# Effective Admission Procedure and Quality Teaching For Programmes Offered In Distance Learning Mode Using Edusat Satellite Based Education 

Daulat Singh, Rakesh Shrivastava, Dinesh Varshney


#### Abstract

Higher education plays a leadership role in education. The present study is designed to measure the effectiveness of the process of admission and quality of teaching in university that offers courses through distance learning mode using Edusat satellite based education. It is a descriptive study and the sample of the study consisted of students as respondents. For the same a total of one hundred students participated in the study. A questionnaire consisting of nine items were used to collect data from the respondents. The analyses included the reflections of the respondents on the process of admission, choice of course, course contents, teaching pedagogy and satisfaction related to the course content. The analysis is conducted with the help of non-parametric tests and chi-square method.


Key words: Higher education, process of admission and quality of teaching.

## I. INTRODUCTION

Today in the competitive era it's very important for the university to ease down the process to admit the candidate and maintain the teaching quality according to the changing scenario. Many a times it happens that the process to get admission in a good university is so tough that an average good student fails to get through the process. Also the process should be so simple that it is easy for any layman to understand. The quality of the education matters a lot to the aspirant. As today after globalization the competition is with the foreign universities also it's very important for the institutions to upgrade the teaching pedagogy according to the changing requirement.
Higher education is becoming a major driver of economic competitiveness in an increasingly knowledge-driven global economy. The imperative for countries to improve employment skills calls for quality teaching within universities. As higher education systems grow and diversify, society is increasingly concerned about the quality of programmes. The environment of higher education institutions can enhance the quality of teaching through various means.
Higher education plays a vital role in the development of society. Universities, for centuries, had a crucial role in educating the potential professionals, businessmen, political leaders, religious as well scholars, who serve the society to enrich its values and develop its resources [1].

[^0]These are also highlighted in the national objectives of higher education. The Dearing Report underlines the importance of higher education in these words: "For the state, higher education has become a crucial asset [2]. It must recognize what it will gain from ensuring the well being of higher education. In return, higher education must recognize its obligation to society as a whole [3].
The World Bank in a report argues that without more and better higher education, developing countries will find it increasingly difficult to benefit from the global knowledgebased economy. When more of the development is taking place in most of the developing countries it is essential to ease the education system and enhance the quality of education. The demand for higher education has, therefore, become imperative and is rapidly increasing geometrically [4]. Teaching pedagogy plays an important role in upgrading the quality of teaching.
In an earlier study, it is found that teachers dominated the lessons and posed few open-ended questions [5]. Group work, which encourages discussion, is rarely encountered, and only $10 \%$ of teachers used continuous assessment. The observational studies showed that boys are given greater opportunities than girls to ask and answer questions, to manipulate materials and to lead groups. In science classroom interaction, girls were also given less time on practical work than boys [6].
Looking to the era of globalization and digitalised information, the world faces challenges of education on several fronts, namely, adult and continuing education, school education, higher and professional education.
The challenge varies not only from one level to another, but also from one region to another with gender disparities, rural-urban disparities, etc. These challenges have been and are being addressed on a continuous basis, making use of the best that technology has to offer at any given time. Communications technology, particularly, space based communications networks, is a very important component of these technologies [7].
Students are increasingly becoming a driver for quality teaching. Institutions or departments dealing with competence-based education are often advanced in the institutional support for, and evaluation of, quality teaching. There are in fact, no widely accepted methods for measuring teaching quality, and assessing the impact of education on students is so far an unexplored area as well [8]. All higher education institutions have defined conditions to ensure the quality of education (recruitment, facilities, students support, etc), yet they struggle to appraise teaching performance on a reliable basis.

# Effective Admission Procedure and Quality Teaching For Programmes Offered In Distance Learning Mode Using Edusat Satellite Based Education 

## II. THE METHOD

The paper aims to identify the significant difference on the basis of the different demographics of the process of Admission and quality of teaching in university running courses through distance mode. The non-parametric tests were used to analyse the data. With the help of the ChiSquare test the difference was measured. The data of One hundred respondents was collected with help of a structured questionnaire consisting of nine items. The objective of the study on quality teaching is to highlight effective quality teaching is to highlight effective quality initiatives and to encourage the process that may help institutions to improve the quality of their teaching and thereby, the quality of their students to make them employable. The objective is to analyse the scope of initiatives and the role of teaching to pin point long-term enhancement drivers of institutional support for staff and decision-making bodies.
While considering the studies, we aimed at the major objectives as a) to investigate the effectiveness of various processes implemented by university and b) to examine the quality of teaching pedagogy in university running course through distance mode. The following hypothesis was formed and after the analyses the hypothesis were tested to achieve the objective: there is no significant difference between male and female in terms of the understandable and easy to apply admission process, there is no significant difference among different age groups in terms of the understandable and easy to apply admission process, there is no significant difference among different occupation groups in terms of the understandable and easy to apply admission process, there is no significant difference between male and female in terms of the source from where they came to know about the course, there is no significant difference among various age groups in terms of the source from where they came to know about the course, there is no significant difference among various occupation groups in terms of the source from where they came to know about the course, there is no significant difference between male and female in terms of reason for joining the course, there is no significant difference among various age groups in terms of reason for joining the course, there is no significant difference among various occupation groups in terms of reason for joining the course, there is no significant difference between male and female in terms of difficulties faced while lecture is delivered, there is no significant difference among various age groups in terms of difficulties faced while lecture is delivered, there is no significant difference among various occupation groups in terms of difficulties faced while lecture is delivered, there is no significant difference between male and female in terms of timely information about the time table, there is no significant difference among various age groups in terms of timely information about the time table, there is no significant difference among various occupation groups in terms of timely information about the time table, there is no significant difference between male and female in terms of satisfaction with the contents of the lecture, there is no significant difference among various age groups in terms of satisfaction with the contents of the lecture, there is no significant difference among various occupation groups in terms of satisfaction with the contents of the lecture, there is no significant difference between male and female about the number of lectures in a week, there is no significant difference among various age groups about the number of
lectures in a week, and there is no significant difference among various occupation groups about the number of lectures in a week.

## III. RESULTS AND DISCUSSION

Higher education is today recognized as a capital investment in education. It plays a vital role in the development of society. Universities for centuries have had a crucial role in educating the potential professionals, businessmen, political leaders, religious and social scholars, who serve the society. The findings of the present study are summarized as (please see Table A to W). We begin our analysis with the hypothesis that there is no significant difference between male and female in terms of the understandable and easy to apply admission process. Details are illustrated in tables.
A: There is no significant difference between male and female in terms of the understandable and easy to apply admission process.

Case Processing Summary


Chi-Square Tests

|  | Value | df | Asymp. Sig. (2-sided) | Exact Sig. (2sided) | Exact Sig. (1sided) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pearson Chi-Square | . $004{ }^{\text {a }}$ | 1 | . 947 |  |  |
| Continuity Correction ${ }^{\text {b }}$ | . 000 | 1 | 1.000 |  |  |
| Likelihood Ratio | . 005 | 1 | . 946 |  |  |
| Fisher's Exact Test |  |  |  | 1.000 | . 716 |
| Linear-by-Linear Association | . 004 | 1 | . 947 |  |  |
| N of Valid Cases ${ }^{\text {b }}$ | 51 |  |  |  |  |

a. 2 cells ( $50.0 \%$ ) have expected count less than 5 . The minimum expected count is 1.06 .
b. Computed only for a
$2 \times 2$ table
This test shows that there is no significant difference between male and female in terms of the understandable and easy to apply admission process (chi square $=.004, \mathrm{p}=$ .947).

## Symmetric Measures

|  |  | Value | Approx. Sig. |
| :--- | :--- | ---: | ---: |
| Nominal by Nominal | Phi | -.009 | .947 |
|  | Cramer's V | .009 | .947 |
| N of Valid Cases |  | 51 |  |

In this case, phi $=-0.009$, which is a strong negative relationship between the two variables.


B: There is no significant difference among different age groups in terms of the understandable and easy to apply admission process.


Chi-Square Tests

|  | Value | df | Asymp. Sig. (2- <br> sided) |
| :--- | ---: | ---: | ---: |
| Pearson Chi-Square | $.660^{\mathrm{a}}$ | 2 | .719 |
| Likelihood Ratio | .889 | 2 | .641 |
| Linear-by-Linear Association | .073 | 1 | .787 |
| N of Valid Cases | 51 |  |  |

a. 4 cells ( $66.7 \%$ ) have expected count less than 5 . The minimum expected count is .24 .

This test shows that there is no significant difference among various age groups in terms of the understandable and easy to apply admission process (chi square $=.660, \mathrm{p}=.719$ ).

Symmetric Measures

|  |  | Value | Approx. Sig. |
| :--- | :--- | ---: | ---: |
| Nominal by Nominal | Phi | .114 | .719 |
|  | Cramer's V | .114 | .719 |
| N of Valid Cases |  | 51 |  |

In this case, phi = .114, which is a weak positive relationship between the two variables.

Bar Chart


D: There is no significant difference between male and female in terms of the source from where they came to know about the course.

Case Processing Summary

|  | Cases |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Valid |  | Missing |  | Total |  |
|  | N | Percent | N | Percent | N | Percent |
| Where did you come to know about course * GENDER | 51 | 100.0\% | 0 | .0\% | 51 | 100.0\% |

Where did you come to know about course * GENDER Crosstabulation

Count

|  |  | GENDER |  |  |
| :--- | :--- | ---: | ---: | ---: |
|  |  | Male | Female | Total |
| Where did you come to | Newspaper | 32 | 7 | 39 |
| know about course | Friend | 10 | 2 | 12 |
| Total |  | 42 | 9 | 51 |

Chi-Square Tests

|  | Value | df | $\begin{array}{\|c\|} \hline \text { Asymp. Sig. } \\ (2 \text {-sided }) \end{array}$ | Exact Sig. (2-sided) | Exact Sig. <br> (1-sided) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Pearson ChiSquare | . $010^{\text {a }}$ | 1 | . 919 |  |  |
| Continuity Correction ${ }^{\text {b }}$ | . 000 | 1 | 1.000 |  |  |
| Likelihood Ratio | . 010 | 1 | . 918 |  |  |
| Fisher's Exact Test |  |  |  | 1.000 | . 646 |
| Linear-by-Linear Association | . 010 | 1 | . 920 |  |  |
| N of Valid Cases ${ }^{\text {b }}$ | 51 |  |  |  |  |

a. 1 cells $(25.0 \%)$ have expected count less than 5 . The minimum expected count is 2.12 .
b. Computed only for a

2x2 table
This test shows that there is no significant difference between male and female in terms of the source from where they came to know about the course (chi square $=.010, \mathrm{p}=$ .919).

Symmetric Measures

|  |  | Value | Approx. Sig. |
| :--- | :--- | ---: | ---: |
| Nominal by Nominal | Phi | -.014 | .919 |
|  | Cramer's V | .014 | .919 |
| N of Valid Cases |  | 51 |  |

In this case, phi $=-0.014$, which is a strong negative relationship between the two variables.

Bar Chart


## Effective Admission Procedure and Quality Teaching For Programmes Offered In Distance Learning Mode Using Edusat Satellite Based Education

E: There is no significant difference among various age groups in terms of the source from where they came to know about the course.

Case Processing Summary

|  | Cases |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Valid |  | Missing |  | Total |  |
|  | N | Percent | N | Percent | N | Percent |
| Where did you come to know about course * AGE | 51 | 100.0\% | 0 | .0\% | 51 | 100.0\% |

Where did you come to know about course * AGE Crosstabulation
Count

|  | AGE |  |  | Total |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 15 \text { years } \\ -25 \\ \text { years } \end{gathered}$ | $\begin{array}{\|c} 26 \text { years } \\ -35 \\ \text { years } \end{array}$ | $\begin{array}{\|c\|} \hline 36 \text { years } \\ -45 \\ \text { years } \end{array}$ |  |
| Where did you Newspaper come to know Friend about course Total | 17 5 22 | 22 5 27 | 2 | 39 12 |

Chi-Square Tests

|  | Value | df | Asymp. Sig. (2-sided) |
| :--- | ---: | ---: | ---: |
| Pearson Chi-Square | $6.885^{\mathrm{a}}$ | 2 | .032 |
| Likelihood Ratio | 6.193 | 2 | .045 |
| Linear-by-Linear Association | .981 | 1 | .322 |
| N of Valid Cases | 51 |  |  |

a. 2 cells ( $33.3 \%$ ) have expected count less than 5 . The minimum expected count is 47 .
This test shows that there is a significant difference among various age groups in terms of the source from where they came to know about the course (chi square $=6.885, \mathrm{p}=$ .032).

## Symmetric Measures

|  |  | Value | Approx. Sig. |
| :--- | :--- | ---: | ---: |
| Nominal by Nominal | Phi | .367 | .032 |
|  | Cramer's V | .367 | .032 |
| N of Valid Cases |  | 51 |  |

In this case, phi $=.367$, which is a weak positive relationship between the two variables.


G: There is no significant difference between male and female in terms of reason for joining the course.

Case Processing Summary

| Cases |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | ---: | :--- | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Valid |  |  |  |  |  |  |  |  | Missing |  | Total |  |
|  | N | Percent | N | Percent | N | Percent |  |  |  |  |  |  |  |
|  | 51 | $100.0 \%$ | 0 | $.0 \%$ | 51 | $100.0 \%$ |  |  |  |  |  |  |  |

Reason for joining the course * GENDER Cross tabulation Count

|  |  | GENDER |  | Total |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Male | Female |  |
| Reason for joining | For Career Growth | 12 | 0 | 12 |
| the course | For Academic Advancement | 30 | 9 | 39 |
| Total |  | 42 | 9 | 51 |

Chi-Square Tests

|  | Value | df | Asymp. <br> Sig. (2- <br> sided) | Exact Sig. <br> (2-sided) | Exact Sig. (1- <br> sided) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Pearson Chi- <br> Square <br> Continuity <br> Correction | $3.363^{\mathrm{a}}$ | 1 | .067 |  |  |
| Likelihood | 5.392 | 1 | .161 |  |  |
| Ratio | 1 | .020 |  |  |  |
| Fisher's Exact <br> Test |  |  |  |  |  |
| Linear-by- <br> Linear | 3.297 | 1 | .069 |  |  |
| Association <br> N of Valid <br> Cases | 51 |  |  |  |  |

a. 1 cells $(25.0 \%)$ have expected count less than 5 . The minimum expected count is 2.12 .
b. Computed only
for a $2 \times 2$ table
This test shows that there is no significant difference between male and female in terms of reason for joining the course (chi square $=3.363, \mathrm{p}=.067$ ).

Symmetric Measures

|  |  | Value | Approx. Sig. |
| :--- | :--- | ---: | ---: |
| Nominal by Nominal | Phi | .257 | .067 |
|  | Cramer's V | .257 | .067 |
| N of Valid Cases |  | 51 |  |

In this case, phi $=.257$, which is a weak positive relationship between the two variables.


H: There is no significant difference among various age groups in terms of reason for joining the course.


Reason for joining the course * AGE Cross tabulation
Count


Chi-Square Tests

|  | Value | df | Asymp. Sig. (2sided) |
| :---: | :---: | :---: | :---: |
| Pearson ChiSquare | $9.654^{\text {a }}$ | 2 | . 008 |
| Likelihood Ratio | 9.292 | 2 | . 010 |
| Linear-by- <br> Linear <br> Association | . 029 | 1 | . 864 |
| N of Valid Cases | 51 |  |  |

a. 2 cells ( $33.3 \%$ ) have expected count less than 5 . The minimum expected count is 47 .

This test shows that there is a significant difference among various age groups in terms of reason for joining the course (chi square $=9.654, \mathrm{p}=.008$ ).

| Symmetric Measures |  |  |  |  |
| :--- | :--- | ---: | ---: | :---: |
| Nominal by Nominal |  | Phi | .435 |  |
|  | Cramer's V | .435 | .008 |  |
| N of Valid Cases |  | 51 | .008 |  |

In this case, phi $=.435$, which is a weak positive relationship between the two variables.

$\mathbf{J}$ : There is no significant difference between male and female in terms of difficulties faced while lecture is delivered.

Case Processing Summary

|  | Cases |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Valid |  | Missing | Total |  |
|  | N | Percent | N | Percent | N |
|  |  |  |  |  |  |
|  | 51 | $100.0 \%$ | 0 | $.0 \%$ | 51 |

What are the difficulties you face while lecture is delivered * GENDER Cross tabulation

Count

|  |  | GENDER |  | Total |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Male | Female |  |
| What are the difficulties | Not Audible | 5 | 0 | 5 |
| you face while lecture is delivered | Audio \& Vedio Not Synchronized | 1 | 0 | 1 |
|  | Transmission Failed | 36 | 9 | 45 |
| Total |  | 42 | 9 | 51 |

Chi-Square Tests

|  |  |  | Asymp. Sig. (2- <br> sided) |
| :--- | ---: | ---: | ---: |
| Pearson Chi-Square | $1.457^{\mathrm{a}}$ | 2 | .483 |
| Likelihood Ratio | 2.496 | 2 | .287 |
| Linear-by-Linear | 1.401 | 1 | .237 |
| Association | 51 |  |  |
| N of Valid Cases |  |  |  |

a. 4 cells ( $66.7 \%$ ) have expected count less than 5 . The minimum expected count is . 18 .

This test shows that there is no significant difference between male and female in terms of difficulties faced while lecture is delivered (chi square $=1.457, \mathrm{p}=.483$ ).

Symmetric Measures

|  |  | Value | Approx. Sig. |
| :--- | :--- | ---: | ---: |
| Nominal by Nominal | Phi | .169 | .483 |
|  | Cramer's V | .169 | .483 |
| N of Valid Cases |  | 51 |  |

In this case, phi $=.169$, which is a weak positive relationship between the two variables.


Effective Admission Procedure and Quality Teaching For Programmes Offered In Distance Learning Mode Using Edusat Satellite Based Education

K: There is no significant difference among various age groups in terms of difficulties faced while lecture is delivered

Case Processing Summary

|  | Cases |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Valid |  | Missing |  | Total |  |
|  | N | Percent | N | Percent | N | Percent |
| What are the difficulties you face while lecture is delivered * AGE | 51 | 100.0\% | 0 | .0\% | 51 | 100.0\% |

What are the difficulties you face while lecture is delivered * AGE Cross tabulation
Count

|  |  | AGE |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 15 \\ \text { years } \\ -25 \\ \text { years } \end{gathered}$ | $\begin{array}{\|c} \hline 26 \\ \text { years - } \\ 35 \\ \text { years } \end{array}$ | Total |
| What are the | Not Audible | 4 | 1 | 5 |
| difficulties | Audio \& Vedio Not |  |  |  |
| you face | Synchronized | 1 | 0 | 1 |
| while lecture | Transmission Failed | 6 | 9 | 45 |
| Total |  | 41 | 10 | 51 |

## Chi-Square Tests

|  | Value | df | Asymp. Sig. (2- <br> sided) |
| :--- | ---: | ---: | ---: |
| Pearson Chi-Square | $.249^{\mathrm{a}}$ | 2 | .883 |
| Likelihood Ratio | .441 | 2 | .802 |
| Linear-by-Linear | .016 | 1 | .900 |
| Association | 51 |  |  |
| N of Valid Cases |  |  |  |

a. 4 cells ( $66.7 \%$ ) have expected count less than 5 . The minimum expected count is 20 .

This test shows that there is no significant difference various age groups in terms of difficulties faced while lecture is delivered (chi square $=.249, p=.883)$.

## Symmetric Measures

|  | Value | Approx. Sig. |
| :--- | ---: | ---: |
| Nominal by Nominal Phi | .070 | .883 |
| Cramer's V | .070 | .883 |
| N of Valid Cases |  | 51 |

In this case, $\mathrm{phi}=.070$, which is a weak positive relationship between the two variables.


Case Processing Summary

|  | Cases |  |  |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- |
|  | Valid | Missing | Total |  |  |
|  | N | Percent | N | Percent | N |
|  |  |  |  |  |  |
|  | 51 | $100.0 \%$ | 0 | $.0 \%$ | 51 | $100.0 \%$

What is the reason of non delivery of lectures most of the times * GENDER Cross tabulation

Count


Chi-Square Tests

a. No statistics are computed because What is the reason of non delivery of lectures most of the times is a constant.

## Symmetric Measures

|  | Vhi | Value |
| :--- | ---: | ---: |
| Nominal by Nominal | . |  |
| N of Valid Cases |  | 51 |

a. No statistics are computed because What is the reason of non delivery of lectures most of the times is a constant.


No measures of association are computed for the crosstabulation of What is the reason of non delivery of lectures most of the times * AGE. At least one variable in each 2-way table upon which measures of association are computed is a constant.

| Case Processing Summary |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | Cases |  |  |  |  |  |
|  | Valid |  | Missing |  | Total |  |
|  | N | Percent | N | Percent | N | Percent |
| What is the reason of <br> non delivery of <br> lectures most of the <br> times * AGE | 51 | $100.0 \%$ | 0 | $.0 \%$ | 51 | $100.0 \%$ |

What is the reason of non delivery of lectures most of the times * AGE Cross tabulation
Count

|  | AGE |  |  | Total |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{\|c} \hline 15 \\ \text { years }- \\ 25 \\ \text { years } \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 26 \\ \text { years - } \\ 35 \\ \text { years } \end{array}$ | $\begin{gathered} 36 \\ \text { years - } \\ 45 \\ \text { years } \end{gathered}$ |  |
| What is the Electricity <br> reason of non Failure <br> delivery of  <br> lectures most of  <br> the times  | 22 | 27 | 2 | 51 |
| Total | 22 | 27 | 2 | 51 |


| Chi-Square Tests |  |
| :--- | ---: |
|  | Value |
| Pearson Chi-Square |  |
| N of Valid Cases | .$^{2}$ |

a. No statistics are computed because What is the reason of non delivery of lectures most of the times is a constant.

## Symmetric Measures

|  |  | Value |
| :--- | ---: | ---: |
| Nominal by Nominal | Phi | $\cdot^{2}$ |
| N of Valid Cases |  | 51 |

a. No statistics are computed because What is the reason of non delivery of lectures most of the times is a constant.

M: There is no significant difference between male and female in terms of timely information about the timetable.

Case Processing Summary

|  | Cases |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Valid |  | Missing |  | Total |  |
|  | N | Percent | N | Percent | N | Percent |
| Time table is timely informed to you * GENDER | 51 | 100.0\% | 0 | .0\% | 51 | 100.0\% |

Time table is timely informed to you * GENDER Cross tabulation
Count


Chi-Square Tests

|  | Value | df | Asymp. <br> Sig. (2- <br> sided) | Exact Sig. <br> (2-sided) | Exact <br> Sig. (1- <br> sided) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Pearson <br> Chi-Square | $6.842^{\mathrm{a}}$ | 1 | .009 |  |  |
| Continuity <br> Correction |  |  |  |  |  |
| Likelihood | 3.993 | 1 | .046 |  |  |
| Ratio | 5.178 | 1 | .023 |  |  |
| Fisher's <br> Exact Test <br> Linear-by- |  |  |  |  |  |
| Linear |  |  |  |  |  |
| Association |  |  |  |  |  |
| N of Valid <br> Cases | 5.708 | 1 |  | .010 |  |

a. 2 cells $(50.0 \%)$ have expected count less than 5 . The minimum expected count is .88 .
b. Computed only
for a $2 \times 2$ table
This test shows that there is a significant difference between male and female in terms of timely information about the time table (chi square $=6.842, \mathrm{p}=.009$ )

Effective Admission Procedure and Quality Teaching For Programmes Offered In Distance Learning Mode Using Edusat Satellite Based Education

| Symmetric Measures |  |  |  |  |
| :---: | ---: | ---: | :---: | :---: |
|  | Value | Approx. Sig. |  |  |
| Nominal by Nominal Phi | .366 | .009 |  |  |
| Cramer's V | .366 | .009 |  |  |
| N of Valid Cases |  | 51 |  |  |

In this case, phi $=.366$, which is a weak positive relationship between the two variables.

$\mathbf{N}$ : There is no significant difference among various age groups in terms of timely information about the time table.

## Case Processing Summary

|  | Cases |  |  |  |
| :--- | :--- | :--- | ---: | :---: |
|  | Valid |  | Missing | Total |
|  | N | Percent | N | Percent |
|  | Percent |  |  |  |
|  | 51 | $100.0 \%$ | 0 | $.0 \%$ |

Time table is timely informed to you * AGE Crosstabulation
Count

|  |  | AGE |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  |  | 15 years <br> -25 <br> years | 26 years <br> -35 <br> years | 36 years <br> -45 <br> years |  |
|  | Total |  |  |  |  |
| Time table is <br> timely informed <br> to you | Yes | 18 | 26 | 2 | 46 |
| Total |  | 4 | 1 | 0 | 5 |

Chi-Square Tests

|  |  |  | Asymp. Sig. (2- <br> sided) |  |
| :--- | ---: | ---: | ---: | ---: |
| Vearson Chi-Square | $3.100^{\mathrm{a}}$ | 2 | .212 |  |
| Likelihood Ratio | 3.301 | 2 | .192 |  |
| Linear-by-Linear | 2.854 | 1 |  | .091 |
| Association | 51 |  |  |  |
| N of Valid Cases |  |  |  |  |

a. 4 cells ( $66.7 \%$ ) have expected count less than 5. The minimum expected count is .20 .

This test shows that there is no significant difference among various age groups in terms of timely information about the time table (chi square $=3.100, \mathrm{p}=.212$ ).

Symmetric Measures

|  |  | Value | Approx. Sig. |
| :--- | :--- | ---: | ---: |
| Nominal by Nominal | Phi | .247 | .212 |
|  | Cramer's V | .247 | .212 |
| N of Valid Cases |  | 51 |  |

In this case, $\mathrm{phi}=.247$, which is a weak positive relationship between the two variables.

$\mathbf{P}$ : There is no significant difference between male and female in terms of satisfaction with the contents of the lecture.

Case Processing Summary

|  | Cases |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Valid |  | Missing |  | Total |  |
|  | N | Percent |  | Percent | N | Percent |
| Are you satisfied with the contents of the lecture * GENDER | 51 | 100.0\% | 0 | .0\% | 51 | 100.0\% |

## Are you satisfied with the contents of the lecture * GENDER Cross tabulation

Count

|  |  | GENDER |  |  |
| :--- | :---: | ---: | ---: | ---: |
|  |  | Male | Female | Total |
| Are you satisfied with the | Yes | 41 | 9 | 50 |
| contents of the lecture | No | 1 | 0 | 1 |
| Total |  | 42 | 9 | 51 |

Chi-Square Tests

|  | Value | df | Asymp. Sig. <br> (2-sided) | Exact Sig. <br> (2-sided) | Exact Sig. <br> (1-sided) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Pearson Chi- <br> Square | $.219^{\mathrm{a}}$ | 1 | .640 |  |  |
| Continuity | .000 | 1 | 1.000 |  |  |
| Correction |  |  |  |  |  |
| Likelihood Ratio | .393 | 1 | .531 |  |  |
| Fisher's Exact <br> Test |  |  |  | 1.000 | .824 |


a. 2 cells $(50.0 \%)$ have expected count less than 5 . The minimum expected count is .18 .
b. Computed only for a

2 x 2 table
This test shows that there is no significant difference between male and female in terms of satisfaction with the contents of the lecture (chi square $=.219, \mathrm{p}=.640$ ).

## Symmetric Measures

|  | Value | Approx. Sig. |
| :--- | ---: | ---: |
| Nominal by Nominal Phi | -.065 | .640 |
| N of Valid Cases | Cramer's V | .065 |
|  | 51 | .640 |

In this case, phi $=-0.065$, which is a strong negative relationship between the two variables.


Q: There is no significant difference among various age groups in terms of satisfaction with the contents of the lecture.

Case Processing Summary

|  | Cases |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Valid |  | Missing |  | Total |  |
|  | N | Percent | N | Percent | N | Percent |
| Are you satisfied with the contents of the lecture * AGE | 51 | 100.0\% | 0 | .0\% | 51 | 100.0\% |

Are you satisfied with the contents of the lecture * AGE Cross tabulation
Count

|  | AGE |  |  |  |
| :--- | ---: | :--- | ---: | ---: | ---: |
|  | 15 <br> years - <br> 25 <br> years |  |  |  |

Case Processing Summary

|  | Cases |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | ---: | ---: | :---: | :---: | :---: |
|  | Valid |  |  | Missing |  | Total |  |  |  |
|  | N | Percent | N | Percent | N | Percent |  |  |  |
|  | 22 |  |  |  | 27 |  |  | 2 | 51 |

Chi-Square Tests

|  | Value | df | Asymp. Sig. (2- <br> sided) |  |
| :--- | ---: | ---: | ---: | ---: |
| Pearson Chi-Square | $1.345^{\mathrm{a}}$ | 2 | .511 |  |
| Likelihood Ratio | 1.708 | 2 | .426 |  |
| Linear-by-Linear <br> Association | 1.166 | 1 | .280 |  |
| N of Valid Cases | 51 |  |  |  |

a. 4 cells ( $66.7 \%$ ) have expected count less than 5 . The minimum expected count is .04 .

This test shows that there is no significant difference among various age groups in terms of satisfaction with the contents of the lecture (chi square $=1.345, \mathrm{p}=.511$ ).

Symmetric Measures

|  |  | Value | Approx. Sig. |
| :--- | :--- | ---: | ---: |
| Nominal by Nominal | Phi | .162 | .511 |
|  | Cramer's V | .162 | .511 |
| N of Valid Cases |  | 51 |  |

In this case, phi $=.162$, which is a weak positive relationship between the two variables.


Case Processing Summary

|  | Cases |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Valid |  | Missing | Total |  |
|  | N | Percent | N | Percent | N |
| Percent |  |  |  |  |  |
| In which language you <br> want lectures to be <br> delivered * GENDER | 51 | $100.0 \%$ | 0 | $.0 \%$ | 51 |

In which language you want lectures to be delivered * GENDER Crosstabulation

Effective Admission Procedure and Quality Teaching For Programmes Offered In Distance Learning Mode Using Edusat Satellite Based Education

## Count



Chi-Square Tests

|  | Value |
| :--- | ---: |
| Pearson Chi-Square | .$a$ |
| N of Valid Cases | 51 |

a. No statistics are computed because In which language you want lectures to be delivered is a constant.

Symmetric Measures

|  | Value |  |
| :--- | ---: | ---: |
| Nominal by Nominal | Phi | .${ }^{2}$ |
| N of Valid Cases |  | 51 |

a. No statistics are computed because In which language you want lectures to be delivered is a constant.

Warnings
No measures of association are computed for the crosstabulation of In which language you want lectures to be delivered * AGE. At least one variable in each 2-way table upon which measures of association are computed is a constant.
$\mathbf{U}$ : There is no significant difference between male and female about the number of lectures in a week.

Case Processing Summary

|  | Cases |  |  |  |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |
|  | Valid |  | Missing |  | Total |  |
|  | N | Percent | N | Percent | N | Percent |
|  | 51 | $100.0 \%$ | 0 | $.0 \%$ | 51 | $100.0 \%$ |
|  |  |  |  |  |  |  |

How many lectures do you think should be there in a week * GENDER Crosstabulation

## Count



Chi-Square Tests

|  |  |  | Asymp. <br> Sig. (2- <br> sided) | Exact <br> Sig. (2- <br> sided) | Exact <br> Sig. (1- <br> sided) |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Pearson Chi- <br> Square | $.219^{\text {a }}$ | 1 | .640 |  |  |
| Continuity <br> Correction |  |  |  |  |  |
| Likelihood <br> Ratio | .000 | 1 | 1.000 |  |  |
| Fisher's Exact <br> Test <br> Linear-by- <br> Linear <br> Association <br> N of Valid <br> Cases | .293 | 1 | .531 |  |  |

a. 2 cells ( $50.0 \%$ ) have expected count less than 5 . The minimum expected count is 18 .
b. Computed only for a

2x2 table
This test shows that there is no significant difference between male and female about the number of lectures in a week (chi square $=.219, \mathrm{p}=.640$ ).

Symmetric Measures

|  |  | Value | Approx. Sig. |
| :--- | :--- | ---: | ---: |
| Nominal by Nominal | Phi | -.065 | .640 |
|  | Cramer's V | .065 | .640 |
| N of Valid Cases |  | 51 |  |

In this case, phi $=-0.065$, which is a strong negative relationship between the two variables.


V: There is no significant difference among various age groups about the number of lectures in a week.

Case Processing Summary

|  | Cases |  |  |  |  |
| :--- | ---: | ---: | :---: | ---: | :---: |
|  | Valid |  | Missing | Total |  |
|  | N | Percent | N | Percent | N |
| Percent |  |  |  |  |  |
| How many lectures do <br> you think should be there <br> in a week * AGE | 51 | $100.0 \%$ | 0 | $.0 \%$ | 51 |

## How many lectures do you think should be there in a week * AGE Cross tabulation

|  | AGE |  |  | Total |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 15 \text { years } \\ -25 \\ \text { years } \end{gathered}$ | $\begin{array}{\|c} 26 \text { years } \\ -35 \\ \text { years } \end{array}$ | $\begin{array}{\|c} 36 \text { years } \\ -45 \\ \text { years } \end{array}$ |  |
| How many lectures 5 do you think should To be there in a week 10 | 21 | 27 | 2 | 50 |
| $\begin{aligned} & 11 \\ & \text { To } \\ & 15 \end{aligned}$ | 1 | 0 | 0 | 1 |
| Total | 22 | 27 | 2 | 51 |

Chi-Square Tests

|  | Value | df | Asymp. Sig. (2- <br> sided) |  |
| :--- | ---: | ---: | ---: | ---: |
| Pearson Chi-Square | $1.345^{\mathrm{a}}$ | 2 | .511 |  |
| Likelihood Ratio | 1.708 | 2 | .426 |  |
| Linear-by-Linear | 1.166 | 1 | .280 |  |
| Association | 51 |  |  |  |
| N of Valid Cases |  |  |  |  |

a. 4 cells ( $66.7 \%$ ) have expected count less than 5 . The minimum expected count is .04 .
This test shows that there is no significant difference among various age groups about the number of lectures in a week (chi square $=1.345, \mathrm{p}=.511$ ).

Symmetric Measures

|  |  | Value | Approx. Sig. |
| :--- | :--- | ---: | ---: |
| Nominal by Nominal | Phi | .162 | .511 |
|  | Cramer's V | .162 | .511 |
| N of Valid Cases |  | 51 |  |

In this case, phi $=.162$, which is a weak positive relationship between the two variables.


## 4. Conclusions

The concept of "quality teaching" is complex and open to a range of definitions and interpretations. This review has therefore adopted a pragmatic approach, based on how university define quality in their own circumstances. Changes in student profiles and learning requirements over recent decades have had a decisive impact on curriculum contents and teaching methods. The quality of teaching must
therefore be thought of dynamically, as a function of contextual shifts in the higher-education environment, such as the globalization of studies to meet the challenges of the 21st century. The vast majority of the initiatives taken by institutions to enhance teaching quality (for example programme evaluation or teacher training) is empirical and address their particular needs at a given time. Initiatives inspired by academic literature and research on the subject are rare.

Acknowledgement - One of us (DS) acknowledges discussions with Manu Chaturvedi and Dr. Vandana Bharti of ITM University.

## REFERENCES

[1] F. Mustard, (1998). The Nurturing of creativity: The role of higher education. Oxford University Press
[2] R. Dearing, (1997). Higher education in the learning society. Committee of enquiry into higher education. London
[3] A. Bhaskaranarayana, B. S. Bhatia, K. Bandyopadhyay and P. K. Jain (2007)- Applications of space communication, Current Science, Vol. 93, No. 12, 25 December, 2007
[4] A. I. Fabiyi, and S. A. Oladipo, (2008) Resource and Policy as Determinants of Access to University Education in Nigeria. Journal of the World Universities Forum. 1(4), 25-34.
[5] H. Ali, and B. Akubue, (1998) Nigeria Primary Schools Compliance with National Policy on Education: An Evaluation of Continuous assessment Practices. Evaluation Review, 12 (6), 625-637.
[6] P. Altbach, (2006), The Dilemmas of Ranking, Boston College Center for International Higher Education, International Higher Education, Vol. 42.
[7] World Bank. (2000), Report on Higher Education in the Developing Countries: Peril and Promise. Oxford University Press http://www.oecd.org/edu/imhe/qualityteaching
[8] S. K. Pandey, (1999) "Handbook of Satellite communications" Authors Press, Delhi; D. C. Agrawal, (2004) "Digital Satellite Communication" Khanna Publication, Delhi.


[^0]:    Manuscript received on May, 2013.
    Daulat Singh, Department of Computer Science, ITM University, Gwalior (M.P.)-462021, India

    Rakesh Shrivastava, Department of Higher Education, Govt. of Madhya Pradesh, Bhopal (M.P.)-462021, India

    Dinesh Varshney Multimedia Regional Center, Madhya Pradesh Bhoj (Open) University, Indore (M.P.) - 452001, India

