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Abstract  In this paper, we have designed a System-on-Chip (SoC) Integration with Open Core Protocol (OCP) 
both master and slave cores particularly in the burst and in the tag mode. The master core is responsible for initiating 
the communication on the bus. The slave core is the device that has been addressed by the master in order to 
establish the communication. Multiple OCP transfers can be linked into a burst transaction Cores such as DRAM 
controllers can supply the second related piece of data much faster than the first Bursts allow a target to know that 
there are more transfers coming, so it can pre-fetch. Tags allow out-of-order return of responses and out-of-order 
commit of write data. In IP core plug-and-play reuse, cores need to be coupled from one another using a clearly 
specified core interface protocol. The core must be portable from one SOC design to the next without integration 
rework. Taking advantage of the increasing density of IC process technologies remains extremely dependant on a 
formidable challenge. Adapting cores from chip design to chip design to make them fit with the rest of the system-
on-a-chip (SOC) has become for a while a totally inefficient and unproductive methodology. Each time a core is to 
be integrated into a new system the system integrator is hampered by massive rework that reduces productivity. 
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1. Introduction 
The Open Core Protocol, initially introduced by Sonics 

and widely known as OCP, has been pioneering that 
design methodology for several years. OCP is effectively 
core-centric and thus applicable to all on-chip 
interconnection systems. As a natural result of this success, 
the OCP specification has been moved under governance 
of the OCP-IP consortium. This association has been 
created in 2001 and is driven by a pool of semiconductor 
industry leaders, including Nokia, Texas Instruments, 
STMicroelectronics, UMC and Sonics, the original 
founder. A lot of other major players have joined the 
consortium since its creation. Hence today more than 70 
member companies are merging their effort for the widest 
OCP adoption [1]. 

Multiple OCP transfers can be linked into a burst 
transaction Cores such as DRAM controllers can supply 
the second related piece of data much faster than the first. 
Tags are available in the OCP interface to control the 
ordering of responses [2]. 

1.1. Feature 

1.1.1. Point-to-Point Synchronous Interface 
To simplify timing analysis, physical design, and 

general comprehension, the OCP is composed of uni-
directional signals driven with respect to, and sampled by 
the rising edge of the OCP clock. The OCP is fully 
synchronous and contains no multi-cycle timing paths. All 
signals other than the clock are strictly point-to-point. 

1.1.2. Bus Independence 
A core utilizing the OCP can be interfaced to any bus. 

A test of any bus-independent interface is to connect a 
master to a slave without an intervening on chip bus. This 
test not only drives the specification towards a fully 
symmetric interface but helps to clarify other issues. For 
instance, device selection techniques vary greatly among 
on-chip buses. Some use address decoders. Others 
generate independent device select signals (analogous to a 
board level chip select). This complexity should be hidden 
from IP cores, especially since in the directly-connected 
case there is no decode/selection logic. OCP-compliant 
slaves receive device selection information integrated into 
the basic command field. Arbitration schemes vary widely. 
Since there is virtually no arbitration in the directly 
connected case, arbitration for any shared resource is the 
sole responsibility of the logic on the bus side of the OCP. 
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This permits OCP compliant masters to pass a command 
field across the OCP that the bus interface logic converts 
into an arbitration request sequence [3]. 

The continuous innovation of semiconductor 
technology enables more complex System-on-Chip (SoC) 
designs. Tens, even hundreds of intellectual properties 
(IPs) are integrated into an SoC to provide various 
functions, including communications, networking, 
multimedia, storage, etc. An increasing number of 
electronic devices such as mobile phones, digital media 
players, digital TVs, are designed and manufactured using 
SoCs. The usually short market life cycle of these 
electronic devices, however, does not allow a long 
schedule for chip designers to integrate a such complex 
SoC [4]. 

1.2. Open Core Protocol 

The OCP defines a point-to-point interface between two 
communicating entities such as IP cores and bus interface 
modules (bus wrappers). One entity acts as the master of 
the OCP instance, and the other as the slave. Only the 
master can present commands and is the controlling entity. 
The slave responds to commands presented to it, either by 
accepting data from the master, or presenting data to the 
master. For two entities to communicate in a peer-to-peer 
fashion, there need to be two instances of the OCP 
connecting them - one where the first entity is a master, 
and one where the first entity is a slave [5]. 

 

Figure 1.1. OCP Instances 

2. Implementation & Verification 

2.1. Block Diagram 
Figure 2.1 shows the system block diagram. It shows 

how input is OCP interfaced with the memory. Here the 
data from the test bench is communicated through OCP 
interface towards destination. The destination is a 
RAM(Random Access Memory). The asynchronous FIFO 
will act as a buffer between OCP interface & memory. 

 

Figure 2.1. Block Diagram 

2.1.1. OCP Interface 
2.1.1.1. Sequential Master 

The first example is a medium-throughput, high-
frequency master design. To achieve high frequency, the 
implementation is a completely sequential (that is, Moore 
state machine) design. 

 

Figure 2.2. State Diagram of OCP Master 

Since this is a Moore state machine, the outputs are 
only a function of the current state. The master cannot 
begin a request phase by asserting MCmd until it has 
entered a requesting state (either write or read), based 
upon the WrReq and RdReq inputs. In the requesting 
states, the master begins a request phase that continues 
until the slave asserts SCmd Accept. At this point (this 
example assumes write posting with no response on 
writes), a Write command is complete, so the master 
transitions back to the idle state. In case of a Read 
command, the next state is dependent upon whether the 
slave has begun the response phase or not.  

Since MResp Accept is not enabled in this example, the 
response phase always ends in the cycle it begins, so the 
master may transition back to the idle state if SResp is 
asserted. If the response phase has not begun, then the 
next state is wait resp, where the master waits until the 
response phase begins. The maximum throughput of this 
design is one transfer every other cycle, since each 
transfer ends with at least one cycle of idle. The designer 
could improve the throughput (given a cooperative slave) 
by adding the state transitions marked with dashed lines. 
This would skip the idle state when there are more 
pending transfers by initiating a new request phase on the 
cycle after the previous request or response phase. Also, 
the Moore state machine adds up to a cycle of latency onto 
the idle to request transition, depending on the arrival time 
of WrReq and RdReq. The benefits of this design style 
include very simple timing, since the master request phase 
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outputs deliver a full cycle of setup time, and minimal 
logic depth associated with Sresp [6].  
2.1.1.2. Sequential Slave 

An analogous design point on the slave side is shown in 
Figure 2.3. This slave’s OCP logic is a Moore state 
machine. The slave is capable of servicing an OCP read 
with one Clk cycle latency. On an OCP write, the slave 
needs the master to hold MData and the associated control 
fields steady for a complete cycle so the slave’s write 
pulse generator will store the desired data into the desired 
location. The state machine reacts only to the OCP (the 
internal operation of the slave never prevents it from 
servicing a request), and the only non-OCP output of the 
state machine is the enable (WE) for the write pulse 
generator [7].  

 

Figure 2.3. State Machine of OCP Slave 

The state machine begins in an idle state, where it de-
asserts Scmd Accept and SResp. When it detects the start 
of a request phase, it transitions to either a read or a write 
state, based upon MCmd. Since the slave will always 
complete its task in one cycle, both active states end the 
request phase (by asserting SCmd Accept), and the read 
state also begins the response phase. Since Mresp Accept 
is not enabled in this example, the response phase will end 
in the same cycle it begins. Writes without responses are 
assumed so SResp is NULL during the write state. Finally, 
the state machine triggers the write pulse generator in its 
write state, since the request phase outputs of the master 
will be held steady until the state machine transitions back 

to idle. Since the outputs depend upon the state machine, 
the sequential OCP slave has attractive timing properties. 
It will operate at very high frequencies (providing the 
internal logic of the slave an run that quickly). This state 
machine can be extended to accommodate slaves with 
internal latency of more than one cycle by adding a 
counting state between idle and one or both of the active 
states [8]. 

2.1.2. Asynchronous FIFO 
An asynchronous FIFO refers to a FIFO design where 

data values are written to a FIFO buffer from one clock 
domain and the data values are read from the same FIFO 
buffer from another clock domain, where the two clock 
domains are asynchronous to each other. Asynchronous 
FIFOs are used to safely pass data from one clock domain 
to another clock domain. 

The write pointer always points to the next word to be 
written; therefore, on reset, both pointers are set to zero, 
which also happens to be the next FIFO word location to 
be written. On a FIFO-write operation, the memory 
location that is pointed to by the write pointer is written, 
and then the write pointer is incremented to point to the 
next location to be written. Similarly, the read pointer 
always points to the current FIFO word to be read. Again 
on reset, both pointers are reset to zero, the FIFO is empty 
and the read pointer is pointing to invalid data (because 
the FIFO is empty and the empty flag is asserted). As soon 
as the first data word is written to the FIFO, the write 
pointer increments, the empty flag is cleared, and the read 
pointer that is still addressing the contents of the first 
FIFO memory word, immediately drives that first valid 
word onto the FIFO data output port, to be read by the 
receiver logic. The fact that the read pointer is always 
pointing to the next FIFO word to be read means that the 
receiver logic does not have to use two clock periods to 
read the data word. If the receiver first had to increment 
the read pointer before reading a FIFO data word, the 
receiver would clock once to output the data word from 
the FIFO, and clock a second time to capture the data 
word into the receiver. That would be needlessly 
inefficient. The FIFO is empty when the read and write 
pointers are both equal. This condition happens when both 
pointers are reset to zero during a reset operation, or when 
the read pointer catches up to the write pointer, having 
read the last word from the FIFO[9]. 

 

Figure 3.1. Simulation result of Burst Operation 
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A FIFO is full when the pointers are again equal, that is, 
when the write pointer has wrapped around and caught up 
to the read pointer. This is a problem. The FIFO is either 
empty or full when the pointers are equal. One design 
technique used to distinguish between full and empty is to 
add an extra bit to each pointer. When the write pointer 
increments past the final FIFO address, the write pointer 
will increment the unused MSB while setting the rest of 
the bits back to zero as shown in Figure 3.1 (the FIFO has 
wrapped and toggled the pointer MSB). The same is done 
with the read pointer. If the MSBs of the two pointers are 
different, it means that the write pointer has wrapped one 
more time that the read pointer. If the MSBs of the two 

pointers are the same, it means that both pointers have 
wrapped the same number of times [10]. 

3. Simulation Results & Analysis 
The model is designed using VHDL code & simulated 

using Xilinx 11.1i. Figure 3.1 shows OCP burst mode 
operation which indicates simplified timing analysis that 
is useful for physical design. Figure 3.2 shows OCP tag 
mode operation which indicates reduced clock period 
which enhances speed of data transfer. Figure 3.3 shows 
asynchronous FIFO operation which indicates fastest data 
operation compared to above two cases. 

 

Figure 3.2. Simulation result of Tag Operation 

 

Figure 3.3. Simulation result of FIFO 

4. Conclusion 

The design of a large scale SoC is becoming 
challenging not only due to its complexity, but also the 
use of a large amount of IPs. A consensus interface 
standard for IP cores is becoming important and even 
inevitable for a successful SoC design. OCP, with its 
openness, collaborative, not-for-profit nature, and inherent 
large industry member base, is quickly becoming a 

feasible and preferable solution over a close or an in-
house standard. 

This paper presents the concepts behind the Open Core 
Protocol, a core interface aimed at capturing all of a core’s 
system communication needs, allowing the core to be 
decoupled from the on-chip interconnect system. The 
Open Core Protocol is a simple synchronous, point-to-
point interface between a core and the rest of the system. 
It is scalable and configurable to match the 
communication requirements associated with different IP 
cores.  



 Journal of Embedded Systems 27 

 

Acknowledgement 
The authors sincerely thank to the H.O.D & all the staff 

of Dept. of ETC, SIET, DHENKANAL, ODISHA for 
constant encouragement and support directly or indirectly. 

References 
[1] Jari Nurmi, “Processor design: System-on-chip computing for 

ASICS & FPGAS”, Springer 1st edition, 2007. 
[2] Sonics, Inc. Open Core Protocol Specification Reference Guide 

Version 2.0. 

[3] Wolf-Dietrich Weber “Enabling Reuse via an IP Core-centric 
Communications Protocol: Open Core Protocol.” Sonics, Inc. 

[4] Farzad Nekoogar & Faranak Nekoogar “From ASICS to SOCS:A 
practical approach”, Pearson Educaton, 2003. 

[5] Satoshi Komatsu, Shota Watanabe “Protocol Transducer Synthesis 
using Divide and Conquer approach” IEEE, 1-4244-0630-7/07-
2007. 

[6] Douglas J Smith, HDL Chip Design.  
[7] Chih-Wea Wang, Chi-Shao Lai, Chi-Feng Wu, Shih-Arn Hwang, 

and Ying-Hsi Lin “On-chip Interconnection Design and SoC 
Integration with OCP” IEEE 1-4244-1617-2/08-2008  

[8] Bhaskar, J.A, “VHDL Primer”, Pearson Education thirteenth 
edition-2004. 

[9] Clifford E. Cummings “Simulation and Synthesis Techniques for 
Asynchronous FIFO Design” Sunburst Design, Inc. 

[10] Carl Harmacture, Computer Architecture.  
 


