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RELATING FIRST-ORDER SET THEORIES AND ELEMENTARY
TOPOSES

STEVE AWODEY, CARSTEN BUTZ, ALEX SIMPSON, AND THOMAS STREICHER

Abstract. We show how to interpret the language of first-order set theory in an elementary
topos endowedwith, as extra structure, a directed structural systemof inclusions (dssi). As our
main result,weobtain a complete axiomatizationof the intuitionistic set theory validated byall
such interpretations. Since every elementary topos is equivalent to one carrying a dssi, we thus
obtain a first-order set theory whose associated categories of sets are exactly the elementary
toposes. In addition, we show that the full axiom of Separation is validated whenever the dssi
is superdirected. This gives a uniform explanation for the known facts that cocomplete and
realizability toposes provide models for Intuitionistic Zermelo–Fraenkel set theory (IZF).

§1. Introduction. Thenotionof elementary topos abstracts from the struc-
ture of the category of sets. The abstraction is sufficiently general that
elementary toposes encompass a rich collection of other very different cat-
egories, including categories that have arisen in fields as diverse as alge-
braic geometry, algebraic topology, mathematical logic, and combinatorics.
Nonetheless, elementary toposes retain many of the essential features of the
category of sets. In particular, elementary toposes possess an internal logic,
which is a form of higher-order type theory, see e.g., [11, 13, 9]. This logic
allows one to reason with objects of the topos as if they were abstract sets in
the sense of [12]; that is, as if they were unstructured collections of elements.
Although the reasoning supported in this way is both powerful and natural,
it differs in several respects from the set-theoretic reasoning available in the
familiar first-order set theories, such as Zermelo–Fraenkel set theory (ZF).
A first main difference between the internal logic and ZF is:
1. Except in the special case of boolean toposes, the underlying internal
logic of a topos is intuitionistic rather than classical.

Many toposes of mathematical interest are not boolean. Thus the use of
intuitionistic logic is unavoidable. Moreover, as fields such as synthetic dif-
ferential geometry and synthetic domain theory demonstrate, the non-validity
of classical logic has mathematical applications. In these areas, intuitionis-
tic logic offers the opportunity of working consistently with convenient but
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classically inconsistent properties, such as the existence of nilpotent infinites-
imals, or the existence of nontrivial sets over which every endofunction has
a fixed point.
Although the intuitionistic internal logic of toposes is a powerful tool,
there are potential applications of set-theoretic reasoning in toposes for
which it is too restrictive. This is due to a second main difference between
the internal logic and first-order set theories.

2. In first-order set theories, one can quantify over the class of all sets,
whereas, in the internal logic of a topos, every quantifier is bounded by
an object of a topos, i.e., by a set.

Sometimes, one would like to reason about mathematical structures de-
rived from the topos that are not “small”, and so cannot be considered
internally at all. For example, one often considers derived categories (e.g.,
the category of internal locales) that are not themselves small categories
from the viewpoint of the topos. The standard mathematical approach to
handling non-small categories relative to a topos is to invoke the machinery
of fibrations (or the essentially equivalent machinery of indexed categories).
This paper provides the basis for an alternative approach. We show how
to conservatively extend the internal logic of a topos to explicitly permit
direct set-theoretic reasoning about non-small structures. To achieve this,
we directly address issue 2 above, by embedding the internal logic in a first-
order set theory within which one can quantify over any class, including
the class of all sets (i.e., the class of all objects of the topos). In general,
this extended logic should provide a useful tool for establishing properties
of non-small structures (e.g., large categories), relative to a topos, using nat-
ural set-theoretic arguments. In fact, one such application of our work has
already appeared in [18].
In Section 2, we present the set theory that we shall interpret over an arbi-
trary elementary topos (with natural numbers object), which we call Basic
Intuitionistic Set Theory (BIST). Although very natural, and based on fa-
miliar looking set-theoretic axioms, there are several differences compared
with standard formulations of intuitionistic set theories. Two of the differ-
ences are minor: in BIST the universe may contain non-sets (a.k.a. atoms or
urelements) as well as sets, and non-well-founded sets are permitted (though
not obliged to exist). The essential difference is the following.

3. BIST is a conservative extension of intuitionistic higher-order arith-
metic (HAH). In particular, by Gödel’s second incompleteness theo-
rem, it cannot prove the consistency of HAH.

This property is unavoidable because wewish to faithfully embed the internal
logic of the free topos (with natural numbers object) in BIST, and this logic
is exactly HAH.
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Property 3 means that BIST is necessarily proof-theoretically weaker
than ZF. That such weakness is necessary for interpreting first-order set
theory in toposes has long been recognised. The traditional account has
been that the appropriate set theory is bounded Zermelo (bZ) set theory
(also known as Mac Lane set theory [14]), which is ZF set theory with the
axiom of Replacement removed and with Separation restricted to bounded
(i.e., ∆0) formulas. The standard results connecting bZ set theory with
toposes run as follows. First, from any (ordinary first-order) model of bZ
one can construct a well-pointed (hence boolean) topos whose objects are
the elements of the model and whose internal logic expresses truth in the
model. Conversely, given any well-pointed topos E , certain “transitive ob-
jects” can be identified, out of which a model of bZ can be constructed. This
model captures that part of the internal logic of E that pertains to transitive
objects. See, e.g., [13] for an account of this correspondence.
This standard story is unsatisfactory in several respects. First, it applies
only to well-pointed (hence boolean) toposes. Second, the set theory is only
able to express properties of transitive objects in E , potentially ignoringwhole
swathes of the topos. Third, with the absence ofReplacement, bZ is not apar-
ticularly convenient or natural set theory to reason in, see [14] for a critique.
The goal of this announcement is to establish a more satisfactory connec-
tion between elementary toposes and the theory BIST. Unlike bZ, one of the
attractive features of BIST is that it contains the full axiom of Replacement.
We shall show that BIST can be interpreted over an arbitrary elementary
topos (with natural numbers object) in such a way that the class of all sets
in the set theory can be understood as being exactly the collection of all
objects of the topos. In fact, not only does our interpretation model full
Replacement, but it even validates the (intuitionistically stronger) axiom of
(strong) Collection (Coll).
Some readers familiar with classical set theory may be feeling uncomfort-
able at this point. In bZ set theory, it is the absence of Replacement and the
restriction of Separation that weakens the proof-theoretic strength of the set
theory so that it is compatible with the internal logic of elementary toposes.
BIST, however, has full Replacement. In classical set theory, Replacement,
which is equivalent to Collection and implies full Separation, takes one be-
yond the the proof-theoretic strength of elementary toposes. The situation is
completely different under intuitionistic logic. Intuitionistically, as has long
been known, the full axioms of Replacement and Collection are compatible
with proof-theoretically weak set theories, see, e.g., [15, 7, 1, 2]. Readers
who are unfamiliar with this phenomenon can find examples illustrating the
situation in the discussion at the end of Section 4.
The precise connection between BIST and elementary toposes is elabo-
rated in Sections 3 and 4. In order to interpret unbounded quantification
over the class of all sets, we have to address a fourth difference between the
internal logic of toposes and first-order set theories.
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4. In first-order set theories, one can compare the elements of different
sets for equality, whereas, in the internal logic of a topos, one can only
compare elements of the same object.

In Section 3, we consider additional structure on an elementary topos that
enables the comparison of (generalized) elements of different objects. This
additional structure, a directed structural system of inclusions (dssi), directly
implements a well-behaved notion of subset relation between objects of a
topos. Although not particularly natural from a category-theoretic point of
view, the structure of a dssi turns out to be exactly what is needed to obtain
an interpretation of the full language of first-order set theory in a topos,
including unbounded quantification; and thus indeed resolves issue 2 above.
We present this interpretation in Section 4, using a suitably defined notion
of “forcing” over a dssi.
In fact, a special case of our forcing semantics for first-order set theory in
toposes was first presented by Hayashi in [8], where the notion of inclusion
was provided by the canonical notion of inclusionmap between the transitive
objects in a topos. One benefit of our more general axiomatic notion of dssi
is that our logic is able to express properties of arbitrary (non-transitive)
objects of the topos. More substantively, we extend Hayashi’s account in
three significant ways. First, as mentioned above, we show that, for any
elementary topos, the forcing semantics always validates the full axiom of
Collection (and hence Replacement). Thus we obtain a model of BIST
plus Collection (henceforth BIST+ Coll), which is a very natural set theory
in its own right. Second, we give correct conditions under which the full
axiom of Separation is modelled (BIST itself supports only a restricted
separation principle). Third, we obtain a completeness result (Theorem 4.2)
which shows that the theory BIST+Coll axiomatizes exactly the set-theoretic
properties validated by our forcing semantics. This theorem, whose proof
is by no means routine, constitutes the major technical contribution of the
present work. It also fulfils a longstanding wish of SaundersMac Lane, who
often expressed the desire to find a first-order set theory whose notion of set
corresponds to that given by elementary toposes.
In mathematical applications of topos theory, one is often interested in
“real world” toposes, such asGrothendieck and realizability toposes, defined
from the “external” category of sets (which we take to be axiomatized by
ZFC). It is known from previous work [6, 8, 10] that such toposes are capable
of interpreting Friedman’s IZF set theory, which is proof-theoretically as
strong as ZF. Thus, if one is primarily interested in such real world toposes,
the above account is unsatisfactory in merely detailing how to interpret the
weak set theory BIST+ Coll inside them.
To address this, in parallel with the development already described, we
further show how the approach discussed above adapts to model the full
Separation axiom (Sep) in toposes such as cocomplete and realizability
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toposes. The appropriate structure we require for this task is a modifica-
tion of the notion of dssi from Section 3, obtained by strengthening the
directedness property to require upper bounds for arbitrary (rather than just
finite) sets of objects. Given a topos with such a superdirected structural sys-
tem of inclusions (sdssi), the forcing interpretation of Section 4 does indeed
model the full Separation axiom. Since cocomplete toposes and realizability
toposes can all be endowed with sdssi’s, we thus obtain a uniform explana-
tion of why all such toposes model IZF (the set theory BIST+ Coll+ Sep is
intertranslatable with IZF). It seems that no such uniform explanation was
known before.
This article is an announcement of results taken from a forthcoming pa-
per [4], where proofs for all the results stated here can be found. That
paper contains, in addition, another major component not discussed here.
A second class of category-theoretic models of BIST is considered, based
on the idea of axiomatizing the category-theoretic structure of the category
of classes of BIST, following the lead of Joyal and Moerdijk’s Algebraic Set
Theory (AST) [10] and its subsequent refinements in [17, 5]. The details of
the relevant category-theoretic models have been surveyed in separate arti-
cles [19, 3], and are thus not included here. Nevertheless, the class-category
semantics of BISTdiscussed in [19, 3] is intimately connectedwith the forcing
semantics, and, moreover, is used as a crucial element in the proof of Theo-
rem 4.2 below [4]. We remark that there have been several further contribu-
tions to AST since the results detailed in this announcement were first ob-
tained, many building on the approach of [4]. We refer the interested reader
to the Algebraic Set Theory website: http://www.cmu.edu/mobius/ast/.

§2. Basic Intuitionistic Set Theory (BIST) and extensions. All first-order
set theories considered in this announcement are built on top of a basic
theory, BIST (Basic Intuitionistic Set Theory). The axiomatization of BIST
is primarily motivated by the desire to find the most natural first-order set
theory under which an arbitrary elementary topos may be considered as a
category of sets. Nonetheless, BIST is alsowellmotivated as a set theory cap-
turing basic principles of set-theoretic reasoning in informal mathematics.
The axioms of BIST axiomatize properties of the intuitive idea of a math-
ematical universe consisting of mathematical “objects”. The universe gives
rise to notions of “class” and of “set”. Classes are arbitrary collections of
mathematical objects; whereas sets are collections that are, in some sense,
small. The important feature of sets is that they themselves constitutemathe-
matical objects belonging to the universe. The axioms ofBIST simply require
that the collection of sets be closed under various useful operations on sets,
all familiar frommathematical practice. Moreover, in keeping with informal
mathematical practice, we do not assume that the only mathematical objects
in existence are sets.
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Membership y ∈ x → S(x)
Extensionality S(x) ∧ S(y) ∧ (∀z. z ∈ x ↔ z ∈ y)→ x = y
Indexed-Union S(x) ∧ (∀y ∈ x. Sz. φ)→ Sz. ∃y ∈ x. φ
Emptyset Sz.⊥
Pairing Sz. z = x ∨ z = y
Equality Sz. z = x ∧ z = y
Powerset S(x)→ Sy. y ⊆ x

Figure 1. Axioms for BIST−.

Coll S(x) ∧ (∀y ∈ x. ∃z. φ)→
∃w. (S(w) ∧ (∀y ∈ x.∃z ∈ w. φ) ∧ (∀z ∈ w.∃y ∈ x. φ))

Figure 2. Collection axiom.

The set theory BIST is formulated as a theory in intuitionistic first-order
logic with equality.1 The language contains one unary predicate, S, and one
binary predicate, ∈. The formula S(x) expresses that x is a set. The binary
predicate is, of course, set membership.
Figure 1 presents the axioms for BIST−, which is BIST without the axiom
of infinity. All axioms are implicitly universally quantified over their free
variables. The axioms make use of the following notational devices. As is
standard, we write ∀x ∈ y. φ and ∃x ∈ y. φ as abbreviations for the formulas
∀x. (x ∈ y → φ) and ∃x. (x ∈ y∧φ) respectively, and we refer to the prefixes
∀x ∈ y and ∃x ∈ y as bounded quantifiers. In the presence of non-sets, we
define the subset relation, x ⊆ y, as abbreviating

S(x) ∧ S(y) ∧ ∀z ∈ x. z ∈ y.

This is important in the formulation of the Powerset axiom. We also use the
notation Sx. φ, which abbreviates

∃y. (S(y) ∧ ∀x. (x ∈ y ↔ φ)),

where y is a variable not occurring free in φ. Thus Sx. φ states that the class
{x | φ} forms a set. Equivalently, Scan be understood as the generalized
quantifier “there are set-many”.
Often we shall consider BIST− together with the axiom of Collection,
presented in Figure 2.2 One reason for not including Collection as one of
the axioms of BIST−is that it seems better to formulate the results that do not

1As discussed in Section 1, the use of intuitionistic logic is essential for formulating a set
theory interpretable in any elementary topos.
2Collection, in this form, is often called Strong Collection, because of the extra clause

∀z ∈ w.∃y ∈ x. φ, which is not present in the Collection axiom as usually formulated. The
inclusion of the additional clause is necessary in set theories, like BIST−, that do not have
full Separation.
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require Collection for a basic theory without it. Another is that Collection
has a different character from the other axioms in asserting the existence of a
set that is not uniquely characterized by the properties it is required to satisfy.
There are three main non-standard ingredients in the axioms of BIST−.
The first is the Indexed-Union axiom, which is taken from [2] (where it is
called Union-Rep). In the presence of the other axioms, Indexed-Union
combines the familiar axioms below,

Union S(x) ∧ (∀y ∈ x. S(y))→ Sz. ∃y ∈ x. z ∈ y,
Replacement S(x) ∧ (∀y ∈ x. ∃!z. φ)→ Sz. ∃y ∈ x. φ,

into one simple axiom, which is also in a form that is convenient to use. We
emphasise that there is no restriction on the formulas φ allowed to appear
in Indexed-Union. This means that BIST− supports the full Replacement
schema above. The second non-standard feature of BIST−is the inclusion of
an explicit Equality axiom. This is to permit the third non-standard feature,
the absence of any Separation axiom. In the presence of the other axioms,
including Equality and Indexed-Union (full Replacement is crucial), this
turns out not to be a major weakness. As we shall see below, many instances
of Separation are derivable in BIST−.
First, we establish notation for working with BIST−. As is standard,
we make free use of derived constants and operations: writing ∅ for the
emptyset, {x} and {x, y} for a singleton and pair respectively, and x ∪ y for
the union of two sets x and y. We write "xy for the set {z | z = x ∧ z = y}.
It follows from the Equality and Indexed-Union axioms that, for sets x and
y, the intersection x ∩ y is a set, because x ∩ y =

⋃
z∈x

⋃
w∈y "zw .

We now study Separation in BIST−. By an instance of Separation, wemean
a formula of the form3

φ[x, y]-Sep S(x)→ Sy. (y ∈ x ∧ φ),
which states that the subclass {y ∈ x | φ} of x is actually a subset of x. We
write Sep for the full Separation schema: φ[x, y]-Sep for all φ. Although
the full Sep schema is not derivable in BIST−, many instances of it are. To
see this, as in [2], we analyse the formulas φ for which the corresponding
instances of Separation are derivable. For any formula φ, we write !φ to
abbreviate the following special case of Separation

Sz. (z = ∅ ∧ φ),

where z is not free in φ. We read !φ as stating that the property φ is
restricted.4 The utility of the concept is given by the lemma below, showing
3We write φ[x, y] to mean a formula φ with the free variables x and y (which may or

may not occur in φ) distinguished. Moreover, once we have distinguished x and y, we write
φ[t, u] for the formula φ[t/x, u/y]. Note that φ is permitted to contain free variables other
than x, y.
4The terminology“restricted” is sometimes used to refer to formulas inwhich all quantifiers

are bounded. We instead use “bounded” for the latter syntactic condition.
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that the notion of restrictedness exactly captures when a property can be
used in an instance of Separation.
Lemma 2.1. BIST−- (∀y ∈ x. !φ)↔ φ[x, y]-Sep.
We next state important closure properties of restricted propositions.
Lemma 2.2. The following all hold in BIST−.
1. !(x = y).
2. If S(x) then !(y ∈ x).
3. If !φ and !# then !(φ ∧ #), !(φ ∨ #), !(φ → #) and !(¬φ).
4. If S(x) and ∀y ∈ x. !φ then !(∀y ∈ x. φ) and !(∃y ∈ x. φ).
5. If φ ∨ ¬φ then !φ.
The following immediate corollary gives a useful class of instances of
Separation that are derivable in BIST−.
Corollary 2.3. Suppose that φ[x1, . . . , xk] is a formula containing no
atomic subformula of the form S(z) and such that every quantifier is bounded
and of the form ∀y ∈ xi or ∃y ∈ xi for some 1 ≤ i ≤ k. Then

BIST−- S(x1) ∧ · · · ∧ S(xk)→!φ.
At this point, it is convenient to develop further notation. Any formula

φ[x] determines a class {x | φ}, which is a set just if Sx. φ. Given a class
A = {x | φ}, we write y ∈ A for φ[y], and we use relative quantifiers ∀x ∈ A
and ∃x ∈ A in the obvious way.
Given two classes A and B , we write A× B for the product class:

{p | ∃x ∈ A. ∃y ∈ B. p = (x, y)},
where (x, y) = {{x}, {x, y}} is the standard Kuratowski pairing construc-
tion. Using Indexed-Union, one can prove that ifA and B are both sets then
so is A× B . Similarly, we write A+ B for the coproduct class

{p | (∃x ∈ A. p = ({x}, ∅)) ∨ (∃y ∈ B. p = (∅, {y}))}.
Given a set x, we write Ax for the class

{f | S(f) ∧ (∀p ∈ f. p ∈ x × A) ∧ (∀y ∈ x. ∃!z. (y, z) ∈ f)}
of all functions from x to A. By the Powerset axiom, if A is a set then so
is Ax . We shall use standard notation for manipulating functions.
We next turn to the axiom of Infinity. As we are permitting non-sets in
the universe, there is no reason to require the individual natural numbers
themselves to be sets. Infinity is thus formulated as in Figure 3. Define

BIST = BIST−+ Inf.

For the sake of comparison, we also include, in Figure 3, the familiar von
Neumann axiom of Infinity, which does make assumptions about the nature
of the elements of the assumed infinite set. It will follow from the results of
Section 4 that:
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Inf ∃I. ∃0 ∈ I. ∃s ∈ I I . (∀x ∈ I. s(x) 0= 0) ∧
(∀x, y ∈ I. s(x) = s(y)→ x = y)

vN-Inf ∃I. (∅ ∈ I ∧ ∀x ∈ I. S(x) ∧ x ∪ {x} ∈ I )

Figure 3. Infinity axioms.

Proposition 2.4. BIST+ Coll ! vN-Inf.
It is instructive to construct the set of natural numbers in BIST and to
derive its induction principle. The axiom of Infinity gives us an infinite
set I together with an element 0 and a function s . We define N to be the
intersection of all subsets of I containing 0 and closed under s . By the
Powerset axiom and Lemma 2.2, N is a set. This definition of the natural
numbers determines N up to isomorphism.
There is a minor clumsiness inherent in the way we have formulated the
Infinity axiom and derived the natural numbers from it. Since the infinite
structure (I, 0, s) is not uniquely characterized by the Infinity axiom, there is
no definite description for N available in our first-order language. The best
we can do is use the formula Nat(N, 0, s):

0 ∈ N ∧ s ∈ NN ∧ (∀x ∈ N. s(x) 0=0) ∧ (∀x, y ∈ N. s(x)=s(y)→ x=y)
∧ ∀X ∈ PN. (0 ∈ X ∧ (∀x. x ∈ X → s(x) ∈ X ))→ X = N,

where N, 0, s are variables, to assert that (N, 0, s) forms a legitimate natural
numbers structure. Henceforth, for convenience, we shall sometimes state
that some property #, mentioning N, 0, s , is derivable in BIST. In doing so,
what we really mean is that the formula

∀N, 0, s. (Nat(N, 0, s)→ #)

is derivable in BIST. Thus, informally, we treat N, 0, s as if they were
constants added to the language and we treat Nat(N, 0, s) as if it were an
axiom. The reader may wonder why we do not simply add such constants
and assume Nat(N, 0, s) (instead of our axiom of Infinity) and hence avoid
the fuss. Our reason for not doing so is that, in Section 4, we consider
semantic models of the first-order language and we should like it to be a
property of such models whether or not they validate the axiom of Infinity.
This is the case with Infinity as we have formulated it, but would not be the
case if it were formulated using additional constants, which would require
extra structure on the models.
For a formula φ[x], the induction principle for φ is

φ[x]-Ind φ[0] ∧ (∀x ∈ N. φ[x]→ φ[s(x)])→ ∀x ∈ N. φ[x].
We write Ind for the full induction principle, φ-Ind for all formulas φ, and
we write RInd for the schema of Restricted Induction:

RInd (∀x ∈ N. !φ)→ φ[x]-Ind.
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DE Decidable Equality x = y ∨ ¬(x = y)
REM Restricted Excluded Middle (!φ)→ (φ ∨ ¬φ)
LEM Law of Excluded Middle φ ∨ ¬φ

Figure 4. Excluded middle axioms.

Lemma 2.5. BIST - RInd.
As induction holds for restricted properties, by Lemma 2.1, we have:
Corollary 2.6. BIST+ Sep - Ind.
Figure 4 contains three other axioms that we shall consider adding to
our theories. LEM is the full Law of the Excluded Middle, REM is its
restriction to restricted formulas and DE (the axiom of Decidable Equality)
its restriction to equalities. The latter two turn out to be equivalent.
Lemma 2.7. In BIST−, axioms DE and REM are equivalent.
Henceforth, we consider only REM. Of course, properties established for
REM also hold inter alia for DE.
Proposition 2.8. BIST−+ LEM - Sep.
Corollary 2.9. BIST−+ Sep+ REM = BIST−+ LEM.
In the sequel, we shall show how to interpret the theories BIST+ Coll in
any elementary topos with natural numbers object. Also, we shall interpret
BIST+Coll+REM in any boolean topos with natural numbers object. From
these results, we shall deduce
Proposition 2.10. BIST+ Coll+ REM ! Con(HAH),
where Con(HAH) is the Π01 formula asserting the consistency of Higher-
order Heyting Arithmetic [20]. Indeed, this proposition is a consequence of
the conservativity of our interpretation of BIST+Coll+REMover the inter-
nal logic of boolean toposes, see Proposition 4.6 and surrounding discussion.
On the other hand,
Proposition 2.11. BIST+ Ind - Con(HAH).
Corollary 2.12. If any of the schemas Ind, Sep orLEM are added toBIST
then Con(HAH) is derivable. Hence, none of these schemas is derivable in
BIST+ Coll+ REM.
Proposition 2.10 shows that BIST+ Coll is considerably weaker than ZF
set theory. As well as BIST, we shall also be interested in the theory:

IST = BIST+ Sep,

introduced in [17]. The theory IST is intertranslatable with Friedman’s Intu-
itionistic Zermelo–Fraenkel set theory, in its version IZFR withReplacement
rather than Collection, see [16]. Similarly, IST+Coll is intertranslatable with
full IZF itself.
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We end this section with a brief discussion about the relationship be-
tween BIST and other intuitionistic set theories in the literature. None of
the existing literature on weak set theories interpretable in arbitrary ele-
mentary toposes includes unrestricted Replacement or Collection axioms
in such theories. In having such principles, our set theories are similar to
the “constructive” set theories of Myhill, Friedman and Aczel [15, 7, 1, 2].
However, because of our acceptance of the Powerset axiom, none of the set
theories discussed above are “constructive” in the predicative sense intended
by these authors.5 In fact, in comparison with Aczel’s CZF [1, 2], the the-
ory BIST+ Coll represents both a strengthening and a weakening. It is a
strengthening because it has the Powerset axiom, and this indeed amounts
to a strengthening in terms of proof-theoretic strength. However, the full
Ind schema is derivable in Aczel’s CZF, but not in BIST+ Coll.

§3. Toposes and systems of inclusions. In this section we introduce the
categories we shall use as models of BIST− and its extensions. For us, a
category K will always be locally small, i.e., the collection of objects |K|
forms a (possibly proper) class, but the collection of morphisms K(A,B),
between any two objects A,B , forms a set. We write Set for the category
of sets. Of course all this needs to be understood relative to some meta-
theory supporting a class/set distinction. To keep matters simple in this
announcement, ourmeta-theory throughout is ZFC.Amore careful analysis
of meta-theoretic assumptions is given in the full version of the paper [4].
To fix notation, we briefly recall that an (elementary) topos is a category E
with finite limits and with powerobjects:

Definition 3.1. A category E with finite limits has powerobjects if, for ev-
ery object B there is an object P(B) and a mono 1B ! ! P(B) × B
such that, for every mono R! r ! A × B there exists a unique map
$r : A ! P(B) fitting into a pullback diagram:

R ! 1B

A× B
"

"

$r × 1B
! P(B) × B

"

"

The intuitive reading of the above data is that objects are sets, the power-
object P(B) is the powerset of B , and 1B is the membership relation.
We shall always assume that toposes come with specified structure, i.e., we
have specified binary products A #%1 A × B %2! B , specified terminal
5For us, Powerset is unavoidable because we are investigating set theories associated with

elementary toposes, where powerobjects are a basic ingredient of the structure.
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object 1, a specified equalizer for every parallel pair, and specified data
providing the powerobject structure as above.
Any morphism f : A ! B in a topos factors (uniquely up to isomor-
phism) as an epi followed by a mono

f = A !! Im(f)! ! B.

Thus, given f : A ! B , we can factor the composite on the left below, to
obtain the morphisms on the right.

1A! ! P(A)× A
1P(A)×f! P(A) × B = 1A !! Rf!

rf! P(A) × B
By the definition of powerobjects, we obtain $rf : P(A) → P(B). We write
Pf : P(A) → P(B) for $rf . Intuitively, the morphism Pf represents the
direct-image function determined by f. Its definition is independent of the
choice of factorization. The operations A 2→ PA and f 2→ Pf are the
actions on objects and morphisms respectively of the covariant powerobject
functor.
We wish to interpret the first-order language of Section 2 in an elementary
topos E . In fact, the topos E alone does not determine a canonical such
interpretation. Thus the interpretation needs to be defined with reference to
additional structure on E . The required extra structure, a directed structural
system of inclusions (dssi), is a collection of special maps, “inclusions”,
intended to implement a “subset” relation between objects of the topos. The
situation is summarised by the equation:

model of BIST−= elementary topos E + dssi on E . (1)

In the remainder of this section, we introduce and analyse the required
notion of dssi.

Definition 3.2 (System of inclusions). A system of inclusions on a cate-
goryK is a subcategory I (the inclusionmaps, denoted ⊂ ! ) satisfying the
four conditions below.
(si1) Every inclusion is a monomorphism in K.
(si2) There is at most one inclusion between any two objects of K.
(si3) For every mono P! m! A in K there exists an inclusion Am ⊂ ! A

that is isomorphic to m (in the slice category K/A).
(si4) Given a commuting diagram, with i, j inclusions,

A′ ⊂
i ! A

A′′

m

$

j

⊂

!

(2)

then m (which is necessarily a mono) is an inclusion.
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We shall always assume that systems of inclusions come with a specified
means of findingAm ⊂ ! A fromm in fulfilling (si3). By (si3), every object
of K is an object of I , hence every identity morphism in K is an inclusion.
By (si2), the objects of I are preordered by inclusions. We write A ≡ B if
A ⊂ ! B ⊂ ! A. IfA ⊂ i! B thenA ≡ B iff i is an isomorphism, in which
case i−1 is the inclusion from B to A. We do not assume that inclusions
form a partial order since there is no gain in convenience by doing so.
When working with an elementary topos E with a specified system of
inclusions I , we always take the image factorization of amorphismA f! B
in E to be of the form

A
f! B = A

ef!! Im(f) ⊂
if! B,

i.e., an epi followed by an inclusion, using (si3) to obtain such an image.

Definition 3.3 (Directed system of inclusions). A system of inclusions I
on a categoryK (with at least one object) is said to be directed if the induced
preorder on I is directed (i.e., if, for any pair of objects A,B , there exists a
specified object CAB with A ⊂ ! CAB # ⊃ B).

Definition 3.4 (Structural system of inclusions). A system of inclusions
I on an elementary topos E is said to be structural if it satisfies the conditions
below relating inclusions to the specified structure on E .

(ssi1) For any parallel pair A
f!
g
! B , the specified equalizer E! ! A is

an inclusion.
(ssi2) For all inclusions A′ ⊂ i! A and B ′ ⊂ j! B , the specified product

A′ × B ′!i×j! A× B is an inclusion.
(ssi3) For every object A, the membership mono 1A! ! P(A) × A is an

inclusion.
(ssi4) For every inclusion A′ ⊂ i! A, the direct-image map PA′! Pi! PA

is an inclusion.

The structure we shall require to interpret the first-order language of
Section 2 is a directed structural system of inclusions (henceforth dssi).
We make some observations concerning the existence of dssis. First, we
observe that not every topos can have a dssi placed upon it. For a simple
counterexample, consider the full subcategory of Set whose objects are the
cardinals. This is a topos, as it is equivalent to Set itself. However, it
can have no system of inclusions placed upon it. Indeed, if there were a
system of inclusions, then, by condition (si3) of Definition 3.2, each of the
two morphisms 1 ! 2 would have to be an inclusion, thus violating
condition (si2). Since subset inclusions give a (partially-ordered) dssi on
Set, the existence of a dssi is not preserved under equivalence of categories.
In fact, every topos is equivalent to one carrying a dssi.
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X !& S(x) iff there exists B with Ix ⊂ ! PB
X !& x = y iff there exists B with Ax ⊂ i! B #j ⊃ Ay

such that i ◦ &x = j ◦ &y

X !& x ∈ y iff there exist inclusions Ix ⊂ i! B and Iy ⊂ j! PB such
that X

〈j◦ey , i◦ex〉! PB × B factors through 1B
X !& ⊥ iff X is an initial object
X !& φ ∧ # iff X !& φ and X !& #

X !& φ ∨ # iff there exist jointly epic Y s! X and Z t! X
such that Y !&◦s φ and Z !&◦t #

X !& φ → # iff for all Y t! X , Y !&◦t φ implies Y !&◦t #

X !& ∀x. φ iff for all Y t! X and Y a! A, Y !(&◦t)[a/x] φ
X !& ∃x. φ iff there exists an epi Y t!! X and map Y a! A

such that Y !(&◦t)[a/x] φ

Figure 5. The forcing relation.

Theorem 3.5. Given a topos E , there exists an equivalent category E ′ car-
rying a dssi I ′ relative to specified topos structure on E ′.
To end this section, we discuss the extra structure we shall require to
interpret IST and other set theories with full Separation.

Definition 3.6 (Superdirected system of inclusions). A system of inclu-
sions I on K is said to be superdirected if, for every set A of objects of K,
there exists an object B that is an upper bound for A in I .
The structure we shall require to interpret set theories with full Separation
is a superdirected structural system of inclusions (henceforth sdssi).
Proposition 3.7. If E is a small topos with an sdssi then, for every object
A, it holds that A ≡ 1, hence every object is isomorphic to 1.
Thus sdssi’s are only interesting on locally small toposes whose objects
form a proper class. The final two results of this section show that sdssi’s are
available on important classes of toposes from the literature.
Theorem 3.8. For any cocomplete topos E , there is an equivalent category

E ′ carrying an sdssi I ′ relative to specified topos structure on E ′.
In particular, anyGrothendieck topos can (up to equivalence) be endowed
with an sdssi.
Theorem 3.9. For any realizability topos E , there is an equivalent category

E ′ carrying an sdssi I ′ relative to specified topos structure on E ′.

§4. Interpreting set theory in a topos with inclusions. In this section we
present the interpretation of the first-order language of Section 2 in an
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arbitrary elementary topos with dssi. This interpretation always validates
the axioms of BIST−+ Coll. In addition, the axiom of Infinity (hence
BIST+ Coll) is validated if and only if the topos has a natural numbers
object. Also, Restricted ExcludedMiddle is validated if and only if the topos
is boolean. Furthermore, all the theories covered above are complete with
respect to validity in the appropriate class of models. Finally, in the case that
the dssi is superdirected, full Separation, hence the theory IST, is validated.
Let E be an arbitrary elementary topos with dssi I . The interpretation of
the first-order language is similar to the well-knownKripke–Joyal semantics
of the Mitchell–Bénabou language, cf. [13], but with two main differences.
First, we have to interpret the untyped relations x = y, S(x) and x ∈ y.
Second, we have to interpret unbounded quantification. To address these
issues, we make essential use of the inclusion structure on E . In doing so, we
closely follow Hayashi [8], who interpreted the ordinary language of first-
order set theory using the canonical inclusions between so-called transitive
objects in E . The difference in our case is that we work with an arbitrary dssi
on E . See Section 1 for further comparison.
We interpret a formula φ(x1, . . . , xk) (i.e., with at most x1, . . . , xk free)
relative to the following data: an object X of E , a “world”; and an “X -
environment” & mapping each free variable x ∈ {x1, . . . , xk} to a morphism
X

&x! Ax in E . We write X !& φ for the associated “forcing” relation,
which is defined inductively in Figure 5. In the definition, we use the notation
X

ex!! Ix ⊂ ix! Ax for the epi-inclusion factorization of &x . Also, given
Y

t! X , we write & ◦ t for the Y -environment mapping x to &x ◦ t.
Similarly, given morphisms Ax

bx! Bx , for each free variable x, we write
b ◦ & for the X -environment mapping x to bx ◦ &x . Finally, given a variable
x /∈ {x1, . . . , xk}, and a morphism a : X ! Ax , we write &[a/x] for the
environment that agrees with & on {x1, . . . , xk}, and which also maps x to a.
The next lemmagives a direct formulation of the derived forcing conditions
for the various set-theoretic abbreviations used in Section 2.

Lemma 4.1. If Iz ⊂ k! PC then

X !& ∀x ∈ z. φ iff for all Y t′! X and Y s ′! C , if
Y
(k◦ez◦t′, s ′)! PC ×C factors through 1C

then Y !(&◦t′)[s ′/x] φ,
X !& ∃x ∈ z. φ iff there exists an epi Y t!! X and map Y s! C

such that Y (k◦ez◦t, s)! PC ×C factors
through 1C and Y !(&◦t)[s/x] φ,

X !& x ⊆ y iff there exists B such that Ix ⊂ i! PB #j ⊃ Iy
and (i ◦ ex, j ◦ ey) : X ! PB × PB factors
through ⊆B ⊂ ! PB ×PB,
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X !& Sx. φ iff there exist objects B and R ⊂ ! X × B such that,
for all A and maps Y t! X and Y s! A,
Y !(&◦t)[s/x] φ iff Im(p) ⊂ ! R,
where p = 〈t, s〉 : Y ! X × A,

X !& !φ iff the family {Y | Y ⊂ i! X and Y !&◦i φ} has a
greatest element under inclusion.

For a sentence φ, we write (E , I) |= φ to mean that, for all worlds X , it
holds that X ! φ (equivalently that 1 |= φ). Similarly, for a theory (i.e., set
of sentences T ), we write (E , I) |= T to mean that (E , I) |= φ, for all φ ∈ T .
The theorem below is the main result of this announcement.

Theorem 4.2 (Soundness and completeness). For any theory T and sen-
tence φ, the following are equivalent.
1. BIST−+Coll + T - φ.
2. (E , I) |= φ, for every topos E and dssi I satisfying (E , I) |= T .
Soundness can be proved in the expected way by unwinding the forcing
semantics and checking the validity of the axioms one by one. The details
are surprisingly involved. The proof of completeness makes essential use
of an alternative category-theoretic account of models of BIST, using an
appropriately axiomatized notion of “category of classes”, adapting earlier
work on Algebraic Set Theory [10, 17, 5]. For the (lengthy) details, see [4].
The following two propositions can be used in combination with Theo-
rem 4.2 to obtain sound and complete classes of models for extensions of
the theory BIST−+Coll with Inf and/or REM.

Proposition 4.3. (E , I) |= Inf iff E has a natural numbers object.
Proposition 4.4. (E , I) |= REM iff E is a boolean topos.
An interesting aspect of Proposition 4.4 is that the underlying logic of the
first-order set theories thatwe associatewith boolean toposes is not in general
classical. Such set theories always satisfy the restricted law of excluded
middle REM, but not in general the full law LEM. Such “semiclassical”
set theories have appeared elsewhere in the literature on intuitionistic set
theories, see e.g., [16]. Here, as in [8], we find them arising naturally as a
consequence of our forcing semantics.
The next result states that, in the presence of a superdirected system of
inclusions, the full Separation schema is validated.

Proposition 4.5. If I is an sdssi on E then (E , I) |= Sep.
Since BIST+Sep+Coll interprets IZF, we now, by Theorems 3.8 and 3.9,
have the promised uniform explanation for why all Grothendieck and real-
izability toposes provide models of IZF.
In contrast to the characterizations of Inf and REM, Proposition 4.5
only establishes a sufficient condition for the validity of full Separation.
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Indeed, there is no reason to expect BIST−+ Coll+ Sep to be a complete
axiomatization of the valid sentences with respect to toposes with sdssi’s.
We next consider a further important aspect about the forcing semantics
of the first-order language, its conservativity over the internal logic of E .
In order to fully express this, using the tools of the present section, one
would need to add constants to the first-order language for the global points
in E , interpret these in the evident way in the forcing semantics, and give a
laborious translation of the typed internal language of E into first-order set
theory augmented with the constants. In principle, all this is routine. In
practice, it would be tedious. Rather than pursuing this line any further, we
instead refer the reader to the full paper [4], where the tools of categorical
logic are used to express the desired conservativity property in more natural
terms. At this point, we simply remark on one important consequence of
the general conservativity result.
Proposition 4.6. Suppose E has a natural numbers object. Then for any
first-order sentence φ in the language of arithmetic, E |= φ in the internal
logic of E if and only if (E , I) |= φ in the forcing semantics (using the natural
translation of φ in each case).
Proposition 2.10 follows as a consequence of the above result, by an
application of Gödel’s second incompleteness theorem.
We end this announcement with simple applications of the soundness
theorem to obtain non-derivability results. Let A be any set. For each
ordinal α, we construct the von-Neumann hierarchy Vα(A) relative to A as
a set of atoms in the standard way, viz:

Vα+1(A) = A+ P(Vα(A)),

V((A) =
⋃

α<(

Vα(A) ( a limit ordinal.

Note that V0 = ∅, and α ≤ ) implies Vα(A) ⊆ V)(A). We write V (A) for
the unbounded hierarchy

⋃
α Vα(A).

For a limit ordinal ( > 0, we define the categoryV((A) to have subsetsX ⊆
Vα(A), for any α < (, as objects, and arbitrary functions as morphisms. It is
readily checked that V((A) is a boolean topos. Moreover, subset inclusions
provide a dssi on V((A) relative to the naturally given topos structure. In the
propositions below, we omit explicit mention of the inclusion maps, which
are always taken to be subset inclusions.
Proposition 4.7.
1. V((A) |= Inf if and only if ( > * or |A| ≥ ℵ0.
2. V((A) |= vN-Inf if and only if ( > *.
In particular, V*(N) |= Inf but V*(N) 0|= vN-Inf. Proposition 2.4 follows
as an immediate consequence. In fact, more generally:
Corollary 4.8. BIST+ Coll+ REM ! vN-Inf.
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By Proposition 4.7, we have that V*+*(∅) |= vN-Inf. Hence, V*+*(∅) is a
model of BIST+Coll+REM+vN-Inf. Examples such as this may run con-
trary to the expectations of readers familiar with classical set theory, where,
in order to model Replacement and Collection, it is necessary to consider cu-
mulative hierarchiesV((A)with( a strongly inaccessible cardinal. The differ-
ence in our setting is that our forcing semantics buildsCollection directly into
its interpretation of the existential quantifier. The “price” one pays for this
is that the underlying logic of the set theory is intuitionistic. In consequence,
the standard arguments using Replacement that take one outside of V((A)
for ( non-inaccessible, are not reproducible. For example, attempts to con-
struct the union of the chainN,P(N ),P2(N ), . . . founder at it being impos-
sible to define this chain inside the set theory, as the model V*+*(∅) demon-
strates. Indeed, althoughV*+*(∅) is amodel of BIST+Coll+REM+vN-Inf,
it does not model Ind (thus LEM and Sep are also invalidated).
This example raises the question ofwhatReplacement is useful for inBIST,
since such classical constructions based on Replacement are unavailable. In
fact, Replacement is a useful principle, but not for the usual reasons. It
rather turns out to be essential for the development of any mathematics that
involves an interplay between small and large structures.6 This brings us
full circle to our main envisaged application of BIST as a natural language
for developing the mathematics of large structures relative to the internal
logic of elementary toposes. We hope that this language will find interesting
mathematical applications.
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