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Abstract  Vector transformation operators method is applied to vector heat equation in one space dimension, to 
vector wave equation in one space dimension and to vector Laplace equation in two dimensions. The transformation 
operators method which allows us to interpret piecewise-homogeneous physical processes as a perturbing of a 
homogeneous ones. The analytical description of mathematical models of thermal conductivity and wave processes 
for piecewise homogeneous media with flat symmetry is obtained by the developed in this paper vector 
transformation operators method. 
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1. Introduction 
There are many classes of problems that are difficult to 

solve—or at least quite unwieldy algebraically—in their 
original representations. An integral transform "maps" an 
equation from its original "domain" into another domain. 
Manipulating and solving the equation in the target 
domain can be much easier than manipulation and solution 
in the original domain. The solution is then mapped back 
to the original domain with the inverse of the integral 
transform. 

The important mathematical models describing physical 
fields in multilayered piecewise homogeneous media, lead 
to an initial boundary value problems for partial 
differential equations [6]. The coefficients of the equations 
are continuous for homogeneous models and the 
coefficients of the equation are piecewise constant for 
piecewise-homogeneous models. Transformation 
operators allow to interpret piecewise-homogeneous 
physical fields as a perturbing homogeneous fields. The 
authors offer to use transformation operators method 
[8,12,13] for the study of mathematical models in 
piecewise homogeneous media. Classical transformation 
operators such as Weierstrass, Poisson, Sonin are treated 
as operators of perturbing. Theory of the classical 
transformation operators was developed by Marchenko 
V.A. [1], Kipriyanov I.S. [2], Samko, S.G., Kilbas, A.A., 
Marichev, O.I. [3]. The authors suggest to consider the 
transformation operator as a deformation of the 
mathematical homogeneous model into a piecewise-
homogeneous model. In this work transformation 
operators are constructed, studied and used for problems' 
solving on the composite real line. The generalized 

expressions of d'Alembert and Poisson integrals [4,5] over 
the composite real line are obtained. The analytical 
description of mathematical models of thermal 
conductivity [5,7] and wave processes for piecewise 
homogeneous media with flat symmetry is received. The 
Dirichlet problem for Laplace equation [5,6] on the 
composite real upper half-plane is solved. 

2. Transformation operators for a 
composite real line 

Definition 1. In linear algebra, a symmetric n n× real 
matrix A is said to be positive definite if Tz Az is positive 
for every non-zero column vector z of n real numbers. 
Here Tz denotes the transpose of z. Let 1P P−Λ be an 
eigendecomposition of A, where P is a unitary real 
matrix whose rows comprise an orthonormal basis of 
eigenvectors of A, and Λ is a real diagonal matrix whose 
main diagonal contains the corresponding eigenvalues. 

Let 
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In matrix calculus is a specialized notation 

 1 1 1 1 1
1 2 1 2, , .A A B a k a a k a

B
µ µ− − − − −= ⋅ = = 

    

Theorem 1. If the function 

1 2( ) ( ) ( ) ( ) ( )f x H x f x H x f x= − +    is determined on a 
composite real line 1 ( ,0) (0, )I = −∞ ∪ ∞  and satisfies the 
following relations at the point 0x =  

 1 2 1 2   (0 ) (0 ), (0 ) (0 ),f f k f f′ ′− = + − = +      

then the function 1 2( ) ( ) ( ) ( ) ( ),f x H x f x H x f x= − +  
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Similarly, the following equality is true 
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Definition, following, [10]. The transforms 
1 : ( ) ( ),  : ( ) ( )J f x f x J f x f x− → →   are called the direct 

and inverse transformation operators, respectively. 

3. Wave Equation on the Composite Real 
Line 

Let ( , )u t x  denote the vertical displacement of a string 
from the x -axis at position x in time t . We assume that 
the string possesses is undergoing small amplitude 
transverse vibrations so that satisfies the wave equation [5] 

2 0tt xxu a u− =  for all x−∞ < < ∞  and 0t > . 
We also assume that we know the position and speed of 

the string in time 0t = . We are given an initial 
displacement ( ,0) ( )u x f x=  and initial velocity 

( ,0) 0.tu x =  

Consider the initial value problem 
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The solution of initial value problem is given by the 
d'Alembert formula: 

 ( )( ) ( ) 1( , ) .
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Let us consider two initial boundary value problems. 
First: 
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Second 

 

2
1

1

1 2

1 2

0, 0, ( , )

(0, ) ( ),
( , ), 1, 2;

(0, ) ( ),
( ,0) ( ,0), 0

( ,0) ( ,0), 0

itt i ixx i i

i i
i i

it i

u a u t x l l

u x f x
x l l i

u x g x
u t u t t

ku t u t t

−

−

 − = > ∈


=
∈ =

=
 = >
 ′ ′= >

  





 

 



 

 (4) 

where 0 1 2, 0,l l l= −∞ = = ∞  
Theorem 2. If the function 

1 2( , ) ( ) ( , ) ( ) ( , )u t x H x u t x H x u t x= − +    is a solution of the 
initial value problem (4) and an initial displacement is 
defined by 
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then the function 

 1 2( , ) ( ) ( , ) ( ) ( , )u t x H l x u t x H x l u t x= − + −  

where 

 1 1 1 1 2 2( , ) ( , ) ( , ), 0;
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u t a x u t a x u t a x x
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+ −
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 2 2 2 2( , ) ( , ),0u t a x u t a x x= <   (6) 

is a solution of the initial value problem (3). 
Proof. For operator 2 2

1 2( ) ( )xx xxB H x a H x a= − ∂ + ∂  the 

following identity Bu Bu=    holds true, where 
2 2
1 2( ) ( ) .xx xxB H x a H x a= − ∂ + ∂

   Applying Theorem 1, we 
have complete the proof. 

Corollary 1. If in (5)-(6) we put 1 2, ,a E a E k E= = =  , 
then the solution of problem (3) has the form: 
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Now we can prove an analogue of the d'Alembert 
formula for the initial boundary value problem (3). 

Corollary 2. The solution of the initial boundary value 
problem (3) is given by the similar d'Alembert formula: 
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4. Heat Equation on Composite Real Line 
In the special case of heat propagation in an isotropic 

and homogeneous medium in the first-dimensional space, 
heat conduction equation is [4] 

 t xxu ku′ ′′=   

where ( , )u u t x=   is a temperature as a function of time 
and space; tu′  is the rate of change of temperature at the 
point x ; xxu  is the second- order partial derivatives 
(thermal conduction) of temperature, k  is a material-
specific quantity depending on the thermal conductivity, 
the density and the heat capacity. The heat equation is a 
consequence of Fourier's law of cooling. 

If the medium is not the whole space, in order to solve 
uniquely heat equation we also need to specify boundary 
conditions for u . With an eye to determine uniqueness of 
solution in the whole space it is necessary to assume an 
exponential bound on the growth of solution, this 
assumption is consistent with observed experiments. 

Let ( ; )u x t  is a temperature as a function of time and 
space. We assume that ( ; )u x t  satisfies the heat equation 

2 0t xxu a u− =  for all x−∞ < < ∞  and 0t > . We also 
assume that we know the initial temperature of the rod in 
time 0t = . We are given an initial distribution of 
temperature field ( ,0) ( )u x f x=   Let us consider the initial 
value problem 
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This is usually called the Cauchy problem for the heat 
equation in first- dimensional space. If we consider this 
equation on the whole real line, then we do not need to 
worry about boundary conditions and the solution is given 
by Poisson 's formula: 
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Consider two initial boundary value problems over the 
composite real line. 

First: 
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where 0 1 2, 0,l l l= −∞ = = ∞  
Theorem 3. If the function 

1 2( , ) ( ) ( , ) ( ) ( , )u t x H x u t x H x u t x= − +    is a solution of the 
initial value problem (10) and an initial displacement is 
defined by formulas 
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then the function 

 1 2( , ) ( ) ( , ) ( ) ( , )u t x H x u t x H x u t x= − +  
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 2 2 2 2( , ) ( , ),0u t a x u t a x x= <   (12) 

is a solution of the initial value problem (9). 
Proof. For operator 2 2

1 2( ) ( )xx xxB H x a H x a= − ∂ + ∂  the 

following identity Bu Bu=    is true, where 
2 2
1 2( ) ( ) .xx xxB H x a H x a= − ∂ + ∂

   Applying Theorem 1, we 
have complete the proof. 

Corollary 3. If in (11)-(12) we put 1 21, 1, 1a a k= = =  , 
then the solution of problem (9) has the form: 
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 2 2 2 2( , ) ( , ),0 .u t a x u t a x x= <   (14) 

Corollary 4. The solution of the initial boundary value 
problem (9) is given by similar Poisson's formula: 
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5. The Dirichlet Problem for the Laplace 
Equation 

Let ( )ˆ ˆ ,u u x y= be harmonic on the upper half-plane 
{ }( , ) : 0 ,H x y y x R= < ∈ , continuous on 
{ }( , ) : 0 ,H x y y x R= ≤ ∈  and satisfies the conditions 
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is harmonic in the upper half plane 0y >  and has the 

boundary values (0, ) ( )u x f x=  , wherever ( )f x  is 

continuous. The last formula is called Poisson integral 
formula [7]. 

Consider two initial boundary value problems over the 
composite real line. 

First: 
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where 0 1 2, 0,l l l= −∞ = = ∞  
Theorem 4. If the function 

1 2( , ) ( ) ( , ) ( ) ( , )u y x H x u y x H x u y x= − +    is a solution of 
the initial value problem (16) and an initial displacement 
is defined by formulas 
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then the function 
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is a solution of the initial value problem (15). 
Proof. For operator 2 2

1 2( ) ( )xx xxB H x a H x a= − ∂ + ∂  the 

following identity Bu Bu=   is true, where 
2 2
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   Applying Theorem 1, we 
have complete the proof. 

Corollary 5. If in (17)-(18) we put 1 21, 1, 1a a k= = =  , 
then the solution of problem (15) has the form: 
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Corollary 6. The solution of the boundary value 
problem (15) is given by similar Poisson's formula: 
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