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E X I S T E N C E  OF P O L A R I Z E D  F - S T R U C T U R E S  
O N  C O L L A P S E D  M A N I F O L D S  

W I T H  B O U N D E D  C U R V A T U R E  A N D  D I A M E T E R  

J.  CHEEGER AND X. RONG 

A b s t r a c t  
We study the class of collapsed Riemannian n-manifolds with bounded sec- 
tional curvature and diameter. Our main result asserts that there is a con- 
stant, 5(n, d) > 0, such that i fa  compact n-manifold has bounded curvature, 
[KM-I --< 1, bounded diameter, diam(M n) < d and sufficiently small volume, 
Vol(M n) <_ 5(n, d), then it admits a mixed polarized F-structure. As a con- 
sequence, infg Vol(M '~, g) = 0, where the infimum is taken over all metrics 
with IK(M,Lg)L <__ 1. This assertion can be viewed as a weakened version of 
Gromov's "critical volume" conjecture. 

O. I n t r o d u c t i o n  

We will begin by briefly recall ing the  not ion of F-s t ruc tu re  and some relevant 
related concepts;  for fur ther  details, see [CG1], [CG2], [CR] and sections 1 3 
below. 

An F-structure, .f, on a manifold,  M n, is a kind of general ized torus 
action. Specifically, it is a sheaf of Lie algebras, together  wi th  a homomor-  
phism of this sheaf onto a sheaf of abel ian Lie algebras of vector  fields, ey ,  
for which a cer ta in  addi t ional  condi t ion  is satisfied. In the  sequel, only the  
image sheaf  e j ,  plays a role. 

Let  f denote  a subsheaf  of e2  and fx its s talk at x. The  addi t ional  
condit ion on e j= is the  following. For all x E M ' ,  there  exists an open 
neighborhood,  U(x), and a subsheaf, f ( x ) ,  of e2lV(x), such tha t  f(x)~ = 
(es~)x and such tha t  for some finite normal  covering space, 7r : U(x)  --~ U(x), 
the lifted Lie a lgebra sheaf, f(x), is a constant  sheaf, which is isomorphic to 
the infini tesimal genera tors  of the  effective act ion of a torus, T k(x), on U(x) .  

If all stalks, (e~-)~., of the  sheaf, e~-, have the  same dimension,  k(x) = k, 
the s t ruc ture  is cMled pure. Otherwise ,  i t  is called mized. 

If for all x, one can choose U(x) and U(x) ,  such t h a t / ) ( x )  = U(x), then  
the F-s t ruc tu re  is cMled a T-structure. In this case, e~- is actual ly  the  Lie 
algebra sheaf  of a sheaf of tori, 87 .  If in addit ion,  ¢- is a pure s t ructure ,  
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then the sheaf, g~:, can be described alternatively as a flat torus bundle 
with holonomy in SL(k,  Z). 

If M n is simply connected, a pure F-s t ructure  is actually a T-structure 
for which the bundle, gs~, has trivial holonomy. Thus, in the simply con- 
nected case, modulo a choice of isomorphism of some fiber with the s tandard  
torus, a pure F-s t ruc ture  is just  an ordinary torus action. 

A substructure is defined by a subsheaf of eT, for which the action gen- 
erated by each f (x )  is isomorphic to a torus action, i.e. the orbits are closed. 

The action on each 0 (x )  of its covering group, preserves the orbits of 
the action generated by f (x ) .  Hence, the open set, U(x), is part i t ioned 
into the projections of these orbits. Clearly, the projected orbit  through a 
point, x, is independent of the choice of neighborhood, U(x). It is denoted, 
(9~, the orbit of x. It follows tha t  M ~ is the disjoint union of orbits, (9~. 
Every such orbit  is diffeomorphic to a compact  flat Riemannian manifold, 
by a diffeomorphism which is unique up to atfine equivalence of the flat 
manifold. 

The rank of the structure is the dimension of the orbit,  (gx, of smallest 
dimension. An orbit,  (.gz, is called singular if dim (gz < k(x). The singular 
set S, is by definition, the union of the singular orbits. As with a group 
action the set S, has a canonical "coarse" stratification into s trata ,  Si. By 
definition, Si consists of all orbits of dimension i. Note that  S.i may contain 
exceptional orbits which are mult iply covered. 

If S is empty, the structure is said to be polarized. 
A Riemannian metric, g, on M n is called invariant for 5 ~, if e j= is actually 

a sheaf of Killing fields of g. Every F-s t ructure  admits  invariant metrics 
whose sectional curvatures satisfy the normalization, IKI < 1. 

For addit ional  background on the relation between F-structures  and col- 
lapsed Riemannian manifolds with bounded curvature, see [CG1,2], [CR], 
[F1-4], [G1,21, [m-3l. 

We now specialize to the situation which is the focus of this paper. 
Let M n be a compact  Riemannian manifold, with bounded sectional cur- 

vature, say ]KMn I -< 1. By [CFG], IF1-4], there exists a constant e(n, d) > O, 
such tha t  if in addition, d i a m ( M  n) < d and Vol(M ~) < e(n, d), then M n 
admits  a pure F-structure,  5 ~, of positive rank, for which a metric, g' ,  close 
to the given one is invariant. After multiplying g' by a suitable constant 
(close to 1) we can assume that  g~ satisfies 

IK(M,,g,)I _< 1 , d i a m ( M n , g  ') < d' , Vol(M'~,g ') < e(n,d') . 

Moreover, we can assume that  for the metric, g', there are definite bounds 
on the higher covariant derivatives of the curvature tensor. 
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Our main result, Theorem 0.1, asserts that pure F-structures which 
arise in this way enjoy a significant property which is not shared by pure 
F-structures in general. Such an F-structure will be called a sufficiently 
collapsible pure F-s~iiitdfure. 

T h e o r e m  0.1. There exists 6(n, d) > O, such that if  M~ satisfies [KM~ [ ~ 
1, diam(M ~) < d and Vol(M ") <_ 6(n, d), then the associated sufficiently 
collapsible F-structure .T admits a polarized substructure. 

For M ~ simply connected, a pure F-structure is (up to choice of isomor- 
phism) a torus action. If such a structure has positive rank, it follows that 
any 1-dimensional subgroup (with closed orbits) which does not intersect 
any nontrivial isotropy group defines a polarized substructure. Thus, in 
Theorem 0.1, implicitly our concern is with the nonsimply connected case. 

Typically, the polarized substructure constructed in Theorem 0.1 will be 
mixed. In this connection, note that by Example 6.4 of [CR], there exist 
pure structures satisfying the assumptions of Theorem 0.1 (for fixed d and 
arbitrarily small 6) which admit no pure polarized substructure. 

Gromov defined the Minimal Volume of a compact manifold by 

MinVol(M") = inf Vol(M ~, g) , 
g 

where the infimum is taken over all metrics, with bounded sectional curva- 
ture, IK(Mn g)l _< 1; see [G2]. He conjectured the existence of a "gap" or 
"critical volmne", i.e. there exists 5(n) > 0 such that MinVol(M ~) < ~(n) 
implies Min Vol(M n) = 0. 

By the collapsing construction of [CG1], the existence of a polarized F- 
structure on M n implies MinVol(M") = 0. Thus, Theorem 0.1 implies the 
following weakened version of Gromov's conjecture. 

T h e o r e m  0.2. There exists 5(n,d) > 0 such that i f  M n admits a metric 
with 

IKM "l-~ 1 ,  diam(M n ) _ < d ,  V o l ( f  '*) ~ 6 ( n , d )  , 

then Min Vol (M") = 0. 

It might seem natural to try to replace the conclusion, Min VoI(M ~) = 0, 
in Theorem 0.2, with the stronger assertion that  M n collapses with bounded 
curvature and diameter. However, Example 6.4 of [CR] indicates that this 
could well be false in general. 

By the finiteness theorem of [C], for all v > 0, there are only finitely many 
diffeomorphism types of manifolds satisfying ]KM-[ _~ 1, diam(M n) < d, 
for which in addition, Vol(M n) > v; see also [Pe]. Hence, we obtain 
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COROLLARY 0.3. For all n, d > 0, there are only a finite number of dif- 
feomorphism classes of manifolds of  nonvanishing minimal volume, which 
admit a metric with [KM~ I --< 1, d i am(M n) < d. 

Corollary 0.3 implies tha t  there is a sense in which "most" manifolds 
with IKM,~ l -< t have minimal volume zero. Indeed, according to [G1] for all 
n _> 3, d > 0, there exist infinitely many manifolds admit t ing a metric with 
IKM n I --< 1 and d i a m ( M  n) _< d. Moreover, it follows from the construction 
of [CR], Example 6.4, that  given n > 4, there exists an increasing sequence, 
di -~ co, such tha t  for all i, there are infinitely many manifolds admit t ing 
a metric with IKM~ I <_ 1, d i am(M n) _< d,+l ,  which admit  no metric with 
IKM n I --< 1, d i am(M n) < di. 

If M 2k has some real characteristic number nonzero, then by Chern- 
Weil theory, there is a definite positive lower bound on Min Vol(M2k); [C]. In 
[CG1], examples of pure positive rank F-structures on compact 4k-manifolds 
with nonvanishing Pontrjagin numbers are given (the first such example was 
due to T. Janusziewcz). These examples show tha t  in order to obtain the 
existence of a polarized substructure,  some addit ional geometric hypothesis 
on the pure F-s t ructure  is required. 

I t  is possible however, that  the bound on the diameter  assumed in The- 
orem 0.1 is actually unnecessary and that  a polarized substructure exists 
whenever IKI _< 1, Vol(M ") < 6(n), a sufficiently small positive constant. 
Presently, this is known to hold for n = 2 ([C]), n = 3 ([CG1,2]) and n = 4 
([Bul,2], [R1,2]); but compare Example 4.1 of [CG1]. If indeed, the bound 
on diameter  is unnecessary, then by the collapsing construction of [CG1], 
the "critical volume" conjecture holds; in part icular,  it holds for n <_ 4. 

We now briefly describe the contents of the remaining 5 sections of the 
paper.  

As is explained in section 1, the proof of Theorem 0.1 will be carried out 
by working on the frame bundle, F M  n. In section 1, we also introduce a 
proper ty  of a rb i t ra ry  pure F-s t ruc tures  and a proper ty  of pure F-s t ruc tures  
which satisfy the geometric assumptions of Theorem 0.1. These two prop- 
erties play a crucial role in the proof. 

In section 2, we prove Theorem 0.1 modulo the above mentioned two 
properties.  

In section 3, we establish the property of a rb i t ra ry  pure F-s t ructures;  see 
Theorem 3.2. I t  concerns a certain canonical (mixed) substructure defined in 
a neighborhood of the singular set, S. This substructure,  which is generated 
by the kernels of the local torus actions, turns  out to be an F-s t ruc ture  of 
an extremely special type. 

In section 4, we establish the proper ty  of pure F-s t ruc tures  which are 
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compatible with sufficiently collapsed metrics; see Theorem 4.1. Namely, 
over each s t ratum, Si, there exists a pure polarized substructure, T'i. 

In section 5, we give a generalization of Theorem 0.1 to the case in which 
only a bound on the diameter  of each component,  S i , j ,  of S is assumed 
(rather than on the diameter  of M ~ itself). 

1. O u t l i n e  o f  T h e  P r o o f  

In this section we give an indication of the proof of Theorem 0.1. Thus, 
unless we make explicit  mention to the contrary, we will assume here that  
our structure,  ~ ,  is a sufficiently collapsible pure F-structure,  equipped with 
an invariant metric. 

Our discussion is simplified considerably by working on the frame bundle, 
F M  n, rather than on M ~ itself; compare IF1-4]. Although this necessitates 
our making all constructions O(n)-equivariant,  in practice, for natural  con- 
structions, O(n)-equivariance turns out to be automatic.  For instance, a 
pure substructure defined over an O(n)-invariant subset of F M  n is always 
O(n)-equivariant; see [CR, Remark 0.1]. 

The advantage of working on F M  n lies in the fact tha t  the canonical 
lift to F M  n of an F-s t ruc ture  is actually a T-structure,  5 r, of a part icularly 
simple type - namely, one for which the local actions are free. (The lift is 
defined via the differentials of the local torus actions.) In particular,  given 
a pure F-s t ruc ture  on M ~, we can regard F M  n as the total  space of an 
O(n)-invariant torus bundle, whose structural  group lies in the group of 
affine automorphisms of the torus, T k. Note that  this group satisfies the 
exact sequence, 

e ~ T k ~ A f f ( T  k) ~ S L ( k ,  Z) -~ e .  

Before proceeding, we point out tha t  the existence of pure F-s t ructures  
of positive rank on sufficiently collapsed manifolds with bounded curvature 
and diameter  was actually proved by working on the frame bundle; see 
IF1-4] and [CFG]; see also [CR] for further discussion. 

In constructing a polarized substructure,  it is clear that  we can restrict 
at tention to a neighborhood of the singular set, S; outside such a neighbor- 
hood, our polarized structure will be chosen to coincide with ~ itself. 

Let D denote the inverse image of S in F M  ~. Observe tha t  D consists of 
those points for which the corresponding torus-fibre and O(n)-fibre intersect 
in a subset of positive dimension. We denote by Di,  the inverse image of Si 
in F M ' L  

On each s t ratum, Di, we define the i so t ropy  s u b s t r u c t u r e ,  Z~, to be the 
unique maximal  substructure,  whose projection to M ~ has rank zero. The 
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orbits of this structure are just the components of the intersections of torus- 
fibres and O(n)-fibres. 

An O(n)-equivariant substructure, 5 y, on F M  ~, descends to a polarized 
substructure on M n, if and only if on each Di, it is transversal to 2-i, i.e. 
on each Di, the intersection of an orbit of T and an orbit of 1:/ consists 
of a finite set of points. Equivalently, E:~ N £i~ = E0, where E0 denotes 
the trivial subsheaf whose stalk at any point is the subgroup consisting of 
the identity element. A substructure of T with this property will be called 
nondegenerate. 

Let l ~ r l  :>> r2 >> . .-  > 0. L e t ~ > 0 .  
Put  Hi(U) = TvT~(Di) \ Ut<iT½T~(Dz), where TT-( ) denotes the r- 

tubular neighborhood. We can assume that  the sequence, {ri}, decreases 
so rapidly that if U <- 3, then for every point, p, of Hi(U), there is a unique 
point of Si closest to p. Note that for i ~ j ,  the intersection, Hi(U)nHj(u) ,  
can be nonempty and might not be connected. 

We also put H~ = Hi( l )  \ (Ji>l Hi(2) and note that H~ C Hi( l )  and 
H.~ A Hj = 0, for all distinct i, j .  

Our O(n)-equivariant nondegenerate substructure of 7" will be construc- 
ted on ~Ji Hi(l) .  A priori, it is not clear why there should exist such a sub- 
structure over even a single Hi(l) .  However, using our geometric hypothesis, 
we will show the following; see Theorem 4.1. 

P r o p e r t y  o f  suff ic ient ly  col lapsible  p u r e  F - s t r u c t u r e s .  On each 
Hi(l),  there exists a pure nondegenerate substructure, Pi, of jr. 

The existence of a pure nondegenerate substructure on each set, Hi(l) ,  
is the only consequence of our geometric assumptions which is used in the 
proof. Indeed, we have the following refinement of Theorem 0.1. 

T h e o r e m  0.1 ~. Let jr be an arbitrary pure F-structure on M n. I f  for all i, 
there is a pure nondegenerate substructure, 7~i, on Hi(l),  then there exists 
a canonical mixed polarized substructure, whose lift to the frame bundle, 
~,  satisfies P[H~ ---- Pi. 

The sense in which the substructure, P ,  is canonical will be made clear 
in the proof of Theorem 0.Y. 

To construct an O(n)-equivariant nondegenerate substructure on 
[-Ji Hi(l) ,  whose restriction to each H~ coincides with "P~, we will introduce 
a certain auxiliary substructure, 2-, defined on [-Ji Hi(2). 

Since Di nHi(2)  is a deformation retract of Hi(2), it follows that ZilDi N 
Hi(2) extends naturally to a pure substructure, Zi, on Hi(2). The collection 
{(///(2), Zi)} determines a mixed structure, Z, on [-Ji Hi(2), whose orbit at a 
point, x, is the orbit of Zio, where i0 is the maximal i, for which x E Hi(2). 
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Clearly, on H~, a pure substructure T C f is nondegenerate if and only 
if it is transversal to ZIH ~. On the other hand, we claim that  Zl(  [Ji H i ( l )  \ 
[-Ji Hi)  has a canonical mixed nondegenerate substructure, C. As will be 
explained in section 2, the nondegenerate substructure, on [Ji H~(1) which 
we are seeking, is obtained by suitably combining a portion of C with a 
collection of substructures derived from the nondegenerate substructures, 
{PilHi(1)}. 

The existence of C is a direct consequence of the following property of 
arbi t rary  pure F-structures;  see Theorem 3.2. 

P r o p e r t y  o f  a r b i t r a r y  p u r e  F - s t r u c t u r e s .  There exists a canonical 
inner product on the Lie algebra, (ez)~, of each stalk of the sheaf, ez, such 
that  the pointwise inner product  of two locM sections of the sheaf, ez, is 
a constant flmction. Moreover, if a subspace of (ei)~ exponentiates to a 
closed subgroup, then so does its orthogonal complement. 

We close this section by mentioning that  the arguments used in estab- 
lishing the above mentioned property of sufficiently collapsible pure F- 
structures are related to those of [CR], where collapsed manifolds with 
bounded diameter and bounded covering geometry are studied. Here in- 
stead, we exploit local bounded covering geometry; see [CFG, Theorem 1.7] 
and section 4. 

2. P r o o f  o f  T h e o r e m  0.1 M o d u l o  T w o  P r o p e r t i e s  o f  P u r e  F -  
s t r u c t u r e s  

Let ~- denote a pure F-s t ructure  on M ~ with invariant metric and let T 
denote the lifted T-structure on F M  n. 

In the proofs of Theorems 0.1, OA r , we will use the following procedure 
for constructing equivariant mixed substructures of T. 

Let {Z~} be a covering of F M  n by O(n)-invariant  sets. Assume that  over 
each Z~, we are given a pure substructure,  /:~. Clearly, there is a unique 
smallest mixed substructure,  /:, such that  for all ~, £:~ is a substructure 
of £1Z~. Moreover, for any {ct} = { a l , . . ' , a i }  the restriction of /2 to 
Z~ 1 N . - .  N Z~, \ Us, ~t(~} Z ~ ,  is the smallest pure structure containing the 
restrictions of ~ ;~1 , ' " , /2~ , ,  to this set. 

Now assume tha t  ~- has nonempty singular set, S, with coarse stratifi- 
cation, $ 1 , . . . ,  Sk. Put  Di = 7r-l(Si) .  Let H1(71),.. . ,  Hk(~) be defined as 
in section 1. 

The proof of Theorem 0.1 consists of three steps: First ,  we construct 
a special invariant open cover for (Ji Hi ( l ) .  Then (as above) we assign to 
each open set of this cover, a pure substructure of T.  Finally, we verify that  
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on every nonempty  mul t ip le  intersect ion,  the  assigned pure  subs t ruc tures  
genera te  a nondegenera te  pure  subs t ruc tu re  (i.e. one which is t ransversa l  to 
the  i so t ropy subs t ruc tu re  on the intersect ion) .  

a .  A n  i n v a r i a n t  o p e n  c o v e r .  For  1 < i < k, pu t  

i>~ 

For  any 1 < j < i _< k, define 

Note  t h a t  since Hi(r/)  is invariant ,  so are Ai and Bid.  Formally,  Ai  behaves  
like B~,-1, a l though for this  to  be correct ,  we mus t  define, H_1(2)  = M n. 

L E M M A  2 . 1 .  

(2.1.1) H;  C Ai C H i ( l )  . 

(2.1.2) H i ( l )  = (Ui>eBi ,e )  U A i .  

(2.1.3) If  Bi,j  N Bi,, j ,  7 5 0 and i > i '  t hen  j > i '  . 

(2.1.4) If  Bi,j  n Ai, 7 ~ 0 ,  then  i '  = i or j >_ i' . 

(2.1.5) Ai  r~ Ai, = 0 ,  for i ¢ i '  . 

Proof .  Since (2.1.1), (2.1.3), (2.1.4) and  (2.1.5) can be seen di rec t ly  from 

the  definition, we will only check (2.1.2). Pu t  Aid = H i ( 1 ) \ U i > e >  j H e ( 3 ) .  
Then  Ai = Ai,e, where g is the smal les t  index such t h a t  De is nonempty.  
I t  is easi ly checked tha t  for i - 1 > j ,  one has Bid U Ai , j  = Ai , j+l  and 
Bi, i -1  U Ai , i -1 = H i ( l ) .  By an obvious induct ive  a rgument ,  the  c la im 
follows, u 

As a consequence of L e m m a  2,1, every  nonempty  intersect ion of a sub- 
col lect ion of {Bid}  U {Ai} can be wr i t t en  in one of the  following forms: 
(2.1.6) X = Bil , j l  N . .  • R B~l,jkl N B~2,t 1 N . . .  r3 Bi2,1k2 N . .  • r) Bi.~,ml CI. • • A 

Bi . . . .  k~, where i l  > j l  > "'" > jk~ > i2 > l l  > . . .  > Ik2 >_ " "  >-- 
i r  > m l  :> - "  > m k ~ .  

(2.1.7) X n Ai,  where  X is as in (2.1.6) and  e i ther  i = i~ or mk,. >_ i. 
(2.1.8) Ai ,  for some i. 

b .  A s s i g n m e n t  o f  p u r e  s t r u c t u r e s .  Assume tha t  on each H i ( l ) ,  there  
is a pure  nondegenera te  subs t ruc ture ,  7~i, of T IHi (1); compare  Theorem 4.1. 

On each nonempty  intersect ion,  H i ( l )  N H i ( l ) ,  where  i > j ,  there  is 
a canonical  subs t ruc ture ,  Zi,j C Zj ,  such t ha t  Zi,j is t ransversa l  to  Zi. By 
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definition, the Lie algebra of a stalk of :/Ti,j is the orthogonal complement 
of the Lie algebra of 17/ in the Lie algebra of Zj, with respect to the inner 
product  described in the proper ty  of arbi t rary  pure F-s t ructures  s tated in 

g 
section 1; see Theorem 3.2. Thus, if Hi ( l )C/  (N~=IHj~(1) )  ~ ~ (where 
i > j l  > j2 > "'" > jg) then on this set, 5<j 1 C --- C Z~,j e. 

We now assign to each element of the collection {Bi,j} U {Ai}, a pure 
nondegenerate substructure as follows. 
(2.2.1) To each Ai, assign the nondegenerate substructure Pi]A~ (note that  

Ai C H i ( l ) ) .  
(2.2.2) To each Bid,  assign a pure substructure, 7~i,d, where 5oi,j = 7 ) /n  

Zj, provided this substructure is nontrivial, and 7)i,j = Zi,jl Bi,j 
otherwise. 

Observe tha t  a pure substructure on Bi,j  is nondegenerate if and only if 
it is transversal to Zj lBi  O. Prom the above definition, it is clear that  ~Pi,j is 
nondegenerate. 

As explained at the beginning of this section, the collection, { (Ai, "PilAi)} 
U {(Bi, j ,7)i , j )} ,  generates a substructure,  P ,  of T[{.JiHI(1 ). Clearly, 
PlH;(1)  = Pi.  In the next subsection we will show that  the substructure, 
7 ~, is nondegenerate. 

c. N o n d e g e n e r a c y  on  m u l t i p l e  i n t e r s e c t i o n s .  The remainder of the 
proof of Theorem 0.1 uses only elementary linear algebra. 

LEMMA 2.3. Assume  Bi,jl UI . . .  N Bi,je is nonempty,  where j l  > "'" > j b  
Then on this subset the pure substructure generated by Pi, j l , .  • •, Pi,je is 
nondegenerate, f f  in addition, Bi,jl N . . .  n Bi,je N Ai, is nonempty,  where 
i' = i or jk  >_ i', then on this subset, the pure substructure generated by 
73i,jl , . . . , 7~i,je, 7~i, is nondegenerate.  

Proof. Since Zj~ C - . .  C Zj~ either 7~i n Zj~ ~ ~ or for some j~, we have 
P.~ ~ Z~ = ~, for s = j l , . . . ,  jr, where j t  is the last such index. We will 
assume tha t  the la t te r  al ternative holds, since the argument in the former 
case is entirely similar to the one that  follows. For the same reason, we can 
assume j t  < jg. 

The substructures assigned to B i , j l , . . . ,  Bi,jt are Z i , j , , . . . ,  Zi,j,, respec- 
tively. The substructures assigned to Bi , j t+ l , . . .  , Bi,je, are Pi  N Z j , + I , . . . ,  
Pi N Zje, respectively. Thus, on Bi,jl KI . . .  CI Bi,jk the pure substructure 
generated by P i , j l , . . . ,  "Pi&, is actually generated by Zi,j~ and Pi A Zj~. 
Moreover, Zi,j, is transversal to gi, Zi,j~ c Zj, ,  and :Pi n27j~ is transversal  to 
:/Tit. To verify the first assertion of Lemma 2.3, it suffices to check tha t  the 
substructure generated by :Z-i,j, and Pi n Y.j, is transversal to Zi. In view of 
the above, this (pointwise) condition follows by elementary linear algebra. 
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We now verify the second assertion. If i t = i, our substructure is gen- 
erated by ~i,j, and P~, where Pi is transversal to 2:j, D "Zij,. On the other 
hand, if ik > i ~, our substructure is generated by Zi,j,, 7)iNIj, and P~,, where 
Pi, is transversal to I j , .  As above, in either case, the assertion follows. [] 

Proof of Theorem 0.1 ~. Given the characterization of the substructure,/2, 
generated by a collection, {(Z~, £~)}, which was stated at the beginning of 
this section, it suffices to check that over each nonempty intersection of sets 
taken from a subcollection of {Bi,j} U {Ai}, the substructure generated by 
the relevant subset of {Pi,j} U {Pi} is nondegenerate. But in view of the 
description of the possible nonempty intersections given in (2.1.6) (2.1.8), 
the nondegeneracy follows by repeated application of Lemma 2.3 (and the 
elementary linear algebra facts, employed in its proof). D 

Proof of Theorem 0.1. As explained in section 1, Theorem 0.1 follows 
directly from Theorem 0.Y and the property of sufficiently collapsible F-  
structures stated in that section (i.e. Theorem 4.1). [] 

REMARK 2.4: Consider the lifted T-structure associated to an arbitrary 
F-structure. As above, it follows that the collection, {(Bi,j, Ii,j)} generates 
a canonical nondegenerate substructure, {C}, over [.J Bi,j. Moreover, it is 
easy to check that  U Bi,j = ~Ji Hi( l)  \ [.Ji H~. 

3. A Property  of  Arbitrary Pure  F-structures  

In this section we prove the property of arbitrary pure F-structures stated in 
section 1. Thus, throughout this section, we will consider an arbitrary pure 
F-structure, ~ ,  on M n, with nonempty singular set. We assume that the 
Riemannian metric on M n is invariant, so that ~" lifts to an O(n)-invariant 
pure polarized T-structure, T,  on the frame bundle, 7r : F M  ~ ---. M n. 

The inner products on stalks, (ez)x, arise from the isotropy represen- 
tations of the local actions of the stalks of $~- on finite covering spaces of 
neighborhoods in the base. For completeness, we will describe these lo- 
cal actions, in the process supplying further details of the description of 
F-structures given at the beginning of the introduction. 

Let F denote the torus fibre of the T-structure, T, and let Afro(F)  de- 
note the identity component of the group of affine automorphisms, A f f ( F ) ,  
of F. Recall that  a choice of affine isomorphism, F ~ T k, induces an iso- 
morphism, Afro(F)  ~- T k, where k is the rank of ~'. 

Let G(F) C O(n) denote the subgroup which preserves F under the 
natural action of O(n) on F M  n. Thus, G(F) = {e}, the trivial subgroup, 
unless F C D. In particular there is a faithful representation, ~- : G(F) ---* 
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Aff(F) .  Let Go(F) C G(F) denote the identity component. Then ~- : 
Go(F) ~ Affo(F). 

Fix el > 0 such that  for every point y E T~I(F ), the q - t u b u l a r  neigh- 
borhood of F ,  there is a unique point, x C F ,  closest to y. Fix  e2, 5 > 0, so 
small that  every component of T6(G(F)) intersects a unique component of 
G(F), in addition, g(T~ (F) ) C Tq (F) and finally, if g(T~2(F))NT~ 2 (F) # O, 
then g E Te(G(F)). 

The action of Afro(F) extends canonically to a torus-fibre preserving 
action on T~ 1 (F);  see [CR, Section 2]. Moreover, for g E r~(ao(F)), the au- 
tomorphism in Af f (F)  defined by, A --, g-lAg, is continuously deformable 
to the identity and hence is trivial. In part icular  the action of elements of 
Te(Go(F)) commutes with the action of Afro(F) on T~(F). 

Put  W = T,~ (F) .  Then W is a disjoint union of equivalence classes, 
where yl ~ y2 if and only if Y2 = gY~, with g E T~(G(F)). Moreover, ~r(W) 
can be identified with the corresponding quotient space with its natural  
topology. Similarly, the equivalence relation Yl ~ Y2 if and only if Y2 = gYl, 
with g C Te(Go(F)), can be identified with a finite normal covering space, 

# : 7r(W) --+ 7r(W), with covering group, the group of components of G(F). 
Since the action of each element of Affo(F) commutes with that  of each 

element of T6(Go(F)), it follows that  there is a canonical action of Afro(F) 
o n  ~r(W). 

Note the action of an element of Affo(F) need not commute with that  
of an element of T~(G(F)). Thus, Affo(F) need not act natural ly on 7r(W) 
itself. Equivalently, an F-s t ruc ture  need not be a T-structure (nor in par- 
ticular, is a flat manifold necessarily a torus). 

Clearly, the isotropy group of any point of ~r -1 (rr(F)) C 7r(W) is 7(G(F)) 
C Af f (F) .  

If x E F ,  then by definition, the stalk of g:r at x is Affo(F). We have 
x E Di,  for some i, if and only if d i m G ( F )  > 0. Let x E D. By definition, 
r(Go(F)) is the stalk of the subsheaf, EL, of g~-. Thus, there is a natural  
(faithful) isotropy representation of (gz~)~ on the tangent  space, We(~), for 
any x C F .  The lifted isotropy representation, p, acts on the quotient of 
the tangent  space, W~, by the tangent space to the O(n)-orbit ,  O(n)~. Let 
xe --~ x, where {xe} C Di, x C Dj and i > j .  Then the limit of the isotropy 
representations, lime~o~ p(Ez,)x~, is the restriction of the representation, 
P((Sz~ )~), to the l imit  subgroup, lime--,~ (gZ,)x~ c (gz~)~. 

Let p,  denote the representation of Lie algebras induced by p. Since a 
torus is compact,  the symmetric bilinear form, 

((A, B)) = -½tr(p.(A)p.(B)) , 
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defines a canonical inner product on the Lie algebra, (ez)x, of the stalk, 
(e:r)x, of ez at x E D. Recall that  up to isomorphism, representations of a 
compact Lie group are isolated. Moreover, the bilinear form, 
- ½ t r ( p . ( A ) p . ( B ) )  is invariant under isomorphism. Thus, it follows that 
the inner product of two local sections of the sheaf, e~, is a constant func- 
tion. Note that local sections of the sheaf, e:r, can be described equivalently 
as local sections of the corresponding vector bundles which are parallel with 
respect to the canonical fiat connection. 

Observe that by the above discussion, if x~ ~ x, where xe c Di, x E Dj  
and i > j ,  then: 
(3.1) The sequence of canonical inner products on Lie algebras, (cz~)xe, con- 

verges to an inner product on the limit Lie algebra, lim~--.o¢ (e:~)xe C 
(ez~)~. Moreover, the limiting inner product, coincides with the re- 
striction to lim~-~oo (ez,)x~, of the canonical inner product on (ez~)x. 

Recall that Z is the substructure of T defined on U~ Hi(2) by the collec- 
tion, {(H~(2),Z~)}. 

Now we can state the main result of this section. 

T h e o r e m  3.2. For alt i, there is a canonical pointwise inner product on 
stalks o f  ez~ such that the inner product o f  two local sections is a constant 
function. Moreover, i f  Hi(2) A Hi(2) ~ ~, where i > j ,  then: 
(3.2.1) The canonical inner product on ez~lHi(2) N Hi(2) coincides with 

the restriction of  the canonical inner product on ez3 ]Hi(2)N Hj (2). 
In particular, the collection of  inner products on the various ez,, 
i -- 1, 2 , . . . ,  defines an inner product on ez.  

(3.2.2) There is a pure substructure, Zi,j, o fZ j  [H.i (2) N Hj (2) such that each 
stalk (ex~,~)x, is the orthogonal complement of  (ez~)~ in (ez~)~. 

Proof. Clearly, the inner product on Lie algebras of stalks of Zi, initially, 
defined over Di, extends naturally over Hi(2). As a consequence of the 
consistency condition implied by (3.1), it follows that  if x C H~(2) A Hi(2), 
where i > j, then the inner product on (ez~)~, obtained by restricting 
the canonical inner product on (ez~)x, coincides with the canonical inner 
product on (ez~)~. This gives (3.2.1). 

To verify (3.2.2), it suffices to consider an orthogonal representation of 
the standard k-torus, T k ---- S 1 x . . .  x S 1. Let ei denote the vector in the Lie 
algebra of T k such that the i-th circle factor is the 1-parameter subgroup 
generated by ei, and exp 2~rei is the identity element. Subtori of T k are in 
1-1 correspondence with subspaees of ]K k, which admit a basis, v l , . . . ,  v j ,  
where vj  -- ~ i  ai,je~, and a i j  is rational, for all i , j .  Thus, by elementary 
linear algebra, an inner product, ( , ) satisfies that  (ei, e~) is rational, for 
all i, ~, if and only if it has the property that the orthogonal complement 
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of a subspace which exponentiates to a subtorus always exponentiates to a 
subtorus. 

For any representation, p, of T k, there is a decomposition, 

I~ '~ = LI @ " " @ L~ @ K , 

into p-invariant subspaees, where each Lj is 2-dimensional and p(T k) acts 
trivially on K.  On Lj ,  we have p(expte/[exp2rre~]) = Rrn,,~t, where mi,~ E 
Z and R~ denotes rotat ion by s. From this, it follows immediately that  
the inner product ,  ((A, B}} = - ½ t r ( p , ( A ) p , ( B ) ) ,  has the above mentioned 
rat ionali ty property. D 

4.  A P r o p e r t y  o f  S u f f i c i e n t l y  C o l l a p s i b l e  P u r e  F - s t r u c t u r e s  

In this section, we will prove the property of sufficiently collapsible pure 
F-structures  which was s tated in section 1. 

T h e o r e m  4.1. Let  the assumptions be as in Theorem 0.1. I f  J r is a suffi- 
ciently collapsible pure F-structure, with lifted structure, T ,  then for M1 i, 
TID~ has a pure nondegenerate substructure. 

First  we will recall from [CR], geometric conditions which guarantee the 
existence of a nondegenerate pure substructure on the frame bundle over a 
subset of M n. In [CR], the assumptions were such tha t  this subset could be 
taken to be M n itself. Here, we will show that  these conditions are actually 
satisfied when restricted to each set, Di. 

a. A c r i t e r i o n  for  t h e  e x i s t e n c e  o f  t r a n s v e r s a l  s u b s t r u c t u r e s .  Let 
p : E ~ B be a fiber bundle with fiber a torus, T k, and structural  group 
A f f ( T k ) .  Assume tha t  E is equipped with an invariant metric, for the local 
action described in section 3. In particular,  the projection, p, is a Riemann 
submersion. 

Recall tha t  a subfibration of p : E --~ B is a fibration, Pl : E --~ BI ,  such 
that  each fiber of pl  is a total ly  geodesic submanifold of a fiber of p. Let P2 
be another subfibration of p. We say tha t  P2 is transversal to pl  if the fiber 
of the la t ter  is tranversal to  tha t  of the former at each point (cf. [CR]). 

T h e o r e m  4.2 [CR]. There exists a constant, ~(n, d, A, p) > 0, such that the 
following conditions imply the existence o f  a subfibration o f  p transversal 
to pl  , 
(4.2.1) d iam(E)  < d, 
(4.2.2) the second fundamental form of  each p-fiber satisfies [[II(F)][ <_ A, 
(4.2.3) the injectivi ty radius of  each pl-fiber is greater  than p, 
(4.2.4) the diameter o f  every p-fiber satisfies, d iam(F)  < e(n, d, A, p). 
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Now let M n be as in Theorem 4.1,_with the lifted T-structure, 21", on 
F M  ~ and a degenerate set D. Let f : F M  ~ --* B] be the projection 
to the orbit space of the bundle, F --* F M  n ---+ B]  defined by T. Then 

]~ : D~ --* B~, the restriction of f to Di, is also an O(n)-invariant torus 
bundle. Moreover, the substructure, Zi, of Di gives rise to an O(n)-invariant 
subfibration, pi : Di ~ Bp . 

In view of Theorem 4.2, the following proposition implies Theorem 4.1. 

PROPOSITION 4.3. Let the assumptions be as in Theorem 4.1. Then, there 
exist constants, h(n, d), A(n) and p(n ), such that for all i, the following hold. 
(4.3.1) The second fundamental form of each ]i-fiber satisfies ]II (][ -l ( x) )[ 

< A(~), 
(4.3.2) diam(D~) < h(n,d),  
(4.3.3) the injectivity radius of each pi-fiber is greater than po(n). 

b. P r o o f  o f  (4.3.1). By [CFG], there exists a constant, A(n), such 
that the O(n)-invaxiant fibration, f : F M  "~ --~ B]  satisfies (4.3.1). Hence, 

]~ : D~ --* Bi satisfies (4.3.1). 

c. P r o o f  o f  (4.3.2). As in section 1, we have S/ = ~r(Di), where S~ is a 
singular s tratum of S = n(D). There is a universal constant, C, such that 

C - ]  • diam(Si) < diam(Di) < C .  diaIn(Si) . 

By the above discussion, (4.3.2) is equivalent to 

LEMMA 4.4. Let the assumptions be as in Proposition 4.3. There exists 
a constant, h(n, d) > O, depending on n and d such that each singular 
stratum, S~, has diameter < h(n, d). 

Proof. We argue by contradiction. Assume that there is a sequence of n- 
manifolds, {Mj~}, which satisfy the assumptions of Theorem 4.1 and such 
that  the invariant pure structure on Mj ~ has a singular stratum, Si~ (M~), 
with diam(Si~ (M~)) > j .  

As mentioned in the introduction, we can assume that  the metric on 
F M ~  has a uniform bound on the covariant derivative of the curvature ten- 
sor (see section 0 and [CFG]). Then, by Gromov's precompactness theorem, 
after passing to a subsequence, we can assume that  {M~} converges to a 
metric space, B, and the sequence of the frame bundles, {FM~},  converges 

to a Riemannian manifold/)  (of lower dimension) such that for j sufficiently 
large the following diagram commutes (compare IF2]). 
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FM~ ~ 

rb 

Here 0j : FM~ -~ B is an O(n)-invariant fibration with fiber affine isomor- 
phic to a nilmanifold, and affine structural  group; see [CFG] and compare 
section 1. In the language of [CFG], r b defines a nilpotent Killing structure 
on M~ ~. The O(n)-invariance implies that  /)  admits an isometric O(n)- 
action such that  B = B/O(n) and the fibration 0j descends to a singular 
fibration projection, r 5 : M~ ~ 13. I t  follows from Proposit ion A1.14 of 

[CFG] tha t  the O(n)-act ion o n / )  is effective. The centers of the nilpotent 
fibers form an O(n)-invariant  torus bundle. This is the structure which was 
described in section 1 (see [CR]). 

Note that  the singular set of the nilpotent Killing structure coincides 
with tha t  of the canonical F-structure; see [CR]. 

Let {Z~} denote the collection of all singular s t ra ta  of the O(n)-act ion 
on /). Then the above commutat ive diagram implies tha t  {~-(Z~)} is the 
collection of images under the projection, r]j, of all singular s t ra ta  of the 
nilpotent Killing structure on Mj ~. Thus, {fj-l(~-(Zi))} is the collection 
of all singular s t ra ta  of the nilpotent Killing structure on M~ ~. By the 

above discussion, { f -1  (#(Zi))} is the collection of all singular s t ra ta  of the 
canonical pure F-s t ructure  on M2.  

Since ~(Zi) has a definite diameter,  the diameter of fj-1 (#(Zi)) is bound- 
ed for all j .  Since there are only finitely many singular s t ra ta  for the O(n)- 
action o n / )  (see [B]), we conclude that  the diameters of all f~-t(#(Zi)) are 
uniformly bounded; a contradiction. D 

d. P r o o f  of  (4 .3 .3) .  Let M n be as in Proposit ion 4.1 and let 9 c be a 
sufficiently collapsible pure F-s t ructure  on M'L 

LEMMA 4.5. There exists c(n,r) > 0, such that for att p C M n, there 
exists q E B~(p) \ S, such that the second fundamental form of Oq satisfies 
II~I(Oq)ll _< c(n,~).  

Proof. It  follows from Theorem 1.7 of [CFG] (local bounded covering geom- 
etry) tha t  the norm of the second fundamental  form of a nonsingular orbit  
of 5 r can be bounded above in terms of its distance from the singular set S. 
Thus, it suffices to show tha t  each ball of radius r contains a nonsingu- 
lar orbit  lying at  a definite distance (depending only on n and r) from S. 
This can be seen by an argument by contradiction analogous to the proof of 
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Lemma 4.4. In this connection, recall that  the O(n)-action on/3 is effective. 
Thus, the set of nonsingular orbits is dense. [] 

For a subset U of M ~, we use 7rg : U --~ U to denote the universal 
covering space of U equipped with the pullback metric. 

LEMMA 4.6 [CFG]. There exists a constant, p(n) > O, such that for any 
p E M n, there is an invariant open subset, U, containing the ball, B2p(n)(p) , 
and each point in 7ru 1 ( Bp(n) (p) ) h ~  injectivity radius > p(n). 

Note that  Lemma 4.6 is a version of local bounded covering geometry 
which suffices for our present purposes (for the full statement, see [CFG, 
Theorem 1.7]). 

Proof of (3.3.3). Let x e Di. Put  7r(x) = p. For p(n) as in Lemma 4.6, 
and r = p(n), let q be as in Lemma 4.5. Clearly, there exists y C 7r -1 (q) and 
a minimal geodesic, V, with V(0) = x, ~/(1) = y, such that ~r(7 ) C Bp(n)(p). 

By light abuse of notation, let (9 z~ denote the orbit through v(t), of the ~(t) 
parallel translate along % of the stalk, ($z,)x. Here the parallel translation 
is with respect to the canonical connection on ST, viewed as a flat bundle. 
By Lemma 4.6, 7r(Ozil)) = 7r(Oy z')  has second fundamental form bounded in 

norm by c(n, r). Moreover, for U as in Lemma 4.6, the family, ir(OZ't ), pro- ()  
vides a contraction in U, of 7c(OZy ') to point x. Let ~) C I ru- l (y)  and let O 3 

denote the component of 7rul(Tr(OZ')) through ~). Then 7ru[O z" is a home- 

omorphism. Thus, for the pull back metric, inj rad((9~ *) = inj rad(~r(Oy z~)). 

Since also HII(()~')l I = HII(Tr(ozy~))ll <_ c(n,p(n)),  it follows from Lemma 

4.6 that inj rad((9~') > po(n). The fact that  7r : F M  n --~ M n is a Rieman- 

nian submersion, easily implies inj rad(Oy z*) >_ P0 (n) as well. 
By (4.3.1) and (4.3.2) metrics on orbits of Zi are quasi-isometric, with 

the constant depending on n and d. Hence, it follows from the above that  
inj rad(O~ z ' )  has a lower bound depending only on n and d. [] 

5. A G e n e r a l i z a t i o n  o f  T h e o r e m  0 .1  

In this section, we will give a generalization of Theorem 0.1; see Theo- 
rem 5.2. 

DEFINITION 5.1: Let 9 v be a (possibly mixed) F-structure. A singular 
component, Si, of ~" is called essential if b r has no polarized substructure 
in any neighborhood of Si. 
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By definition, an F-s t ructure  has a polarized substructure if and only 
all singular components are nonessential. Examples of positive rank F- 
structures with essential singularities were mentioned in the introduction. 

Let M n be a complete manifold with IKM,~ I --~ ]. Recall that  for all 
sufficiently small e > 0, there is a natural  decomposition, M n = B(e)Ug(c),  
where B(c) consists of points at  which the injectivity radii are not less than 

and C(~) is the complement. If M n = C(c), then M n is called e-coUapsed. 
The main result in [CFG] asserts that  there is a constant, e(n) > 0, such 

that  (after a slight adjustment  of its boundary)  C(£(n)) admits  a (possibly 
mixed) positive rank F-structure,  5 ~, which is almost compatible with the 
metric. We will also call ~ the associated F-structure. 

The following result can be viewed as a generalization of Theorem 0.1. 

T h e o r e m  5.2. For all d > O, there exists a constant, 0 < ~(n, d) < ~(n), 
such that the following holds, f f  M n is an ~(n, d)-collapsed complete mani- 
fold with IKM, I ~-- 1 such that the associated F-structure on M ~ has essen- 
tial singular components, then all such components have diameter ~_ d. 

Note that  the injectivity radius collapsed metric in Theorem 5.2 need 
not be volume collapsed, i.e. the volume need not he small and could be 
infinite. 

COROLLARY 5.3. Let M n be a complete manifold with ] K I l l  and Vol(M n) 
oo. Suppose that for the associated F-structure, ~ ,  on C(e(n)), all singu- 

•ar components have diameter ~_ d. Then, there is a constant, 0 ~ ~(Tz, d) ( 
c(n), such that )v]g(E(n, d)) has a polarized substructure. 

Note that  Corollary 5.3 means that  3 v has a polarized substructure near 
infinity. 

REMARK 5.4: Theorem 5.2 provides a geometric constraint on essential 
singular components. Nonessential singular components can have arbi trar i ly 
small diameter;  see Example 5.7. 

REMARK 5.5: Recall that  given a positive rank F-structure,  ~', there exists 
a family of invariant metrics with IKI <_ 1 and injeetivity radii  uniformly 
converging to zero ([CG1]). An F-s t ructure  associated to each sufficiently 
collapsed metric is actually a substructure of ~ .  If, in addition, one as- 
sumes that  Y has essential singularities, then such an F-s t ructure  will have 
an essential singular component ([CG1]). (Note tha t  by definition, any 
substructure of an F-s t ructure  with essential singularities has essential sin- 
gularities). 

Assume tha t  M ~ is e-collapsed with 0 < e < e(n). Consider an associ- 
ated F-structure,  5 ~, on M% Note that  ~ need not be a pure F-s t ructure  
(see Example 0.1 of [CFG]). However, we have 
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LEMMA 5.6. For a / /d  > 0, there is a constant, 0 < e(n, d) < e(n), such that  
i f  M n = C(e(n, d)), then for all x E M n, the restriction of  ~ to a subset  
containing J~d(X) has a pure positive rank substructure. 

Proof.  The proof is based on an observation concerning the construction of 
sufficiently collapsible F-s t ructures  in [CFG]. 

Fix any d > 0. It follows from section 5 of [CFG], there is a constant,  
0 < ~(n,d) < e(n), depending only on n and d such tha t  if M s = C(~), 
e < e(n, d), then for all x E M n, a subset containing Bd(x)  admits  a pure 
positive rank F-structure,  say ~ , d ,  such tha t  all orbits have diameter less 
than  e. 

If, in addition, we choose e(n, d) << e(n), then ~'x,d is actually a pure 
substructure of the associated F-structure,  ~', on M n. This can be seen 
from the construction of 9 ~ in [CFG]. D 

Now the proof of Theorem 5.2 follows easily from Lemma 5.6 and The- 
orem 0.1. 

We conclude this paper  with an example mentioned in Remark 5.4. 

EXAMPLE 5.7": Consider the s tandard  T2-action on S 2 x S 1. Using a 
s tandard  method (see [CG1]), we will construct a (continuous) sequence of 
invariant metrics, g~, with ]Kg¢] < 1 such that  (S 2 × Sl ,g~)  converges to 
a closed interval (e --* 0) in the Gromov-Hausdorff topology (see [GLP]). 
Clearly, the F-s t ructure  associated to any sufficiently collapsed metric coin- 
cides with the T2-action. Observe tha t  the length of each of the two singular 
circle orbits (each one is a non-essential singular component) goes to zero 
as e --* 0. 

Take a one parameter  subgroup, R, of T 2 such tha t  the closure of R 
is T 2 and take a T2-invariant metric, g, on S 2 × S 1. At  each point, write 
g -~ gR • g~,  where gR is the restriction of g to the subspace tangent  to 
the R-orbi t  and g~ is the orthogonal compliment. Then g~ = E2gR @ g~, 
0 < e < l .  
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