
International Journal of Inventive Engineering and Sciences (IJIES)
ISSN: 2319–9598, Volume-3 Issue-9, August 2015

32
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

Survey of Imperative and Object Oriented Quantum
Computer Programming Languages

Vivek Kumar, Anuranjan Misra

Abstract - In the academic world a variety of languages are
studied and used. But with the exception of a few applications,
most languages utilized for commercial applications are written
in imperative and object oriented languages. A partial list of
these languages includes many that would be familiar to any
commercial developer: Visual Basic, C#, Java, Python, Fortran,
Cobol, and so on. For the power of a quantum computer to be
utilized economically in commercial applications, the
programming must be easy for existing commercial developers to
learn and utilize. This is best done by piggy backing off of the
languages and techniques they are already familiar with- this
means that successful quantum languages for existing
commercial developers will likely be related to one of more of
these languages, or quantum frameworks (libraries) for these
languages. It should be pointed out that the popularity of
languages changes with time, so as new languages come into
popularity their potential for quantum computing also needs to
be kept in mind. Many of today’s popular languages were not
designed to easily take advantages of multiple cores or
processors. Consequently it is quite feasible that other languages
that take advantage of these parallel processing capabilities will
rise in popularity in the near future and be excellent candidates
extending to carry out quantum computing.

 Keywords:- C#, Java, Python, Fortran, Cobol, Visual Basic,
libraries

I. INTRODUCTION

Quantum computers have the potential for solving certain
types of problems much faster than classical computers.
Speed and efficiency are gained because quantum bits can
be placed in superposition’s of one and zero, as opposed to
classical bits, which are either one or zero. Moreover, the
logic behind the coherent nature of quantum information
processing often deviates from intuitive reasoning, leading
to some surprising effects.

II. Different Approach (s)

The structure of quantum programming languages differs
from existing classical languages in that the limitation must
be enforced. Depending on the proposed approach, defiance
of these limitations may be caught at compile time or at run
time. The quantum languages typically include statements
for initializing the quantum state of the system,
manipulating it through (unary) operations, and finally
measurement. When Knill’s QRAM approach is utilized
these are frequently additions to some existing classical
programming techniques.

Revised Version Manuscript Received on August 20, 2015.
 Mr. Vivek Kumar, M.Tech Student, Department of Electronics and
Communication, Noida International University, Delhi National Capital
Region Noida, India.
 Dr. Anuranjan Misra, Professor & Head, Department of Computer
Science and Engineering, Noida International University, Delhi National
Capital Region Noida, India.

(a) Knill Approach

Knill has introduced pseudo code conventions. His pseudo
code is based on imperative program techniques, as it
utilizes variables and flow control statements based on that
methodology. Within his paper he also provides several
elementary examples of the use of his proposed pseudo
code. As mentioned previously, the importance of Knill’s
paper lies not necessarily in the proposed pseudo code
conventions, but in the use of his quantum random access
machine model (QRAM). While Knill’s work is an
important step forward, pseudo code it has little use for
writing actual applications. Even though, it is a step in the
right direction.

Figure1. Measured Fourier transform utilizing Knill ’s

pseudo code

(b) Sanders and Zuliani Approach

Sanders and Zuliani developed the programming language
qGCL as a means to express quantum algorithms. The
primary purpose of the language is for program derivation,
correctness of proof, and teaching. As the authors point out,
qGCL does not aim to do numerical simulations of quantum
algorithms like Omer's QCL, which will be covered later.
Within the paper they first describe a probabilistic extension
to Dijsktra’s guarded command language (GCL), which they
appropriately call pGCL. They then extend pGCL to invoke
quantum procedures and call the resulting language qGCL.
Thus qGCL is like many other proposed quantum
programming techniques where the computation is
controlled by a classical computer utilizing a quantum sub
system. The three quantum procedures they outline and
place emphasis on are fundamental to any system carrying

Survey of Imperative and Object Oriented Quantum Computer Programming Languages

33
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

out quantum computation: initialization, evolution, and
finalization (or observation). They also provide
implementations of several quantum algorithms, including
Shor’s and Grover’s. Since GCL was proposed in 1975, and
qGCL is an augmentation to it, qGCL may be too limited
and dated to construct commercial applications. Like Knill’s
pseudo code, qGCL also suffers from a very mathematical
syntax- something that is harder for commercial
programmers to understand and even type. As the authors
point out though, this simplicity makes it an effective tool
for teaching the basics of quantum programming.

Figure 2. Shor’s algorithm in Sanders and Zuliani’s q

GCL [51]

(c) Bettelli Approach

Bettelli has developed a preliminary extension for C++, in
the form of a library, for quantum computer programming.
This library exposes several classes that can be utilized for
quantum computation. The use of classes provides the
important benefit of encapsulating the workings of the
library and hiding them from users. Furthermore, unlike
some procedural implementations, rules can be better
enforced and valid states maintained through the use of
classes. Bettelli’s implementation also generates quantum
operations, and these byte codes could be piped to an actual
quantum sub system or a simulator. While the library is in a
preliminary form, Bettelli’s paper also contains a list of
features desirable for a scalable quantum programming
language. One of the most important of these points is that a
quantum programming language should be an extension of a
classical language. Extensions can take a variety of forms:
class libraries, dynamically linked libraries, and assemblies
to name a few. Not only does extending a classical language
make it easier for existing programmers to utilize quantum
features, but it also helps to keep the library useful as the
language surrounding it evolves to tackle classical problems.
Thus the author of the quantum extention can focus on
tackling only those issues that apply to quantum computing
instead of all issues as must be done with a proprietary

language. It is important to note that some languages, such
as Python, are evolving iteratively through open source
methods as opposed to large standards developed over a
period of years as is the case with C and C++. C++ was
developed in 1984, but the standard was not approved until
1998 enough time for processors to double in speed seven
times in accordance with Moore’s law. Additionally, there
have been over 8,500 programming languages developed,
yet only a select few of these are actually used in industry-
further strengthening the argument for creating extensions of
existing languages instead of new languages. Bettelli’s work
is the most useful to existing programmers because C++ is a
widely used language and only the library needs to be
learned, not an entire new language. As new languages are
developed and speed and efficiency of a language are not as
important due to increased computing power, C++ seems to
be declining in popularity.

Figure 1. Grover’s algorithm in Bettelli’s C++ extension

[32]
Over a period of six years, 1998 – 2004, Omer has
developed what is arguably the most complete quantum
programming language to date: Quantum Computation
Language, or QCL. QCL is a language that has a structure
similar to C, making it easy to learn for many programmers
because C and its decedents such as C++, C#, and Java are
popular languages. However this strength of basing QCL on
C is also part of its downfall. C is still used for low level
applications such as drivers, but not for cutting edge
commercial software. As a result, QCL does not have many
of the features available in modern languages. By being a
proprietary language QCL would be difficult to adopt in the
real world for many programmers writing applications since
it does not have the power and libraries available to modern
languages. Omer has also created a complete simulator for
QCL programs, including an interpreter. Having an
interpreter for QCL allows for students of the language to
create and see how code behaves in real time. In a benefit to
all studying quantum computing, Omer has also made the
source code of the interpreter available. While the inclusion
of the interpreter and source code makes QCL useful, the
fact that it is a new language does present an obstacle to
those wishing to learn quantum computer programming. As

International Journal of Inventive Engineering and Sciences (IJIES)
ISSN: 2319–9598, Volume-3 Issue-9, August 2015

34
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

with all new languages, it also makes it harder to integrate
quantum algorithms into existing code bases.

Figure4. Deutsch’s algorithm expressed in Omer’s QCL

[58]

(d) Blaha Approach

Blaha has introduced a quantum assembly language and
quantum C language. In his two language proposals the
languages themselves are algebraic in nature, which he
argues allows for better understanding of the language and
proof of correctness if necessary. Within Blaha’s work
however, less than one page is dedicated to his quantum C
language, and most of that involves an explanation of
pointers in C. So while he proposes a quantum C language,

there isn’t much of an explanation of how it works other
than defining the algebraic representation of the pointer
operations. It is also interesting to note that Blaha was able
to obtain trademarks for what would seem to be generic
terms in the field of quantum computing, including
“Probabilistic Grammar”, “Quantum Grammar”, and
“Quantum Assembly Language”. Like Bettelli’s work,
Blaha’s use of C makes the approach very viable. However,
without further details it is hard to gauge how easy it is to
actually use.

(e) Markus Approach

Markus has devised a method to simulate quantum
computing using Fortran. While not a true language or
framework in itself, it is worth noting because it is an
example of how such a library would work. Currently any
quantum computing language or library must simulate the
quantum system since quantum computers are currently
unavailable for use in programming. Many languages are
derived from Fortran, so Markus’s paper gives a good
insight on how to actually accomplish that for a variety of
languages. Included in the paper is the full source code
listing for the simulation, along with debugging statements.
It is also notable that Fortran has been used as a parallel
programming language in the Fortran-K implementation,
which is a subset of Fortran-90. Nonetheless, more modern
languages such as Fotress could also be used to simulate
quantum computing and be more accessible. Providing the
source code is invaluable for others developing quantum
libraries as it provides a source of solutions for problems
that may arise during implementation, and this is a benefit of
the work Markus has done.

(f) Carini Approach

Carini has developed a method to simulate qubits using the
programming language Ruby. Like Markus’s Fortran
simulation, even though it is not a language or framework it
is noteworthy due to the implementation techniques.
Carini’s implementation involves simulating the states of a
qubit on separate threads, although she admittedly ran into
some scheduling issues. This is another important insight for
the simulator of any proposed language or framework- the
simulation should take advantage of today’s multiprocessor
systems. Doing so increases efficiency of the simulation, but
presents challenges of its own through the need to
implement parallel processing techniques. In particular this
presents a problem for any framework or language built
upon the Python programming language due to the global
interpreter lock. While Python is a concise and easy to
program in language, only one thread within a process can
access Python objects at a time . This means that even with a
multiprocessor system, multithreaded Python programs
cannot take full advantage of it as they effectively use one
processsor. The work around for this is to implement
multiple processes within Python instead of multiple
threads. Even with this difficulty Python is still a good
candidate for building a quantum computing framework on.
Python is platform independent, like Java, so it eliminates
the need to port to different systems. Unlike Java though, it
is an interpreted language, which allows for one to
dynamically interact with the system like Omer’s QCL.

Survey of Imperative and Object Oriented Quantum Computer Programming Languages

35
Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication Pvt. Ltd.

(g) Svore Approach

Svore and colleagues have developed a suite of tools for use
in quantum computation . These tools include a language,
compiler, optimizer, simulator, and layout tools. A key
feature to the language, as others have pointed out as
necessary, is that it is machine independent. For practical
purposes quantum computers are not yet a reality, so any
proposal for programming them must be independent of
whatever solution is used to realize them. Within their paper
they also propose translating their high level language into a
quantum intermediate language (QIR) which then gets
translated into a quantum assembly language (QASM), and
finally a physical language (QCPOL). This is approach is
the similar to many modern day classical languages. As with
many other quantum programming proposals, this one also
makes use of Knill’s QRAM model. Another key to the
proposal is that quantum error correction be implemented on
a lower level and not within the higher level language itself.
This higher level abstraction is akin to how modern day
programmers are not concerned with error correction within
RAM or through a network connection. While the purpose
of the various languages and transitions between them are
described, the work does not actually include specifications
for the languages themselves. As such, the languages
themselves remain an open problem as is pointed out at the
end of the paper as an important challenge.

 (h) Tucci Approach

Tucci has developed quantum compiler that compiles steps
of an algorithm into a sequence of elementary operations .
The implementation of his compiler proposal is called
“Qubiter”, for which he has made the source code in C++
freely available. While still in a basic state as he admits and
lacking a GUI it is still a valuable learning tool because the
source code is available. Notable about his compiler is that
it will also perform optimizations. These insights he
provides on optimization would be useful for any other
quantum programming system in order to increase
efficiency. Tucci also received a patent for the ideas that
Qubiter represent in 2002 .

Figure 2. Output of Tucci’s Qubitter for the input 4 bit
Hadamard matrix, which is also known as Hardamard-

Walsh transform.

III. Conclusion

While there has been a small variety of quantum computing
programming proposals utilizing the imperative or object

oriented approach, none of them is equivalent to or utilizes
the more wide spread modern programming languages such
as C#, Visual Basic, Java, or Python. The lack of a quantum
computing framework for any of these languages makes
quantum computer programming less accessible to the
average commercial developer. Just as important, usability
has also been neglected. So while the languages and
libraries presented could be used, the fact that they are not
similar to or use modern languages represents a significant
hurdle to their use by practicing commercial developers. The
fact that modern languages are not utilized for quantum
computer programming and usability has been largely
ignored represents an excellent candidate for work in the
field of quantum computer programming.

REFERENCES

1. T. J. Bergin, "A History of the History of Programming Languages,"
Communications. ACM, vol. 50, p. 5, May 2007 2007.

2. E. Knill, "Conventions for Quantum Pseudocode," Los Alamos
National Laboratory LAUR-96-2724, 1996.

3. D. Deutsch, "Quantum theory, the Church-Turing principle and the
universal quantum computer," Proceedings of the Royal Society of
London, vol. A, pp. 97-117, 1985.

4. G. Fairbanks, D. Garlan, and W. Scherlis, "Design fragments make
using frameworks easier," in Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming systems,
languages, and applications Portland, Oregon, USA: ACM, 2006.

5. W. E. Halal, "Technology’s Promise: Expert Knowledge on the
Transformation of Business and Society," 2007.

6. P. Strathern, The Big Idea: Turing and the Computer, 1 ed. New
York, NY: Doubleday, 1997.

7. Turing, "On Computable Numbers, with an Application to Entscheid-
ungsproblem," Proc. London Math Society, vol. 42, pp. 230-265,
1936.

8. Burda, Introduction to Quantum Computation, 1 ed. Boca Raton, FL:
Universal Publishers, 2005.

9. M. Hivensalo, Quantum Computing, 2 ed. Berlin: Springer, 2004.
10. E. W. Dijkstra, "Guarded commands, nondeterminacy and formal

derivation of programs," Commun. ACM, vol. 18, pp. 453-457, 1975.
11. B. Cannon, "Guido, Some Guys, and a Mailing List: How Python is

Developed." vol. 2007: Python.org, 2007.
12. R. W. Sebesta, Concepts of Programming Languages, 5 ed. Boston,

MA: Addison-Wesley, 2002.
13. NCITS, "International Standard 14882 - Programming Language

C++." vol. 2007: International Committe for Information Technology
Standards, 1998.

14. B. Omer, "A Procedural Formalism for Quantum Computing," in
Theoretical Physics. vol. Masters Vienna: Technical University of
Viena, 1998, p. 93.

15. B. Omer, "Procedural Quantum Programming," AIP Conference
Proceedings, vol. 627, pp. 276-285, 2001.

16. B. Omer, "Structured Quantum Programming," in Information
Systems. vol. Ph.D. Vienna: Technical University of Vienna, 2003, p.
130.

17. B. Omer, "Classical Concepts in Quantum Programming," Internation
Journal of Theoretical Physics, vol. 44, pp. 943-955, July 2005 2004.

18. B. Omer, "QCL - A Programming Language for Quantum Computers:
Source and Binaries," 0.6.3 ed. vol. 2007: Omer, Bernhard, 2006, p.
Source and binary downloads of the QCL interpreter.

19. S. Blaha, "Quantum Computers and Quantum Computer Languages:
Quantum Assembly Language and Quantum C Language," in Cosmos
and Consciousness, 1 ed: Janus Associates Inc., 2002, p. 292.

