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Abstract

This paper addresses how hard evidence can be incorporated into mechanism-
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versions of these models are equivalent. The paper also addresses whether dy-
namic mechanisms are required for Nash implementation in settings with hard
evidence. The paper shows that static mechanisms suffice in the setting of “ev-
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Many contractual and public-choice settings are analyzed using mechanism-design
theory, which is a useful framework for studying the implications of informational
asymmetries. The typical mechanism-design model comprises a set of states (repre-
senting the parties’ information), a set of physical outcomes, and a specification of
preferences over outcomes and states. The typical implementation exercise involves
designing a game form, which induces a game to be played in each state. In essence,
the game form specifies how the parties may send messages to each other and to an
external enforcer, who will select the outcome on their behalf. The parties’ rational
behavior in each state implies an outcome function (the outcome as a function of the
state).

In its standard “public choice” form, the mechanism-design framework abstracts
from institutional and technological constraints beyond those that the modeler can
represent in the definition of states, outcomes, and preferences. This abstraction
can create a useful simplification, but it is not suitable for the analysis of some real
constraints that we are interested in studying. For example, in many settings, parties
can present hard evidence. The key features of hard evidence are that (a) whether to
present evidence is an inalienable action, and (b) the existence of evidence depends
on the state.

In this paper, we discuss how hard evidence can be incorporated into the mechanism-
design framework. We model the parties’ inalienable actions (evidence production)
as distinct from an arbitrarily-designed message form. A mechanism specifies the
message form and how the public action is a function of messages and evidence. Our
work is thus along the lines of Myerson (1982,1991), whose mechanism-design analysis
nicely distinguishes between inalienable individual and public actions.

Our main objectives are to (i) address the meaning and validity of the revelation
principle, and (ii) compare the efficacy of static and dynamic mechanisms in the con-
text of hard evidence. We focus on weak (Bayesian) Nash implementation, which
is the appropriate concept for analysis of the revelation principle and is nontrivial
in many important economic environments (in particular, contractual settings with
renegotiation, as in Maskin and Moore 1999 and Segal and Whinston 2002).1 On
(ii), we find that dynamic mechanisms are essential for implementing some outcome
functions; this result stands in stark contrast to the standard case without hard evi-
dence (where the static/dynamic distinction is irrelevant for Nash implementation).2

We examine both situations of incomplete and complete information.
Our analysis proceeds in four stages. First, we prove a “weak revelation result,”

which justifies focusing on mechanisms in which, in addition to their inalienable

1With renegotiation and quasilinear utility, weak Nash implementation is unique in payoffs. Weak
Nash implementation is also nontrivial in settings with one player or where there is no “bad” public
action that can be used effectively to punish the players; it is trivial when there are two or more
players and there is a very inefficient public action that can be used to punish the players off the
equilibrium path.

2We think it is worthwhile to understand these issues in the context of weak Nash implementation
before examining strong/unique implementation.
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actions about what evidence to present, the parties are instructed to simultaneously
report their own types (and they report truthfully in equilibrium).

Second, we address the degree to which each party’s behavior in a mechanism
can be interpreted as an abstract “declaration of his type.” In standard mechanism-
design environments, this issue is resolved by the standard revelation principle, which
justifies analyzing truthful reporting in direct-revelation game forms.3 In settings
with hard evidence, however, this issue is more complicated because evidence disclo-
sure is inalienable and therefore cannot be freely translated into a direct-revelation
form. Our “strong revelation result” provides an intuitive condition—called eviden-
tiary normality—under which, for each party, there is a one-to-one mapping between
types and report/evidence pairs that holds across all implementation exercises. For
each type θi of party i, there is evidence eθi

i such that, when party i presents eθi
i and

sends the message “θi,” it means “party i declares his type to be θi” and this meaning
is fixed over all implementation exercises.

Third, under evidentiary normality, we show how a setting with hard evidence
can be translated into an “abstract-declaration model,” in which each party simply
declares his type but is limited in what he can say. We provide an equivalence result
for the two models.

Fourth, we address whether there is a difference between what dynamic mecha-
nisms and static mechanisms can Bayesian-Nash implement. In static mechanisms, all
messages and evidence disclosure occur simultaneously, whereas in dynamic mecha-
nisms these actions occur sequentially. We present an example of an outcome function
that can only be implemented using a dynamic mechanism; this is an interesting re-
sult because, since Nash implementation is a static concept, dynamic mechanisms
are not needed for Nash implementation in conventional models. However, we prove
that static mechanisms suffice under evidentiary normality. We also show that when
evidentiary normality does not hold, one can constrain attention to simple three-stage
dynamic mechanisms in which the players first send private messages to the external
enforcer, then they receive private messages, and then the players disclose evidence.

Our modeling exercise amounts to a reformulation of Green and Laffont’s (1986)
“limited verifiability” analysis. These authors were the first to study the abstract-
declaration model.4 The contribution of our approach beyond that of Green and
Laffont (1986) is threefold. First, we provide a link between real evidence and ab-
stract declarations, which clarifies when the abstract-declaration environment has an
intuitive interpretation. Part of this link involves justifying a fixed action space for
mechanism design. Second, we lend support to Green and Laffont’s “nested range
condition” by arguing that evidentiary normality (the equivalent in our context) is

3See Dasgupta et al. (1979), for example.
4Others that examine settings with partial verifiability include Milgrom and Roberts (1986),

Hart and Moore (1988), Okuno-Fujiwara et al. (1990), Shin (1994), Lipman and Seppi (1995), and
Seidman and Winter (1997). Bull (2001a) and Deneckere and Severinov (2001) examine moderate
costs of evidence production.
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commonly satisfied in reality. Third, we extend the analysis to settings with more
than one player. We find that evidentiary normality justifies studying the abstract-
declaration model, but, without evidentiary normality, it is not appropriate to focus
on static mechanisms.

Our analysis is related to that of Lipman and Seppi (1995). In Lipman and
Seppi’s model, several agents jointly observe a state and individually send messages
to a receiver, who then takes an action. The senders are constrained to the same state-
contingent set of messages. Lipman and Seppi consider the design of dynamic game
forms in which the players send messages sequentially. In our analysis of dynamic
mechanisms, we perform a similar exercise to determine “standard form” mechanisms
that are sufficient for implementation in various settings.5

Also closely related is the concurrent work of Deneckere and Severinov (2001) and
Forges and Koessler (2003). These papers study aspects of mechanism design with
limits on communication. They are motivated differently than is our study (they take
different perspectives and focus on different settings), but their analysis and results
significantly overlap with ours. In the Conclusion, we discuss in detail the relation
between these papers and the modeling exercise presented herein.

The next Section described the standard public-action mechanism-design model,
to which hard evidence is added in Section 2. The characterization results for static
implementation are presented in Section 3 and the relation to models with abstract
declarations is explored in Section 4. Dynamic mechanisms are the focus of Section 5.
Section sec:conclusion offers concluding remarks and a discussion of related papers.
The Appendix contains proofs that do not appear in the body of the paper, with
the exception of Theorems 1 and 2 whose simple proofs are omitted (they follow the
standard method of establishing the basic revelation principle).

1 The Standard Mechanism-Design Model

We consider a public-choice setting with n players, where a public action p is taken
by an external enforcer. Let P be the set of feasible public actions, which we also
call outcomes. The players’ preferences over public actions depend on the state θ,
which is a vector of types for all of the players; we write θ = (θ1, θ2, . . . θn), where
θi is player i’s type, for i = 1, 2, . . . , n. We let Θ denote the set of feasible states
and we assume this is finite. The set of feasible types for player i is denoted Θi, so
Θ ⊂ Θ1 × Θ2 × · · · × Θn. In state θ, player i observes his own type θi and has a
belief about the types of the other “−i” players that is described by the probability
distribution µi(· | θi), where µ−i(θ−i | θi) is the probability that player i believes the
other players have type profile θ−i. The external enforcer does not observe the state.

5Lipman and Seppi (1995) focus on provability assumptions that imply “robust inference” (mean-
ing that, with a particular mechanism, the receiver can be sure to learn about the state regardless
of the agents’ preferences). Their objectives are thus tangential to ours; they also use a stronger
notion of implementation across a wider range of preferences than are appropriate for our purposes.
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Preferences are represented by the utility function u : P ×Θ → Rn. We write u(p, θ)
as the payoff vector of public action p in state θ. Player i’s payoff is ui(p, θ).

This treatment of types and beliefs allows for players having a common prior, but
does not require it. A special case that we will specifically consider is that of complete
information, where the state is commonly observed by the players. For settings of
complete information, we will conveniently redefine (or, as is said, abuse) notation
and write Θi = Θ for each i; in this case, we also have µ−i(θ, θ, . . . , θ | θ) = 1. Also,
when analyzing settings with one player, we write Θ1 = Θ.

An outcome function g : Θ → P associates an outcome with each state. The set
of implementable outcome functions are those that can be induced via equilibrium
play of fixed mechanisms. A mechanism is a game form, specifying a game tree with
actions for the players and outcomes (from P ) at terminal nodes. For a given state
θ, the game form and u(·, θ) define the game played in state θ.

In a typical contractual application, the players are contracting parties and the
external enforcer is a court or other authority. The public action represents transfers
and other actions that the court compels. The state signifies an event that occurs
during the contractual relationship, such as specific investments or some random
draw. The contract that the parties form specifies how they are to interact with
the court and how the court should respond, following the realization of the state.
Thus, the contract specifies the mechanism. The parties design the mechanism to
implement an outcome function of their choice.

2 Incorporating Hard Evidence

The standard mechanism-design analysis imposes no structure other than what is
given by the set of states, the set of outcomes, and the players’ preferences. To model
hard evidence, however, some additional structure must be assumed. To see why this
is so, consider an example.

Suppose there are two states, Y and N . State Y signifies that player 1 has
found a particular rare coin while on an archaeological expedition, whereas state N
signifies that he has not found the coin. In other words, in state Y player 1 possesses
the coin, whereas in state N he does not have it. Suppose further that, once the
state is realized, player 1 can present any of his possessions to the external enforcer
for inspection. However, there is no way for the external enforcer to search every
possible place where player 1 may have the coin; player 1 can easily hide or dispose
of it. The coin can be disclosed by player 1, if he has it, or not disclosed.

There are two important aspects of this hard evidence (the coin) that must be
incorporated into the mechanism-design analysis. First, we have the fact that the
coin can be disclosed in state Y but not in state N . Second, whether to disclose the
coin is player 1’s inalienable action.6

6Other recent examples of models in which there are inalienable decisions within the mechanism
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To incorporate the hard evidence, we view player 1’s inalienable action as some-
thing that cannot be tampered with in the design of a mechanism. In other words, the
mechanism should be constrained to explicitly include player 1’s choice of whether to
disclose the coin. There are then state-contingent limits on the actions that player 1
can take. In particular, in state N , player 1 is not allowed to pick the “disclose the
coin” action. The game form may include other actions, such as messages sent to
the court. The public action is a function of these messages and whether player 1
discloses the coin.7

Returning to the general framework, we suppose that each player takes an inalien-
able evidentiary action (which we also call evidence production). Specifically, player i
chooses ei from a set Ei. We assume that evidence production is costless; that is, the
player’s evidentiary actions are not directly payoff-relevant. Thus, we do not need to
include evidence in the definition of the “outcome.” We capture evidentiary limits as
type-contingent constraints on each player’s ability to produce evidence. Specifically,
player i of type θi is constrained to select ei from some nonempty set Eθi

i ⊂ Ei. These
subsets define the evidentiary structure. Define

Eθ ≡ {(e1, e2, . . . , en) | ei ∈ Eθi
i for each i = 1, 2, . . . , n.}

and let E ≡ ⋃{Eθ | θ ∈ Θ} be the set of possible evidence profiles.
In practice, evidence may take the form of documents that the players can disclose.

We use the word “document” broadly to include papers, such as canceled checks or
bills of sale, as well as any other physical objects or tasks that players can disclose or
perform. This interpretation implies extra analytical structure whereby ei represents
a collection of documents that player i presents. Formally, then, ei is a subset of some
grand set of documents Di. The state determines the available sets of documents for
each player. That is, for every type θi of player i, Eθi

i is some subset of Di, and Ei is
a subset of the power set of Di. Bull and Watson (2004) models evidence in this way
and studies a complete information setting in which public actions are transfers.

We are particularly interested in evidentiary structures with the following prop-
erty.

Definition 1: The evidentiary structure is called normal if, for each player i and
every type θi, there is an evidentiary action eθi

i ∈ Eθi
i with the following property. For

every θ′i ∈ Θi, if eθi
i ∈ E

θ′i
i then Eθi

i ⊂ E
θ′i
i .

include Brusco (2000) and Evans (2002).
7An alternative way of incorporating the hard evidence is to include in the definition of the

outcome whether the coin is disclosed. To capture the idea that the coin cannot be disclosed in
state N , we could assume that disclosure of the coin in state N gives player 1 an arbitrarily large
negative payoff. To capture that whether to disclose is player 1’s inalienable action, we then must
restrict the class of allowable game forms to those in which disclosure of the coin (a component of
the outcome) only depends on player 1’s actions. Further, player 1 must have a “nondisclosure”
action. We prefer to simply model evidentiary actions as individual, inalienable actions that the
players take. For more on the difference between modeling an action as public and individual, see
Watson (2003).
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Normality means that there is “maximal evidence” available to each type, which is
sufficient to use in possibly distinguishing this type from others. For a given type
θi of player i, we call eθi

i the maximal evidentiary action (though it need not be
unique). Maximal evidence disclosure by all players in a given state θ implies that
eθ ≡ (eθ1

1 , eθ2
2 , . . . , eθn

n ) is disclosed. Though our focus with normality is much different
than that of Lipman and Seppi (1995), normality is essentially equivalent to their full
reports condition.8

If one considers evidence in terms of documents, as briefly discussed above, a
sufficient (but not necessary) condition for normality is that each player is freely
able to present any combination of documents in his possession. When player i can
present any combination of his existing documents, we can define eθi

i to be Dθi
i ; in

words, player i’s maximal evidence entails disclosing all of the documents he has.9

We first study static mechanisms, in which all players’ evidence and messages are
submitted simultaneously. In Section 5, we discuss conditions under which imple-
mentation relies on the use of sequential mechanisms. In settings with hard evidence,
a static mechanism has two components. First, it prescribes an arbitrary message-
game form to be played by the players simultaneously with their inalienable actions
as to what evidence to produce. Specifically, the mechanism specifies message spaces
M1, M2, . . . , Mn. Simultaneously and independently, the players choose messages and
evidence, with player i selecting a message from Mi and an evidentiary action from
Ei. We use the term action (with no qualifier) to describe a player’s choice of a
message and evidentiary action, and we write

ai = (mi, ei) ∈ Ai ≡ Mi × Ei.

We write the players’ action profile as an element of A ≡ M × E, where M ≡
M1×M2×· · ·×Mn. The second component of a mechanism is a mapping f : A → P ,
which prescribes the public action for each profile of messages and evidence. We
represent a mechanism as (M, f).

8To see the equivalence of normality to Lipman and Seppi’s full report condition (extended to a
setting where agents may possess different hard evidence), define their condition as follows. For every
θ, there is evidence eθi

i ∈ Eθi

i such that Ti(eθi

i ) = ∩
ei∈E

θi
i

Ti(ei), where Ti(ei) ≡ {θi ∈ Θi | ei ∈ Eθi

i }.
The interpretation of Ti is that it is the set of types of player i for which evidence ei is feasible. In
this sense, it is the information content of evidence ei. The interpretation of the condition is that
for every type, there is a single evidentiary action that summarizes what all available evidentiary
actions for this type would imply.

9As noted above, it is not necessarily the case that each type has a unique maximal evidentiary
action. For example, let Θ1 = {X, Y } and suppose player 1’s set of documents is D1 = {Q, R}.
Suppose neither of these documents exists in state X , so that EX

1 = {∅}; suppose that both exist
and can be presented in state Y , so that EY

1 = {∅, {Q}, {R}, {Q, R}}. Note that, in state Y ,
player 1 can disclose Q, R, neither, or both. This is a normal evidentiary environment, with eX

1 = ∅
and eY

1 chosen as any element of EY
1 \ ∅. To see that the ability to disclose any combination of

documents is not necessary for normality, observe that, in this example, we could have specified
EY

1 = {∅, {Q}, {R}} and still have normality.
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The mechanism implies what we call the message and disclosure game, which is
a Bayesian game with type-contingent restrictions on actions. In state θ, player i’s
action space is restricted to Aθi

i ≡ Mi×Eθi
i ; that is, although he can send any message

from Mi, he can only produce feasible evidence. We denote player i’s strategy by
αi : Θi → Ai, where αi(θi) ∈ Mi × Eθi

i is assumed for each θi. A strategy profile is
denoted by α and can be written as a function α : Θ → A. We also write α−i as
the profile of strategies for the players other than player i. Payoffs in state θ, as a
function of the action profile, are given by u. Thus, if the action profile is a ∈ A,
then the payoff vector is u(f(a), θ).

We study (Bayesian) Nash implementation.10 A strategy profile α is a Nash
equilibrium of the message and disclosure game if, for every player i and each type
θi ∈ Θi, αi(θi) solves

max
ai∈A

θi
i

∑

θ−i∈Θ−i(θi)

µ−i(θ−i | θi)ui((ai, α−i(θ−i), (θi, θ−i)),

where Θ−i(θi) ≡ {θ−i | (θi, θ−i) ∈ Θ}.

Definition 2: A mechanism (M, f) is said to implement outcome function g if the
implied message and disclosure game has a Bayesian Nash equilibrium α such that
f(α(θ)) = g(θ) for every state θ ∈ Θ. An outcome function is said to be imple-
mentable if there is a mechanism that implements it.11

3 Characterization Results

This section addresses two key issues: (1) the extent to which mechanism-design
analysis can be simplified by restricting attention to a particular class of mechanisms
and equilibrium behavior, and (2) whether there is a mapping between states and
actions that allows us to interpret—in a way that is uniform across implementation
exercises—each player’s message and evidence production as an abstract “declaration
of his type.”

Our first result is a weak revelation result; it justifies constraining attention to
the following type of implementation.

Definition 3: We say that outcome function g is implementable with direct and
truthful messages if there is a mechanism (M, f) with the following properties.

10Our analysis leans heavily on the assumption that evidence is costless to disclose when it exists.
In many real cases, evidence production entails a moderate (monetary or psychic) cost. If the cost is
relatively small, our model is probably a good approximation. In general, we think it is important to
distinguish between (a) existence of evidence, (b) costs of producing evidence, and (c) any exogenous
constraints on mechanisms. In our modeling exercise, (b) and (c) are assumed away.

11Recall our comments in the Introduction regarding the justification for studying the “weak”
version of implementability. Mookherjee and Reichelstein (1990) study a variant of the revelation
principle for strong implementation in a standard mechanism-design setting.
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First, Mi = Θi for each i. Second, the implied message and disclosure game has a
Bayesian Nash equilibrium α such that f(α(θ)) = g(θ) for every state θ ∈ Θ and, for
each player i and each type θi, it is the case that αi(θi) = (θi, e

θi
i ) for some eθi

i ∈ Eθi
i .

In other words, the mechanism has “direct-revelation” message spaces—where Mi =
Θi for every player i—and implementation is achieved with an equilibrium in which
each player’s message is a truthful report of his realized type.

Theorem 1 (Weak Revelation Result): If an outcome function is implementable
then it is implementable with direct and truthful messages.

This theorem is a version of Myerson’s (1982) Proposition 2, in the context of
state-contingent constraints on individual actions.12 The theorem shows that, in the
implementation of a given outcome function, there is a one-to-one relation between
states and each player’s equilibrium action. Thus, player i’s action (θi, e

θi
i ) can be

interpreted as “player i declares that his type is θi.” However, Theorem 1 does not
guarantee that the meanings of specific actions are uniform over the implementation
of various outcome functions. In other words, when implementing g the action that
means “player i declares that his type is θi” may be a different action than the
one with this meaning when implementing g′. Hence, we call Theorem 1 the Weak
Revelation Result.

We are then led to ask whether, in general, there is a way of limiting ourselves to
a fixed meaning of evidence. The answer is “no,” as the following example demon-
strates. Consider the setting in which n = 1, Θ = {X, Y, Z}, P = {p, p}, and
E1 = {Q, R}. Suppose payoffs are given by u(p, θ) = 0 and u(p, θ) = 1, for each
θ ∈ Θ. Feasible evidence is given by EX

1 = {Q}, EY
1 = {Q, R}, and EZ

1 = {R}. In
words, player 1’s evidentiary action must be Q in state X, he can present evidence
Q or R in state Y , and he must choose R in state Z. Note that this evidentiary
structure is not normal.

In this example, one can implement the outcome function g defined by g(X) =
g(Y ) = p and g(Z) = p. Further, it is not difficult to confirm that this can only be
accomplished if player 1 produces evidence Q in state Y ; otherwise, in state Z he
could pretend to be in state Y and would get the preferred outcome p. Likewise, we
can implement the function g′ defined by g′(X) = p and g′(Y ) = g′(Z) = p, but doing
so requires giving player 1 the incentive to produce evidence R in state Y .

In summary, implementation of g requires associating evidentiary action Q with
state Y , whereas implementation of g′ requires associating R with state Y . In the
first case, production of Q is integral to the abstract statement “player 1 declares the
state to be Y .” In the second case, production of R has this interpretation. Thus, in
general, evidence can have no fixed meaning.

12The model can be translated into Myerson’s formulation by modeling evidentiary constraints in
utility terms (as described in footnote 7) and by defining a new public action that maps E to P .
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However, we next show that a fixed meaning always exists if the evidentiary struc-
ture is normal. Recall that, under a normal evidentiary structure, there is maximal ev-
idence in every state: eθ. We define aθi

i ≡ (θi, e
θ
i ) and we write aθ = (aθ1

1 , aθ2
2 , . . . , aθn

n ),
for every θ. Similarly, α(θ) ≡ (θ, eθ) for every θ.

Definition 4: Assume that the evidentiary structure is normal. We say that outcome
function g is implementable with direct and truthful messages and with
maximal evidence production if there is a mechanism (M, f) with the following
properties. First, Mi = Θi for each i. Second, α is a Bayesian Nash equilibrium of
the implied message and evidence game. Third, f(α(θ)) = g(θ) for every state θ.

Theorem 2 (Strong Revelation Result): Assume that the evidentiary structure
is normal. If an outcome function is implementable then it is implementable with
direct and truthful messages and with maximal evidence production.

The proof of this theorem is a constructive argument, whereby a given mechanism
and equilibrium behavior is mapped into another mechanism and maximal evidence
production. Normality comes into play when showing that any deviation in the latter
setting is associated with a feasible deviation in the former setting, which enables the
definition of the new mechanism so that α is an equilibrium.

The Strong Revelation Result ensures that there is a meaningful and uniform
notion of “truthful declaration.” Player i declares his type to be θi by choosing action
aθi

i , that is, by sending message “θi” and providing evidence eθi
i . Because we can

restrict attention to equilibria in which type θi of player i selects (θi, e
θi
i ) in the

message and disclosure game, this action can always be interpreted to mean “player i
declares that his type is θi.” This meaning can be fixed across all implementation
exercises.

4 Models with Abstract Declarations

In this section, we investigate whether one can translate a setting of mechanism-design
with hard evidence into a mechanism-design setting in which each player simply
declares his type but faces type-contingent constraints on the declaration he can
make. We study a model in which the abstract message “θi” takes the place of the
real message and evidence (θi, e

θi
i ).

We start by defining an abstract-action model as follows. For each player i, there
is a fixed set of actions denoted Ai; this set is fundamental and cannot be designed as
in the model of the previous sections. The players are constrained in that, given his
type θi, player i’s action is limited to be from some nonempty set Aθi

i ⊂ Ai. Letting

A ≡ {(a1, a2, . . . , an) | there is a state θ such that ai ∈ Aθi
i for each i},

a mechanism thus specifies a function of the form f : A → P . The players play a
game in which they simultaneously select feasible actions and payoffs are given by
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u(f(·), θ). An outcome function g is implementable if there is a function f : A → P
such that the implied game has an equilibrium α with f(α(θ)) = g(θ) for every θ ∈ Θ.

The abstract-action model is precisely Green and Laffont’s (1986) general model,
with two exceptions. First, and mainly rhetorical, we suggest no interpretation of the
abstract actions.13 Green and Laffont named some of the player’s actions as direct
reports of his type and they assumed that a player can always report his realized type
(θi ∈ Aθi

i for all θi ∈ Θi). Second, our model is defined for an arbitrary number of
players, whereas Green and Laffont focused on the case of one player.

The only difference between the abstract-action model and our model of hard
evidence is that, in the abstract-action model, the set Ai is fixed, whereas, in the
model developed in Section 2, Ai is endogenous to a particular implementation exer-
cise (because M is arbitrary). Recognize that, unless some version of the revelation
principle holds, there is no justification for constraining attention to a fixed set of
actions for mechanism design. Thus, as Green and Laffont recognized at the outset of
their modeling exercise, adopting an abstract-action model amounts to an assumption
that is not necessarily innocuous. However, our Weak Revelation Result implies that
any setting with hard evidence can be translated into an equivalent abstract-action
model, where one simply defines Ai ≡ Θi × Ei and Aθi

i ≡ Θi × Eθi
i , for each i and

every θi. That is, one can focus on these fixed action spaces. Thus, we conclude that
Green and Laffont’s (1986) modeling approach is general and always valid, within the
class of static mechanisms and subject to the interpretive issues just noted.

A special case of the abstract-action model, which we call the abstract-declaration
model, has Ai ≡ Θi for all i. In words, this model has each player simply reporting
his type to the external enforcer. The abstract-declaration model is the most basic
one studied by Green and Laffont (1986). Any setting of mechanism design with hard
evidence that has a normal evidentiary structure can be translated into an abstract-
declaration model as follows. Let the sets Eθi

i (for each player i and every type θi) be
given by any setting with hard evidence. By normality of the evidentiary structure,

for each player i and every state θ, we have an element eθi
i ∈ Eθi

i such that eθi
i ∈ E

θ′i
i

if and only if Eθi
i ⊂ E

θ′i
i . We define

Aθi
i ≡ {θ′i | e

θ′i
i ∈ Eθi

i },

for each i and every θi ∈ Θi. In words, given that he is type θi player i can declare his
type to be θ′i if and only if all of the evidence available to type θ′i is also available to
type θi. Note that this construction satisfies Green and Laffont’s (1986) assumption
that θi ∈ Aθi

i for all θi. Also note that this translation is not generally possible
without a normal evidentiary structure.14

13For this reason, we refer to this as an “abstract-declaration model” instead of a revelation
mechanism. As noted above, this differs from the more standard revelation mechanism in that each
player’s feasible actions depend on his type.

14Further, no alternative translation is guaranteed sufficient for determining all implementable
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Our next result establishes the connection between a complete-information setting
with hard evidence and its corresponding abstract-declaration model. Let α∗ denote
the strategy profile in which the players report truthfully (α∗(θ) = θ for each θ).

Definition 5: With reference to a given abstract-declaration model, we say that out-
come function g is implementable with truthful reporting if there is a function
f : Θ → P such that α∗ is an equilibrium of the revelation game and f(θ) = g(θ) for
every state θ.

We have the following special result for settings with complete information and more
than one player.

Theorem 3: Take as given any complete-information setting with hard evidence that
has a normal evidentiary structure and n ≥ 2. Consider its translation into an
abstract-declaration model. An outcome function is implementable in the setting with
hard evidence if and only if it is implementable in the abstract-declaration model. Fur-
thermore, if an outcome function is implementable in the abstract-declaration model
then it is implementable with truthful reporting.

This theorem states that, as long as the underlying setting with hard evidence has a
normal evidentiary structure and complete information, we are justified in analyzing
truthful reporting in the corresponding abstract-declaration model. The abstract-
declaration model is generally simpler in the sense that direct reports of each player’s
type take the place of possibly complicated descriptions of evidence.

Note that the meaning of abstract actions is closely tied to the evidentiary struc-
ture. If the evidentiary structure is normal, and assuming n ≥ 2, then one can analyze
an abstract-declaration model with a fixed interpretation of a player “declaring his
type.”15 On the other hand, if the evidentiary structure is not normal, then abstract
actions have no fixed meaning and there is no reason to name them after the types.
Thus, although the abstract-action model is always justified, it is not always mean-
ingful or insightful to call a particular action “θi” and to assume that θi ∈ Aθi

i , as
Green and Laffont (1986) do.

The second claim of Theorem 3 (regarding truthful reporting) is the straightfor-
ward n-player extension of Green and Laffont’s (1986) main revelation result. It is

outcome functions. As the example in Section 3 demonstrates, without normality a single type of
player may need to use different evidence to separate himself from other types in the implementation
of different outcome functions. Mapping these different evidentiary actions to the same abstract
action yields a model that over-represents what can be implemented.

15Furthermore, our analysis shows that Green and Laffont’s (1986) generalized revelation result
(for the abstract-action model, extended to the case of n ≥ 2) is in some sense redundant because,
whenever their general nested range condition holds, one can translate the abstract-action model into
an equivalent abstract-declaration model. Specifically, one can think of arbitrary abstract actions
as evidentiary actions. The generalized nested range condition then implies normality, allowing the
translation.
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not difficult to see that normality of the evidentiary structure implies Green and Laf-
font’s “nested range condition” in the abstract-declaration model. The nested range
condition holds when, for each player i and any two types θi, θ

′
i ∈ Θi, θ′i ∈ Aθi

i implies

A
θ′i
i ⊂ Aθi

i . Green and Laffont show that the claim holds if and only if the nested
range condition is satisfied.

Regarding the first claim of Theorem 3, the “sufficiency” (“if”) direction is easily
proved. The “necessity” (“only if”) direction requires a more elaborate argument,
because there are, in a sense, more ways to deviate in the setting with hard evidence
than there are in the abstract-declaration model. The key is to separate the possible
actions in the hard-evidence setting into two groups, one comprising actions that
translate into bona fide type-declarations (which may be dishonest) and another
comprising gibberish. When a player deviates with gibberish, his deviation is ignored
in favor of the other players’ declarations. This construction relies on there being
at least two players and complete information. In particular, complete information
is required so that, in the event that one player makes a “gibberish” declaration,
all of the necessary information about the desired outcome is contained in the other
players’ declarations.

The conclusion of Theorem 3 is not valid in settings of incomplete informa-
tion and/or with one player, as the following example indicates. Suppose that
Θ1 = {X, Y }, E1 = {Q, R, S}, EX

1 = {Q, R}, EY
1 = {R, S}, and P = {p, p}; further,

suppose that type X of player 1 strictly prefers outcome p and that type Y strictly
prefers p. Note that the evidentiary setting is normal, with eX

1 = Q and eY
1 = S.

The associated abstract-declaration model has AX
1 = {X} and AY

1 = {Y }. Suppose
we want to implement p for type X and p for type Y . This can obviously be imple-
mented in the abstract-declaration model, where player 1 cannot lie. However, in the
underlying setting of hard evidence, it cannot be implemented because both types can
deviate by disclosing R (and sending some arbitrary message) and, whatever outcome
is specified for this action, one of the types will have the strong incentive to deviate
so. A similar argument applies with incomplete information when n ≥ 2.16

The key issue here is that there are more ways of deviating in the setting with hard
evidence than there are in the abstract-declaration model. A version of Theorem 3 can
be recovered, however, if one considers an abstract-action model with more actions
than there are states. In fact, under a strengthened normality condition, a single
extra action suffices.

Definition 6: The evidentiary structure is called strongly normal if it is normal
and, for each player i, there is an evidentiary action ei such that ei ∈ Eθi

i for every
θi ∈ Θi.

16To see this, consider a two-player setting with Θ1, E1, EX
1 , EY

1 , P , and player 1’s preferences as
above, but with Θ2 = {a, b}, E2 = {q, r}, Ea

2 = {q}, Eb
2 = {r}. Suppose we want to implement p in

states Xa and Xb, and want to implement p in states Y a and Y b. This breaks down as above. With
two or more players and complete information, we can always prevent a player from unilaterally
deviating with gibberish, but it is not the case with incomplete information.
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Strong normality requires the existence of “minimal evidence” that can be presented
in every state, in addition to the maximal evidence mandated by normality. For
motivation, consider again the interpretation of evidence as disclosure of documents.
Assuming that it is always feasible for player i to disclose nothing (that is, using the
notation for documents introduced in Section 2, ∅ ∈ Dθi

i for every θi), the evidentiary
action ei can represent ∅, satisfying the condition of strong normality.

Theorem 4: Take as given any setting with hard evidence that has a strongly normal
evidentiary structure. There is an abstract-action model with Ai ≡ Θi ∪{∅}, for each
i, that has the following property. An outcome function is implementable in the
setting with hard evidence if and only if it is implementable in the abstract-action
model. Furthermore, if an outcome function is implementable in the abstract-action
model then it is implementable with truthful reporting (meaning that type θi of player i
reports “θi”).

The extra declaration “∅” is not necessary if, for each player i, there is a “minimal
type” whose evidence can be presented by every other type. This is because, in the
setting with hard evidence, any deviation that does not mimic another type can be
treated as though the player has identified himself as his minimal type.

Corollary: Take as given any setting with hard evidence that has a strongly normal
evidentiary structure and suppose that, for each player i, there is a type θi such

that eθi
i ∈ E

θ′i
i for every θ′i ∈ Θi. An outcome function is implementable in the

setting with hard evidence if and only if it is implementable in the corresponding
abstract-declaration model. Furthermore, if an outcome function is implementable in
the abstract-declaration model then it is implementable with truthful reporting.

5 On Dynamic Mechanisms

Our analysis to this point, as well as that of Green and Laffont (1986) and some
others in the related literature, has been limited to static mechanisms, meaning that
all interaction (messages and evidence disclosure) occurs at one time.17 The usual
defense of static mechanisms is that they are sufficient for the analysis of Nash imple-
mentation. However, this logic is not necessarily valid for settings with hard evidence,
as the following example shows.

Consider the complete-information setting in which n = 2, Θ1 = Θ2 = Θ =
{X, Y, Z}, P = {p, p}, E1 = {∅}, and E2 = {Q, R}. Suppose payoffs are given by
u(p, θ) = (0, 0) and u(p, θ) = (1,−1), for each θ ∈ Θ. Feasible evidence is given by
EX

1 = EY
1 = EZ

1 = {∅}, EX
2 = {Q}, EY

2 = {Q, R}, and EZ
2 = {R}. In this example,

17As briefly discussed in the Introduction, Lipman and Seppi (1995) study dynamic mechanisms
in a setting where a player’s message space may contain evidence. They are concerned with the
minimum that evidence has to prove in order for the decision maker’s inference, which is based on
the messages sent by players, to be robust. They do not consider the use of static mechanisms.
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player 2’s evidentiary structure is the same as that in the example of Section 3.
We shall analyze whether it is possible to implement outcome function g defined by
g(X) = g(Z) = p and g(Y ) = p.

We first demonstrate that g cannot be implemented by a static mechanism. In-
voking the Weak Revelation Result, we focus on implementation with direct and
truthful messages, so that A1 = {X, Y, Z} and A2 = {X, Y, Z} × {Q, R}. We shall
represent player 2’s individual actions as XQ, XR, and so forth. Note that, if g is
implementable, then we can assume f is defined so that f(X, XQ) = f(Z, ZR) = p
and either f(Y, Y Q) = p or f(Y, Y R) = p.

Take the case in which f(Y, Y Q) = p and we will reveal a contradiction. To
deter player 1 from sending message “X” in state Y , it must be that f(X, Y Q) = p.
However, to deter player 2 from sending message “Y ” in state X, we need f(X, Y Q) =
p. A similar contradiction occurs in the case of f(Y, Y R) = p; we need f(Z, Y R) = p
to deter player 1 from saying “Z” in state Y , but we also need f(Z, Y R) = p to
deter player 2 from saying “Y ” in state Z. Thus, g is not implementable using static
mechanisms.

Interestingly, there is a simple dynamic mechanism that implements g:

First, player 1 must announce the state. After observing player 1’s an-
nouncement, player 2 then must take his evidentiary action (Q or R). The
outcome is prescribed to be p if player 1 said “Y ” or if player 2’s evidence
shows player 1 to have lied about the state (that is, if player 1 said “X”
and player 2 presented R, or if player 1 said “Z” and player 2 presented
Q). Otherwise, the outcome is p.

Clearly, player 2 can always reveal whether announcements “X” or “Z” by player 1
are lies, and it is in player 2’s interest to reveal a lie. Player 1 therefore has the
incentive to tell the truth.

In this example, the dynamic mechanism is effective because player 2 has the
ability to tailor his evidence to the actual announcement made by player 1.18 In
particular, if player 1 lies in state Y , then player 2 chooses the appropriate evidence
to reveal the lie. Player 2’s disciplining function cannot be replicated in a static
mechanism because there is no single evidentiary action that reveals both the “X”
and “Z” lies. The failure of normality creates this problem.

Our next result shows that static mechanisms are sufficient for implementation
in settings with normal evidentiary structures. We consider the class of dynamic
mechanisms (extensive-game forms) with moves of Nature. Each decision node is

18Lipman and Seppi’s (1995) Example 1 (two lobbyist who in every state each have a “not message”
for every other state, which proves that the state is not that other state, and are constrained to each
send only one “not message”) has a similar flavor in that their “not messages” are used to reveal a
lie. Though they do not address the issue, the evidence environment in their example is not normal.
Of further interest, Lipman and Seppi suggest that time constraints, such as in a debate, may limit
the amount of claims that a party can prove. An argument along this line could suggest a reason
for why, in practice, some evidence environments are not normal.
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either a “message” node, with an arbitrary number of branches, or an “evidentiary”
node, where a player must take his evidentiary action. Extensive forms are restricted
to those in which each player makes an evidentiary decision exactly once in every
path through the tree. The information structure is arbitrary; a player’s messages or
evidence may or may not be observed by others. Outcomes are prescribed at terminal
nodes.19

To study rationality for dynamic mechanisms, we use Bayesian Nash equilibrium
(so the result also holds for any refinement). For a given extensive form, let Si denote
the set of pure strategies for player i, i = 1, 2, . . . , n, and let S0 denote the pure
strategies of Nature. Each player-type θi must select a strategy for the extensive
form. Type θi is limited to strategies in the set Sθi

i that choose elements in Eθi
i at

evidentiary decision nodes. Without loss of generality, we can focus on the case in
which each type of each player selects a pure strategy and where Nature has a finite
number of strategies.20

Let βi :Θi → Si give player i’s strategy in the mechanism as a function of player i’s
type; that is, βi(θi) is the extensive-form strategy in Sθi

i that is played by type θi

of player i. A strategy profile for the mechanism can thus be written β : Θ →
S1 × S2 × · · ·Sn. We write β−i for the profile of type-contingent strategies for the
players other than player i. Furthermore, let F (s0, si, s−i) denote the public action at
the terminal node that is reached when strategy profile (si, s−i) is played and Nature
selects s0 in the extensive form. This is an equilibrium if, for every player i and each
type θi ∈ Θi, βi(θi) solves

max
si∈S

θi
i

∑

θ−i∈Θ−i(θi)

∑

s0∈S0

µ−i(θ−i | θi)σ0(s0)ui(F (s0, si, β−i(θ−i)), (θi, θ−i)),

where σ0 is the probability distribution over Nature’s strategies. An outcome function
g is implemented by the given dynamic mechanism if there is an equilibrium β such
that g(θ) = F (s0, β(θ)) for each θ ∈ Θ and every s0 ∈ S0.

Theorem 5: Assume that the evidentiary structure is normal. If an outcome func-
tion is implemented by a dynamic mechanism then there is also a static mechanism
that implements it.

Proof: Suppose that g is implemented by some dynamic mechanism and take as given
the equilibrium β played in the dynamic mechanism. Construct a static mechanism
so that Mi ≡ Θi, for each player i, and define the function f as follows. For each
player i, we translate player i’s action ai into a strategy in the original extensive form.
Specifically, if ai = aθi

i for some θi ∈ Θi, then this is translated into the equilibrium

19This exercise is related to Lipman and Seppi’s (1995) analysis of game forms in which the players
sequentially send messages.

20For each mechanism and a mixed-strategy equilibrium, we can find an equivalent mechanism
and pure-strategy equilibrium where Nature provides private randomization devices for the players.
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strategy βi(θi) of type θi for the original dynamic mechanism. If ai ≡ (θi, ei) 6= aθi
i

for all θi ∈ Θi, then ai can be translated into any strategy that takes evidentiary
action ei at the information set(s) where player i must present evidence. Then f(a)
is defined as the outcome at the terminal node of the original extensive form that
would be reached if the players used the strategies corresponding to action profile a.

For the static mechanism, let us prescribe that each player truthfully report his
type and present maximal evidence. Clearly, when the players follow this prescription,
they obtain g(θ) in state θ. One can also easily verify that a feasible deviation for
type θi of player i in the static game translates into a feasible deviation in the extensive

form for type θi. For example, suppose that player i can choose a
θ′i
i when his type is

θi. This means that e
θ′i
i ∈ Eθi

i , which, by evidentiary normality, implies E
θ′i
i ⊂ Eθi

i .
Thus, in the original extensive form, it is feasible for player i of type θi to play
the strategy that he would have played in equilibrium had his type been θ′i. Note
that without normality there is not maximal evidence eθi

i for every type and it is
not possible, in general, to translate some ai in the static game into an equilibrium
strategy in the extensive form. (In state Y of the above example, there is no way
to effectively translate a message and disclosure of Q or R into player 2’s strategy
in the extensive form. This is because in the static game any feasible a2 in state Y
is also feasible some other state.) Because we started with equilibrium strategies for
the extensive form, the players have the incentive to follow our prescription in the
static mechanism. Thus, the static mechanism implements g. Q.E.D.

The example and theorem demonstrate another way in which normality plays a
role in determining the proper mechanism-design methodology. Even holding aside
the issues discussed earlier in this paper, the example shows that extending Green and
Laffont’s (1986) analysis to settings with two or more players requires the considera-
tion of dynamic mechanisms. When the evidentiary structure is not normal, dynamic
mechanisms can be useful in allowing players to tailor their evidence disclosure to
reveal deviations by others.

In the example, it is important that player 2’s evidentiary action follows player 1’s
message. More generally, a game form may specify that the players’ evidentiary
actions occur sequentially. For instance, it could be specified that player 1 sends a
message, then player 2 observes player 1’s message and selects evidence, and then
player 1 observes player 2’s move and selects his own evidence. A key question is
whether implementation sometimes requires sequential evidentiary actions. Our final
result establishes that the answer is “no.”

We use the term special three-stage mechanism for any mechanism of the following
form. In the first stage, the players privately announce their types to the external
enforcer. In the second stage, the players receive private messages from the enforcer.
In the third stage, the players simultaneously take their evidentiary actions. A special
three-stage mechanism can be viewed as a procedure in which each player makes a
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claim about his type and then is asked to provide evidence to reinforce his claim.21

Theorem 6: If an outcome function is implemented by a dynamic mechanism then
there is also a special three-stage mechanism that implements it with truthful reporting
in equilibrium. Furthermore, in settings of complete information the second stage is
not required and one can assume that first-stage messages are public.

The class of special three-stage mechanisms is similar to Myerson’s (1982,1991)
framework of mechanism design with moral hazard, where a communication system
precedes a prespecified game. Thus, our evidentiary actions are analogous to fixed
moral hazard variables, although we limit attention to the technology in which, in
each state, a given evidentiary action is either feasible and free or it is infeasible. The
issue addressed by Theorem 6—whether the timing of evidentiary actions should be
designed as sequential—has not been addressed in the prior literature.22

Proof of Theorem 6: Suppose that outcome function g is implemented by a given
dynamic mechanism—call it the original extensive form—and let β denote the equi-
librium that supports the implementation. Also, let F be the mapping from strategy
profiles (including Nature’s strategy) to public actions as defined above.

We define a special three-stage mechanism as follows. First, the players send
private reports of their types. Let θ′ denote the report profile. Second, a private
message is sent to each player, identifying an information set for this player in the
original extensive form. The information sets are selected at random and correspond
to the players’ reports and Nature’s strategy. Specifically, a pure strategy for Nature,
s0, is secretly drawn (not known to the players) from Nature’s probability distribution.
Note that the profile (s0, β(θ′)) determines a unique path in the original extensive
form. Along this path, each player i has exactly one information set where he takes
his evidentiary action; call this information set Ii. Further, the players are assigned
numbers according to the order in which they take evidentiary actions along the path.
Let ki be player i’s number. Each player i is then privately informed only of Ii. That
is, the player is told that he should consider what he would do in the original extensive
form at information set Ii.

Third, the players simultaneously disclose evidence. Let e denote the profile of

evidentiary actions. Also, let s
θ′i
i ≡ βi(θ

′
i) for each player i. If ei = s

θ′i
i (Ii) for each

player i (that is, player i’s evidentiary action is exactly the one that would be chosen

21This type of mechanism roughly mimics the typical trial process, where the parties make opening
statements in which they claim particular events have occured, and then they present evidence. A
similar theme is present in Lipman and Seppi’s (1995) “believe unless refuted” rule (Section 3 of their
paper). Also related is the modeling exercise of Glazer and Rubinstein (2004), who study a game
of persuasion between a listener (decision maker) and a speaker. The speaker sends a message and
then, before making a decision with payoff consequences, the decision maker can engage in limited
monitoring that amounts to the production of hard evidence. Glazer and Rubinstein examine how
the listener should optimally verify an aspect of the state.

22It is easy to see that dynamic mechanisms are generally required for implementation in settings
with payoff-relevant inalienable actions. A study along these lines would be instructive.
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by strategy βi(θ
′
i) at information set Ii in the original extensive form), then the

external enforcer compels public action F (s0, β(θ′)). Otherwise, it must be that one
or more of the players has taken an evidentiary action that is inconsistent with his
reported type. In this case, let j indicate the player who deviates first along the

path: j solves mini ki subject to s
θ′i
i (Ii) 6= ei. Then the external enforcer compels

public action F (s0, s
′
j, β−j(θ

′
−j)), where s′j is defined by s′j(Ij) = ej and s′j(h) ≡ s

θ′i
j (h)

for every other information set h for player j. Note that the path generated by
(s0, s

′
j, β−j(θ−j)) diverges at information set Ij from the path generated by (s0, β(θ′)).

Further, these paths are consistent with any type of player j that can select ej.
If every player reports honestly in the first stage and chooses evidence as prescribed

(with player i selecting sθi
i (Ii)), then the public action is exactly that which would have

resulted in the equilibrium of the original extensive form. Any deviation of type θi

of player i (through his report and/or evidence disclosure) induces the distribution
of outcomes that would have occurred if he had played some other strategy s′′i in
the original extensive form. Importantly, this strategy s′′i is feasible for type θi, in
that s′′i ∈ Sθi

i . Because type θi does not have the incentive to deviate to s′′i in
the original extensive form, he does not gain by deviating in the special three-stage
mechanism. Thus, the prescribed strategies are an equilibrium. Furthermore, in
settings of complete information, clearly we can dispense with the second stage and
simply have the first-stage reports be public. Q.E.D.

6 Conclusion

We have provided a model of mechanism-design with hard evidence that is a straight-
forward extension of the standard mechanism-design framework. Our results clarify
the revelation principle and identify conditions under which one can limit attention
to certain classes of mechanisms. Our analysis supports and further develops Green
and Laffont’s (1986) modeling exercise, in particular with respect to the meaning of
abstract actions and the extension to settings with more than one player.

Our findings demonstrate the importance of explicitly modeling hard evidence in
terms of its real technology. Incorporating inalienable actions into the mechanism-
design framework allows us to make precise the connection between an abstract the-
oretical model and actual technological and institutional constraints, which is im-
portant for understanding these constraints (as emphasized by Watson 2003). We
encourage further research along this line. Our own future plans include analyzing
dynamic mechanisms in settings of hard evidence and costly disclosure.

As noted in the Introduction, the analysis shown herein is closely related to the
contemporaneous work of Deneckere and Severinov (2001) and the more recent work
of Forges and Koessler (2003). Here are more details regarding the connection. De-
neckere and Severinov (2001) examine principle-agent settings in which the agent has
a type-contingent set of feasible messages but can communicate with the principle
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over multiple periods and can send any, and only one, of his messages in each period.
Forges and Koessler (2003) examine the same kind of communication constraints in
the context of a multiple-player, moral hazard (individual action) setting with medi-
ated communication. The individual messages in these models are basically the same
as the “documents” we discussed in Section 2, except that, for Deneckere-Severinov
and Forges-Koessler, multiple documents can be disclosed only sequentially. In these
models, mechanisms consist of multiple rounds of communication.

Deneckere and Severinov (2001) show that, in their model, any implementable
outcome function can be implemented by a mechanism in which the agent first an-
nounces his type (cheap talk) and then, in subsequent periods, sends every individual
message that he is able to send. That is, the agent announces his type and discloses
all of his documents—what we call maximal evidence production. Thus, Deneckere
and Severinov’s theorem is a version of the Strong Revelation Result (Theorem 2);
it holds because their setting exhibits evidentiary normality, which follows from the
fact that all combinations of documents can be eventually submitted by the agent.
Forges and Koessler (2003) have a similar result (their Theorem 1) that relates im-
plementation with multiple periods of communication to static implementation in a
setting in which players can, using our language, disclose any set of documents at
one time. Thus, Forges and Koessler’s result is an affirmation that sequential docu-
ment disclosure is tantamount to disclosing sets of documents at once and, thus, that
evidentiary normality holds.23

Forges and Koessler present a second result (their Theorem 2) that, accounting
for differences in the settings analyzed, duplicates our Theorem 5. Under a “minimal
closure condition,” they find that one-period communication schemes suffice for im-
plementation. The minimal closure condition is defined relative to the sets of types
that an individual type can distinguish himself from; it requires that if a given type
has ways of distinguishing itself from various other types then it has a way of si-
multaneously distinguishing itself from all of these other types. Translated into our
modeling apparatus, this is evidentiary normality.

We end with comments on an extension. In practice, hard evidence may arise
stochastically as a function of productive actions that the players take.24 Note that
our framework can incorporate random evidence by defining the state to be a vector
comprising an important payoff-relevant event (such as the player’s prior investments
or other productive actions) and the outcome of a random draw that determines
the availability of hard evidence. For example, player 1’s type might be L, H1, or
H0, where L denotes that he failed to invest earlier, H1 denotes that he invested

23We favor thinking in terms of evidentiary actions, rather than sequences of type-constrained
messages, and we emphasize the benefit of being very explicit about the distinction between real
evidentiary actions and abstract messages in the context of mechanism design.

24Bull (2001b) studies a setting where the probability evidence is revealed depends on a player’s
effort to suppress the evidence. See Bull and Watson (2004) for a detailed treatment of productive
actions and contract with hard evidence.
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earlier and has hard evidence to prove it (a document, say), and H0 denotes that he
invested earlier but has no proof. The analysis of implementable outcome functions
would proceed just as characterized herein. However, note that a key question will
be, for example, whether player 1 can be given the incentive to invest, which may
depend on implementing an outcome function that makes the weighted average of
states H1 and H0 attractive for player 1, relative to state L. Thus, in applications, it
will be important to examine convex combinations of implementable state-contingent
payoffs.

Appendix: Other Proofs

Proof of Theorem 3: Because this is a setting of complete information, we write
Θi = Θ for each i. As noted in the text, the second claim of the theorem is a simple ex-
tension of Green and Laffont’s (1986) result. Using this fact, and invoking Theorem 2,
we can focus on (i) direct and truthful messages and maximal evidence production in
the setting of mechanism design with hard evidence, and on (ii) truthful-declaration
equilibria in the abstract-declaration model. It is straightforward to verify that any
outcome function that is implementable in the setting with hard evidence is also
implementable in the abstract-declaration model. This follows from the observation
that any declaration “θ” in the abstract-declaration model can be translated into the
message and evidence that the player would send in the other model.

Regarding the other direction, take an outcome function g that is implementable
in the abstract-declaration model and let f ′ be the function that implements it. We
will first define a function f for the setting with hard evidence. To this end, for each
player i and each ai ∈ Θ×Ei, define θ̂i(ai) as follows. If ai = aθ

i for some θ ∈ Θ then
specify θ̂i(ai) ≡ θ; otherwise, specify θ̂i(ai) ≡ φ, where φ is an indicator value that is
not a member of Θ. The idea is that, in the message and evidence game, player i will
obtain the “φ” label if his action does not correspond to the prescribed equilibrium
action in some state.

For every action profile a ∈ Θn × E satisfying θ̂i(ai) 6= φ for every i, let θ̂(a) ≡
(θ̂1(a1), θ̂2(a2), . . . , θ̂n(an)). For these action profiles, prescribe f(a) ≡ f ′(θ̂(a)). Group
all other action profiles into two sets, which are distinguished by whether more
than one player has the “φ” label. If there is a player i such that θ̂i(ai) = φ and
θ̂j(ai) = θ̂k(ai) = θ 6= φ for every j, k 6= i (that is, everyone else agrees on state θ,
while player i send gibberish), then prescribe f(a) = g(θ). For every other action
profile, f(a) may be arbitrarily defined.

With f thus specified, action profile aθ is a Nash equilibrium in the message and
disclosure game in state θ. If player i deviates by successfully pretending to be in
another state, he would obtain the payoff of deviating in this way in the abstract-
declaration game, which deters the deviation. What is important here is that, by
the definition of the abstract-declaration model, a feasible deviation in the setting
of hard evidence (say, (θ′, eθ′

i ) in state θ) translates into a feasible deviation in the
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abstract-declaration model (that is, θ′). If player i deviates with gibberish—which
gives him the “φ” label, then his payoff is the same as if he did not deviate. By
construction of f , this implements g. Q.E.D.

Proof of Theorem 4: The second claim of the theorem is easily proved using the
standard argument. To prove the first claim, we use the translation in the proof of
Theorem 3 with ∅ in place of φ, whereby the report “θi” in the abstract-action model
corresponds to aθ

i in the setting with hard evidence. To study how implementation
in the abstract-action model implies implementation in the setting with hard evi-
dence, we translate report “∅” into (θi, ei) for any arbitrarily chosen θi. To study
how implementation in the setting with hard evidence implies implementation in the
abstract-declaration model, we translate every action ai that satisfies ai 6= aθi

i for all
θi into the declaration “∅.” It is not difficult to confirm that feasible deviations in one
model translate into feasible deviations in the other. Q.E.D.
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