hmax

(
C(0), . . . , C(s− 1)

)
+ (s− 1) · hmax(ξsk, . . . , ξ2(s−1),k) + log s,

so with (5.8), (5.9):

hmax(A′) = O(1)Ns∆(A)2N+s c∗(A)2N .

This yields c(A′) = O(1)Ns c∗(A)O(1)Ns, and therefore, since m′ ≤ ms and s =
O(1)N c∗(A)N :

c∗(A′) = O(1)Ns c∗(A)O(1)Ns.

We can generously estimate

c∗(A′) ≤ 2O(1)N c∗(A)N+1
.

Now suppose that b ∈ (Dalg)m. Then similarly as above we obtain

c(A′, b′) ≤ 2O(1)N c∗(A,b)N+1
.

In addition, let y′ = (yjk) ∈ (D′
alg)

n′ be a solution to the system A′y′ = b′, and y ∈
(Dalg)n the corresponding solution to the original system Ay = b. We have, for j =
r + 1, . . . , n,

Td(yj) = yj0 + yj1XN + · · ·+ yj,s−1X
s−1
N ,

and thus, by Remarks 4.20, (1)

h
(
Td(yj)

)
≤ (s− 1) + s · hmax(y′) + log s.

So we get

h(yj) = O
(
dN−1

(
h
(
Td(yj)

)
+ log 2

))
= O(1)N c∗(A)3N−1

(
hmax(y′) + 1

)
.

For i = 1, . . . , r, we have

δyi = ci,r+1yr+1 + · · ·+ ci,nyn − di,
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where h(cij) and h(di) are bounded from above by c∗(A, b), as is h(δ). (See (5.4).) Hence

h(yi) ≤ h(δ) +
n∑

j=r+1

(
h(cij) + h(yj)

)
+ h(di) + log(n− r + 1)

≤ (n− r + 2) c∗(A, b) + (n− r)hmax(yr+1, . . . , yn) + log(n− r + 1)

≤ O(1)Nn c∗(A, b)3N−1
(
hmax(y′) + 1

)
,

and also ∆(yi) ≤ ∆(A, b)∆(y′). We put everything together:

Proposition 5.5. Let A ∈ Dm×n
alg , b ∈ Dm, and assume that N > 0. Suppose the

system Ay = b is solvable mod pt, where t ≥ s =
[
c∗(A)/ log p

]
. Let A′y′ = b′ with

A′ ∈ (D′
alg)

m′×n′ , b′ ∈ (D′)m′
be the system obtained from Ay = b by the procedure

sketched above. Then A′y′ = b′ is solvable mod pt−s, and

c∗(A′) = 2O(1)N c∗(A)N+1
, n′ = O(1)Nn c∗(A)N .

If in addition b ∈ (Dalg)m, then

c∗(A′, b′) = 2O(1)N c∗(A,b)N+1
,

and if y′ ∈ (D′
alg)

n′ is a solution to A′y′ = b′ and y ∈ (Dalg)n the corresponding solution
to Ay = b, then

hmax(y) = O(1)Nn c∗(A, b)3N−1
(
hmax(y′) + 1

)
,

∆(y) ≤ ∆(A, b)∆(y′).

�

5.4. Towers of exponentials. Before we go on, let us introduce the following useful no-
tation: for a real number a, we define recursively

2 ↑0 a := a, 2 ↑n+1 a := 22↑na.

So 2 ↑1 a = 2a, 2 ↑2 a = 22a

, 2 ↑3 a = 222a

, and so on. It is clear that the function
(n, a) 7→ 2 ↑n a : N × N → N is primitive recursive. (However, it is not elementary
recursive in the sense of Kalmár, see [19].) Note that for a ≤ b in R and n ≤ m, we have
2 ↑n a ≤ 2 ↑m b. We note a few other basic estimates:

Lemma 5.6. Let a, b ∈ R, a, b ≥ 1. Then
(1) (2 ↑n a) + b ≤ 2 ↑n (a + b).
(2) (2 ↑n a) · b ≤ 2 ↑n (a + b), for n ≥ 1.
(3) (2 ↑n a)b ≤ 2 ↑n (a + b), for n ≥ 2.

Proof. We prove (1) by induction on n. The case n = 0 being trivial, suppose (1) holds
for a certain n. We have 1 + b ≤ 2b, so that

(2 ↑n+1 a) + b = 22↑na + b ≤ 22↑na(1 + b) ≤ 22↑na2b = 2(2↑na)+b,

and by applying the inductive hypothesis, the claim follows. Property (2) is now a conse-
quence of (1), since

(2 ↑n a) · b ≤ 22↑n−1a · 2b ≤ 22↑n−1(a+b) = 2 ↑n (a + b),

for n ≥ 1. Similarly, (3) follows from (2), since

(2 ↑n a)b = 2(2↑n−1a)·b ≤ 22↑n−1(a+b) = 2 ↑n (a + b)

for all n ≥ 2. �
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5.5. Proof of Theorem 5.1. Suppose the system Ay = b has a solution in Qp〈X〉 (in
particular, Ay = b satisfies (NC) above) and is also solvable modulo some very high power
pE of p. (We will determine a suitable E in the process.) We now successively construct
“equivalent” matrix equations

A(N)y(N) = b(N) (SN )

...

A(ν)y(ν) = b(ν) (Sν)

...

A(0)y(0) = b(0), (S0)

where

(1) 0 ≤ ν ≤ N ,
(2) A(ν) is an m(ν)× n(ν)-matrix with entries in the ring Zp〈X1, . . . , Xν〉alg,
(3) y(ν) =

[
y
(ν)
1 , . . . , y

(ν)
n(ν)

]tr
is a vector of unknowns, and

(4) b(ν) =
[
b
(ν)
1 , . . . , b

(ν)
m(ν)

]tr
is a vector with coordinates in Zp〈X1, . . . , Xν〉.

The initial equation (SN ) is just Ay = b, and if ν > 0, the equation (Sν−1) is obtained
from (Sν) by the procedure described earlier in this section: Weierstraß Division by a
suitable minor, after a preliminary p-desingularization. The matrices A(N−1), . . . , A(0)

obtained in this way only depend on the initial matrix A(N) = A, and not on the ini-
tial vector b(N) = b. Also, if the entries of b(N) = b are algebraic over Q(X), then the
entries of b(ν) are algebraic over Q(X1, . . . , Xν), for 0 ≤ ν ≤ N , and if (Sν) is solv-
able in Qp〈X1, . . . , Xν〉, then (Sν−1) is solvable in Qp〈X1, . . . , Xν−1〉. Of course, we
have to ensure that at each stage of this process, we are able to successfully carry out
p-desingularization on (A(ν), b(ν)). This can be achieved by choosing E large enough:
Suppose that E ≥ eN + eN−1 + · · · + e1 with eν ≥ e(A(ν)) for 1 ≤ ν ≤ N ; then
p-desingularization is applicable to (SN ), and the system (SN−1) will be solvable modulo
pE−eN , hence p-desingularization is applicable to (SN−1), and so on. By Proposition 5.4,
it suffices to take for eν the integral part

[
c∗(A(ν))/ log p

]
. By Proposition 5.5, the com-

plexity of A(ν) in turn can be bounded in terms of the complexity of A:

Lemma 5.7. For all ν = 0, . . . , N , we have

c∗
(
A(ν)

)
= 2 ↑N−ν O(1)N c∗(A)N+1,

and if b ∈ (Dalg)m, then

c∗
(
A(ν), b(ν)

)
= 2 ↑N−ν O(1)N c∗(A, b)N+1.

Proof. Let C ≥ 1 be the universal constant such that c∗(A′) ≤ 2CN c∗(A)N+1
from Propo-

sition 5.5, and put c∗∗(A) := C c∗(A). Since Cx ≤ xC for all x ∈ R, x ≥ 2, we have the
simple estimate c∗∗(A′) ≤ 2c∗∗(A)N+1

. We now claim that

c∗∗
(
A(ν)

)
≤ 2 ↑N−ν

(
(ν + 2) + · · ·+ (N − 1) + N c∗∗(A)N+1

)
for all ν = 0, . . . , N . This is clear for ν = N . If ν = N − 1, then

c∗∗
(
A(N−1)

)
≤ 2c∗∗(A)N+1

≤ 2N c∗∗(A)N+1
,
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and if ν = N − 2, then

c∗∗
(
A(N−2)

)
≤ 2c∗∗(A(N−1))N

≤ 22N c∗∗(A)N+1

.

Suppose we have proved the inequalities in question for some ν with 0 < ν ≤ N − 2.
Then by inductive hypothesis and Lemma 5.6, (3), we have

c∗∗
(
A(ν−1)

)
≤ 2c∗∗(A(ν))ν+1

≤ 2(2↑N−ν((ν+2)+···+(N−1)+N c∗∗(A)N+1))ν+1
≤

2 ↑N−ν+1
(
(ν + 1) + (ν + 2) + · · ·+ (N − 1) + N c∗∗(A)N+1

)
.

This shows the claim, which in turn easily yields the desired bound on c∗
(
A(ν)

)
. For

c∗
(
A(ν), b(ν)

)
, in case b ∈ (Dalg)m, one argues similarly. �

Proceeding in this way we ultimately arrive at the last equation (S0) over (Zp)alg, which
will be solvable mod pE−(e1+···+eN ). We shall consider this situation in more detail.

5.6. Construction of e0. In the proposition below, we let A = A(0), m = m(0), n =
n(0), b = b(0), so A = (aij) is an m × n-matrix with entries aij ∈ Zp which are
algebraic over Q, b = [b1, . . . , bm]tr ∈ Zm

p , and suppose rankQp
(A) = rankQp

(A, b), that
is, the system Ay = b is solvable in Qp.

Proposition 5.8. Let e0 :=
[
c∗(A)/ log p

]
. Then the system Ay = b is solvable in Zp if

and only if it is solvable mod pe0 . In this case, if in addition b1, . . . , bm ∈ (Zp)alg, then
the system Ay = b has a solution y = [y1, . . . , yn]tr with y1, . . . , yn ∈ (Zp)alg and

∆(y) ≤ ∆(A, b), hmax(y) ≤ 4 c∗(A, b).

Proof. We may assume m = r = rankQp(A). The discussion of Hermann’s method ear-
lier in this section shows that for solvability of Ay = b in Zp it suffices to have solvability
of the reduced system Ay = b in Zp/δZp, where δ is a non-zero r × r-minor of A. Now
vp(δ) ≤ e(A) ≤ e0, so Zp/δZp = Z/peZ for some e ≤ e0. This shows the first statement.
Suppose now that Ay = b is solvable in Zp, and b1, . . . , bm are all algebraic over Q. By
applying p-desingularization to the pair (A, b) we transform Ay = b into a system

δ c1,r+1 · · · c1,n

δ c2,r+1 · · · c2,n

. . .
...

. . .
...

δ cr,r+1 · · · crn




y1

y2

...
yn

 =


d1

d2

...
dr


with the same solutions in Zp, where cij , di ∈ (Zp)alg for 1 ≤ i ≤ r < j ≤ n and
δ ∈ (Zp)alg is a unit, whose heights are bounded from above by 2 c∗(A, b). This system
has a solution y = [y1, . . . , yn]tr given by yj = dj/δ for 1 ≤ j ≤ r and yj = 0 for
r < j ≤ n, and we have

h(yj) ≤ h(dj) + h(δ) ≤ 4 c∗(A, b)

for 1 ≤ j ≤ r, as required. �

We return to the general case, i.e., N ≥ 0. By the proposition above, our system
Ay = b is solvable if the system A(0)y(0) = b(0) is solvable mod pe0 where e0 =[
c∗(A(0))/ log p

]
. So it suffices to take the exponent E such that

E ≥
N∑

ν=0

[
c∗(A(ν))/ log p

]
.
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By Lemma 5.7, we have

c∗
(
A(ν)

)
= 2 ↑N−ν O(1)N c∗(A)N+1 for all ν = 0, . . . , N ,

and hence we see that for some universal constant C > 0,

E(N, d, h, m) := 2 ↑N
[
CN
(
m2d(h + 1)

)N+1]
has the properties required in Theorem 5.1. Suppose now that b ∈ (Dalg)m. Then

c∗
(
A(ν), b(ν)

)
= 2 ↑N−ν O(1)N c∗(A, b)N+1 for all ν = 0, . . . , N .

Let y(0) ∈ (Zp)
n(0)
alg be a solution to (S0) with

∆
(
y(0)

)
≤ ∆

(
A(0), b(0)

)
, hmax

(
y(0)

)
≤ 4 c∗(A(0), b(0))

as in Proposition 5.8, and y(1), . . . , y(N) = y the corresponding solutions to the systems
(S1),. . . , (SN ), respectively. Using Proposition 5.5, we obtain:

∆(y) = 2 ↑N O(1)N c∗(A, b)N+1. (5.10)

We leave it to the reader to deduce a similar bound on hmax(y) (involving N , m, n, ∆(A)
and hmax(A)). This finishes the proof of Theorem 5.1.

6. CRITERIA FOR IDEAL MEMBERSHIP

In this section we show how the results of the previous section give rise to the computa-
tion of a function (N, β) 7→ e(N, β) with the properties discussed in the introduction, and
we prove Theorem 0.3, both in a slightly more general situation:

Theorem 6.1. Let A ∈ Z[X]m×n, b ∈ Z[X]m, with deg(X) A ≤ d, log ||A||∞ ≤ h, where
d ∈ N, h ∈ R, d, h > 0. There exist positive integers δ and E1, E2 with

E1 = 2 ↑N O(1)N
(
m2(2d + h + 1)

)N+1
,

E2 = (2md)2
O(N log(N+1))

(h + 1)2N+1,

having the following properties:

(1) the system Ay = b has a solution in Z[X] if and only if Ay = b has a solution in
Q[X] and a solution modulo δE1;

(2) if deg b ≤ d and ||b||∞ ≤ h, then the system Ay = b has a solution in Z[X] if
and only if Ay = b has a solution in Q[X] and a solution modulo δE2 of degree at
most (2md)2

O(N log(N+1))
(h + 1).

We give the proof of this theorem after some preliminary remarks. In the final subsec-
tion, we also show Proposition 0.4.

6.1. Preliminaries. Fix a commutative ring R. Let A = (aij) be an m × n-matrix with
entries in R[X] and b = [b1, . . . , bm]tr with b1, . . . , bm ∈ R[X], and suppose the aij and
the bi all have total degree ≤ d. Let λ, µ, ν range over NN and write aij =

∑
µ aij,µXµ

and bi =
∑

λ bi,λXλ with aij,µ, bi,λ ∈ R. Fix γ ∈ N and let y = [y1, . . . , yn]tr, where

yj =
∑
|ν|≤γ

yj,νXν



AN EFFECTIVE WEIERSTRASS DIVISION THEOREM 57

with new indeterminates yj,ν ranging over R. A polynomial in X1, . . . , XN of degree at
most d has at most M(N, d) =

(
N+d

N

)
monomials. Hence for every R-algebra S, the

solutions in S[X] of every equation

ai1y1 + · · ·+ ainyn = bi (1 ≤ i ≤ m)

such that deg yj ≤ γ for all j = 1, . . . , n are in one-to-one correspondence with the
solutions in S of the system∑

µ+ν=λ

∑
j

aij,µyj,ν = bi,λ (|λ| ≤ γ + d)

of M(N, γ + d) equations in the n ·M(N, γ) many variables yj,ν , with coefficients aij,µ,
bi,λ in R. So the entire system Ay = b over R[X] may be replaced by a certain system

A∗y∗ = b∗, y∗ = (yj,ν)1≤j≤n, |ν|≤γ

of m ·M(N, γ + d) equations over R whose solutions are in one-to-one correspondence
with the solutions to Ay = b of degree at most γ, uniformly for all R-algebras. Note that if
R is a subring of Q, then ||A∗||∞ = ||A||∞ and ||b∗||∞ = ||b||∞. We use this discussion
to show:

Lemma 6.2. Let d, h ∈ N. There exist positive integers γ0, γ1 with

γ0 ≤ (2md)2
O(N log(N+1))

(h + 1)2N+1, γ1 ≤ (2md)2
O(N log(N+1))

(h + 1)

and having the following properties: Let A = (aij) be a non-zero m × n-matrix and
b = [b1, . . . , bm]tr be a vector with entries aij , bi ∈ Z[X] of degree at most d and
log ||aij ||∞, log ||bi||∞ ≤ h. Then for every prime number p, the system Ay = b has
a solution in Z(p)[X] if and only if Ay = b has a solution modulo pγ0 of degree at most γ1,

Proof. By Theorem 8.6 in [8], the system Ay = b has a solution in Z(p)[X] if and only
if it has such a solution of degree at most γ1. As we’ve seen above, there exists a certain
system A∗y∗ = b∗ with coefficients in Z, consisting of m · M(N, γ1 + d) equations in
n ·M(N, γ1) unknowns, with the following properties: the solutions to Ay = b in Z(p)[X]
of degree ≤ γ1 are in one-to-one correspondence with the solutions of A∗y∗ = b∗ in Z(p),
and for any e ≥ 1, the solutions to Ay = b in (Z/peZ)[X] of degree≤ γ1 are in one-to-one
correspondence with the solutions of A∗y∗ = b∗ in Z/peZ. By Lemma 5.8, the system
A∗y∗ = b∗ has a solution in Z(p) provided it has a solution modulo pe where

e =
[(

m ·M(N, γ1 + d)
)2(

hmax(A∗) + 1
)]

.

Now hmax(A∗) = log ||A, b||∞ ≤ h and for d > 0

m2M(N, γ1 + d)2 ≤ m2(γ1 + d + 1)2N ≤ (2md)2
O(N log(N+1))

(h + 1)2N ,

yielding the lemma. �

Proof of Theorem 6.1. Let A and b be as in the statement of Theorem 6.1. Let M be a
submodule of the free Z[X]-module Z[X]m. Given a ring extension R of Z[X] we denote
by MR the submodule of the free R-module Rm generated by M .

Lemma 6.3. From a given finite set of generators for M one can compute a positive integer
δ such that

MQ[X] ∩ Z[X]m = (M : δ) :=
{
y ∈ Z[X]m : δy ∈ M

}
.



58 MATTHIAS ASCHENBRENNER

If p1, . . . , pK are the distinct prime factors of a number δ with this property, then

M = MQ[X] ∩MZ(p1)[X] ∩ · · · ∩MZ(pK)[X] (6.1)

= MQ[X] ∩MZp1〈X〉 ∩ · · · ∩MZpK
〈X〉.

Proof. The existence of the integer δ is a consequence of the fact that the Z[X]-module
MQ[X]∩Z[X]m is finitely generated; its computability is established in [8], Corollary 3.5.
The first equation in (6.1) is shown using the argument on pp. 409–410 of [8]. The second
equation is by [8], Lemma 2.6. �

Let δ and p1, . . . , pK be as in the lemma, applied to M = the submodule of Z[X]m

generated by the columns of A. Then Ay = b has a solution in Z[X] if and only if Ay = b
has a solution in Q[X] and a solution in Zpk

〈X〉 for all k = 1, . . . ,K. For given positive
integer E, by the Chinese Remainder Theorem we have a surjection

(Z/δEZ)[X] → (Z/pE
1 Z)[X]× · · · × (Z/pE

k Z)[X],

a mod δE 7→
(
a mod pE

1 , . . . , a mod pE
k

)
.

Combining this with Theorem 5.1 and Lemma 6.2 yields Theorem 6.1.

6.2. Linear algebra modulo prime powers. In this final part of the paper we show how
degree bounds for solving linear equations in polynomial rings over Z/pZ, where p is a
prime, entail degree bounds for solving linear equations in polynomial rings over Z/peZ
where e > 1. For the moment, we let more generally D be a commutative ring, p be a
non-zero divisor of D, and e ≥ 1. Let A = (aij) ∈ Dm×n and b = [b1, . . . , bm]tr ∈ Dm.
We want to consider the following two problems:

He(A): Find a finite set of generators for the submodule

Se(A) :=
{
y ∈ Dn : Ay = 0 mod pe

}
of the free D-module Dn.

Ie(A, b): Determine whether the (possibly inhomogeneous) system Ay = b is solv-
able mod pe, and if it is, find an element y ∈ Dn with Ay = b mod pe.

We will show, by induction on e, that He(A) and Ie(A, b) can be reduced to numerous
instances of the two simpler problems H1(A) and I1(A, b), for various matrices A and
vectors b with entries from D. Suppose we can solve the problems H1(A) and I1(A, b) for
all matrices A ∈ Dm×n and vectors b ∈ Dm, with m,n ≥ 1. Suppose e > 1, and let

g1 =

g11

...
gn1

 , . . . , gr =

g1r

...
gnr


be vectors in Dn generating the submodule S1(A) of Dn. Let A(1) ∈ Dm×r be such
that AG = pA(1), where G = (gjk) ∈ Dn×r. By induction hypothesis we can solve
He−1

(
A(1)

)
, that is, we can find

h1 =

h11

...
hr1

 , . . . , hs =

h1s

...
hrs

 ∈ Dr

generating Se−1

(
A(1)

)
. Let H = (hkl) ∈ Dr×s. It is now easy to verify that the column

vectors of the matrix GH form a set of generators of Se(A). So we have solved He(A).
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For Ie(A, b), we first determine whether Ay = b is solvable mod p (using I1(A, b)). If
it is not, we are already done: then Ay = b is not solvable mod pe. Suppose Ay = b is
solvable mod p, and let z ∈ Dn, b(1) ∈ Dm be such that Az = b−pb(1). Let G = (gjk) ∈
Dn×r as above be a matrix with entries from D whose column vectors generate S1(A),
and A(1) ∈ Dm×r with AG = pA(1).

Lemma 6.4. The system Ay = b is solvable mod pe if and only if the system A(1)y(1) =
b(1) is solvable mod pe−1.

Proof. Given y(1) ∈ Dr, we have the equivalence

A(1)y(1) = b(1) mod pe−1 ⇐⇒ A(Gy(1) + z) = b mod pe.

So if A(1)y(1) = b(1) mod pe−1, then y = Gy(1) + z solves Ay = b mod pe. Conversely,
if y ∈ Dn is such that Ay = b mod pe, then Ay = b mod p, so y − z ∈ S1(A) and thus
y = z + Gy(1) for some y(1) ∈ Dr; so A(1)y(1) = b(1) mod pe−1. �

Using the inductive hypothesis for Ie−1

(
A(1), b(1)

)
, we can now determine whether

A(1)y(1) = b(1) has a solution mod pe−1. This solves Ie(A, b). (Similar algorithms were
used in [37] for deciding the universal theory of commutative rings of fixed positive char-
acteristic.)

Suppose now that R is commutative ring, D = R[X], and p ∈ R is a non-zero divisor.
Assume moreover that p generates a maximal ideal of R. By Hermann’s method applied
to the polynomial ring (R/pR)[X] over the field R/pR (see [8], Section 3) we can choose
the matrix G above of degree ≤ (2md)2

N

. Then A(1) has degree ≤ d + (2md)2
N

, and if
the h1, . . . , hs are of degree≤ d′, then GH is of degree≤ d′+(2md)2

N

. Let γe(N, d,m)
be the smallest natural number such that Se(A) for A ∈ Dm×n of degree ≤ d is generated
by elements of degree ≤ γe(N, d,m). We have the recursive relation

γe(N, d,m) ≤ γe−1

(
N, d + (2md)2

N

,m
)

+ (2md)2
N

for e > 1.

Using that γe−1 is increasing in the second variable and that d + (2md)2
N ≤ (2md)2

N+1

for d > 0, we see that for d, e > 0,

γe(N, d,m) ≤ (2md)2
N

+ (2md)2
N (2N+2) + · · ·+ (2md)2

N (2N+2)e−1
.

Since (2md)2
N (2N+2)i ≤ (2md)2

N (2N+2)e−1
for i = 0, . . . , e− 1, we get for N, d, e > 0,

γe(N, d,m) ≤ e(2md)2
N (2N+2)e−1

≤ e(2md)2
N+1(2N+1)e−1

≤ e(2md)2
e(N+1)

.

Similarly one deduces (using the proof of Lemma 6.4) that if A ∈ Dm×n and b ∈ Dm are
of degree ≤ d, and the system of congruence equations Ay = b mod pe is solvable in D,
then it has such a solution y ∈ Dn having degree at most γe(N, d,m). Note that γe neither
depends on R nor on p. We have proved:

Proposition 6.5. Let R be a commutative ring, p ∈ R be a non-zero divisor which gener-
ates a maximal ideal of R, and D = R[X]. Let A ∈ Dm×n and b ∈ Dm be of degree≤ d,
and e ≥ 1.

(1) There exist y(1), . . . , y(r) ∈ Dn of degree ≤ e(2md)2
e(N+1)

such that

Ay(k) = 0 mod pe for k = 1, . . . , r,

and every y ∈ Dn with Ay = 0 mod pe is a D-linear combination of the y(k)s.
(2) If there exists y ∈ Dn such that Ay = b mod pe, then there exists such a y of

degree ≤ e(2md)2
e(N+1)

. �
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Let now R be a unique factorization domain, δ 6= 0 a non-unit of R, and δ = pe1
1 · · · pek

k

a decomposition of δ into powers of pairwise non-associated irreducibles p1, . . . , pk, where
e1, . . . , ek ≥ 1. We put e(δ) = max{e1, . . . , ek}. Proposition 6.5 (applied to the pei

i ) and
the Chinese Remainder Theorem imply:

Corollary 6.6. Let D = R[X] and A ∈ Dm×n, b ∈ Dm be of degree ≤ d.

(1) There exist y(1), . . . , y(r) ∈ Dn of degree ≤ e(δ)(2md)2
e(δ)(N+1)

such that

Ay(k) = 0 mod δ for k = 1, . . . , r,

and every y ∈ Dn with Ay = 0 mod δ is a D-linear combination of the vectors
y(1), . . . , y(r).

(2) If there exists y ∈ Dn such that Ay = b mod δ, then there exists such a y of
degree ≤ e(δ)(2md)2

e(δ)(N+1)
. �

Taking R = Z in this proposition and noting that e(δ) ≤ log2 |δ| yields Proposition 0.4.
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