
Next-generation Generic Programming and its Application
to Sparse Matrix Computations

Nikolay Mateev, Keshav Pingali,
and Paul Stodghill

Department of Computer Science
Cornell University, Ithaca, NY 14853

Vladimir Kotlyar
IBM T.J. Watson Research Center

30 Saw Mill River Rd.
Hawthorne, NY 10532

ABSTRACT
The contributions of this paper are the following.

1. We introduce a new variety of generic programming in which
algorithm implementors use a different API than data struc-
ture designers, the gap between the API’s being bridged by
restructuring compilers. One view of this approach is that
it exploits restructuring compiler technology to perform a
novel kind of template instantiation.

2. We demonstrate the usefulness of this new generic program-
ming technology by deploying it in a system that generates
efficient sparse codes from high-level algorithms and speci-
fications of sparse matrix formats.

3. We argue that sparse matrix formats should be viewed as
indexed-sequential access data structures (in the database
sense), and show that appropriate abstractions of the index
structure of common formats can be conveyed to a restructur-
ing compiler through the type system of a modern language
that supports inheritance and templates.

1. INTRODUCTION
Generic programming is a methodology for simplifying the devel-
opment of libraries in which a set of algorithms have to be im-
plemented for many data structures. Code explosion is avoided
by mandating a common API which is (i) supported by all data
structures, and (ii) used to express algorithms in a generic, data-
structure-neutral fashion. For example, the C++ Standard Template
Library (STL) [2] uses the API of one-dimensional sequences as
the interface between data structures like arrays and lists, and al-
gorithms like searching and sorting. The type systems of modern
languages permit the data structure implementations and generic
programs to be type-checked and compiled separately; a concrete
implementation is produced by linking a generic program with a
particular data structure implementation.
There is however a tension in the design of generic programming
API’s that becomes evident in problem domains such as sparse ma-
trix computations. For dense matrices, highly efficient implemen-
tations of the Basic Linear Algebra Subroutines (BLAS) [6] are
�This work was supported by NSF grants CCR-9720211, EIA-
9726388, ACI-9870687, and EIA-9972853.

usually provided by hardware vendors. For sparse matrices, the
problem of developing BLAS libraries is complicated by the fact
that some forty or fifty compressed formats are used to avoid stor-
ing zeros. Many attempts at writing sparse BLAS libraries have
been confounded by the code explosion problem [15; 5]. Although
it appears that generic programming is the solution to this problem,
it is not clear that an appropriate API can be designed for sparse
matrix libraries. As we explain in this paper, a high-level API that
allows the programmer to express generic matrix algorithms in a
natural array notation hides details of sparse matrix formats from
the compiler, so performance may suffer. On the other hand, a
low-level API that exposes the details of compressed formats is not
suitable for writing generic programs. This problem is likely to
occur in other problem domains in which data structure properties
must be exploited for high performance.
In this paper, we discuss one way to solve this problem.

1. We use dual API’s: a high-level API for expressing generic
algorithms, and a low-level API for exposing details of data
structures that must be exploited to obtain high performance.

2. We use restructuring compiler technology to transform ab-
stract programs written in terms of the high-level API into
efficient programs which use the low-level API.

We describe this approach in the context of sparse matrix compu-
tations as follows. In Section 2, we present some important sparse
algorithms and compressed formats, propose a simple API called
the Strawman API, and sketch a generic programming system de-
signed around this API. Intuitively, this API views sparse formats
as random access data structures, which is inappropriate for sparse
formats and therefore leads to very inefficient code, but it permits
us to introduce key ideas simply.
We motivate the separation of algorithm API and data structure API
by taking progressively more nuanced views of compressed for-
mats. The desire for greater efficiency motivates the Woodenman
API in Section 3. This API views sparse formats as sequential ac-
cess data structures [18]. We make the case for a generic program-
ming system in which generic programmers code for the Strawman
API, but invoke a restructuring compiler which views sparse for-
mats through the Woodenman API and restructures the generic pro-
gram into efficient code. This approach improves code efficiency
over the use of the Strawman Interface alone, but for some pro-
grams, the efficiency is still poor compared to library code.
In Sections 4 and 5, we present the final API, called the Ironman
API, that views sparse formats as indexed-sequential access data
structures [18]. Section 4 describes the indices of interest in com-
pressed formats, while Section 5 describes the details of the Iron-
man API and gives an implementation of a generic programming

=

BAC

b L x

=

=

y A x

Matrix-Vector Multiplication (MVM)

Matrix-Matrix Multiplication (MMM)

for i = 1, m

 for k = 1, n
 C[i][j] = C[i][j] + A[i][k]*B[k][j]

 for j = 1, i-1

Triangular Solve (TS)

y[i] = 0
 for j = 1, n

for i = 1, m

m

m

m

n

 y[i] = y[i] + A[i][j]*x[j]

n

m

C[i][j] = 0
 for j = 1, t

t

x[i] = b[i]
for i = 1, m

 x[i] = x[i] - L[i][j]*x[j]
x[i] = x[i]/L[i][i]

Figure 1: Basic Linear Algebra Subroutines



















jih

gfe

dc

ba

0

0

00

00 1 1 2 3 2 3 4 3 4 4
3 1 3 4 1 2 4 1 2 1
b a d g c f j e i h

Co-ordinate (COO)

1 3 5 8 1
1

1 3 1 3 1 2 4 1 2 4

a b c d e f g h i j

Compressed Sparse Row (CSR)

























0000

0000

0000

0000

000

00

tz
yx

qp
kh

gfe
dcba

1 3 4 5

1 3 2 1

a e b f x… h… c…

Block Sparse Row (BSR)

rowptr

colind

values

colind

values

rowind

Figure 2: Compressed Formats

system that supports this API. We show that appropriate abstrac-
tions of the indexing structures of commonly used formats can be
provided to such a system through the type system of a language
like C++. Section 6 describes our restructuring compiler technol-
ogy and presents experimental results that show that our approach
can generate code competitive with handwritten code in the NIST
Sparse BLAS library [5]. Finally, Section 7 discusses related and
ongoing work.

2. A SIMPLE GENERIC PROGRAMMING
SYSTEM: THE STRAWMAN API

The following algorithms constitute the Sparse BLAS.

� Matrix-Vector Multiplication (MVM):
y = A*x: The matrix A is sparse, and vectors y and x are
dense.

� Solution of Triangular Systems (TS):
Lx = b: some problems involve solving multiple systems
with the same L but different b’s.

� Matrix-Matrix Multiplication (MMM):
C = A*B: A is sparse, while C and B are dense. This is
a generalization of matrix-vector product in which a sparse
matrix A is multiplied by a set of dense vectors represented
by the column vectors of matrix B.

Figure 1 shows pseudo-code for these algorithms.
As mentioned earlier, there are at least forty or fifty commonly used

template<class ELT>
class StrawmanMatrix {

int m; //number of rows
int n; //number of columns

public:
StrawmanMatrix(int r,int c) {m=r;n=c;}
int rows() {return m;}
int columns() {return n;}
virtual ELT get(int r, int c) = 0;
virtual void set(int r, int c, ELT v) = 0;

// Implementation of ‘A[r][c]’ notation.
class RowRef operator[](int r)

{ return RowRef(A,r) }
....

}

Figure 3: The Strawman API: get/set

compressed formats; the NIST Sparse BLAS effort [5] supports 13
of them. Figure 2 shows a sparse matrix and three commonly used
compressed formats. The simplest format is Co-ordinate storage
(COO) in which three arrays are used to store non-zero elements
and their row and column positions. The non-zeros may be ordered
arbitrarily. Co-ordinate storage does not permit indexed access to
either rows or columns of a matrix. Compressed Sparse Row stor-
age (CSR) is a commonly used format that permits indexed access
to rows but not columns. Array values is used to store the non-
zeros of the matrix row by row, while another array colind of the
same size is used to store the column positions of these entries. A
third array rowptr has one entry for each row of the matrix, and
it stores the position in values of the first non-zero element of
each row of the matrix. Compressed Sparse Column storage (CSC)
is the transpose of CSR in which the non-zeros are stored column-
by-column, and it offers indexed access to columns.
Some sparse matrices have small dense blocks occurring in dif-
ferent positions inside the matrix. Figure 2 shows Block Sparse
Row (BSR) storage which can be viewed as a CSR representation
in which the non-zeros are small dense blocks rather than single
non-zero elements.

2.1 The Strawman API and Generic Program-
ming System

The Strawman API requires each class implementing a compressed
format to support two methods called get and set.

� The get method takes the row and column co-ordinates of
an array element as input, and returns the value at that posi-
tion.

� The set method takes a value and row/column co-ordinates
as input, and stores the value into that position in the array.

In addition to these methods, there must be methods to return the
number of rows and columns in the matrix.
Figure 3 shows the Strawman API expressed in C++1. Notice that
operator overloading is used to permit programmers to use array
syntax rather than invocations of the get/set methods.
It is up to the format designer to implement the get/setmethods
as efficiently as possible. Figure 4 shows one implementation of
co-ordinate storage (the implementation of the set method does
not allow fill to keep the code simple). To write a generic program
in this system, the programmer writes code as though all matrices
were dense, but specifies which classes must be used to implement
sparse matrices. For example, generic MVM is coded as shown in

�C++ has language features (namely, templates and inheritance)
that allow us to express our API’s and programs concisely. It is
certainly possible to take the basic ideas in this paper and to realize
them in other modern languages like Java or ML.

//co-ordinate storage
template<class ELT>
struct CooStorage {

vector<int> *rowind;
vector<int> *colind;
vector<ELT> *values;
const int nz;

CooStorage(vector<int> *_rowind,
vector<int> *_colind,
vector<ELT> *_values)

: rowind(_rowind), colind(_colind),
values(_values), nz(rowind->size()) {

}
};

//Strawman view of storage
template <class ELT>
class CooRandom : public StrawmanMatrix<ELT> {
protected:

CooStorage<ELT> *A;
public:

CooRandom(int m, int n, CooStorage<ELT> *A)
: StrawmanMatrix<ELT>(m,n), A(A) { }

virtual ELT get(int r, int c) {
for (int k=0; k < A->nz; k++)

if((*A->rowind)[k] == r &&
(*A->colind)[k] == c)
return (*A->values)[k];

return 0.0;//zero elements are not stored
}
virtual void set(int r, int c, ELT v) {

for (int k=0; k < A->nz; k++)
if((*A->rowind)[k] == r &&

(*A->colind)[k] == c)
{ (*A->values)[k] = v; return; }

assert(false);//fail if element not allocated
}

};

Figure 4: Co-ordinate Storage: Strawman API

template <class T, class ELT>
void mvm(T A, ELT x[], ELT y[])
{

for (int i=0; i<A.rows(); i++) {
y[i] = 0;
for (int j=0; j<A.columns(); j++)

y[i] += A[i][j] * x[j];
}

}

//MVM for co-ordinate storage
template void mvm(CooRandom<double> A,

double x[], double y[]);

Figure 5: Generic Program Instantiation

Figure 5, and MVM for a particular compressed format is created
by template instantiation.

2.2 Discussion
The Strawman API is very convenient for expressing algorithms
in a data-structure-neutral fashion, but the efficiency of the code is
poor for two reasons.

1. The getmethod is very inefficient because most compressed
formats do not support efficient random access.

2. The code iterates over the bounds of the full matrix and there-
fore performs computations with both zeros and non-zeros,
but the computations with zeros are redundant.

As a concrete example of this inefficiency, we note that co-ordinate
storage MVM code produced by this strategy requires O�n� �NZ�
time for a n� n matrix with NZ non-zeros, while the implemen-
tation in the NIST Sparse BLAS library [5] described in Section 3
takes only O�NZ� time. We address these efficiency problems
next.

for r = 1, m
do
y[r] = 0

od
for each <r,c,v> in non-zeros(A)
do
y[r] = y[r] + v*x[c]

od

(a) MVM
for r = 1, m
do
x[r] = b[r]

od
for each <r,c,v> in non-zeros(L)
do
if (r == c) then //diagonal element

x[r] = x[r]/v;
else if (r > c) then //lower triangle

x[r] = x[r] - v*x[c];
else ; //upper triangle

od

(b) TS

Figure 6: Data-centric Pseudocode

3. A DATA-CENTRIC API: THE WOODEN-
MAN INTERFACE

One approach to avoiding random accesses and computations with
zeros is to recast algorithms in terms of enumerations of non-zero
elements. Figure 6(a) shows such an algorithm for doing MVM;
for each non-zero element A[r][c] of A, we compute the prod-
uct A[r][c]*x[c] and add the result to y[r]. We call such
algorithms data-centric [8] because their overall control structure
is organized around enumerations of data structure elements.
Even though data-centric algorithms look less natural, it might ap-
pear that we could use them as a basis for a generic programming
system by requiring all matrix classes to support enumeration of
non-zeros. Such a class would present a sequential access view [18]
of a compressed format. However, data-centric algorithms may not
be correct if there are dependences between loop iterations, as in
triangular solve. Figure 6(b) shows data-centric pseudocode for tri-
angular solve. From the original dense matrix code in Figure 1, we
see that this code is correct only if every diagonal element is enu-
merated (i) after all the non-zeros within its row and to its left, and
(ii) before all the non-zeros within its column and below it.
While it is reasonable to require that every sparse format class pro-
vide a way of enumerating non-zeros, it is not reasonable to require
that these enumerations be in an order convenient for whatever code
is being executed. The challenge therefore is to design a system that
permits the writing of generic programs which can work with any
compressed format and which achieve the efficiency of data-centric
algorithms whenever possible.

3.1 The Need for Two API’s
We solve this problem by providing two views of compressed for-
mats—a random access view to the writer of generic programs, and
a sequential access view to the compiler. As in Section 2, programs
are expressed in a data-structure-neutral fashion by writing them as
dense matrix programs. Sparse formats are implemented by classes
that provide a way of enumerating the non-zeros of the matrix, in
addition to providing get/setmethods. Our system uses restruc-
turing compiler technology to transform the dense matrix code into
data-centric code if that is legal; otherwise, it uses the get/set
methods to generate code as in Section 2.
To enable the compiler to generate efficient code, the sparse format
class must specify the following properties of the enumeration to
the compiler.

//Matrix abstraction for Woodenman API
template<class I, class E>
class WoodenmanMatrix {
public:

typedef I iterator_type;
typedef E value_type;
virtual I begin() = 0;
virtual I end() = 0;

};

//Base class for all iterator classes
template<class K, class V>
class WoodenmanIterator {
public:

typedef K key_type;
typedef V value_type;
virtual K operator *() = 0;
virtual V value() = 0;
virtual void operator ++(int) = 0;
...

};
//Class for unordered iterator
template<class K, class V>
class WoodenmanUnorderedIterator

: public WoodenmanIterator<K,V>
{ };
//definitions of WoodenmanDecreasingIterator,
// WoodenmanIncreasingIterator etc.
....

Figure 7: Woodenman Interface

� Enumeration order: Intuitively, this is a description of the
differences in the row/column co-ordinate values of succes-
sive elements in the enumeration.

� Enumeration bounds: This describes the row / column co-
ordinate values that can actually occur in the enumeration.
For example, some matrices have non-zeros only along their
diagonals, while other have non-zeros only in their lower tri-
angular and diagonal parts. Conveying this information to
the compiler may enable it to generate better code; for exam-
ple, in the data-centric triangular solve pseudo-code shown
above, some of the comparisons of r and c can be eliminated
if the matrix is diagonal or if it does not have non-zeros in its
upper triangle.

These properties can obviously be expressed as systems of linear
inequalities.

3.2 The Woodenman API
Figure 7 shows the Woodenman API. Enumeration is supported
through the use of iterators as in the STL. A class implementing
the WoodenmanMatrix interface is a container that must imple-
ment begin and end methods that return iterators for enumerat-
ing non-zeros. The WoodenmanIterator class is an interface
that requires methods for dereferencing the iterator to return the
“current” row/column and value, and for advancing the iterator.
A method for checking equality of iterators must also be imple-
mented, but we have not shown this for simplicity. Enumeration
order and bounds can be incorporated into the program through
the use of pragmas, but we have chosen to incorporate order in-
formation into the class hierarchy by specifying different classes
for enumerations that are unordered/increasing/decreasing etc. The
bounds on the stored indices are conveyed to the compiler using a
pragma.
Figure 8 shows an implementation of Co-ordinate storage for the
Woodenman API. To clarify the meaning of these classes, we show
in Figure 9 the code that the sparse compiler might produce if the
generic MVM program was instantiated for the CooStream class.
After method inlining, this code has the same structure as the code
in the NIST library.

template<class ELT> class CooStreamIterator;

// A class for matrices stored in the Co-ordinate
// format, in which the entries lie within the lower
// triangle.
#pragma bounds { [i,j] | 0 <= i && i < n-1 \

&& 0 <= j && j < i-1 }
template<class ELT>
class CooStream

: public CooRandom<ELT>,
public virtual WoodenmanMatrix<

CooStreamIterator<ELT>, ELT >
{
public:

CooStream(int m, int n, CooStorage<ELT> *A) :
CooRandom<ELT>(m,n,A) { }

virtual CooStreamIterator<ELT> begin()
{ return CooStreamIterator<ELT>(A,0); }

virtual CooStreamIterator<ELT> end()
{ return CooStreamIterator<ELT>(A,A->nz); }

};

template<class ELT>
class CooStreamIterator :

public WoodenmanUnorderedIterator<
pair<int,int>,ELT> {

friend class CooStream<ELT>;
protected:

CooStorage<ELT> *A; int jj;
public:

CooStreamIterator(CooStorage<ELT> *A, int jj)
: A(A), jj(jj) { }

virtual void operator ++(int) { jj++; }
virtual pair<int,int> operator *() {

return make_pair((*A->rowind)[jj],
(*A->colind)[jj]);

}
virtual ELT value() { return (*A->values)[jj]; }

};

Figure 8: COO: Woodenman API

template <>
void mvm(CooStream<double> &A, double x[], double y[])
{

for (int i = 0; i < A.rows(); i++)
y[i] = 0;

for (CooStreamIterator<double> it = A.begin();
it != A.end(); it++) {

int r = (*it).first;
int c = (*it).second;
double v = it.value();
y[r] += v * x[c];

}
}

Figure 9: Compiler-generated Code for MVM

3.3 Discussion
Figure 10 shows the performance of our enumeration-based codes
for a number of compressed formats, compared to the performance
of handwritten code in the NIST library, on the Pentium II platform
described in detail in Section 6.3. For Co-ordinate storage, our
enumeration-based code is comparable in performance to library
code, but for CSR and CSC, the library code is substantially better.
To understand this, let us examine the CSR code in more detail.
To enumerate the non-zeros of the matrix, our enumeration-based
code contains a single loop of the following form.

r = 1;
for jj = 1 to NZ do //NZ is the number of non-zeros

while (jj == rowptr[r+1]) //some rows may be empty
r++;

c = colind[jj];
v = values[jj];
y[r] = y[r] + v*x[c]

od

In contrast, the library code contains a nested loop in which the

0

10

20

30

40

50

COO-MVM CSC-MVM CSR-MVM CSC-TS CSR-TS

M
F

L
O

P
S

NIST Enumeration

Figure 10: NIST vs. Woodenman API

outer loop enumerates rows and the inner loop enumerates non-
zeros within that row. The pseudo-code is shown below.

for r = 1 to m do
for jj = rowptr[r] to rowptr[r+1] - 1 do

c = colind[jj];
v = values[jj];
y[r] = y[r] + v*x[c]

od
od

Although these differences may seem to be minor, there is a fun-
damental difference in the views of the CSR data structure in these
two codes. The Woodenman API views the CSR data structure as a
flat, sequential access data structure while the library code exploits
the fact that the rowptr array permits us to isolate the non-zeros
within a row efficiently. In fact, the view taken by the library code
is that CSR is an indexed-sequential access data structure [18] in
which the rowptr array is an index (in the database sense) which
permits efficient access to the non-zeros within a particular row.
This leads naturally to a nested view of the data structure.
A compelling reason for viewing compressed formats as indexed-
sequential access data structures is that exploiting indices makes a
difference in the asymptotic time complexity of the code for some
problems. Consider the product of two sparse matrices C = A*B
where B is stored in CSR, and C is stored in some format that per-
mits insertions, such as a hash table. Enumeration-based pseudo-
code for this algorithm (assuming C is properly initialized) looks
like the following:

for each <r,c,va> in non-zeros(A) do
for each <r’,c’,vb> in non-zeros(B) do
if (r’ == c) C[r][c’] = C[r][c’] + va*vb;

od
od

If B is viewed as a flat, sequential access data structure, the inner
loop must scan the entire data structure, so the complexity of the
code is O�NZ�A� �NZ�B��. If on the other hand, we exploit the
index into row c of B, the complexity of the code is O�NZ�A� �
NZ�B��n� since NZ�B��n is the average number of non-zeros
in a row of B.
We conclude that viewing compressed formats as sequential access
data structures is a partial solution to the problem of compiling ef-
ficient code from generic dense-matrix programs. Improving effi-
ciency further requires exploiting index structures in compressed
formats.

4. INDEX STRUCTURE OF COMPRESSED
FORMATS

Intuitively, an index structure for a compressed format corresponds
to a particular view [18] of that data structure. The simplest in-
dex structures such as CSR use array co-ordinates themselves as

indices. Some formats use indices that are not array co-ordinates
but are obtained by applying a simple function to the array co-
ordinates. One example is a variation of CSR format in which the
storage order of rows is a permutation of their order in the actual
matrix. The rowptr index in this case is a permutation of the row
numbers in the actual matrix. Finally, some formats like Jagged
Diagonal Storage (JAD) support multiple views.
For the purpose of this paper, we describe these views by using
a simple grammar called the view grammar. In the next section,
we show how this information can be conveyed to the compiler by
using an appropriate type structure in which there is one interface
class for each production in the grammar.

4.1 Index Nesting
If a matrix is considered to be a collection of tuples of the form
� r� c� v � where r and c are the row and column co-ordinates and
v is the value, then the nested structure of a compressed format can
be described by specifying the order in which the fields of these
tuples should be accessed. For example, CSR can be specified as
follows.

CSR � r � c� v

This indicates that the non-zeros within a row of the matrix can be
accessed efficiently by using the row co-ordinate as an index into
the data structure containing the non-zeros. A similar expression
can be written for CSC storage. These expressions can obviously
be generalized to arrays of arbitrary dimensions, and are described
formally by the following grammar. In this grammar, Index may
be one of the dimensions of the array, and v denotes array element
values.

E � Index � E

j v

In general, an index at a given level may involve multiple array
dimensions. One example is provided by Co-ordinate storage since
neither the row nor the column co-ordinate provides access to a
substructure of the compressed format. At the other extreme, both
row and column co-ordinates of a dense matrix provide access to
substructures. We incorporate these structures into the grammar by
enriching what Index can be.

Index � attribute

j � attribute� � � � � attribute �

j � attribute � � � � � attribute �

For now, attributes may be considered to be array dimensions. The
first rule models the case when a single array dimension is used
to index a substructure. The second rule models formats like Co-
ordinate storage for which multiple array dimensions are required
to provide access to a substructure. The third rule models formats
like dense matrices in which each of a number of array dimensions
provides independent access to substructures.
Several sparse matrix formats and their views are given below.

Co-ordinate: � r� c �� v
CSR: r � c� v
CSC: c� r � v
Dense: � r� c �� v

4.2 Maps
The preceding discussion of sparse matrix views assumed that only
array dimensions can be indices. However, this is often not the
case.

a b

c d e

f g h

i k

c

r

b e h

a d g k

c f i

o

d

Figure 11: Diagonal Storage

� Rotation: In the diagonal storage format found in the Sparse
BLAS, matrix elements are grouped and accessed by diago-
nals, as shown in Figure 11. In this case, the attributes that
are indexed are, d, the diagonal number, and o, the offset
within the diagonal. Using these attribute names, the view of
the matrix can be expressed as d� o� v, where the matrix
dimensions, r and c, can be computed from d and o by,

r � d� o c � o

� Blocking: Consider the Block Sparse Row (BSR) format
shown in Figure 2. Each block is accessed by a set of block
indices �br� bc�, and the scalar elements within each block
are accessed by a the offset indices �lr� lc�. The view of
BSR can be expressed in terms of the attribute names, br,
bc, lr and lc, as,

BSR: br � bc �� lr � lc �� v

and the block and offset indices are related to r and c by the
following, where B is the number of rows and columns in
each blocks,

r � br �B � lr

c � bc �B � lc

� Permutation: Often, sparse matrices are reordered in order
to give their non-zeros a particular structure. In these cases,
the rows and columns in which the matrix is stored is a per-
mutation of the original row and column indices.

In all of these cases, the view of the storage is most naturally ex-
pressed in terms of a different set of indices, and r and c can be eas-
ily computed by applying a simple function to the storage indices.
This can be expressed by adding a production of the following form
to the grammar.

E � mapfF �in� �� out � Eg

For example, the view of the diagonal storage is:

mapfd� o �� r� o �� c � d� o� vg

4.3 Perspective
It may be the case that a compressed format can be viewed in mul-
tiple ways. For instance, the Jagged Diagonal format (JAD) found
in the Sparse BLAS can be viewed in the following two ways.2

� i� j �� v

i� j � v

The two views represent the fact that two different sets of meth-
ods can be used to access the storage. The first case represents a
particularly efficient method for enumerating the the elements of
the matrix, which does not provide any ordering guarantees. The
second case represents a set of methods that can be used to give
�For simplicity, we ignore the permutation that occurs in JAD.

random access to the rows, and to enumerate the elements within a
row in increasing order by column. The first view is appropriate for
MVM, in which a fast enumeration of the whole matrix is desired,
and in which no constraints are placed on the order of that enu-
meration. For TS, this method cannot be used because it violates
dependences, so the methods of the second view must be used.
We refer to each of the different views for a single storage format
as different “perspectives” on the format, and we represent perspec-
tive with our grammar as follows.

E � E �E

4.4 Aggregation
Finally, some formats are simply collections of two or more com-
pressed formats. Triangular solve, for instance, might be imple-
mented efficiently if a sparse matrix format provided efficient ran-
dom access to its diagonal elements, and indexed access to the off-
diagonal elements by either rows or columns. This is accomplished
sometimes by using different formats to store the different regions
of the matrix—the diagonal of the matrix might be stored in a dense
vector, and the elements in the lower triangle might be stored in
CSR. In our grammar, we will represent the aggregation of two or
more storage formats into a single sparse matrix with the � opera-
tor.

E � E �E

4.5 Summary
Below is the complete grammar for expressing views of a sparse
matrix format,

E � Index � E

j mapfF �in� �� out � Eg

j E �E

j E �E

j v

Index � attribute

j � attribute� � � � � attribute �

j � attribute � � � � � attribute �

5. THE IRONMAN API
As before, we deal with two different API’s. The generic program-
mer views matrices as random access data structures, but the com-
piler views them through the Ironman API as indexed-sequential
access data structures whose index structure was described in the
previous section. The Ironman API is summarized in Figures 12.

5.1 Interfaces for Views
Each production in the view grammar given in Section 4 has an as-
sociated interface, which we have implemented in C++ as a small
number of abstract classes described in Figure 12(a). The program-
mer conveys views of a storage format to the sparse compiler by
writing a set of classes that inherit from the appropriate interfaces.
The term_nesting abstract class denotes an occurrence of the
� operator within the view. This abstract class takes two template
parameters. The first specifies the implementation of the iterator
that can be used to enumerate the index at this level. The second
specifies the implementation of the substructure below this level.
An implementation of CSR, in which the entries within each row
are stored in order, that inherits from term_nesting is shown
in Figure 13. interval_iterator and offset_iterator
are two iterator abstract classes that are described later.

Abstract class Methods
term_scalar<V> operator V()
term_nesting<I,E> I begin(), I end()

E subterm(I)
term_nesting2<I1,I2,E> I1 begin1(), I1 end1()

I2 begin2(), I2 end2()
E subterm(I1, I2)

� � �

term_map<K,E> K map(E::index_type)
E subterm()

term_aggregation2<E1,E2> E1 subterm1()
E2 subterm2()

� � �

term_perspective2<E1,E2> E1 subterm1()
E2 subterm2()

� � �

(a) Interfaces for Views

Abstract class Methods
unordered_iterator<K> K operator *()

(no ordering) void operator ++()
increasing_iterator<K>, K operator *()
decreasing_iterator<K> void operator ++(), or

(one-way ordering) void operator --()
inherits from �

ordered_iterator<K>
(bi-directional ordering)

inherits from �
offset_iterator<K> int operator -(iterator)

(ordered with distance) void operator +=(int)
void operator -=(int)

inherits from �
interval_iterator<K>

(range of keys)
(b) Interfaces for Iterators

Figure 12: Interfaces for Ironman API

An index of the form � r� c �� � � � is specified by inheritance
from the term_nesting abstract class and specifying that its
iterator enumerates indices of type pair<int,int>. This is il-
lustrated by the implementation of Co-ordinate storage shown in
Figure 14.
An index like � r � c �� � � � has two independent iterators.
To specify these sorts of views, term_nesting2, etc., abstract
classes are provided which allow the implementation of each inde-
pendent iterator to be specified. Figure 15 shows an implementa-
tion of dense matrices that uses the term_nesting2 interface.
By a very simple analysis of these classes, the sparse compiler can
infer the following relationships,

Coo: // <r,c> -> v
term_nesting< unordered_iterator< pair<int,int> >,

ELT >

Csr: // r -> c -> v
term_nesting< interval_iterator<int>,

term_nesting< offset_iterator<int>,
ELT > >

Dense: // <r x c> -> v
term_nesting2< interval_iterator<int>,

interval_iterator<int>,
ELT >

which clearly indicate the nested structure of these formats, and the
properties of the iterators that are used at each level.
Interfaces for expressing perspective, aggregation and map are also
available.

5.2 Interfaces for Iterators, Revisited
The abstract classes for the iterators are described in Figure 12(b).
Unlike the iterators in Section 3, iterators in the Ironman API are
used for enumerating indices only. That is, they do not provide the
methods for accessing the substructures. Instead, the substructures
are obtained via the subterm method in each term_nesting

template<class ELT>
class Csr

: public term_nesting< interval_iterator<int>,
CsrRow<ELT> > {

// ...
};

template<class ELT>
class CsrRow

: public term_nesting< CsrRowIterator<ELT>,
ELT > {

/// ...
};

template<class ELT>
class CsrRowIterator :

public offset_iterator<int> {
// ...

};

Figure 13: CSR: Ironman API

template<class ELT> class CooIterator;

template<class ELT>
class Coo

: public CooRandom<ELT>,
public term_nesting< CooIterator<ELT>,

ELT > {
// ...

};

template<class ELT>
class CooIterator :

public unordered_iterator< pair<int,int> > {
// ...

};

Figure 14: COO: Ironman API

class. This is done, because whenever two independent iterators ap-
pear in a level of the index nesting, (e.g., in the dense matrix storage
format), the matrix elements are associated with two indices from
two different iterators. Since in this case, the value is not associated
with a single iterator, it cannot be accessed via a method in either
iterator. Thus, the method for accessing the value is placed in the
term_nesting classes.
We also refine the iterators discussed in Section 3 to account for
more ordering properties. In addition to unordered, increasing, and
decreasing iterators, we provide the offset_iterator inter-
face for iterators whose positions can be randomly accessed, simi-
lar to the random_access_iterator’s found in the STL. The
interval_iterator is a refinement of offset_iterator,
which is used to represent all of the integer indices between a fixed
lower and upper bound.

6. RESTRUCTURING COMPILER TECH-
NOLOGY AND PERFORMANCE

We now give a sketch of the restructuring compiler technology
that converts programs written using the Strawman API into effi-
cient programs that use the Ironman API. Intuitively, this restruc-
turing must convert a high-level program into a data-centric pro-
gram which (i) uses enumerations along the preferred directions
of the sparse format and (ii) exploits indices, when possible. Our
view of sparse matrix formats as indexed-sequential access struc-
tures leads naturally to a restructuring technology based on rela-
tional algebra [18]. For lack of space, we do not give the details of
the compiler technology, which can found in an associated techni-
cal report [1]. Earlier versions of this compiler technology are also
described in other publications [10; 17; 9]. The highlights of our
approach are as follows.

� Sparse matrices are modeled as relations in which the array

// Dense matrix storage
template<class ELT>
class Dense

: public term_nesting2< interval_iterator<int>,
interval_iterator<int>,
ELT > {

// ...
};

Figure 15: Dense: Ironman API

#pragma instantiate with Bernoulli
template <class T, class ELT>
void mvm(T A, ELT x[], ELT y[])
{

for (int i=0; i<A.rows(); i++) {
y[i] = 0;
for (int j=0; j<A.columns(); j++)

y[i] += A[i][j] * x[j];
}

}

// Will be instantiated with the Bernoulli compiler.
template void mvm(Csr<double> A, double x[],

double y[]);

Figure 16: Generic MVM with Instantiation

indices and value are the fields of the relation, and each non-
zero entry of the matrix has an associated tuple in the rela-
tion.

� The loops of the computation are modeled as expressions in
a relation algebra [18].

� Efficient evaluation strategies for these relational algebra ex-
pressions are found using relational query optimization.

� The indexing structure of a sparse matrix format is exposed
to the query optimizer through the type structure discussed
in Section 5.

We are building our system as a source-to-source transformation
tool. The user runs his program though our sparse compiler which
instantiates some of the the template definitions. The program-
mer uses pragmas, as shown in Figure 16, to indicate which tem-
plate definitions are to be instantiated by the sparse compiler; the
rest are left untouched. The sparse compiler will generate a trans-
formed C++ program to be run through the underlying C++ com-
piler, which will perform the remaining instantiation and usual op-
timizations like inlining.

6.1 Restructuring Technology
We sketch our compiler technology using the simple example of
matrix-vector product in which A is stored in CRS, and X and Y
are stored as sparse vectors.
Query Formulation The first task of the compiler is to translate
the input generic program into a suitable intermediate representa-
tion. The intermediate representation of a loop describes the itera-
tions in which there is work to do, but does not take a position on
the order in which these iterations should be done.

for � a� x� y �� ��a�x�y��A�i� j� a� � X�j� x� � Y �i� y�� f
y = y � a � x

g

This intermediate program says that the relations “A”, “X” and
“Y ” are to be joined3 on their common fields (i between A and Y ,
j between A and Y), and the resulting tuples are to have all fields

�To be precise, this is the natural join in database terminology.

except the value fields, a, y, and x, projected away. This compu-
tation produces another relation, and the body of the loop is to be
executed for each tuple in that relation with appropriate bindings
for a, x and y.

Join Scheduling The next task is to determine the order in which
the joins must be performed. The � operator is associative and
commutative, so there are several possibilities. In our example,
there are two basic, non-trivial strategies:

�A�jX��iY

�A�iY ��jX

The relative efficiency of the two strategies depends on the formats
used to store the sparse data structures. If the compiler were to se-
lect the first strategy, then the join between A and X on the j field
would be performed first, and then the join between the intermedi-
ate result and Y on i. However, in our example, the CRS format in
which A is stored allows efficient access to the i index before the j
index. Therefore, our compiler will pick the second strategy, which
performs the join on i first.
The order in which a format’s indices can be accessed is obtained
directly from the format’s index structure.

Join Implementation Once the order in which the joins are to
be evaluated is determined, implementation strategies must be se-
lected for each join. The choice of strategy depends on what index
structures are available for searching the join field, and what prop-
erties hold for the enumerating the join field. Our compiler can
obtain this information directly from the term of the index struc-
ture in which the join index appears.
In our example, the choice of join implementations depends upon
the details of the formats used to store A, X , and Y . If, for in-
stance, the elements of X and each row of A are stored in sorted
order, then a merge-join [18] between X and each row of A is pos-
sible. Otherwise, the elements of X could be scattered into a dense
vector that, for the cost of O�n� storage, would provide a constant
time index for a hash-join [18] with A.

Method Instantiation The final step of the query optimization
process is to replace method invocations within the query evalua-
tion plan with code provided by the storage format to implement
the access. The result of this step, which is essentially procedure
inlining, is an executable program for evaluating the query.

6.2 Discussion
While there are many similarities between our restructuring tech-
niques and database query optimization, there are also many pro-
found differences. Some of these differences are the following:

� In databases, multiple, separate but simple indices are usu-
ally provided for accessing a relation. In contrast, sparse ma-
trix formats usually provide a single, multi-level index struc-
ture.

� Complicated array references, such as A��j � ��� 	i � k
,
can appear in matrix programs, and these give rise to joins
with general affine constraints [10].

� In database systems, the dominant cost is usually disk I/O.
In a sparse matrix computation, the dominant cost is usually
cache and memory access, so the performance models are
very different.

0

10

20

30

40

50

COO CSC CSR BSR VBR

M
F

L
O

P
S

NIST Bernoulli

0

10

20

30

40

50

CSC CSR BSR VBR

M
F

L
O

P
S

NIST Bernoulli

0

10

20

30

40

50

COO CSC CSR BSR VBR

M
F

L
O

P
S

NIST Bernoulli

MVM on Pentium II TS on Pentium II CG on Pentium II

0

10

20

30

40

50

60

70

80

90

100

COO CSC CSR BSR VBR

M
F

L
O

P
S

NIST Bernoulli

0

10

20

30

40

50

60

70

80

90

100

CSC CSR BSR VBR

M
F

L
O

P
S

NIST Bernoulli

0

10

20

30

40

50

60

70

80

90

100

COO CSC CSR BSR VBR

M
F

L
O

P
S

NIST Bernoulli

MVM on SP-2 TS on SP-2 CG on SP-2

Figure 17: Performance Measurements

6.3 Experimental Results
Our implementation of the Bernoulli Sparse Compiler is ongoing,
but we have enough of it implemented to produce the following
results.
First, we compared code produced by the Bernoulli compiler with
the NIST Sparse BLAS C implementations of two algorithms—
matrix-vector multiplication and unit-diagonal triangular solve, for
five sparse matrix formats: Co-ordinate (COO), Compressed Sparse
Column (CSC), Compressed Sparse Row (CSR), Block Sparse Row
(BSR), and Variable-size Block sparse Row (VBR). We used the
matrix can 1072 from the Harwell-Boeing collection [11] as in-
put. It arises in finite-element structures problems in aircraft design
and has 1072 rows and columns and 12444 nonzero entries. For the
block formats we used the sparsity pattern of the same matrix but
expanded each entry into a ��� �� block.
We also used the Bernoulli Sparse Compiler to generate code for
the entire Conjugate Gradient (CG) iterative solver. Since the NIST
C Sparse BLAS does not provide this routine, we also hand-wrote
versions of CG for each of the storage formats, which called the
appropriate NIST C Sparse BLAS routines to perform the kernel
computations. The point that we wish to make here is that our ap-
proach scales from simple loop nests, like MVM and TS, to larger
computations like CG.

We ran the experiments on two platforms—a Pentium II and a wide
node of the IBM SP-2 at Cornell Theory Center. The Pentium II
runs at 300 MHz and has 512 KB of L2 cache and 256 MB of
RAM. The operating system is RedHat Linux 5.2. We compiled
the code with egcs version 1.1.1 with -O4 -malign-double
-mpentiumpro compiler flags. The wide node of the SP2 has a
POWER2 Super Chip processor running at 135 MHz clock speed,

128 KB data cache, 256 bit memory bus, and 1 GB of memory. We
used the xlc compiler version 3.1.4.7 with -O3 -qarch=pwr2
-qmaxmem=-1 flags on AIX 4.2.

Figure 17 presents the performance of the handwritten NIST C
code (dark bars) and the code generated by the Bernoulli Sparse
Compiler (shaded bars). These results demonstrate that the generic
programming approach can successfully compete with handwritten
library code. Indeed, Bernoulli-generated code performance ranges
between 96% and 113% of NIST’s on the Pentium II and between
85% and 121% on the IBM SP-2. Moreover, examining the C code
reveals that the Bernoulli compiler in most cases produces code that
is structurally identical to the handwritten one. There are minor
syntactic differences—for example, the handwritten code would
use for (i=0;i!=m;i++) *pc++ = 0; while the compiler
generated for (i=0;i<=m-1;i++) c[i]=0;. These differ-
ences result in the handwritten code performing slightly better than
the compiler-generated one when compiled with egcs and slightly
worse when compiled with xlc.

We observed only three structural differences in the code generated
by the compiler. The handwritten implementation of CSC matrix-
vector multiplication does not hoist a loop invariant. That omission
is penalized by egcs and rewarded by xlc. The NIST implemen-
tation of triangular solve for CSR restructures the code in order to
avoid initializing the output vector which gives it a small advan-
tage on both platforms. The handwritten matrix-vector multiplica-
tion for the block formats contains a questionable guard that tries
to avoid computation for zero entries in the vector. The absence
of this guard improves the performance of the compiler-generated
code by up to 21%.

7. RELATED WORK AND CONCLUSIONS
Generic Programming Our work is in the spirit of generic pro-
gramming which is “the idea of abstracting from concrete, efficient
algorithms to obtain generic algorithms that can be combined with
different data representations to produce a wide variety of useful
software” [12]. An important difference from existing generic pro-
gramming systems is that in our system, the API used in writing
generic algorithms is different from the API that is supported by the
implementors of compressed formats. Supporting dual API’s ef-
fectively requires advanced restructuring compiler technology and
can be viewed as a sophisticated form of template instantiation. In
the terminology of aspect-oriented programming [7], index struc-
tures in compressed formats are aspects that cross-cut the get/set
abstractions of the basic API. However, the existing effort on using
aspect-oriented programming for sparse matrix computations [14]
does not provide an API for supporting user-defined data structures.

Restructuring Compilers Bik and Wijshoff were the first to apply
restructuring compiler technology to synthesize sparse matrix pro-
grams from dense matrix programs [3]. Their compiler restructured
input codes to match a Compressed Hyperplane Storage (CHS) for-
mat (CSR and CSC are special cases of this format) whenever pos-
sible. The main limitation is that the compiler has a small set of
simple formats built into it, so it cannot be extended to new for-
mats.

Sparse Matrix Libraries POOMA [13] and Blitz++ [20] are two
recent packages for matrix computations whose API is essentially
the Strawman API described earlier. A rich set of C++ templates is
provided, using which a programmer can assemble matrix imple-
mentations. Some optimizations can be performed by the compiler
by relying on Template Expressions [19], but the range of such
optimizations is limited. In particular, programmers must provide
their own implementations of operations like MVM or triangular
solve.
The MTL [16] is another C++ matrix library in which matrices are
viewed as containers of containers. This idea is analogous to in-
dexed sequential access, but not as rich as the structures that we
discuss in this paper. Also, MTL does not have high- and low-level
API’s, as we do.

Ongoing Work We are currently investigating the applicability
of the techniques described in this paper to direct methods like
Cholesky factorization. Codes for sparse direct methods usually
exploit a lot of domain-specific tricks to obtain efficiency [4], and
it is unclear how many of these can be incorporated into a restruc-
turing compiler. One solution might be to lower the semantic level
of the input code, but these issues remain to be investigated.

8. REFERENCES

[1] Nawaaz Ahmed, Nikolay Mateev, Keshav Pingali, and Paul
Stodghill. Compiling imperfectly-nested sparse matrix codes
with dependences. Technical Report TR2000-1788, Cornell
University, Computer Science, March 2000.

[2] Matthew Austern. Generic Programming and the STL.
Addison-Wesley, Reading, MA, 1998.

[3] Aart Bik and Harry A.G. Wijshoff. Compilation techniques
for sparse matrix computations. In Proceedings of the 1993
International Conference on Supercomputing, pages 416–
424, Tokyo, Japan, July 20–22, 1993.

[4] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xi-
aoye S. Li, and Joseph W. H. Liu. A supernodal approach to
sparse partial pivoting. Technical Report CSD-95-883, Com-
puter Science Division, University of California, Berkeley,
1995.

[5] BLAS Techinal Forum. Sparse BLAS library: Lite and toolkit
level specifications, January 1997. Edited by Roldan Pozo and
Micheal A. Heroux and Karin A. Remington.

[6] Gene H. Golub and Charles F. Van Loan. Matrix Computa-
tions. The Johns Hopkins University Press, Baltimore, MD,
2nd edition, 1989.

[7] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. Technical Report SPL97-008
P9710042, Xerox Palo Alto Research Center, February 1997.

[8] Induprakas Kodukula, Nawaaz Ahmed, and Keshav Pingali.
Data-centric multi-level blocking. In Proceedings of the ACM
SIGPLAN ’97 Conference on Programming Language Design
and Implementation, Las Vegas, NV, June 16–18, 1997.

[9] Vladimir Kotlyar. Relational Algebraic Techniques for the
Synthesis of Sparse Matrix Programs. Technical Report
TR99-1732, Department of Computer Science, Cornell Uni-
versity, March 1999.

[10] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. A rela-
tional approach to the compilation of sparse matrix programs.
In Proceedings of EUROPAR, 1997.

[11] Matrix Market home page, February 29, 2000.
http://math.nist.gov/MatrixMarket/.

[12] David R. Musser and Alexander A. Stepanov. Generic pro-
gramming. In First International Joint Conference of ISSAC-
88 and AAECC-6, Rome, Italy, July 4-8, 1988. Appears in
LNCS 358.

[13] Parallel object-oriented methods and applications, October
23, 1998. http://www.acl.lanl.gov/pooma/.

[14] William Pugh and Tatiana Shpeisman. Generation of efficient
code for sparse matrix computations. In The Eleventh Inter-
national Workshop on Languages and Compilers for Parallel
Computing, LNCS, Springer-Verlag, Chapel Hill, NC, August
1998.

[15] Yousef Saad. SPARSKIT version 2.0.

[16] Jeremy G. Siek and Andrew Lumsdaine. The matrix tem-
plate library: A generic programming approach to high per-
formance numerical linear algebra. In ISCOPE ’98, 1998.

[17] Paul Stodghill. A Relational Approach to the Automatic
Generation of Sequential Sparse Matrix Codes. PhD the-
sis, Cornell University, July 1997. Also as Technical Report
CORNELLCS:TR97-1635.

[18] Jeffrey D. Ullman. Principles of Database and Knowledge-
Base Systems, volume 1 and 2. Computer Science Press,
Rockville, MD, 1988.

[19] Todd Veldhuizen. Expression templates. C++ Report,
7(5):26–31, June 1995.

[20] Todd Veldhuizen. The Blitz++ array model. In ISCOPE ’98,
1998.

APPENDIX

A. AN EXAMPLE: JAGGED DIAGONAL

A.1 Overview
In this appendix, we present an extended example in order to illus-
trate the use of the interfaces that were presented in this paper.
The sparse matrix format that we will use for our example is the
Jagged Diagonal (JAD) format. An instance of a JAD matrix may
be constructed as follows. First, the rows of the matrix, as in Fig-
ure 18(a), are “compressed” so that zero elements are eliminated.
This requires introducing an auxiliary array, colind, to maintain
the original column indices. This is shown in Figure 18(b). Next,
the rows of the compressed matrix are sorted by the number of
non-zeros within each row in decreasing order. This requires in-
troducing a permutation vector, iperm, as shown in Figure 18(c).
Finally, the columns of the compressed and sorted matrix, which
are called the “diagonals”, are stored contiguously in two vectors,
colind and values. The vector dptr is used to record the first
index of the entries of each diagonal within colind and values.
The final storage is shown in Figure 18(d).
The non-zero entries of a matrix in JAD format can be enumerated
quickly and efficiently by enumerating the values of colind and
values. In addition, if the program can be restructured to work
with the permuted row indices instead of the row indices, then effi-
cient row-oriented access can be provide as well. This is necessary
for such computations as triangular solve, which place certain con-
straints on the order in which elements may be enumerated.

A.2 Strawman API for JAD
The structure JadStorage is used to hold all of the components
of the JAD storage within a single object. For each matrix in the
JAD format there will be a single instance of this class which main-
tains the storage for that matrix. All other classes in the JAD im-
plementation keep a reference to this instance.

//
// JadStorage //
//
template<class BASE>
struct JadStorage {
public:

vector<int> *iperm;
vector<int> *dptr;
vector<int> *colind;
vector<BASE> *values;
const int n;
const int nd;
const int nz;
JadStorage(vector<int> *_iperm, vector<int> *_dptr,

vector<int> *_colind,
vector<BASE> *_values)

: iperm(_iperm), dptr(_dptr), colind(_colind),
values(_values), n(iperm->size()),
nd(dptr->size()-1), nz(colind->size()) {

}
};

The JadRandom class inherits from the matrix abstract class
and implements the random access interface for the matrix by im-
plementing the get and set abstract methods. The method ref
within this class is responsible for finding a particular �r� c� entry
within the matrix. It does this by first finding the corresponding
row within the permuted index space, and then performing a linear
search within the row for the given column index. A binary search
could be used, if it were assumed that entries within a row were
always sorted by column index.

//
// JadRandom //
//
template <class BASE>
class JadRandom : public matrix<BASE> {
protected:

JadStorage<BASE> *A;
public:

JadRandom(int m, int n, JadStorage<BASE> *A)
: matrix<BASE>(m,n), A(A) { }

virtual ˜JadRandom() { }

BASE *ref (int r, int c) {
int rr = -1;
for (rr=0; rr<A->n; rr++)

if ((*A->iperm)[rr] == r) break;
assert(rr != A->n);
for (int d=0; d<A->nd; d++) {

int jj_lo = (*A->dptr)[d];
int jj_hi = (*A->dptr)[d+1];
int jj = jj_lo + rr;
if (jj >= jj_hi) break;
if ((*A->colind)[jj] == c)

return &(*A->values)[jj];
}
return 0;

}
virtual BASE get(int r, int c) {

BASE *p = ref(r,c);
if (p) { return *p; }
else { return 0; }

}
virtual void set(int r, int c, BASE v) {

BASE *p = ref(r,c);
assert(p);
*p = v;

}
};

A.3 Ironman API for JAD
Using the grammar presented in Section 4, the following view can
be used to describe the indexing structure of the JAD format.

mapfiperm�rr
 �� r � ��� rr� c �� v�� �rr� c� v��g

The following classes implement the different pieces of the view.

� Jad: mapfiperm�rr
 �� r � � � � g
� JadPers: � � �� � � �
� JadFlat: � rr� c �� v
� JadHier: rr � � � �
� JadRow: c� v

We present the classes “inside-out”.
The classes JadFlat and JadFlatIterator implement the
view of the JAD format that is appropriate for fast enumeration. As
its view suggests, this implementation is very similar to the imple-
mentation of co-ordinate storage presented earlier in the paper. The
difference is that, with the JAD format, the row index is not stored
with each entry, and must be computed on the fly. This is done in
method JadFlatIterator::operator *.

//
// JadFlat //
//
template<class BASE> class JadFlatIterator;
template<class BASE>
class JadFlat

: public term_nesting< JadFlatIterator<BASE>,
term_scalar<BASE> >

{
protected:

JadStorage<BASE> *A;
public:

JadFlat(JadStorage<BASE> *A) : A(A) { }
virtual iterator_type begin()

{ return JadFlatIterator<BASE>(A,0); }
virtual iterator_type end()

{ return JadFlatIterator<BASE>(A,A->nz); }
virtual subterm_type subterm(iterator_type it) {

return (*A->values)[it.jj]; }
};

//
// JadFlatIterator //
//
template<class BASE>
class JadFlatIterator :

public increasing_iterator<pair<int,int> > {
friend class JadFlat<BASE>;

protected:
JadStorage<BASE> *A; int jj; int d;
void frob_d() { if (jj == (*A->dptr)[d+1]) d++; }

public:
JadFlatIterator(JadStorage<BASE> *A, int jj)

: A(A), jj(jj), d(0) { }
virtual void operator ++(int) { jj++; frob_d(); }
virtual key_type operator *() {

return make_pair(jj-(*A->dptr)[d],(*A->colind)[jj]);
}
virtual bool equal(

const proto_iterator<pair<int,int> > &y) const
{ return jj ==

dynamic_cast<const JadFlatIterator &>(y).jj; }
};

The JadHier, JadRow and JadRowIterator classes provide
row-oriented access to the JAD format . The JadHier class pro-
vides access to the rows within the permuted row index space. The
JadRow and JadRowIterator classes provide access to the
non-zero elements within each row accessed via JadHier.

a b

c d e

g

ih

f

j k l m

c d e

ih

g

a b

f

j k l m

values

1 2

1

1 2 3 4

colind

2 3

4

5

43

2 3 5ec d

43ih

1 4f g

1 2a b

1 2 3 4j k l m

colindvaluesiperm

5

1

3

2

4

iperm

5

1

3

2

4

1411 1361

j

1 2

c a hf

1 1 3

k

2 3

d b ig

2 4 4

l

3 5

e m

4

dptr

values

colind

(a) (b) (c) (d)

Figure 18: Building JAD Storage

//
// JadHier //
//
template<class BASE> class JadRow;
template<class BASE> class JadRowIterator;
template<class BASE>
class JadHier

: public term_nesting< interval_iterator<int>,
JadRow<BASE> >

{
protected:

JadStorage<BASE> *A;
public:

JadHier(JadStorage<BASE> *A) : A(A) { }
virtual iterator_type begin()

{ return interval_iterator<int>(0); }
virtual iterator_type end()

{ return interval_iterator<int>(A->n); }
virtual subterm_type subterm(iterator_type it) {

return JadRow<BASE>(A,*it); }
};

//
// JadRow //
//
template<class BASE>
class JadRow

: public term_nesting< JadRowIterator<BASE>,
term_scalar<BASE> >

{
protected:

JadStorage<BASE> *A; int r; int dmax;
public:

JadRow(JadStorage<BASE> *A, int r) : A(A), r(r) {
for (dmax = 0;

dmax < A->nd-1 &&
r < (*A->dptr)[dmax+1]-(*A->dptr)[dmax];

dmax++)
;

}
virtual iterator_type begin() {

return JadRowIterator<BASE>(A,r,0); }
virtual iterator_type end() {

return JadRowIterator<BASE>(A,r,dmax); }
virtual subterm_type subterm(iterator_type it) {

return (*A->values)[(*A->dptr)[it.d]+r]; }
};

//
// JadRowIterator //
//
template<class BASE>
class JadRowIterator :

public increasing_iterator<int> {
friend class JadRow<BASE>;

protected:
JadStorage<BASE> *A; int r; int d;

public:
JadRowIterator(JadStorage<BASE> *A, int r, int d)

: A(A), r(r), d(d) { }
virtual void operator ++(int) { d++; }
virtual key_type operator*() {

return (*A->colind)[(*A->dptr)[d]+r]; }
virtual bool equal(const proto_iterator<int> &y) const

{ return
r == dynamic_cast<const JadRowIterator &>(y).r
&& d == dynamic_cast<const

JadRowIterator &>(y).d; }
};

The class JadPers simply wraps the JadFlat and JadHier
classes together with �, the perspective operator.

//
// JadPers //
//
template<class BASE>
class JadPers

: public term_perspective2< JadFlat<BASE>,
JadHier<BASE> >

{
protected:

JadStorage<BASE> *A;
public:

JadPers(JadStorage<BASE> *A) : A(A) { }
virtual subterm1_type subterm1() {

return JadFlat<BASE>(A); }
virtual subterm2_type subterm2() {

return JadHier<BASE>(A); }
};

The top-most level of the JAD’s view is the map operator that de-
scribes the permutation. The interface class term_perm2 refines

the general term_map class. It takes two template parameters, Pr
and Pc, which are the permutations used on the row and column
indices, respectively.

//
// term_perm2 //
//
template<class Pr, class Pc, class E>
class term_perm2

: public term_map< pair<int,int>, E >
{
public:

Pr pr; Pc pc;
term_perm2() { }
term_perm2(const Pr &pr, const Pc &pc)

: pr(pr), pc(pc) { }
virtual pair<int,int> map(pair<int,int> x) {

return make_pair(pr.apply(x.first),
pc.apply(x.second));

}
virtual pair<int,int> unmap(pair<int,int> x) {

return make_pair(pr.unapply(x.first),
pc.unapply(x.second));

}
};

The classes term_perm_ident (representing identity permuta-
tion) and term_perm_vector (permutation vector) are used as
the Pr and Pc arguments to term_perm2.

//
// term_perm_ident //
//
class term_perm_ident {
public:

term_perm_ident() { }
int apply(int x) { return x; }
int unapply(int x) { return x; }

};

//
// term_perm_vector //
//
class term_perm_vector {
public:

vector<int> *perm;
term_perm_vector() : perm(0) { }
term_perm_vector(vector<int> *perm) : perm(perm) { }
int apply(int ii) { return (*perm)[ii]; }
int unapply(int ii) {

for (int i=0; i<(*perm).size(); i++)
if ((*perm)[i] == ii) return i;

assert(false);
}

};

The top class of the JAD format is Jad, and it provides the imple-
mentation of the row permutation. This is indicated by inheriting
from the term_perm2 interface class, instantiated for the row in-
dex with term_perm_vector, and with term_perm_ident
for the column index. The vector iperm is used to initialize the
instance of term_perm_vector.

//
// Jad //
//
template<class BASE>
class Jad

: public JadRandom<BASE>,
public term_perm2< term_perm_vector, term_perm_ident,

JadPers<BASE> >
{
public:

Jad(int m,int n, JadStorage<BASE> *A)
: JadRandom<BASE>(m,n,A),

term_perm2< term_perm_vector, term_perm_ident,
JadPers<BASE> >(

term_perm_vector(A->iperm),
term_perm_ident()) {}

virtual subterm_type subterm() {
return JadPers<BASE>(A); }

};

