
Journal of Embedded Systems, 2014, Vol. 2, No. 2, 23-27
Available online at http://pubs.sciepub.com/jes/2/2/1
© Science and Education Publishing
DOI:10.12691/jes-2-2-1

A Novel System-on-Chip (SoC) Integration Open Core
Protocol (OCP) Bus with Multiple Master & Slave

Support

Snigdharani Nath1, Manas Ranjan Jena2,*, Shilparani Panda1

1Deparment of ETC, SIET, DHENKANAL,ODISHA
2Deparment of ELTCE, VSSUT, BURLA, ODISHA
*Corresponding author: manas.synergy@gmail.com

Received May 10, 2014; Revised May 14, 2014; Accepted May 14, 2014

Abstract In this paper, we have designed a System-on-Chip (SoC) Integration with Open Core Protocol (OCP)
both master and slave cores particularly in the burst and in the tag mode. The master core is responsible for initiating
the communication on the bus. The slave core is the device that has been addressed by the master in order to
establish the communication. Multiple OCP transfers can be linked into a burst transaction Cores such as DRAM
controllers can supply the second related piece of data much faster than the first Bursts allow a target to know that
there are more transfers coming, so it can pre-fetch. Tags allow out-of-order return of responses and out-of-order
commit of write data. In IP core plug-and-play reuse, cores need to be coupled from one another using a clearly
specified core interface protocol. The core must be portable from one SOC design to the next without integration
rework. Taking advantage of the increasing density of IC process technologies remains extremely dependant on a
formidable challenge. Adapting cores from chip design to chip design to make them fit with the rest of the system-
on-a-chip (SOC) has become for a while a totally inefficient and unproductive methodology. Each time a core is to
be integrated into a new system the system integrator is hampered by massive rework that reduces productivity.

Keywords: System-on-Chip (SoC), interface, IPs, Open Core Protocol (OCP), FIFO

Cite This Article: Snigdharani Nath, Manas Ranjan Jena, and Shilparani Panda, “A Novel System-on-Chip
(SoC) Integration Open Core Protocol (OCP) Bus with Multiple Master & Slave Support.” Journal of Embedded
Systems, vol. 2, no. 2 (2014): 23-27. doi: 10.12691/jes-2-2-1.

1. Introduction
The Open Core Protocol, initially introduced by Sonics

and widely known as OCP, has been pioneering that
design methodology for several years. OCP is effectively
core-centric and thus applicable to all on-chip
interconnection systems. As a natural result of this success,
the OCP specification has been moved under governance
of the OCP-IP consortium. This association has been
created in 2001 and is driven by a pool of semiconductor
industry leaders, including Nokia, Texas Instruments,
STMicroelectronics, UMC and Sonics, the original
founder. A lot of other major players have joined the
consortium since its creation. Hence today more than 70
member companies are merging their effort for the widest
OCP adoption [1].

Multiple OCP transfers can be linked into a burst
transaction Cores such as DRAM controllers can supply
the second related piece of data much faster than the first.
Tags are available in the OCP interface to control the
ordering of responses [2].

1.1. Feature

1.1.1. Point-to-Point Synchronous Interface
To simplify timing analysis, physical design, and

general comprehension, the OCP is composed of uni-
directional signals driven with respect to, and sampled by
the rising edge of the OCP clock. The OCP is fully
synchronous and contains no multi-cycle timing paths. All
signals other than the clock are strictly point-to-point.

1.1.2. Bus Independence
A core utilizing the OCP can be interfaced to any bus.

A test of any bus-independent interface is to connect a
master to a slave without an intervening on chip bus. This
test not only drives the specification towards a fully
symmetric interface but helps to clarify other issues. For
instance, device selection techniques vary greatly among
on-chip buses. Some use address decoders. Others
generate independent device select signals (analogous to a
board level chip select). This complexity should be hidden
from IP cores, especially since in the directly-connected
case there is no decode/selection logic. OCP-compliant
slaves receive device selection information integrated into
the basic command field. Arbitration schemes vary widely.
Since there is virtually no arbitration in the directly
connected case, arbitration for any shared resource is the
sole responsibility of the logic on the bus side of the OCP.

24 Journal of Embedded Systems

This permits OCP compliant masters to pass a command
field across the OCP that the bus interface logic converts
into an arbitration request sequence [3].

The continuous innovation of semiconductor
technology enables more complex System-on-Chip (SoC)
designs. Tens, even hundreds of intellectual properties
(IPs) are integrated into an SoC to provide various
functions, including communications, networking,
multimedia, storage, etc. An increasing number of
electronic devices such as mobile phones, digital media
players, digital TVs, are designed and manufactured using
SoCs. The usually short market life cycle of these
electronic devices, however, does not allow a long
schedule for chip designers to integrate a such complex
SoC [4].

1.2. Open Core Protocol

The OCP defines a point-to-point interface between two
communicating entities such as IP cores and bus interface
modules (bus wrappers). One entity acts as the master of
the OCP instance, and the other as the slave. Only the
master can present commands and is the controlling entity.
The slave responds to commands presented to it, either by
accepting data from the master, or presenting data to the
master. For two entities to communicate in a peer-to-peer
fashion, there need to be two instances of the OCP
connecting them - one where the first entity is a master,
and one where the first entity is a slave [5].

Figure 1.1. OCP Instances

2. Implementation & Verification

2.1. Block Diagram
Figure 2.1 shows the system block diagram. It shows

how input is OCP interfaced with the memory. Here the
data from the test bench is communicated through OCP
interface towards destination. The destination is a
RAM(Random Access Memory). The asynchronous FIFO
will act as a buffer between OCP interface & memory.

Figure 2.1. Block Diagram

2.1.1. OCP Interface
2.1.1.1. Sequential Master

The first example is a medium-throughput, high-
frequency master design. To achieve high frequency, the
implementation is a completely sequential (that is, Moore
state machine) design.

Figure 2.2. State Diagram of OCP Master

Since this is a Moore state machine, the outputs are
only a function of the current state. The master cannot
begin a request phase by asserting MCmd until it has
entered a requesting state (either write or read), based
upon the WrReq and RdReq inputs. In the requesting
states, the master begins a request phase that continues
until the slave asserts SCmd Accept. At this point (this
example assumes write posting with no response on
writes), a Write command is complete, so the master
transitions back to the idle state. In case of a Read
command, the next state is dependent upon whether the
slave has begun the response phase or not.

Since MResp Accept is not enabled in this example, the
response phase always ends in the cycle it begins, so the
master may transition back to the idle state if SResp is
asserted. If the response phase has not begun, then the
next state is wait resp, where the master waits until the
response phase begins. The maximum throughput of this
design is one transfer every other cycle, since each
transfer ends with at least one cycle of idle. The designer
could improve the throughput (given a cooperative slave)
by adding the state transitions marked with dashed lines.
This would skip the idle state when there are more
pending transfers by initiating a new request phase on the
cycle after the previous request or response phase. Also,
the Moore state machine adds up to a cycle of latency onto
the idle to request transition, depending on the arrival time
of WrReq and RdReq. The benefits of this design style
include very simple timing, since the master request phase

 Journal of Embedded Systems 25

outputs deliver a full cycle of setup time, and minimal
logic depth associated with Sresp [6].
2.1.1.2. Sequential Slave

An analogous design point on the slave side is shown in
Figure 2.3. This slave’s OCP logic is a Moore state
machine. The slave is capable of servicing an OCP read
with one Clk cycle latency. On an OCP write, the slave
needs the master to hold MData and the associated control
fields steady for a complete cycle so the slave’s write
pulse generator will store the desired data into the desired
location. The state machine reacts only to the OCP (the
internal operation of the slave never prevents it from
servicing a request), and the only non-OCP output of the
state machine is the enable (WE) for the write pulse
generator [7].

Figure 2.3. State Machine of OCP Slave

The state machine begins in an idle state, where it de-
asserts Scmd Accept and SResp. When it detects the start
of a request phase, it transitions to either a read or a write
state, based upon MCmd. Since the slave will always
complete its task in one cycle, both active states end the
request phase (by asserting SCmd Accept), and the read
state also begins the response phase. Since Mresp Accept
is not enabled in this example, the response phase will end
in the same cycle it begins. Writes without responses are
assumed so SResp is NULL during the write state. Finally,
the state machine triggers the write pulse generator in its
write state, since the request phase outputs of the master
will be held steady until the state machine transitions back

to idle. Since the outputs depend upon the state machine,
the sequential OCP slave has attractive timing properties.
It will operate at very high frequencies (providing the
internal logic of the slave an run that quickly). This state
machine can be extended to accommodate slaves with
internal latency of more than one cycle by adding a
counting state between idle and one or both of the active
states [8].

2.1.2. Asynchronous FIFO
An asynchronous FIFO refers to a FIFO design where

data values are written to a FIFO buffer from one clock
domain and the data values are read from the same FIFO
buffer from another clock domain, where the two clock
domains are asynchronous to each other. Asynchronous
FIFOs are used to safely pass data from one clock domain
to another clock domain.

The write pointer always points to the next word to be
written; therefore, on reset, both pointers are set to zero,
which also happens to be the next FIFO word location to
be written. On a FIFO-write operation, the memory
location that is pointed to by the write pointer is written,
and then the write pointer is incremented to point to the
next location to be written. Similarly, the read pointer
always points to the current FIFO word to be read. Again
on reset, both pointers are reset to zero, the FIFO is empty
and the read pointer is pointing to invalid data (because
the FIFO is empty and the empty flag is asserted). As soon
as the first data word is written to the FIFO, the write
pointer increments, the empty flag is cleared, and the read
pointer that is still addressing the contents of the first
FIFO memory word, immediately drives that first valid
word onto the FIFO data output port, to be read by the
receiver logic. The fact that the read pointer is always
pointing to the next FIFO word to be read means that the
receiver logic does not have to use two clock periods to
read the data word. If the receiver first had to increment
the read pointer before reading a FIFO data word, the
receiver would clock once to output the data word from
the FIFO, and clock a second time to capture the data
word into the receiver. That would be needlessly
inefficient. The FIFO is empty when the read and write
pointers are both equal. This condition happens when both
pointers are reset to zero during a reset operation, or when
the read pointer catches up to the write pointer, having
read the last word from the FIFO[9].

Figure 3.1. Simulation result of Burst Operation

26 Journal of Embedded Systems

A FIFO is full when the pointers are again equal, that is,
when the write pointer has wrapped around and caught up
to the read pointer. This is a problem. The FIFO is either
empty or full when the pointers are equal. One design
technique used to distinguish between full and empty is to
add an extra bit to each pointer. When the write pointer
increments past the final FIFO address, the write pointer
will increment the unused MSB while setting the rest of
the bits back to zero as shown in Figure 3.1 (the FIFO has
wrapped and toggled the pointer MSB). The same is done
with the read pointer. If the MSBs of the two pointers are
different, it means that the write pointer has wrapped one
more time that the read pointer. If the MSBs of the two

pointers are the same, it means that both pointers have
wrapped the same number of times [10].

3. Simulation Results & Analysis
The model is designed using VHDL code & simulated

using Xilinx 11.1i. Figure 3.1 shows OCP burst mode
operation which indicates simplified timing analysis that
is useful for physical design. Figure 3.2 shows OCP tag
mode operation which indicates reduced clock period
which enhances speed of data transfer. Figure 3.3 shows
asynchronous FIFO operation which indicates fastest data
operation compared to above two cases.

Figure 3.2. Simulation result of Tag Operation

Figure 3.3. Simulation result of FIFO

4. Conclusion

The design of a large scale SoC is becoming
challenging not only due to its complexity, but also the
use of a large amount of IPs. A consensus interface
standard for IP cores is becoming important and even
inevitable for a successful SoC design. OCP, with its
openness, collaborative, not-for-profit nature, and inherent
large industry member base, is quickly becoming a

feasible and preferable solution over a close or an in-
house standard.

This paper presents the concepts behind the Open Core
Protocol, a core interface aimed at capturing all of a core’s
system communication needs, allowing the core to be
decoupled from the on-chip interconnect system. The
Open Core Protocol is a simple synchronous, point-to-
point interface between a core and the rest of the system.
It is scalable and configurable to match the
communication requirements associated with different IP
cores.

 Journal of Embedded Systems 27

Acknowledgement
The authors sincerely thank to the H.O.D & all the staff

of Dept. of ETC, SIET, DHENKANAL, ODISHA for
constant encouragement and support directly or indirectly.

References
[1] Jari Nurmi, “Processor design: System-on-chip computing for

ASICS & FPGAS”, Springer 1st edition, 2007.
[2] Sonics, Inc. Open Core Protocol Specification Reference Guide

Version 2.0.

[3] Wolf-Dietrich Weber “Enabling Reuse via an IP Core-centric
Communications Protocol: Open Core Protocol.” Sonics, Inc.

[4] Farzad Nekoogar & Faranak Nekoogar “From ASICS to SOCS:A
practical approach”, Pearson Educaton, 2003.

[5] Satoshi Komatsu, Shota Watanabe “Protocol Transducer Synthesis
using Divide and Conquer approach” IEEE, 1-4244-0630-7/07-
2007.

[6] Douglas J Smith, HDL Chip Design.
[7] Chih-Wea Wang, Chi-Shao Lai, Chi-Feng Wu, Shih-Arn Hwang,

and Ying-Hsi Lin “On-chip Interconnection Design and SoC
Integration with OCP” IEEE 1-4244-1617-2/08-2008

[8] Bhaskar, J.A, “VHDL Primer”, Pearson Education thirteenth
edition-2004.

[9] Clifford E. Cummings “Simulation and Synthesis Techniques for
Asynchronous FIFO Design” Sunburst Design, Inc.

[10] Carl Harmacture, Computer Architecture.

