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ABSTRACT

One of the central problems in theoretical neuroscience is that of de-

termining the functional relationship between stimuli (e.g. visual scenes)

and the spike responses of neurons. This problem, sometimes referred to

as the “neural coding problem”, involves the attempt to understand the

spiking activity of neurons as a code for the sensory stimuli which elicit

them. A full understanding of the neural code will mean that we can pre-

dict the responses of neurons to arbitrary novel stimuli, and can decode the

information contained in spike trains to reveal the stimuli that gave rise

to them. Models of the neural code provide insight into the computations

performed by the brain, with potential applications for neural prosthetics

and the development of novel solutions to engineering problems which the

brain solves.

In this thesis, we pursue the development and application of novel sta-

tistical tools for modeling the neural code. We focus specifically on models

which provide precise quantitative descriptions of the computational behav-

ior of neurons in the early visual pathway.

In the first portion of the thesis, we focus on spike-triggered covariance

analysis, a technique for finding a multi-dimensional stimulus subspace in

which a neuron computes its response. We apply this technique to data col-

lected in macaque retinal ganglion cells (data provided by EJ Chichilnisky),
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and show that it can be used to constrain a model composed of nonlinear

spatial subunits and a suppressive temporal feedback signal.

In the second portion of the thesis, we develop a method for fitting neural

data using a generalized integrate-and-fire model, which is more powerful,

flexible and biophysically realistic than those traditionally used for neural

characterization. We show that this model accounts for the detailed timing

precision and variability of retinal ganglion cell spike responses, and is useful

for decoding spike trains of macaque retinal ganglion cells.
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Introduction

The brain is one of the most marvelously complex structures in the

known universe, and arguably still one of the most poorly understood. Al-

though the brain was first posited as the primary locus of sensation and

cognition nearly two and a half millennia ago1, it is only within the past

century2 that any understanding of the brain’s activity, and its relation to

human and animal behavior, has begun to emerge.

It is now universally accepted that the rich panoply of sensory, cognitive

and motor capabilities exhibited by humans and animals arises critically

from the spiking activity of neurons in the varied structures of nervous

system, which includes the brain. One of the overarching goals of the

nascent discipline of neuroscience is to provide a comprehensive account

of the brain’s neuronal activity, and the relationship of this activity to be-

havior. Theoretical neuroscience is a sub-discipline which seeks to provide

1Alcmaeon, writing around 450 BCE, performed anatomic dissections of the human

brain and optic nerves, hypothesizing that the latter were “light-bearing paths” to the

brain (Gross, 1998)
2(Adrian, 1926; Hodgkin & Huxley, 1952)
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precise descriptions of brain activity and its relationship to behavior using

the formal language of mathematics. Inarguably, it is only when we have

obtained a mathematical description of the brain’s activity that we will be

able to say that we understand how the brain works. Such a description

will mean that we can simulate the brain’s activity using a computational

model—that we can predict its response to a novel stimulus, its ability to re-

call a piece of knowledge, or its capacity to learn a novel behavior. The value

of such models is not only that we will understand of the brain’s operation;

understanding the brain’s ability to perform such complicated tasks as rec-

ognizing a face, navigating in a cluttered environment, or making decisions

using multiple sources of information, means that we will understand the

computational algorithms used by the brain to perform such tasks, which

may suggest powerful engineering solutions to such currently intractable

problems.

The neural coding problem

One of the central problems in theoretical neuroscience is that of determin-

ing the functional relationship between stimuli (e.g. a visual scene) and the

spike responses of neurons. This problem is sometimes referred to as the

“neural coding problem”. The brain represents information about the out-

side world using neural spike patterns, and it is by virtue of the brain’s abil-

ity to transmit and manipulate these patterns that we are able to perceive

and interact with our surroundings. We can therefore view the relationship

2



???Stimulus

spike response
s r

Goal: model of P(r|s)

Figure 0.1: The “Neural Coding Problem”. Solution consists in finding a model

of the probabilistic, functional transformation from stimuli s to spike responses

r, or a description of P (r|s).

between neuronal firing patterns and events in the external world as in-

stantiating a coding relationship. If we knew how to read the code, then by

observing a particular pattern of neural firing, we would know some piece

of information about the state of the world. Conversely, if we were given

a particular set of events in the world, we would be able to predict the

pattern of neuronal activity taking place in the brain.

Generally, we can formalize the neural coding problem as the search for

a description of the functional relationship between stimuli s and neuronal

spike responses r. Figure 0.1 shows a graphic depiction of this problem.

Because the relationship between stimulus and response is probabilistic—

repeated presentations of the same stimulus elicit responses which differ

unpredictably from trial to trial—we describe the problem as a search

for P (r|s), the conditional probability of the response given the stimulus.

Learning this distribution from empirical samples (ri, si), i.e. data collected

in real neurons, is fundamentally a problem in statistical estimation. The

3



main focus of this thesis will be the derivation of a set of statistical tools

for solving this estimation problem and an illustration of their performance

with an application to real data from primate retina, collected in the lab of

E. J. Chichilnisky of the Salk Institute.

Before continuing, we should briefly discuss the particular ambitions of

our approach. First, we would in principle like know P (r|s) for any possible

stimulus s. In the case of visual neurons, this means that we would like to

be able to compute the probability of the response for any possible spatio-

temporal-chromatic pattern of light impinging on the retina. This is in

contrast to approaches which model responses only to some restricted or

parametrically varying class of stimuli, such as that provided by a tuning

curve. Instead, we consider an approach generally known as white noise

analysis, a set of techniques for fitting quantitative models of neural function

using the measured responses to a set of rapidly varying, stochastic stimuli

spanning a large region of a neuron’s input space. There has been a recent

resurgence of interest in these techniques, partly due to the development of

powerful computers capable of real-time random stimulus generation and

computationally intensive statistical analysis.

Second, we should note that we cannot use the standard tools for em-

pirical density estimation to estimate P (r|s), as the dimensionality of both

the stimulus space and the response space are enormous3. It is to all in-

3Dimensionality of the stimulus is D = 3 color channels × m spatial pixels × n

temporal frames, for a particular discretization of space and time, with m and n each
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tents and purposes impossible to collect enough data to directly fit such a

high-dimensional probability density. Therefore, we simplify the problem

by adopting a strategy which is to represent P (r|s) using a model. The

essential features of such a model are that it be simple enough to estimate

using extracellular neural data, and that it be flexible enough to capture the

essential features of P (r|s). Additionally, the model cannot be a determin-

istic, but should have a probabilistic formulation that facilitates computing

the likelihood of the varying neural response. Finally, it is desirable to have

a model which can be interpreted mechanistically, or which can be used

to make inferences about the biophysical substrate underlying the neuron’s

functional properties.

Noted that a fundamental tension persists between these modeling

desiderata: it is easy to find models (e.g. Hodgkin-Huxley style) with a

clear underlying biophysical interpretation and capable of complex dynam-

ical behaviors, but which are not easily estimated from extracellular data

or do not easily admit of probabilistic computations. Similarly, we define

models (e.g. linear-rectifying-Poisson) for which it estimation and proba-

bilistic computations are straightforward, but which are so simple as to

have limited representational capacity or limited biological plausibility. In

this thesis, we examine the estimation and application of two different mod-

els which stake out slightly different positions among the tradeoffs imposed

potentially on the order of hundreds to thousands. Dimensionality of the response space

depends on the discretization of time and the length of the time window considered.
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by these competing desiderata.

Relation to other approaches

Before we proceed, it is useful to provide a brief overview of several alter-

native approaches within theoretical neuroscience, in order to situate the

current work with respect to the contributions from other frameworks for

studying the neural code. As outlined above, the goal of this thesis is to

explore statistical tools for estimating the encoding distribution P (r|s) for

individual neurons, to obtain detailed, quantitative models of the neural

response to arbitrary stimuli. This stands in contrast to a more strictly

theoretical approach, whose goal has been to understand the evolutionary

“design principles” underlying neural coding. This framework seeks to gain

a principled statistical understanding of why neurons code things the way

the do (as opposed to a descriptive explanation of what they code). The

most important idea to emerge from this perspective so far is Barlowe’s

“efficient coding hypothesis”, which holds that the primary goal of sen-

sory processing is to achieve representations that are efficient. Intuitively,

this means that the variability in r should be used to optimally preserve

information about the variability in s, which we can write formally as max-

imizing the mutual information between r and s.4. One way to derive the

optimal encoding P (r|s) for sensory processing (where r is now the response

4This is mathematically equivalent to maximizing the entropy of P (r|s) minus the

entropy of P (r)

6



of many neurons) is therefore to analyze the statistical properties of natural

images, P (s). This distribution turns out to be highly redundant, and it

is possible to find transformations which greatly reduce this redundancy

by maximizing the entropy of P (r|s)5. Other approaches in this same vein

have examined the empirical distribution of P (r|s) over a wide range of

samples from P (s) and have concluded that it is maximally entropic un-

der a particular constraint on P (r). So far, these approaches have generally

been restricted to considering a deterministic mapping of the stimulus and a

scalar (“rate”) representation of the response. More work will be required

to relate “what” models of the neural code to “why” which account the

stochasticity and temporal dynamics intrinsic to real neural responses.

Another theoretical framework for studying the neural code involves ef-

forts to model simply the distribution of spike responses, or P (r). Such

approaches have generally sought to analyze the statistical properties of

5One of the most successful examples of this approach is independent component

analysis (ICA), used to provide a theoretical explanation of the shapes of V1 receptive

fields. In this approach, assume a deterministic linear mapping of a (vector) stimulus ~s

to a (scalar) response ri for each neuron via a linear kernel ~ki, corresponding loosely to

a V1 receptive field; the response of the ith neuron to stimulus ~s is thus ri = ~ki · ~s. ICA

provides an algorithm for finding a set of “receptive fields” {~k1, . . . ~kn} which maximize

the entropy of P (r1, . . . , rn|s) averaged over P (s), while holding the “noise entropy”

P (r1, . . . rn) fixed. In contrast, the goal considered in thesis would be to estimate ~ki

for each neuron, based on a set of its measured responses to random sample from P (s),

which describes what the neuron is encoding but not why

7



spike trains (e.g. “whether they can be described as a Poisson process”)

and to discuss models which can or cannot give rise to the renewal statistics

or joint statistics observed in various brain areas. A related but generally

non-statistical approach to this same set of issues arises from the dynamical

systems perspective, which seeks to find differential equations which cap-

ture the dynamical behavior and phase transitions exhibited by neurons.

Often these models have the advantage of posing a simple and direct in-

terpretation in terms of underlying biophysical mechanisms. Clearly, the

insights provided by these techniques can inform our selection of a statisti-

cally accurate and dynamically realistic model for P (r|s).

A third approach which bears importantly on problem of understand-

ing the neural code is the information theoretic approach, which primarily

involves finding tools for estimating I(r, s), the mutual information (MI)

between stimuli and responses. As noted above, mutual information is a

functional of the joint probability distribution P (r, s); it attaches a single

number quantifying the meaningful shared variability between stimuli and

responses. Although estimating MI from samples presents many difficulties

in itself, it is much easier to obtain reliable estimates of this quantity than

to estimate the full probability distribution P (r, s). For this reason, MI

can provide an important tool for evaluating the success of efforts to model

P (r|s). By comparing the MI between s and r with the MI between s and

the simulated output of a model, for example, we can determine whether

a model captures the same amount of information about the stimulus as

8



contained in the neural responses themselves.

Finally, it is important to acknowledge the enormous contributions from

classical neuroscience and non-statistical modeling to our understanding of

neural coding in early visual areas. Retinal ganglion cell responses, which

form the domain of application for all the statistical techniques described in

this thesis, have already been thoroughly studied using both classical and

white-noise stimuli, and have been modeled extensively. Although the goal

of the work presented here—to obtain complete, quantitative, functional

models of individual retinal ganglion cell response properties that capture

detailed differences between neurons and facilitate probabilistic analysis

of their responses—differs meaningfully from that of earlier physiological

and theoretical studies, there is nevertheless a great debt to the knowledge

accumulated through classical studies of retinal stimulus selectivity and

classical modeling of linear and nonlinear retinal response properties.

Part I: Spike-triggered covariance analysis of Retinal Responses

The thesis can be divided roughly into three parts. The first covers spike-

triggered covariance (STC), an idea for finding a reduced-dimensional de-

scription of P (r|s) using the variance of the spike-triggered stimulus en-

semble (i.e. the subset of P (r, s) for which r = 1). This idea was first

proposed by Brenner et al (Brenner, Bialek, & Steveninck, 2000) and fur-

ther developed by (Schwartz, Chichilnisky, & Simoncelli, 2002) as a tool for

constraining a multi-dimensional nonlinear model of an individual neuron’s
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response.

In Chapter 1, we derive spike-triggered covariance analysis from first

principles and develop a space-time separable analysis which amounts to

performing STC in a subspace which preserves only spatial information or

temporal information about the stimulus.

This work has been conducted in collaboration with Eero Simoncelli and

E. J. Chichilnisky of the Salk Institute, and was presented as a poster at

the Annual Society for Neuroscience Meeting 2003 and the Computation

and Systems Neuroscience meeting in March 2004.

Part II: Neural characterization with a generalized integrate-and-

fire model

This section comprises Chapters 2 and 3, which describe statistical pro-

cedures for fitting a generalized integrate-and-fire neuron to extracellular

neural data.

The work in Chapter 2 was conducted in collaboration with Eero Si-

moncelli, and was presented as a talk at the Computational Neuroscience

Meeting (CNS) 2002, and published in the journal Neurocomputing (Pillow

& Simoncelli, 2003).

The work in Chapter 3 was conducted jointly with Liam Paninski and

Eero Simoncelli. It expands upon the problem addressed in Chapter 2, with

the addition of an explicitly probabilistic model and a more general form

of recurrent dependence on the spike train history.

10



This work was presented orally at both the Neural Information Process-

ing Society (NIPS) Meeting 2002 and the Computation and Neural Systems

(CoSyNe) Meeting 2003. It was published in the NIPS proceedings 2003

(Pillow, Paninski, & Simoncelli, 2004), and an expanded version of the pa-

per was recently published in Neural Computation (Paninski, Pillow, &

Simoncelli, 2004).

Part III: Application of the Generalized Integrate-and-Fire Model

to Retinal Responses

This work presented in Chapter 4 entails a comprehensive application of

the model described in Chapter 3 to the spike responses of retinal ganglion

cells (RGCs) to temporal white noise stimuli, using data collected by Va-

lerie Uzzell in the lab of E. J. Chichilnisky. We show that the model gives

a simple, thorough and intuitive account of “neural precision”, a much-

discussed phenomenon involving high repeatability in the timing of spiking

onset during multiple repeats of a stimulus. We also demonstrate the util-

ity of a probabilistic model of the neural code with an application to the

decoding of RGC responses.

This work was conducted in collaboration with Liam Paninski, Valerie

Uzzell, E. J. Chichilnisky and Eero Simoncelli. It was presented orally at

the Society for Neuroscience Meeting (SFN) 2004, and has been submitted

for publication.
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CHAPTER 1

Characterization of macaque retinal ganglion

cell responses using spike-triggered

covariance

Light responses of retinal ganglion cells (RGCs) exhibit a variety

of nonlinear features, including an accelerating contrast-response

function, nonlinear pooling of spatial information, and dynamic

gain adjustment. Here we describe a spike-triggered covariance

(STC) analysis which allows us to characterize such nonlinearities

in RGC responses to stochastic stimuli. Moreover, we introduce a

space-time separable variant of STC analysis, or “subspace STC”,

which allows us to separately examine the influence of spatial

and temporal nonlinearities on the RGC response. This analysis

provides a reduced-dimensional description of the stimulus fea-

tures that drive a neuron’s response, and allow us to constrain

12



a functional model of a neuron’s input-output properties. Using

these constraints, we fit a model which contains identical spatially-

shifted subunits, a nonlinear combination rule and a divisive tem-

poral feedback signal. We show that this model quantitatively

predicts responses to novel stimuli much better than a classical

LNP model characterized using reverse correlation.

Introduction

One of the central problems in sensory neuroscience is that of characterizing

the relationship between sensory stimuli and the spike responses of neurons.

This is sometimes called the “neural coding problem”, as the spike trains of

sensory neurons can be considered a code used to convey information about

external stimuli to the brain. This general problem has been investigated

in a large number of sensory areas using a wide variety of stimuli and

experimental preparations.

Recently, much work has considered an explicitly statistical setting for

studying the neural coding problem (Bialek, Rieke, Steveninck, & War-

land, 1991; Simoncelli, Paninski, Pillow, & Schwartz, 2004; Paninski, 2003;

Sharpee, Rust, & Bialek, 2004; Arcas & Fairhall, 2003). In this setting,

the problem can be considered to be that of characterizing the probabilistic

13



relationship between stimuli and spike trains, or P [r(t)|s(t)], where r(t) is

the response and s(t) is the relevant stimulus at time t, respectively. Gener-

ally, the goal of such approaches is to describe P [r|s] using a model, where

the model describes the probability of spiking at a fixed moment in time as

a function of the stimulus f(s). These encoding models, so-called because

they express the conditional probability underlying the encoding process

(the mapping of a fixed stimulus to a stochastic spike response), provide

a full description of a neuron’s input-output properties. That is, they can

be used to make quantitative predictions about the neuron’s response to

arbitrary novel stimuli.

Much work on the neural coding problem has focused on retinal gan-

glion cells (RGCs), which form the output layer of the retina. RGC spike

trains encode all visual information which is transmitted to the brain, and

there is much evidence to suggest that these spike trains contain a highly

compressed representation of the visual signal (Balboa & Grzywacz, 2000;

Ruderman & Bialek, 1994; Smirnakis, Berry, Warland, Bialek, & Meister,

1997). This makes RGCs a natural focal point for the study of neural cod-

ing, and clarifies the importance of developing models which can capture

the functional transformations carried out by RGCs.

RGCs are a relatively well-studied class of neurons, and much is known

about their physiological response properties. They have localized receptive

fields and quasi-linear sensitivity to contrast, which makes them relatively

easy to characterize qualitatively using classical stimuli. Nonlinearities in

14



RGC responses have also been well documented, including a rectifying, ac-

celerating contrast-response function, several forms of contrast-gain control

and nonlinear pooling of spatial information (Hochstein & Shapley, 1976;

J. D. Victor & Shapley, 1979b; J. D. Victor, 1987; Benardete, Kaplan,

& Knight, 1992; Chander & Chichilnisky, 2001). Qualitative models of

these phenomena have been proposed, and have proven quite successful in

explaining the types of linear and nonlinear behaviors observed in RGC

responses. (see (Meister & Berry, 1999) for a review).

Nevertheless, RGC response properties exhibit substantial heterogeneity

across species and cell types. Here we describe a set of tools for character-

izing the response properties of individual macaque retinal ganglion cells,

using extracellularly recorded responses to spatiotemporal white noise stim-

uli. One advantage of this approach is that, in addition to building a quan-

titative model of an individual neuron’s response, we assess the influence

of nonlinearities in the context of a rich spatiotemporally varying stimu-

lus, rather than for a restricted set of hand-tuned or parametrically varying

stimuli. In this paper, we illustrate how to investigate the response prop-

erties of a neuron using spike-triggered covariance analysis. We attempt to

develop intuition about what kind of model to use and demonstrate how to

fit such a model using the constraints obtained from STC.
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Figure 1.1: Stimulus and spike-triggered ensemble. (A) Depiction of the

stochastic stimulus used to characterize retinal responses. The stimulus consisted

of 1-dimensional bars, each of whose intensity was drawn randomly from a fixed-

variance Gaussian distribution on each frame. (B) The spike-triggered stimulus

ensemble consists of a set of stimulus “chunks” preceding each spike, illustrated

here by the red boxes. These chunks represent the spatiotemporal stimulus re-

gion which causally influences the generation of each spike. In this example, the

spike-triggered stimulus is shown to be a portion of the stimulus 6 frames long,

extending from 8 frames before a spike to 2 frames before a spike, and spanning

8 bars in spatial extent. (See Methods for more details on how this window was

selected for real cells). Each member of this (example) spike-triggered stimulus

ensemble is therefore a 48-dimensional vector (each pixel of the 6 x 8 stimulus

chunk is a dimension). Spike-triggered analysis proceeds generally by analyzing

the statistical differences between the spike-triggered stimulus ensemble and the

“raw” stimulus ensemble.

1.1 Neural Characterization

Figure 1.1 illustrates the experimental paradigm used in this experiment.

Fig. 1.1A depicts the stimulus (flickering bars), and fig. 1.1B shows a two-

dimensional representation of this stimulus (1D space, 1D time) alongside

an example of the RGC spike response.

In the following analysis, we assume that the response r(t) at any mo-

ment in time t is causally determined by some space-time portion of the
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stimulus1. We denote the relevant stimulus portion by the vector ~s(t).

(Note that the vectors associated with adjacent time bins have consider-

able overlap in their entries). The collection of all such stimulus vectors

{~s(t)}t∈[0,T ] comprises the “raw stimulus ensemble”, and the subset of vec-

tors {~s(ti)} associated with spike times {ti} is labeled the “spike-triggered

stimulus ensemble”, outlined in red in fig. 1.1B.

We can now restate the general problem as that of characterizing

P [r(t)=1|~s(t)], the probability of a spike occurring at time t given the asso-

ciated space-time stimulus ~s(t). A straightforward solution to this problem

would be to simply apply Bayes’ rule to obtain:

P [r(t)=1|~s(t)] =
P [r(t)=1, ~s(t)]

P [~s(t)]
, (1.1)

where the numerator of the right hand side is the distribution of the spike-

triggered stimulus ensemble and the denominator is the distribution of the

1Note that this assumption is not technically correct, given that the probability of

spiking may also depend on the recent spike history of the neuron, as for example during

the refractory period. This simplifying assumption is nevertheless quite useful in making

the problem more tractable. It is equivalent to assuming that the neural response is an

inhomogeneous Poisson process, which may be adequate to capturing the statistics of

spike responses on a coarse time scale in many brain areas. A more general approach

to the neural coding problem considers probabilistic models which condition on both

the stimulus and spike train history; this approach has been pursued in several recent

papers (Berry, Warland, , & Meister, 1997; Paninski et al., 2004; Pillow, Paninski, Uzzell,

Simoncelli, & Chichilnisky, 2005)
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raw stimulus ensemble. We know the denominator to be Gaussian, because

the raw stimuli were drawn from a Gaussian distribution. The character-

ization problem therefore reduces to that of estimating the distribution of

the spike-triggered stimuli.

Unfortunately, however, this observation does not directly lead to a

tractable solution for estimating P [r|~s], due to the so-called “curse of di-

mensionality”. The stimulus ensemble occupies a very high-dimensional

space (with dimensionality determined by the number of elements in ~s(t)) ,

so it is impossible to obtain enough samples to estimate the spike-triggered

stimulus distribution empirically2. Instead, we turn to a set of statistical

tools for dimensionality reduction, in hopes of making the problem more

tractable. The hope is that there will be only a small number of dimensions

along which the distribution of the spike-triggered stimuli differ from the

distribution of the raw stimuli. If we can discover these relevant dimen-

sions, then we need only estimate the empirical distribution in the relevant

subspace. In this way, we constrain a model which operates only on a par-

ticular subspace and still be confident of capturing the functional properties

of the neural response.

2Consider, for example, that for an n-dimensional stimulus, we would need 2n stimuli

just to have a sample from each orthant of stimulus space
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1.2 One-Dimensional Models and the STA

Reverse correlation, or spike-triggered averaging, represents an approach to

system identification which goes back at least thirty years in neuroscience

(deBoer & Kuyper, 1968; Marmarelis & Naka, 1972). However, rather than

conceive of the spike-triggered average (STA) as the linear term in a se-

ries approximation to the neural functional (as in Volterra/Wiener series

expansions), we can view it as a tool for dimensionality reduction. Mathe-

matically, the STA is defined as the average stimulus preceding a spike:

STA =
∑

i

~s(ti), (1.2)

where we let {ti} denote the set of spike times. Since our goal is to find a

compact statistical representation of P [r = 1, ~s] (the numerator in eq. 1.1),

the STA (i.e. mean of this distribution) is an obvious starting point.

Geometrically, we can view the STA as the difference between the means

of the spike-triggered and the raw stimulus ensembles (the latter being

zero, since we take the raw stimuli to be zero-mean Gaussian white noise).

The STA con therefore be viewed as a vector which defines an axis or

“direction” in stimulus space. Clearly, if the mean of the spike-triggered

stimuli is different from that of the raw stimuli, then the probability of

spiking varies as a function of the stimulus projection onto the STA. We can

therefore approximate the full distribution P [r|~s] using the one-dimensional

distribution P [r|x], where x = STA · ~s. This is simply the probability of

spiking conditioned only on the stimulus projection onto the STA. We can
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estimate this distribution quite easily using:

P [r|x] =
P̂ [r = 1, x]

P̂ [x]
, (1.3)

where the numerator and denominator are empirical estimates (e.g. his-

tograms) of the projected spike-triggered and raw stimulus distributions.

We can also consider an alternative motivation for this characterization

procedure. Imagine a neuron that computes its response by first linearly

filtering the stimulus and then firing with some probability determined by a

nonlinear function of filter output. We will refer to this model as the “one-

dimensional LNP” model. It consists of a single linear filter (L), followed

by a static nonlinearity (N), which converts the filter output to an instan-

taneous probability of firing, followed by Poisson spike generation (P). This

model is well-known in the literature3. Mathematically, it can be written

as:

P [r|~s] = f(~k · ~s); (1.4)

where ~k is the linear filter and f is the nonlinearity.

3This model is sometimes referred to as an “LN cascade”. We add the “P” in “LNP”

to make explicit the assumption that the output of the “N” stage must be converted

into a spike train via a Poisson process. This model includes most simple quasi-linear

filtering models of neural response, such as the “difference-of-Gaussians” model of retinal

ganglion cells, or the Gabor-filter model of V1 simple cells. A procedure for recovering

the linear filter in such a model using sinusoidal stimuli was first demonstrated in retinal

ganglion cells by (Enroth-Cugell & Robson, 1966)
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Figure 1.2: The spike-triggered average (STA) and point nonlinearity recovered

for a typical ON retinal ganglion cell. The STA has center-surround spatial orga-

nization typical for RGCs, with a bright central region flanked by two dark regions

on the vertical axis, and biphasic temporal organization along the horizontal axis.

The nonlinearity (right) shows the instantaneous spike rate of the neuron as a

function of the stimulus projection onto the STA. Together, the STA and non-

linearity provide a one-dimensional LNP model (Linear-nonlinear-Poisson) of the

neuron’s response.

For a one-dimensional LNP model, the STA serves as an estimator for

the linear filter ~k. A simple mathematical result due to (Bussgang, 1952)

establishes that if:

1. the raw stimulus distribution {~s} is spherically symmetric, and

2. the expected value of f(~k · ~s) under the distribution P [~s] is not zero

(i.e. the expected STA is not the zero vector)

then the STA gives an unbiased estimate of ~k. A simple geometric proof

of this result is presented in (Chichilnisky, 2001). Once we have obtained

this estimate for ~k, it is simple to estimate the nonlinearity f using the

procedure described above (1.3).

Figure 1.2 shows the result of this characterization procedure applied
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to a sample ON retinal ganglion cell. The STA (left) has spatiotempo-

ral structure like that commonly observed in RGCs, with center-surround

spatial structure (a bright region flanked by two dark regions) along the

vertical axis and biphasic (contrast reversing) temporal structure along the

horizontal axis.

The right plot shows the recovered nonlinearity for this cell, which gives

the instantaneous firing rate as a function of the stimulus projection onto

the STA. The nonlinearity rectifies strongly for stimuli with a negative

projection onto the STA. It is interesting to note that representing this

neuron’s response with a Volterra/Wiener series expansion, which involves

approximating this nonlinearity with a polynomial, would require a large

number of terms to capture the shape of this nonlinearity accurately.

So far, we have discussed two motivations for using the STA to charac-

terize neural responses, which are subtly different. Under the first, it is a

handy tool for obtaining a one-dimensional approximation to the full (possi-

bly multidimensional) neural coding distribution P [r|~s]. Under the second,

it provides a simple, unbiased estimator of the true model responsible for

generating neural responses. In the remainder of this paper, we will inves-

tigate which of these perspectives is more correct by examining whether we

need to use a multidimensional representation of P [r|~s] to accurately model

the neural response of RGCs.
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1.3 Multi-Dimensional Models and STC Analysis

Spike-triggered covariance (STC) analysis is an idea for moving beyond the

mean of the spike-triggered ensemble, which is necessary for characterizing

models that operate on more than one dimension of stimulus space. STC

analysis in its modern form was introduced by (Brenner et al., 2000), was

subsequently developed by (Schwartz et al., 2002), and has since been ap-

plied to characterizing sensory responses by several groups (e.g. (Touryan,

Lau, & Dan, 2002; Rust, Schwartz, Movshon, & Simoncelli, 2004)). We

review the technique briefly here.

The intuition underlying STC analysis is simple. We wish to examine

the variance of the spike-triggered stimulus ensemble, and determine if there

are any dimensions along which this variance differs from the variance of the

raw stimulus ensemble. We can easily compute the variance of the spike-

triggered stimuli along any direction in stimulus space, simply by left- and

right-multiplying the spike-triggered covariance matrix (the covariance of

the spike-triggered stimulus ensemble) with a unit vector ~u which points in

this direction. That is,

vari(~u · ~s(ti)) = ~uT Λ1~u, (1.5)

where {s(ti)} is the set of spike-triggered stimuli, and Λ1 is the spike-

triggered covariance matrix, defined as

Λ1 = 1
n

n
∑

i=1

~s(ti)~s(ti)
T (1.6)
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where n is the number of spike-triggered stimuli. It is worth noting that Λ1

is also an estimate of the second-order kernel in a Volterra series expansion,

though we do not intend to use it for this purpose. Rather, we intend

to use the STC matrix only as a tool for dimensionality reduction of the

neural coding distribution P [r|~s]. To achieve this, we want to find a set

of directions {~ui} along which the variance of the spike-triggered stimuli

differs maximally from that of the raw stimuli. We can find these directions

by finding the maxima and minima of the objective function

g(~u) =
~uT Λ1~u

~uT Λ0~u
(1.7)

(often called a Rayleigh quotient), where Λ0 is the covariance matrix of the

raw stimuli. The numerator is the variance of the spike-triggered stimuli

along ~u, and the denominator is the variance of the raw stimuli along ~u, so

the function computes the ratio of the two variances along a given direction

in stimulus space.

Fortunately, eigenvector decomposition provides a standard solution to

this problem. Let {~vi} be the set of eigenvectors of the special matrix

M = Λ
− 1

2

0

T

Λ1Λ
− 1

2

0 . (1.8)

Then

{~ui} = {Λ
1

2

0 ~vi} (1.9)

form a complete set of vectors producing the local extrema of the function g

(eq. 1.7). The associated eigenvalues give the ratio between the variances of
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Figure 1.3: Excitatory and suppressive STC features for an ON retinal ganglion

cell. Center graph shows the sorted eigenvalues of the spike-triggered stimulus

covariance matrix. The largest two and smallest two eigenvalues (circled in red)

were statistically determined to be significantly different than expected from ran-

dom sampling of the raw stimuli. Left plots show the eigenvectors associated with

the two largest eigenvalues. These stimulus patterns correspond to an increase

in variance of the spike-triggered stimulus, meaning that the cell was more likely

to spike if the projection of the stimulus onto these “excitatory” features had

large magnitude (positive or negative). Right plots show the eigenvectors asso-

ciated with the smallest eigenvalues, corresponding to a decrease in variance of

the spike-triggered stimuli. The cell was less likely to spike if the stimulus had a

large projection onto these “suppressive” features.

the spike-triggered and raw stimuli along each of these directions, which are

guaranteed to be local maxima or local minima of g. Eigenvalues greater

than 1 indicate that the spike-triggered stimuli have larger variance than

the raw stimuli, whereas eigenvalues less than 1 indicate smaller variance.

Figure 1.3 shows the results of STC analysis applied to the ON cell shown

in fig. 1.2. The central plot shows the sorted eigenvalues of M . These eigen-

values have some amount of scatter due to finite sampling of the covariance

matrices Λ0 and Λ1. (i.e. the eigenvalues would disperse over some finite

range even if the spike-triggered stimuli were a randomly selected subset
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of the raw stimuli, so there was no statistical difference between the two

sets). A statistical test is therefore necessary to determine whether these

eigenvalues are higher (or lower) than expected given the number of sam-

ples. For this cell, the two largest eigenvalues and two smallest eigenvalues

(circled in red) exceeded a statistical criterion, and were therefore taken to

indicate stimulus directions along which the variance of the spike triggered

stimuli differed significantly from that of the raw stimuli.

Plots on the left and right of fig. 1.3 show the eigenvectors associated

with the significant high and low eigenvalues, respectively. The organized

spatiotemporal structure apparent in these vectors provides an additional

heuristic for the physiological relevance of the features. (Conversely, if we

examine the vectors associated with non-significant eigenvalues, they appear

random and exhibit no spatiotemporal organization).

For this cell, we can therefore conclude that response is calculated in a

subspace of dimensionality at least 5 (the STA plus four STC axes). All 22

cells in the experiment exhibited at least one significant STC eigenvalue,

meaning that no cell could be completely characterized using only the STA.

Technical aside: the equations 1.8 and 1.9 above are slightly more com-

plicated than necessary if we are using Gaussian white noise stimuli and

the raw stimulus covariance Λ0 is well sampled. This derives from the fact

that the raw stimulus covariance Λ0 converges to the identity matrix as the

number of raw stimuli grows relative to the stimulus dimensionality. In this

limit, Λ
− 1

2

0 , which is sometimes called the whitening matrix, also converges
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to the identity matrix, so we are left with stimulus features ~ui that are the

eigenvectors of the Λ1. For this reason, we will occasionally slip into the

lazy habit of referring to the ~ui as eigenvectors of the STC.

Another important point to note is that because we are fundamentally

interested in achieving a dimensionality reduction, we began this analysis

by projecting all the stimuli ~s onto the subspace orthogonal to the STA.

The rationale for taking this step is that the STA has already been iden-

tified as an axis which influences the neural response. We turn to STC

analysis to identify additional dimensions, so we consider the STC only in

the orthogonal subspace. The STC features ~ui that we obtain are therefore

all orthogonal to the STA.

Taken together, STA and STC analysis provide a linear basis for the

subspace in which a neuron computes its response. We will label this basis

B; it is composed of the STA plus the significant STC axes. We have

therefore reduced the problem of modeling P [r|~s] to that of modeling P [r|~y],

where ~y = B~s (i.e. the projection of ~s onto the basis B). Given that ~y is of

much lower dimension than ~s, this still represents an enormous reduction

in the complexity of finding a model of the neural response.

However, we have not yet obtained a full model of the response be-

cause we have not yet characterized the nonlinear rule that converts ~y into

a probability of spiking. In general, if the dimensionality of ~y is greater

than 3, then we still have no hope of characterizing the nonlinearity with

an empirical density estimate. Moreover, any model expressed in terms of

27



multidimensional empirical densities has limited interpretability in terms

of the underlying neurobiology. Although we might perhaps obtain satis-

factory functional models using such an approach, it is desirable to find

models which have at least a loose connection to mechanisms commonly

understood to exist in neurons.

For this reason, we view the basis B as a starting point, or a set of

constraints for fitting a more biologically plausible model of RGC responses.

The next step in our analysis is therefore to examine the structure of the

STA and STC components in hopes of gaining insight into the kind of model

which might give rise to their structure.

1.4 Separability and Subspace STC

We inspected the space-time structure of the STA and STC components

obtained for each cell in a population of 22 RGCs. We observed that in all

cells these components were approximately space-time separable, meaning

that they could be decomposed as the outer product of a spatial profile

with a temporal profile. The optimal such decomposition in a least-squares

sense can be obtained using singular value decomposition of each filter.

Figure 1.4 shows a space-time decomposition of the STA and STC features

for the cell shown in fig. 1.3; each component was fit as the outer product

of a 32-element time vector and an 18-element space vector.

Having noticed this regularity, we were motivated to apply a subsequent
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STC analysis in order to dissociate spatial and temporal effects in the spike-

triggered stimulus distribution. This analysis, which can be termed “sub-

space STC”, relies on the simple idea of projecting the raw stimuli into

a reduced-dimensional subspace and performing STC analysis there. We

noted that if we filtered each temporal frame of the stimulus with a spatial

filter derived from the spatial profile of the STA, we could obtain a stimulus

which strongly predicted the neural response, but which was a function of

time only. Conversely, if we filtered the time-history of each spatial bar of

the stimulus with a temporal filter derived from the temporal profile of the

STA, we could obtain a purely spatial stimulus.

One advantage of this approach is that it severely reduces the dimension-

ality of the stimulus, and therefore provides much more statistical power

for detecting changes in variance. The raw stimulus had 576 dimensions

(18 spatial bars x 32 stimulus frames), but the purely temporal and purely

spatial stimulus had only 32 and 18 dimensions, respectively.

Figure 1.5 shows the result of this analysis applied to the ON cell ex-

amined previously. First, note that for the spatial analysis (above), the

number of large eigenvalues (circled in red) increased to three. This can

be explained by the increased statistical power due to the smaller dimen-

sionality of the space. On the other hand, we found no small eigenvalues,

indicating that there are no axes of reduced variance if we apply the STA

temporal filter to each spatial location. The temporal analysis (fig. 1.5B)

reveals a single small eigenvalue, which is more clearly separated from the
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remaining eigenvalues than the two eigenvalues detected in the original

analysis (fig. 1.3).

Now, we note first of all that the STC features obtained in the full STC

analysis can be well approximated by combinations of the spatial and tem-

poral STA and STC features obtained with subspace STC. For example, the

feature associated with the smallest eigenvalue resembles the outer product

of the spatial STA with the suppressive temporal eigenvector. The second

suppressive feature resembles the outer product of the first excitatory STC

feature and the suppressive temporal STC feature. Note also that although

we can produce the original STC features using outer products of the sub-

space STC features, the subspace STC analysis has revealed something not

readily apparent in the original analysis: that the neural response exhibits

excitation over multiple spatial dimensions and suppression along a single

temporal dimension. This observation served as motivation for a particular

model of the RGC response consisting of shifted excitatory subunits and

divisive temporal feedback.

1.5 Subunit model

Figure 1.6 shows a diagram of the subunit model we fit to the response of

each RGC in our population. The motivation for this particular model arose

from an analysis of the excitatory and suppressive features observed using

subspace STC analysis. As shown in fig. 1.5, spatial features tended to have
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more high-frequency spatial structure than the STA. This effect can arise

functionally from the presence of multiple shifted subunits whose spatial

structure is finer than that of the STA, and subunits have previously been

hypothesized to explain the nonlinear characteristics of Y retinal ganglion

cell responses in cat (J. D. Victor & Shapley, 1979a). Additionally, a single

suppressive temporal feature whose structure resembled the derivative of

the temporal STA suggested a form of temporal feedback suppression, as

suppressive features of this type are observed in models such as integrate-

and-fire that possess a refractory period (Arcas & Fairhall, 2003). These

considerations led us to consider a model consisting of shifted subunits with

a nonlinear combination rule and temporal feedback suppression.

In order to fit the parameters of this model, we began by searching for

a subunit spatial profile such that shifted copies of this profile spanned the

same linear subspace as the spatial STA and STC features (fig 1.5). We

optimized the spatial profile and the spacing of subunits for each cell by

minimizing the angle between the subspace spanned by the STA and STC

features and that spanned by the shifted subunits. The resulting subunit

profile and spacing obtained for a single ON cell is plotted in the diagram

in figure 1.6.

We constrained the (common) temporal profile of the model subunits to

lie in the subspace spanned by the temporal STA and suppressive STC fea-

ture, and fit its actual shape using maximum likelihood (a one-parameter

fit, since we only need the angle in this 2-dimensional subspace). The re-
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maining parameters, governing the two sigmoidal nonlinearities, combina-

tion weights, and kernel for the divisive temporal feedback signal (a 5-tap

filter) were also fit using maximum likelihood, using 30 minutes of RGC

response to a white noise stimulus. A statistical comparison between the

performance of this model and that of the one-dimensional LNP model is

presented in figures 1.7 and 1.8.

1.6 Model Validation

Figure 1.7 shows the results of a subspace-STC analysis (like in fig. 1.5) per-

formed on the simulated response of the subunit model to a novel stimulus.

Red lines indicate the spatial and temporal features obtained from the sub-

unit model spike responses and grey lines indicate those of the original RGC.

Note that although the subunit model contains no filters corresponding di-

rectly to any of the features revealed with spatial or temporal STC analysis

(the only filters it contains are the shifted spatial profile of the subunits

and a temporal filter not precisely matched to either temporal feature), the

model nevertheless exhibits the same STC components as those observed

in RGC responses. This illustrates consistency in the characterization pro-

cedure: that if we analyze the model output with the same statistical tools

used to analyze the RGC responses, we obtain similar results.

It is worth noting that the simulated output of the one-dimensional LNP

model (not shown) exhibits no significant eigenvalues if examined with STC
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analysis, as we would expect with any one-dimensional model.

Figure 1.8 shows a more direct statistical comparison of the performance

of the two models. Panel 1.8A shows a 2-second portion of a novel stim-

ulus (not used for fitting the model parameters) and the associated RGC

response. Panel 1.8B shows the rate predictions of both the subunit and

LNP models, which helps to provide an intuition for how to compare the

performance of the two models. Better prediction consists in having higher

predicted firing rates during the times when spikes occurred, and lower fir-

ing rates during the periods of silence. Note that while the models show

considerable agreement, there are obvious differences in the predictions.

The likelihood of the RGC response under each model prediction gives

us a quantitative measure of the prediction accuracy of each model. Panel

1.8C shows a histogram of the ratio of mean likelihood-per-spike between

the subunit and LNP model predictions across all cells in the population.

A value of 1.2 means that the average interspike interval was 1.2 times

more likely under the subunit model than under the LNP model. The ratio

lies above 1 for all cells, indicating that the subunit model gave improved

predictions for the responses of all 22 cells in the population.

Finally, figure 1.8D shows the difference in the spike-triggered rate pre-

dictions of the two models. This allows us to examine the qualitative dif-

ferences in the rate predictions of the two models. The early peak indicates

that subunit model gives a slightly higher rate prediction prior to the oc-

currence of a spike (and a higher rate prediction during the spike time
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itself). Following a spike, the subunit model predicts a much greater de-

cline in the spike rate than that predicted by the LNP model, a difference

attributable to the nonlinear temporal feedback component included in the

subunit model.

Discussion

We have explored the use of STA and STC analysis as tools for dimen-

sionality reduction, in order to constrain models of the neural code. We

performed STA and STC analysis on a population of macaque retinal gan-

glion cells, all of which exhibited at least a single STC axis in addition to

the STA. This implies that a one-dimensional LNP model fails to capture

the statistical features observed to be significant in RGC responses.

Subsequently, we introduced a space-time separable STC analysis of

RGC responses by filtering the raw stimulus with either the spatial com-

ponent or the temporal component of the STA. This analysis revealed ex-

citatory spatial features with structure finer than the STA and suppressive

temporal features with derivative-like structure. This motivated us to fit a

model consisting of identical, shifted spatial subunits with a common tem-

poral filter and nonlinearity, followed by an output nonlinearity and divisive

temporal feedback. The spatial profile of the subunits was fit to span the

same subspace as the spatial STA and STC vectors, while the temporal fil-

ter was fit in the subspace spanned by the temporal STA and STC vector.
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The remaining parameters of the model were fit using maximum likelihood.

Finally, the performance of this model was compared to that of the one-

dimensional LNP model, which provides a baseline point of comparison.

Subspace STC analysis applied to simulated spike trains of the subunit

model revealed features like those observed in RGC responses, whereas

no STC features were observed in simulated LNP responses. In all cells,

novel spike trains were better predicted by the subunit model than the

one-dimensional LNP model.

1.7 Methods

Experimental Measurements & Stimuli

Multi-electrode extracellular recordings were obtained in vitro from a small

piece of retina in a macaque monkey, with retinal pigment epithelium at-

tached, maintained at 32-36 degrees C, pH 7.4. The retina was stimulated

with a photopic, achromatic, spatially varying, optically reduced image of

a cathode ray tube display refreshing at 120 Hz. The stimulus was a spa-

tiotemporal sequence consisting of vertical bars, each of whose intensity

was drawn i.i.d. from a Gaussian distribution of fixed variance on every

refresh of the monitor. The contrast (standard deviation divided by mean)

of the sequence was 48%. Model characterization was performed on one

pseudo-random sequence (30 min), and model validation was performed on

a different sequence (10 min). Analysis was restricted to two physiologically-
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defined classes of cells that very likely correspond to ON and OFF parasol

cells based on several lines of evidence (Chichilnisky & Kalmar, 2002).

Choosing the dimensionality of the spike-triggered stimulus en-

semble

STC analysis requires selecting a particular space-time portion of the stim-

ulus to be regarded as causally responsible for the generation of each spike.

Clearly it is reasonable to assume some such finite window exists, since re-

ceptive fields are limited in both their temporal and spatial extent. Choos-

ing the size of this window involves a tradeoff between statistical power and

completeness in the representation of spatiotemporal features. Choosing a

large window entails a high-dimensional spike-triggered stimulus ensemble.

(The dimensionality of this space is determined by the number of “pixels” in

the space-time stimulus: the number of bars times the number of time sam-

ples included). High dimensionality, in turn, leads to low statistical power

for detecting significant STC effects, since the covariance of the raw and

spike-triggered stimuli (which has O(n2) terms, where n is dimensionality

of the stimulus) is much harder to sample in high dimensions; the number

and dispersion of eigenvalues goes up with dimension, making it harder to

detect significant changes in variance.

On the other hand, choosing a smaller window means that we might miss

functional dependencies which lie outside the window selected. In prac-

tice, we applied an ad hoc procedure for determining the size of the spike-
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triggered stimulus. We inspected the STA and STC features that emerged

as window size was varied. In general, we did not find STC features exhibit-

ing obvious dependency on spatiotemporal regions outside those present in

the STA. We therefore selected a window of 32 time-samples and a variable

number of spatial samples depending on the STA of each cell, but which

generally extended one bar on either side beyond the visible surround of

the STA. Generally we sought a window size that maximized the number

of significant STC eigenvalues, though in most cells this was a relatively

smooth function.

When performing subspace STC analysis, we included all 18 spatial

dimensions of the stimulus, since the dimensionality was much lower and

the covariance therefore much easier to estimate.

Other technical details

Mean likelihood-per-spike for each model (figure 1.8) was computed using

exp(
1

n

T
∑

j=0

log P [rj|λj(∆t)], (1.10)

where n is the number of spikes T is the number of time bins, indexed by

j, and P [rj|λj(∆t)] is the probability under Poisson statistics of observing

rj spikes (the number of spikes actually observed in the jth time bin) in a

bin of width ∆t with a predicted rate of λj for that bin. The ratio of the

subunit model’s to the LNP model’s mean likelihood per spike is shown in

figure 1.8C.
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Spike-triggered rate prediction: the cross-correlation between the actual

spike train r(t) and the predicted rate rpred, or 〈r(t) · rpred(t + τ)〉.
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Figure 1.4: Space-time separable analysis of the STA and STC features.

Upper-left: Spike-Triggered Average of the cell shown in figures 1.2 and 1.3,

fit as a the outer product of a single spatial and a single temporal vector. This

space-time separable filter captured 95% of the variance of the full STA. Upper-

right: Space-time separable fits to the excitatory and suppressive stimulus fea-

tures discovered for this cell using STC. These fits capture the dominant space-

time structure in each filter (shown in fig. 1.3). Below: Plots of spatial and

temporal structure of the STA and STC features. Red lines indicate the tempo-

ral and blue lines indicate spatial profiles of the STA. e1 and e2 denote the vectors

(“excitatory) features”) associated with the two largest eigenvalues (middle). s1

and s2 denote the vectors (“suppressive features”) associated with the smallest

and second-smallest eigenvalues, respectively (right).
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Figure 1.5: Results of space-time separable (subspace) STC analysis. (A)

Spatial features: each bar of the stimulus was convolved with a temporal fil-

ter corresponding to the temporal profile of the STA (shown in fig. 1.4). This

amounts to a projection of the original stimulus into a subspace where response

is a function of space only. We performed STC analysis in this subspace, which

resulted in three eigenvalues significantly larger than those of the raw stimuli

(middle), and none smaller. The associated eigenvectors are shown in blue (left),

and exhibit finer structure than the spatial STA (dashed trace). (B) Temporal

features: each temporal frame of the stimulus was filtered with the STA spatial

profile, yielding a purely temporal stimulus. STC analysis in this subspace yields

a single suppressive feature, whose shape (right) resembles the derivative of the

temporal STA.
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Figure 1.6: Schematic of subunit model. It consists of a set of identical, evenly

spaced linear subunits, each of whose output undergoes an identical sigmoidal

nonlinearity. The subunit outputs are then combined via a set of linear weights

and the value obtained is put through an output nonlinearity, which is then

modified divisively by a linearly filtered version of the model output.
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Figure 1.7: STA and STC features of the subunit model compared with those

of the real RGC cell. The subunit model was simulated with a stimulus like

that used to characterize the RGC (30 min spatio-temporal white noise), and an

identical subspace STC analysis was applied to the model’s output. (A) Analysis

of spatial features. Red lines refer to features of the subunit model response

and gray lines denote those obtained previously in the RGC response. Spatial

STA is shown on the right. The sorted eigenvalues of the spatial stimuli (middle,

obtained by filtering with the temporal STA as in fig. 1.5) exhibit three excitatory

features, shown at left to be in good agreement with the corresponding features

of the RGC. (B) The temporal STA of the subunit model (above right) closely

matches that of the real cell. STC analysis of the temporal stimuli (obtained by

filtering with the spatial STA) reveals a single suppressive feature, which agrees

closely with feature from the RGC response.
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Figure 1.8: Subunit model comparison and validation. (A) Two-second portion

of a novel stimulus (above) and associated RGC spike response (below). (B)

Associated rate predictions of the one-dimensional LNP model (black) and the

subunit model (red). The likelihood of the actual response under each model

was computed by binning the response, computing the probability of the spike

count observed in each bin (zero or one) given the predicted rate, and taking the

product over all bins. For this two-second segment, which contained 15 spikes, the

subunit model predicted the observed spike train with an average likelihood per

spike of 0.074, vs. 0.062 for the LNP model. (C) Improvement in the likelihood

per spike of the subunit model relative to LNP. Histogram shows the ratio of the

likelihood per spike under the subunit model to that under the LNP model, for

each cell. Values above one indicate that the subunit model predicted RGC spike

trains with higher probability than the LNP model. (D) The average difference

in the spike-triggered rate prediction for the subunit and LNP model across all

cells, which illustrates qualitatively how the predictions of the two models differ.

The gray box highlights the timeshift t=0, which shows that the subunit model

elicited a higher spike rate prediction for the time bins in which spikes actually

occurred.
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CHAPTER 2

Estimation of a Deterministic IF model

White noise analysis methods for characterizing neurons typically

ignore the dynamics of neural spike generation, assuming that

spikes arise from an inhomogeneous Poisson process. We show

that when spikes arise from a leaky integrate-and fire mechanism,

a classical white-noise estimate of a neuron’s temporal receptive

field is significantly biased. We develop a modified estimator for

linear characterization of such neurons, and demonstrate its ef-

fectiveness in simulation. Finally, we apply it to physiological

data and show that spiking dynamics may account for changes

observed in the receptive fields measured at different contrasts.

White noise analysis has become a widely used technique for character-

izing response properties of spiking neurons in sensory systems. A sequence

of stimuli are drawn randomly from an ensemble and presented in rapid
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succession, and one examines the stimuli that elicit action potentials. In

the most widely used form of this analysis, one estimates a linear approx-

imation to the receptive field (i.e. first-order Wiener kernel) by computing

the spike-triggered average (STA); that is, the average stimulus preced-

ing a spike (deBoer & Kuyper, 1968; Jones & Palmer, 1987). Under the

assumption that spikes are generated by a Poisson process with instanta-

neous rate determined by linear projection onto a kernel followed by a static

nonlinearity, the STA provides an unbiased estimate of the underlying ker-

nel (Chichilnisky, 2001).

The white noise approach is considered to have several advantages over

traditional characterization approaches, including the the ability to explore

a large portion of the input space and receptive field estimation that is

robust to drift or fluctuation in the responsiveness of a neuron. Despite

these advantages, it has also become clear that there are drawbacks to the

characterizations obtained with white noise methods. One such shortcom-

ing is the well-known phenomenon that the shape of the STA varies with

the amplitude (e.g. contrast) of the white noise stimuli. (Smirnakis et al.,

1997; Chander & Chichilnisky, 2001; Kim & Rieke, 2001, e.g. ). This type

of change cannot be explained by a linear model followed by a static non-

linearity and Poisson spike generation (the ‘Linear-Nonlinear-Poisson’, or

L-N-P model), since it implies a change in the linear front end. We have pre-

viously shown that nonlinear suppressive interactions such as those found

in cortical neurons can explain biases in the STA, that a spike-triggered co-
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variance analysis can be used to characterize these suppressive interactions,

and that the resulting corrected model can account for the changes of STA

with contrast (Schwartz et al., 2002).

Here, we explore another potential source of failure in white noise char-

acterization: the assumption of Poisson spike generation. The significance

of temporal dynamic (i.e. non-Poisson) properties of biological spike gener-

ation for white noise characterization of neurons has not been thoroughly

analyzed.

However, we show that in simulated white noise experiments, a linear

model which drives an integrate-and-fire spiking mechanism is inaccurately

characterized by the STA. Furthermore, we show that the integrative be-

havior of this model can account for some of the changes in STA estimated

at different stimulus amplitudes in real neurons. Finally, we propose a new

method for recovering the linear temporal filter governing neural response.

We demonstrate through simulation that this approach can correctly esti-

mate the linear kernel of a model neuron, and we also apply our method

to real neural data, demonstrating that the recovered linear kernel is fairly

stable with changes in stimulus contrast. We thus conclude that the recov-

ered linear kernel may provide a more fundamental functional description of

neural behavior, and might well be more directly related to the mechanisms

underlying neural response.
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2.1 Leaky integrate-and-fire model

Our analysis is based on a leaky integrate-and-fire (LIF) model. The input is

convolved with a linear filter K, and this response drives a leaky integrator.

When the level of this integrator reaches a threshold value, the neuron fires

a spike and the integrator is reset to zero. The time evolution of the model

membrane potential V (t) is characterized by a single differential equation:

dV

dt
= −

1

τ
V (t) + I(t), (2.1)

where τ is the time constant governing decay of the membrane potential,

and I(t) is the input current, generated by convolving the input signal S(t)

with the fixed kernel K:

I(t) = K ∗ S(t) =

∫ 0

−∞

K(u)S(t − u)du. (2.2)

This model has an analytical solution relative to the time of the most recent

spike:

V (t) =

∫ t

t−
I(u)e(u−t)/τdu, (2.3)

where t− is the time of occurrence of the last spike before t. This depen-

dence on the time of the previous spike (and past input to the integrator)

represents a fundamental departure from L-N-P model described earlier,

where the probability of firing a spike is an instantaneous function of the

projection of the stimulus onto K.
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Figure 2.1: Simulation of integrate-and-fire neuron. Left: STA kernels re-

trieved for three different contrast levels (solid lines), plotted along with the true

model kernel (dashed curve). Right: Kernels recovered using our algorithm.

2.2 Simulation results and comparison

We simulated a white noise analysis experiment with the model described

above. In our simulations, the kernel K was chosen to be a 32-sample func-

tion whose shape loosely resembles temporal kernels measured in retinal

ganglion cells. As in classical white noise experiments, we generated a ran-

dom discrete stimulus S(t) that was temporally white, drawing the stimulus

intensity as an independent Gaussian random variable in each time step.

We computed the STA as the average stimulus in the 32 time bins preceding

each spike.

Figure 2.2(left) shows a plot of the actual kernel K superimposed

on the STA for three different values of the membrane time constant τ .

First, note that in all three cases, the STA differs significantly from K.

This bias reflects the integrative spiking mechanism of the LIF model, as
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the STA is quite close to K if the same input were given to an L-N-P

model (Chichilnisky, 2001). Furthermore, the discrepancy between K and

the STA depends on τ . For small τ (i.e. rapid decay of V ), the STA is

more closely resembles K, whereas larger τ (slower decay) gives rise to an

STA which is smoother and more biased away from the true K. Note that

although this basic effect is unsurprising, it is not the case that the STA

shape arises simply from a low-pass filtering of K with an exponential fil-

ter. Specifically, the STA measured for a stand-alone LIF spike generator

is decidedly non-exponential.

Physiological evidence indicates that at higher firing rates, the mem-

brane conductance of neurons increases, which corresponds to a decrease

in membrane time constant τ (Borg-Graham, Monier, & Fregnac, 1998;

Hirsch, Alonso, Reid, & Martinez, 1998; Anderson, Lampl, Gillespie, &

Ferster, 2000). Moreover, STAs measured in real neurons at high contrast

tend to be narrower than those measured at low contrasts. This suggests

that an integrative spiking mechanism with time constant that depends on

firing rate is at least consistent with contrast-dependent changes in the STA

of real neurons.

2.3 Recovering the linear kernel

Assuming that the input to an integrate-and-fire spiking model is deter-

mined by projection onto a linear kernel, how can the kernel be recovered
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from the response to white noise stimuli? Equation (2.3) provides a deter-

ministic expression for the voltage at any time since the most recent spike.

The voltage at any spike time is therefore given by:

V (t+) = Vth =

∫ t+

t−

[

K ∗ S(t)
]

e(t−t+)/τdt, (2.4)

where Vth is threshold, t− is the time index of the previous spike and t+ that

of the current spike. Using equation 2.2, we can rewrite this (by switching

the order of integration):

Vth =

∫ 0

−∞

K(u)

[

∫ t+

t−
S(t − u)e(t−t+)/τdt

]

du. (2.5)

Note that, for fixed τ , this equation provides a linear constraint on

K, since it expresses Vth as the inner product of K with the exponentially

weighted S (back to the time of the previous spike). Every spike in the spike

train provides one such constraint, so a discretized K can be overconstrained

so long as its dimensionality is smaller than the number of spikes collected.

K can easily be estimated by finding the least squares solution to this

overconstrained linear system.

In practice, one would like to estimate both τ and K simultaneously,

since both are unknown for data collected in real neurons. This can be

achieved simply using a nested optimization (a line search algorithm) to

find the τ which minimizes the squared error in the least squares solution

for K. This algorithm is guaranteed to converge, and although the solution

may not be only a local minimum, in simulations it was well-behaved for a
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wide variety of kernel shapes and a large range of τ values. Figure 2.2(right)

shows the kernels estimated for simulations conducted with three different

values of τ . (Close estimates of the true values of τ were also obtained.)

For both graphs in this figure, the stimulus contained 40,000 time samples

and approximately 2,000 spikes were collected for each τ .

It should be noted, finally, that this estimator for K and τ ignores a

huge set of additional constraints– namely, that V (t) be less than threshold

at all other times. However, because the problem is already overconstrained

by the constraint on V (t) at spike times, and because the additional con-

straints are much harder to implement, they can be ignored. A significant

improvement to the estimator may nevertheless be obtained by consider-

ing additional constraints only on the time steps immediately preceding a

spike. (This can be implemented by allowing a contribution to the squared

error for any pre-spike time bin where V exceeds threshold). Montecarlo

simulations exhibit rapid convergence to the true values of K and τ for this

revised estimator.

2.4 Recovering a kernel from neural data

Our procedure for linear kernel estimation is based on an overly simplistic

integrate-and-fire model for neural spike generation. We thus cannot be sure

it will be applicable to real neural data. But we note that STA techniques

have been used for decades to estimate linear kernels under the assumption
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of a Poisson spike generator. The integrate-and-fire model incorporates a

dependence on the time of the previous spike and is likely to provide a more

accurate description of spiking in real neurons.

We have applied our procedure directly to data drawn from a mon-

key retinal ganglion cell (Chander & Chichilnisky, 2001). The data were

recorded in vitro, using a stimulus consisting of 80,000 time samples of full-

field 120 Hz flickering binary white noise The stimulus vectors ~s of this

sequence are defined over a 25-segment (0.21 sec) time window. Two data

sets were recorded, at contrasts of 32% and 64%.

Figure 2 (left) shows example STA estimates for both contrast levels.

The kernels are quite different; the low-contrast STA is smoother and its

peak that is shifted earlier in time than the high contrast STA. Figure 2

(right) shows the kernels resulting from our estimation procedure. Note that

the estimated kernel is now quite stable across different contrasts, a desir-

able property for a functional description of neural behavior. The recovered

time constants of 19.1 msec and 6.5 msec are within ranges considered bi-

ologically plausible, although their ratio indicates a greater change with

amplitude than is commonly reported for cortical neurons (Borg-Graham

et al., 1998; Hirsch et al., 1998; Anderson et al., 2000, e.g. ).
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Figure 2.2: Characterization of macaque retinal ganglion cell responses Left:

STA estimates based on responses recorded at two different input contrast levels.

Right: Kernels recovered using our procedure. The associated time constant

estimates are 19.1 and 6.5 msec.

2.5 Discussion

Our results show that spike generation mechanisms can affect the inter-

pretation of results obtained with white noise analysis. In particular, we

have shown that even for a simple integrate-and-fire model, the tempo-

ral STA does not accurately recover the temporal linear input kernel. For

this model, the magnitude of bias in the STA is influenced by the mem-

brane conductance, which is believed to vary with stimulus strength. This

amplitude-dependence of the STA mirrors changes in the STA of real neu-

rons measured at different contrasts, and cannot be captured by an L-N-P

model.

Based on this simple LIF model, we have developed a new method for

the recovery of the linear kernel integration time constant from responses

to white noise stimluli. To our surprise, this kernel estimation procedure

recovers a stable linear kernel when applied to data recorded from monkey
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retinal ganglion cells, and the associated estimates of membrane conduc-

tance are within a biologically plausible range. Finally, while not discussed

here, our technique also appears to be quite robust to the presence of noise

in the membrane potential

We are currently exploring the generalization of these results to more

realistic models. In particular, we have have found that the incorporation

of a voltage floor in the model (corresponding to an ionic reversal potential)

produces an STA which is sharper and closer to the true input kernel at

high contrast, independent of any changes in membrane conductance. The

significance of this phenomenon, along with that of other nonlinearities

associated with spike generation, remains to to be analyzed.

Our results suggest a mechanistic explanation of the behaviors captured

by current functional models of retinal ganglion cells (Shapley & Victor,

1981, e.g.), in which a nonlinear feedback signal is used to adjust the gain

of the neuron. We have also previously shown that nonlinear gain control

operations might account for a variety of apparent changes in receptive field

properties at different contrast levels (Schwartz & Simoncelli, 2001). The

results presented in this paper suggest that some such changes might be

due to intracellular mechanisms of spike generation. It would be interesting

to test such hypotheses against intracellular measurements.
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CHAPTER 3

Estimation of a Stochastic, Recurrent IF

model

Recent work has examined the estimation of models of stimulus-

driven neural activity in which some linear filtering process is fol-

lowed by a nonlinear, probabilistic spiking stage. We analyze the

estimation of one such model for which this nonlinear step is im-

plemented by a noisy, leaky, integrate-and-fire mechanism with

a spike-dependent after-current. This model is a biophysically

plausible alternative to models with Poisson (memory-less) spik-

ing, and has been shown to effectively reproduce various spiking

statistics of neurons in vivo. However, the problem of estimating

the model from extracellular spike train data has not been exam-

ined in depth. We formulate the problem in terms of maximum

likelihood estimation, and show that the computational problem
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Figure 3.1: Schematic of the L-NLIF model.

of maximizing the likelihood is tractable. Our main contribution

is an algorithm and a proof that this algorithm is guaranteed to

find the global optimum with reasonable speed. We demonstrate

the effectiveness of our estimator with numerical simulations.

A central issue in computational neuroscience is the characterization of

the functional relationship between sensory stimuli and neural spike trains.

A common model for this relationship consists of linear filtering of the

stimulus, followed by a nonlinear, probabilistic spike generation process.

The linear filter is typically interpreted as the neuron’s “receptive field,”

while the spiking mechanism accounts for simple nonlinearities like rectifi-

cation and response saturation. Given a set of stimuli and (extracellularly)

recorded spike times, the characterization problem consists of estimating

both the linear filter and the parameters governing the spiking mechanism.

One widely used model of this type is the Linear-Nonlinear-Poisson
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(LNP) cascade model, in which spikes are generated according to an in-

homogeneous Poisson process, with rate determined by an instantaneous

(“memoryless”) nonlinear function of the filtered input. This model has a

number of desirable features, including conceptual simplicity and compu-

tational tractability. Additionally, reverse correlation analysis provides a

simple unbiased estimator for the linear filter (Chichilnisky, 2001), and the

properties of estimators (for both the linear filter and static nonlinearity)

have been thoroughly analyzed, even for the case of highly non-symmetric

or “naturalistic” stimuli (Paninski, 2003). One important drawback of the

LNP model, however, is that Poisson processes do not accurately capture

the statistics of neural spike trains (Berry & Meister, 1998; Keat, Reinagel,

Reid, & Meister, 2001; Reich, Victor, & Knight, 1998; Arcas & Fairhall,

2003; Sakai, Fnahashi, & Shinomoto, 1999). In particular, the probabil-

ity of observing a spike is not a functional of the stimulus only; it is also

strongly affected by the recent history of spiking.

The leaky integrate-and-fire (LIF) model provides a biophysically more

realistic spike mechanism with a simple form of spike-history dependence.

This model is simple, well-understood, and has dynamics that are entirely

linear except for a nonlinear “reset” of the membrane potential following

a spike. Although this model’s overriding linearity is often emphasized

(due to the approximately linear relationship between input current and

firing rate, and lack of active conductances), the nonlinear reset has signifi-

cant functional importance for the model’s response properties. In previous
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work, we have shown that standard reverse correlation analysis fails when

applied to a neuron with deterministic (noise-free) LIF spike generation; we

developed a new estimator for this model, and demonstrated that a change

in leakiness of such a mechanism might underlie nonlinear effects of contrast

adaptation in macaque retinal ganglion cells (Pillow & Simoncelli, 2003).

We and others have explored other “adaptive” properties of the LIF model

(Rudd & Brown, 1997; Paninski, Lau, & Reyes, 2003; Yu & Lee, 2003).

In this paper, we consider a model consisting of a linear filter followed

by noisy LIF spike generation with a spike-dependent after-current; this is

essentially the standard LIF model driven by a noisy, filtered version of the

stimulus, with an additional current waveform injected following each spike.

This as the the “L-NLIF” model (Linear - Noisy Leaky Integrate-and-Fire)

is illustrated in figure 3.1. The probabilistic nature of this model provides

several important advantages over the deterministic version we have con-

sidered previously. First, an explicit noise model allows us to couch the

problem in the terms of classical estimation theory. This, in turn, provides

a natural “cost function” (likelihood) for model assessment and leads to

more efficient estimation of the model parameters. Second, noise allows

us to explicitly model neural firing statistics, and could provide a rigorous

basis for a metric distance between spike trains, useful in other contexts

(J. Victor, 2000). Finally, noise influences the behavior of the model itself,

giving rise to phenomena not observed in the purely deterministic model

(Levin & Miller, 1996).
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Our main contribution here is to show that the maximum likelihood es-

timator (MLE) for the L-NLIF model is computationally tractable. Specif-

ically, we describe an algorithm for computing the likelihood function, and

prove that this likelihood function contains no non-global maxima, implying

that the MLE can be computed efficiently using standard ascent techniques.

The desirable statistical properties of this estimator (e.g. consistency, effi-

ciency) are all inherited “for free” from classical estimation theory. Thus,

we have a compact and powerful model for the neural code, and a well-

motivated, efficient way to estimate the parameters of this model from

extracellular data.

3.1 The Model

We consider a model for which the (dimensionless) subthreshold voltage

variable V evolves according to

dV =

(

− gV (t) + ~k · ~x(t) +
i−1
∑

j=0

h(t − tj)

)

dt + σNt, (3.1)

and resets to Vr whenever V = 1. Here, g denotes the leak conductance,

~k · ~x(t) the projection of the input signal ~x(t) onto the linear kernel ~k, h

is an “afterpotential,” a current waveform of fixed amplitude and shape

whose value depends only on the time since the last spike ti−1, and Nt is

an unobserved (hidden) noise process with scale parameter σ. Without

loss of generality, the “leak” and “threshold” potential are set at 0 and 1,
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respectively, so the cell spikes whenever V = 1, and V decays back to 0 with

time constant 1/g in the absence of input. Note that the nonlinear behavior

of the model is completely determined by only a few parameters, namely

{g, σ, Vr}, and h (where the function h is allowed to take values in some low-

dimensional vector space). The dynamical properties of this type of “spike

response model” have been extensively studied (Gerstner & Kistler, 2002);

for example, it is known that this class of models can effectively capture

much of the behavior of apparently more biophysically realistic models (e.g.

Hodgkin-Huxley).

Figures 3 and 3.4 show several simple comparisons of the L-NLIF and

LNP models. In 1, note the fine structure of spike timing in the responses

of the L-NLIF model, which is qualitatively similar to in vivo experimen-

tal observations (Berry & Meister, 1998; Reich, Victor, Knight, Ozaki, &

Kaplan, 1997; Reich et al., 1998; Keat et al., 2001; Sakai et al., 1999)).

The LNP model fails to capture this fine temporal reproducibility. At the

same time, the L-NLIF model is much more flexible and representationally

powerful, as demonstrated in Fig. 3.4: by varying Vr or h, for example, we

can match a wide variety of dynamical behaviors (e.g. adaptation, bursting,

bistability) known to exist in biological neurons.
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3.2 The Estimation Problem

Our problem now is to estimate the model parameters {~k, σ, g, Vr, h} from

a sufficiently rich, dynamic input sequence ~x(t) together with spike times

{ti}. A natural choice is the maximum likelihood estimator (MLE), which

is easily proven to be consistent and statistically efficient here. To compute

the MLE, we need to compute the likelihood and develop an algorithm for

maximizing it.

The tractability of the likelihood function for this model arises directly

from the linearity of the subthreshold dynamics of voltage V (t) during an

interspike interval. In the noiseless case (Pillow & Simoncelli, 2003), the

voltage trace during an interspike interval t ∈ [ti−1, ti] is given by the solu-

tion to equation (3.1) with σ = 0:

V0(t) = Vre
−gt +

∫ t

ti−1

(

~k · ~x(s) +
i−1
∑

j=0

h(s − tj)

)

e−g(t−s)ds, (3.2)

which is simply a linear convolution of the input current with a negative ex-

ponential. It is easy to see that adding Gaussian noise to the voltage during

each time step induces a Gaussian density over V (t), since linear dynam-

ics preserve Gaussianity (Karlin & Taylor, 1981). This density is uniquely

characterized by its first two moments; the mean is given by (3.2), and its

covariance is σ2EgE
T
g , where Eg is the convolution operator corresponding

to e−gt. Note that this density is highly correlated for nearby points in time,

since noise is integrated by the linear dynamics. Intuitively, smaller leak
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conductance g leads to stronger correlation in V (t) at nearby time points.

We denote this Gaussian density G(~xi, ~k, σ, g, Vr, h), where index i indicates

the ith spike and the corresponding stimulus chunk ~xi (i.e. the stimuli that

influence V (t) during the ith interspike interval).

Now, on any interspike interval t ∈ [ti−1, ti], the only information we

have is that V (t) is less than threshold for all times before ti, and exceeds

threshold during the time bin containing ti. This translates to a set of linear

constraints on V (t), expressed in terms of the set

Ci =
⋂

ti−1≤t<ti

{

V (t) < 1

}

∩
{

V (ti) ≥ 1
}

.

Therefore, the likelihood that the neuron first spikes at time ti, given a

spike at time ti−1, is the probability of the event V (t) ∈ Ci, which is given

by

L~xi,ti(
~k, σ, g, Vr, h) =

∫

Ci

G(~xi, ~k, σ, g, Vr, h),

the integral of the Gaussian density G(~xi, ~k, σ, g, Vr, h) over the set Ci.

Spiking resets V to Vr, meaning that the noise contribution to V in

different interspike intervals is independent. This “renewal” property, in

turn, implies that the density over V (t) for an entire experiment factorizes

into a product of conditionally independent terms, where each of these

terms is one of the Gaussian integrals derived above for a single interspike

interval. The likelihood for the entire spike train is therefore the product of

these terms over all observed spikes. Putting all the pieces together, then,
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the full likelihood is

L{~xi,ti}(
~k, σ, g, Vr, h) =

∏

i

∫

Ci

G(~xi, ~k, σ, g, Vr, h), (3.3)

where the product, again, is over all observed spike times {ti} and corre-

sponding stimulus chunks {~xi}.

Now that we have an expression for the likelihood, we need to be able

to maximize it. Our main result now states, basically, that we can use

simple ascent algorithms to compute the MLE without getting stuck in

local maxima.

Theorem 1. The likelihood L{~xi,ti}(
~k, σ, g, Vr, h) has no non-global extrema

in the parameters (~k, σ, g, Vr, h), for any data {~xi, ti}.

The proof (see Appendix A) is based on the log-concavity of L{~xi,ti}(
~k, σ, g, Vr, h)

under a certain parametrization of (~k, σ, g, Vr, h). The classical approach for

establishing the nonexistence of non-global maxima of a given function uses

concavity, which corresponds roughly to the function having everywhere

non-positive second derivatives. However, the basic idea can be extended

with the use of any invertible function: if f has no non-global extrema,

neither will g(f), for any strictly increasing real function g. The logarithm

is a natural choice for g in any probabilistic context in which independence

plays a role, since sums are easier to work with than products. Moreover,

concavity of a function f is strictly stronger than logconcavity, so logconcav-

ity can be a powerful tool even in situations for which concavity is useless

63



(the Gaussian density is logconcave but not concave, for example). Our

proof relies on a particular theorem (Bogachev, 1998) establishing the log-

concavity of integrals of logconcave functions, and proceeds by making a

correspondence between this type of integral and the integrals that appear

in the definition of the L-NLIF likelihood above.

We should also note that the proof extends without difficulty to some

other noise processes which generate logconcave densities (where white noise

has the standard Gaussian density); for example, the proof is nearly iden-

tical if Nt is allowed to be colored or non-Gaussian noise, with possibly

nonzero drift.

3.3 Computational Methods and Numerical Results

Theorem 1 tells us that we can ascend the likelihood surface without fear

of getting stuck in local maxima. Now how do we actually compute the

likelihood? This is a nontrivial problem: we need to be able to quickly

compute (or at least approximate, in a rational way) integrals of multivari-

ate Gaussian densities G over simple but high-dimensional orthants Ci. We

discuss two ways to compute these integrals; each has its own advantages.

The first technique can be termed “density evolution” (Knight, Omurtag,

& Sirovich, 2000; Paninski, Lau, & Reyes, 2003). The method is based

on the following well-known fact from the theory of stochastic differential

equations (Karlin & Taylor, 1981): given the data (~xi, ti−1), the probabil-
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ity density of the voltage process V (t) up to the next spike ti satisfies the

following partial differential (Fokker-Planck) equation:

∂P (V, t)

∂t
=

σ2

2

∂2P

∂V 2
+ g

∂[(V − Veq(t))P ]

∂V
, (3.4)

under the boundary conditions

P (V, ti−1) = δ(V − Vr),

P (Vth, t) = 0; (3.5)

where Veq(t) is the instantaneous equilibrium potential:

Veq(t) =
1

g

(

~k · ~x(t) +
i−1
∑

j=0

h(t − tj)

)

. (3.6)

Moreover, the conditional firing rate f(t) satisfies

∫ t

ti−1

f(s)ds = 1 −

∫

P (V, t)dV. (3.7)

Thus standard techniques for solving the drift-diffusion evolution equation

(3.4) lead to a fast method for computing f(t) (as illustrated in Fig. 2).

Finally, the likelihood L~xi,ti(
~k, σ, g, Vr, h) is simply f(ti).

While elegant and efficient, this density evolution technique turns out

to be slightly more powerful than what we need for the MLE: recall that

we do not need to compute the conditional rate function f at all times

t, but rather just at the set of spike times {ti}, and thus we can turn to

more specialized techniques for faster performance. We employ a rapid

technique for computing the likelihood using an algorithm due to Genz

65



(Genz, 1992), designed to compute exactly the kinds of multidimensional

Gaussian probability integrals considered here. This algorithm works well

when the orthants Ci are defined by fewer than ≈ 10 linear constraints

on V (t). The number of actual constraints on V (t) during an interspike

interval (ti+1 − ti) grows linearly in the length of the interval: thus, to

use this algorithm in typical data situations, we adopt a strategy proposed

in our work on the deterministic form of the model (Pillow & Simoncelli,

2003), in which we discard all but a small subset of the constraints. The

key point is that, due to strong correlations in the noise and the fact that

the constraints only figure significantly when the V (t) is driven close to

threshold, a small number of constraints often suffice to approximate the

true likelihood to a high degree of precision.

The accuracy of this approach improves with the number of constraints

considered, but performance is fastest with fewer constraints. Therefore,

because ascending the likelihood function requires evaluating the likelihood

at many different points, we can make this ascent process much quicker by

applying a version of the coarse-to-fine idea. Let Lk denote the approxi-

mation to the likelihood given by allowing only k constraints in the above

algorithm. Then we know, by a proof identical to that of Theorem 1, that

Lk has no local maxima; in addition, by the above logic, Lk → L as k grows.

It takes little additional effort to prove that

argmax Lk → argmax L;
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thus, we can efficiently ascend the true likelihood surface by ascending the

“coarse” approximants Lk, then gradually “refining” our approximation by

letting k increase.

An application of this algorithm to simulated data is shown in Fig. 4.

Further applications to both simulated and real data will be presented else-

where.

3.4 Time Rescaling

Once we have obtained our estimate of the parameters (~k, σ, g, Vr, h), how

do we verify that the resulting model provides a self-consistent description

of the data? This important “model validation” question has been the focus

of recent elegant research, under the rubric of “time rescaling” techniques

(Brown, Barbieri, Ventura, Kass, & Frank, 2002). While we lack the room

here to review these methods in detail, we can note that they depend es-

sentially on knowledge of the conditional probability of spiking f(t). Recall

that we showed how to efficiently compute this function in the last section

and examined some of its qualitative properties in the L-NLIF context in

Fig. 3.4.

The basic idea is that the conditional probability of observing a spike

at time t, given the past history of all relevant variables (including the

stimulus and spike history), can be very generally modeled as a standard

(homogeneous) Poisson process, under a suitable transformation of the time
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axis. The correct such “time change” is fairly intuitive: we want to speed

up the clock exactly at those times for which the conditional probability of

spiking is high (since the probability of observing a Poisson process spike

in any given time bin is directly proportional to the length of time in the

bin). This effectively “flattens” the probability of spiking.

To return to our specific context, if a given spike train was generated

by an L-NLIF cell with parameters θ, then the following variables should

constitute an i.i.d. sequence from a standard uniform density:

qi ≡

∫ ti+1

ti

f(s)ds,

where f(t) = f~xi,ti,θ(t) is the conditional probability (as defined in the

preceding section) of a spike at time t given the data (~xi, ti) and parameters

θ. The statement follows directly from the time-rescaling theorem (Brown

et al., 2002), the inverse cumulative integral transform, and the fact that

the L-NLIF model generates a conditional renewal process. This uniform

representation, in turn, can be tested via standard techniques such as the

Kolmogorov-Smirnov test and tests for serial correlation.

3.5 Extensions

It is worth noting that the methods discussed above can be extended in var-

ious ways, enhancing the representational power of the model significantly.
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3.5.1 Interneuronal interactions

First, we should emphasize that the input signal ~x(t) is not required to be a

strictly “external” observable; if we have access to internal variables such as

local field potentials or multiple single-unit activity, then the influences of

this network activity can be easily included in the basic model. For example,

say we have observed multiple (single-unit) spike trains simultaneously, via

multielectrode array or tetrode. Then one effective model might be

dV =

(

− g(V (t) − Vl) + Istim(t) + Ihist(t) + Iinterneuronal(t)

)

dt + Wt,

with the interneuronal current defined as a linearly filtered version of the

other cells’ activity:

Iinterneuronal(t) =
∑

l

~kn
l · nl(t);

here nl(t) denotes the spike train of the l-th simultaneously recorded cell,

and the additional filters kn
l model the effect of spike train l on the cell

of interest. Similar models have proven useful in a variety of contexts

(Tsodyks, Kenet, Grinvald, & Arieli, 1999; Harris, Csicsvari, Hirase, Dragoi,

& Buzsaki, 2003; Paninski, Fellows, Shoham, Hatsopoulos, & Donoghue,

2003); the main point is that none of the results mentioned above are at all

dependent on the identity of ~x(t), and therefore can be applied unchanged

in this new, more general setting.
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3.5.2 Nonlinear input

Next, we can use a trick from the machine learning and regression literature

(Duda & Hart, 1972; Cristianini & Shawe-Taylor, 2000; Sahani, 2000) to

relax our requirement that the input be a strictly linear function of ~x(t);

instead, we can write

Istim =
∑

k

akFk[~x(t)]

where k indexes some finite set of functionals Fk[.] and ak are the parame-

ters we are trying to learn. This reduces exactly to our original model when

Fk are defined to be time-translates, that is, Fk[~x(t)] = ~x(t − k). We are

essentially unrestricted in our choice of the nonlinear functionals Fk, since,

as above, all we are doing is redefining the input ~x(t) in our basic model

to be ~x∗(t) ≡ {Fk(~x(t))}; under the obvious linear independence restric-

tions on {Fk(~x(t))}, then, the model remains identifiable (and in particular

the MLE remains consistent and efficient under smoothness assumptions

on {Fk(~x(t))}). Clearly the post-spike and interneuronal currents Ihist(t)

and Iinterneuronal(t), which are each linear functionals of the network spike

history, may also be replaced by nonlinear functionals; for example, Ihist(t)

might include current contributions just from the preceding spike (Gerstner

& Kistler, 2002), not the sum over all previous spikes.

Some obvious candidates for {Fk} are the Volterra operators formed by

taking products of time-shifted copies of the input ~x(t) (Dayan & Abbott,
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2001; Dodd & Harris, 2002):

F [~x(t)] = ~x(t − τ1) · ~x(t − τ2),

for example, with τi ranging over some compact support. Of course, it

is well-known that the Volterra expansion (essentially a high-dimensional

Taylor series) can converge slowly when applied to neural data; other more

sophisticated choices for Fk might include, e.g., a set of basis functions

(Zhang, Ginzburg, McNaughton, & Sejnowski, 1998) that span a reason-

able space of possible nonlinearities, such as the principal components of

previously observed nonlinear tuning functions (see also (Sahani & Linden,

2003) for a similar idea, but in a purely linear setting).

3.6 Discussion

We have shown here that the L-NLIF model, which couples a linear fil-

tering stage to a biophysically plausible and flexible model of neuronal

spiking, can be efficiently estimated from extracellular physiological data

using maximum likelihood. Moreover, this model lends itself directly to

analysis via tools from the modern theory of point processes. For example,

once we have obtained our estimate of the parameters (~k, σ, g, Vr, h), how

do we verify that the resulting model provides an adequate description of

the data? This important “model validation” question has been the focus

of some recent elegant research, under the rubric of “time rescaling” tech-

niques (Brown et al., 2002). While we lack the room here to review these
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methods in detail, we can note that they depend essentially on knowledge

of the conditional firing rate function f(t). Recall that we showed how to

efficiently compute this function in the last section and examined some of

its qualitative properties in the L-NLIF context in Figs. 3.4 and 33.3.

We are currently in the process of applying the model to physiological

data recorded both in vivo and in vitro, in order to assess whether it ac-

curately accounts for the stimulus preferences and spiking statistics of real

neurons. One long-term goal of this research is to elucidate the different

roles of stimulus-driven and stimulus-independent activity on the spiking

patterns of both single cells and multineuronal ensembles.

Appendix A: Proof of Log-Concavity of Model Likeli-

hood

The following is a proof that the likelihood function for the L-NLIF model

(a linear filter followed by noisy leaky integrate-and-fire spike generation)

is logconcave (i.e., is the logarithm of a concave function), under a certain

smooth, invertible reparametrization of the model parameters {~k, g, Vr, σ}.

Here, ~k is a linear kernel which filters the incoming stimulus x(t), g is the

membrane leak conductance, Vr is the voltage reset, and σ is a scale pa-

rameter for the membrane noise. Since diffeomorphisms can neither create

nor destroy local minima of smooth functions, this concavity result is a

sufficient condition for establishing that the likelihood function has no non-
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global local maxima, meaning that gradient ascent methods are guaranteed

to find the global maximum of the likelihood function. See the full paper

for a discussion of the properties and behavior of the L-NLIF model.

We recall that the model is governed by the stochastic differential equa-

tion

dV (t) =

[

− gV (t) + ~k · ~x(t)

]

dt + σn(t), (3.8)

with V (t) reset to Vr whenever V (t) = 1. The noise process n(t) induces

a Gaussian density on V (t) during an interspike interval, which we denote

GXi,~k,g,Vr,σ, where subscripts indicate the density’s dependence on the stim-

ulus Xi (the stimuli that influence V (t) during the ith interspike interval)

and the model parameters. Note that in equation (3.8), ~x(t) denotes the

stimulus vector that influences dV (t) directly (via the linear filter ~k) at time

t, so Xi consists of all vectors
{

~x(t) : t ∈ [0, ti]
}

.

Now, if the neuron resets at time t = 0, the probability of having a spike

at time ti is the probability that V (t) lies in the constraint set Ci:

Ci =
⋂

0≤t<ti

{

V (t) < 1

}

∩
{

V (ti) ≥ 1
}

,

the set of all voltage traces which do not exceed threshold until time ti.

The probability that V (t) ∈ Ci is given by the integral of the density

GXi,~k,g,Vr,σ over the set Ci. Because the noise in different interspike intervals

is independent, the likelihood function for an entire spike train factorizes
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as a product of such integrals, one for each observed interspike interval:

L{Xi,ti}(
~k, g, σ, Vr) =

∏

i

∫

Ci

GXi,~k,g,Vr,σ(V )dV. (3.9)

Our proof consists of demonstrating that integrals of the form

∫

Ci

GXi,~k,g,Vr,σ(V )dV

are logconcave for a particular reparametrization of {~k, g, Vr, σ}. Because

logconcavity is preserved under multiplication, this suffices to prove logcon-

cavity for the entire likelihood function.

Proof

The proof is built on the following basic result (see, e.g., (Bogachev, 1998)).

Theorem ((Rinott, 1976)). For any Borel sets A1 and A2, and t in [0, 1],

define the set

tA1 + (1 − t)A2 ≡ {ta1 + (1 − t)a2 | ai ∈ Ai, i = 1, 2}

If p is a logconcave probability density function on Euclidean space, then

log p(tA1 + (1 − t)A2) ≥ t log p(A1) + (1 − t) log p(A2) ∀t ∈ [0, 1].

That is, the corresponding measure is logconcave.

(For strong uniqueness of the global maximum, we would need the simple

extension of this result that if p is strictly logconcave and A1 and A2 have

positive p-measure, then the inequality is strict for all t in the open unit
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interval. To prove the nonexistence of local extrema, however, this is not

necessary.)

As a corollary, we have that for any measurable convex set R ⊂ ℜn, the

integral of a logconcave density p(x) over invertible affine mappings of R is

a logconcave function of the map. More precisely,

f(M,B) =

∫

MR+B

p(x)dx

is logconcave in (M,B), where the set {MR + B} is defined as all points

{x : x = My + B, y ∈ R}, B is allowed to take values in the full Euclidean

space, and M lives in some convex set of invertible matrices.

Our proof basically consists of translating this result into the terminol-

ogy of our problem. We show specifically that the likelihood function can

be written as the integral of a Gaussian density over a linearly parametrized

family of sets. We begin by making a change of variables Y = MV (t) + B

so that Y (t) has the standard normal density. We then show that the con-

straint set under this mapping, MCi +B, is linear in a reparametrization of

{~k, g, Vr, σ}. In other words, we find a set of parameters θ such that θ maps

in a smooth, invertible way to {~k, g, Vr, σ}, and the matrices M and B are

linear in θ. This satisfies the conditions of the corollary, since the standard

normal density is logconcave and the constraint sets Ci are convex.

First, let us examine the density GXi,~k,g,Vr,σ(V ) . The mean, µ, of this

Gaussian is equal to the solution of the noiseless version of the integrate-
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and-fire dynamics, on the interval [0, ti]:

dV

dt
= −gV (t) + ~k · ~x(t), (3.10)

with initial data

V (0) = Vr.

Thus,

µ(t) = Vre
−gt +

∫ t

0

(

~k · ~x(s)
)

e−gsds;

we rewrite this in operator form:

µ(t) = Eg

[

Vrδ(0) + k · ~x(t)
]

, (3.11)

where Eg is the convolution operator corresponding to e−gt. The covariance

of G, in turn, is given by

σ2EgE
T
g . (3.12)

As usual, G is completely characterized by its mean and covariance.

Now, if we reparametrize by

Y =
1

σ
E−1

g

(

V (t) − µ(t)

)

=
1

σ
E−1

g

(

V (t) − Eg

[

Vrδ(0) + k · ~x(t)
]

)

=
1

σ

(

E−1
g V (t) − Vrδ(0) − k · ~x(t)

)

, (3.13)

it is clear that Y has a standard normal distribution N(0, I). Then set

M =
1

σ
E−1

g , (3.14)

Bi = −
1

σ

[

Vrδ(0) + k · ~x(t)
]

, (3.15)
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allowing us to write Y = MV + Bi. Our constraint set under this change

of variables becomes Di = MCi + Bi. It remains only to describe a diffeo-

morphism between θ = (M,Bi) and {~k, g, Vr, σ}, given the data Xi.

We begin this by noting that E−1
g can be written as a bi-diagonal matrix

E−1
g =

























1

−α 1

−α 1

. . . . . .

−α 1

























, (3.16)

where α = e−g∆t, and ∆t is the time bin width. (This can be shown by

direct computation). We can therefore write M as

M =

























a

−b a

−b a

. . . . . .

−b a

























, (3.17)

where a = 1/σ and b = α/σ. M is therefore linear in the parameters

(a, b), and the original parameters can be recovered via σ = 1/a and g =

−(log bσ)/∆t.

If we now turn to Bi, note first of all that [~x(t) · ~k + Vrδ(0)] can be
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written as a matrix, allowing us to rewrite Bi:

Bi = −
1

σ



















1 ~x(t0)
T

0 ~x(t1)
T

...
...

0 ~x(ti)
T























Vr

~k



 . (3.18)

Therefore, if we let

θ = −
1

σ





Vr

~k



 ,

then Bi is clearly linear in θ, since the matrix term depends only on the

stimulus Xi. Moreover, we can recover ~k and Vr uniquely from θ since we

already know the value of σ. We have therefore shown that the likelihood

function for this model can be written as the integral of a Gaussian density

over a linearly parametrized family of sets MCi + Bi, which completes the

proof.

Appendix B: Computing the Likelihood Gradient

The ascent of the likelihood surface is greatly accelerated by the compu-

tation of the gradient. This gradient can always be computed by finite

differencing schemes, of course; however, in the case of a large number of

parameters, it is much more efficient to compute gradients with respect to

a few auxiliary parameters, then arrive at the gradient with respect to the

full parameter set via the chain rule for derivatives. The following applies to
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computing gradients of the likelihood computed using the Genz algorithm.

We focus on the discretized case for clarity. Thus, we take the deriva-

tives with respect to the mean function V0(t), evaluated at the constraint

times {tk}1≤k≤j. These derivatives turn out to be Gaussian integrals them-

selves, albeit over a (j− 1)- instead of j-dimensional box, and can be easily

translated into derivatives with respect to the parameters.

In order to derive the gradient, note that the discretized approximation

to the likelihood can be written

Lj =

∫ z1

−∞

· · ·

∫ ∞

zj

p(y1, . . . , yj)dy1· · ·dyj,

where yk represent the transformed variables yk = V (tk) − V0(tk), zk =

1− V0(tk), and p denotes the corresponding Gaussian density, with 0 mean

and covariance we’ll call Λ. Now, the partial derivatives of L with respect

to the zk are:

∂

∂zk

L =

∫ z1

−∞

· · ·

∫ zk−1

−∞

∫ zk+1

−∞

· · ·

∫ ∞

zj

p(y1, . . . , yk = zk, . . . , yj)dy1· · ·dyj

=

(

∫

Ci6=k

p(~yi6=k|yk = zk)d~yi6=k

)

p(yk = zk),

with a sign change to account for the upward integral corresponding to the

final, above-threshold constraint.

We can compute the marginal and conditional densities p(yk = zk) and

p(~yi6=k|yk = zk) using standard Gaussian identities:

p(yk = zk) = N (0, Λk,k)(zk),

p(~yi6=k|yk = zk) = N (µ∗, Λ∗)(~1),
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where

µ∗ = ~V0(ti6=k) +
zk

Λk,k

~Λi6=k,k

Λ∗ = Λi6=k,h 6=k −
~Λi6=k,k

~Λk,i6=k

Λk,k

Thus, the gradient ∇zL requires computing one Gaussian integral for each

constraint zk. From the vector ∇zL, we can use simple linear operations to

obtain the gradient with respect to any of the parameters which enter only

via V0(t), namely h,~k, and Vl.

Appendix C: Numerical Methods for Fokker-Planck

Equation

In order to compute the likelihood function L{~xi,ti}(
~k, σ, g, Vr, h), we used

a second-order numerical method for solving the Fokker-Planck (FP), or

“drift-diffusion” equation (eq. 3.4). This equation describes the time evo-

lution of P (V, t), the probability density over sub-threshold voltage V at

time t, as a function of the input and model parameters.

Our general approach involves discretizing V so that we can represent

P (V, t∗) at a fixed time t∗ by a set of discrete values. We then propagate

this density forward in time using the FP equation to obtain P (V, t∗ +∆t),

the probability over V at the next time step. Intuitively, the likelihood of

a spike occurring during the interval [t∗, t∗ + ∆t] is given by the amount of

probability mass which leaks over the (absorbing) boundary at threshold
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(V = 1) during this time step.

We now describe the density propagation algorithm in detail. Let {vi}
n
i=1

denote the discretization over V , consisting of n evenly spaced bins with

a separation of ∆v. We let vn = 1 (threshold) and set v1 to some voltage

sufficiently low that we can represent P (V ) accurately at all time points. We

will use i to index voltage and j to index time, so pj
i denotes the probability

mass associated with the ith bin of the voltage discretization and time bin

j. And, in a slight abuse of notation, we will use pj to refer to the entire

density over voltage at the jth time step.

We initialize the algorithm with a density p0, computed a short time

after the most recent spike, when the subthreshold probability density over

V is still well-approximated by a Gaussian. This initial density is given by

p0
i = N(vi; V 0

eq,
1
2g

(1 − e−2gT )σ2), (3.19)

the standard Gaussian density with mean V 0
eq and variance 1

2g
(1− e−2gT )σ2,

evaluated at at each grid point vi, where V 0
eq is the instantaneous voltage

reversal potential (eq. 3.6) and T is the time since the most recent spike.

Recall that the FP equation (eq. 3.4) for the model is given by

∂P (V, t)

∂t
=

σ2

2

∂2P

∂V 2
+ g

∂[(V − Veq(t))P ]

∂V
,

=
σ2

2

∂2P

∂V 2
+ g(V − Veq(t))

∂P

∂V
+ gP (3.20)

We solve this equation using a scheme related to the Crank-Nicolson method

for solving diffusive PDEs (Press, Teukolsky, Vetterling, & Flannery, 1992).
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This involves substituting discrete approximations for the partial derivatives

as follows:

pj+1
i − pj

i

∆t
=

σ2

2

[

(pj+1
i+1 − 2pj+1

i + pj+1
i−1 ) + (pj

i+1 − 2pj
i + pj

i−1)

2(∆v)2

]

+ g(vi − Veq(t))

[

(pj+1
i+1 − pj+1

i−1 ) + (pj
i+1 − pj

i−1)

4(∆v)

]

+ g
pj+1

i + pj
i

2
. (3.21)

Note that the right-hand-side derivatives are evaluated by averaging over

partial derivatives at the jth and j + 1st time steps, leading to a method

which is second-order accurate in V and t.

For the sake of clarity, we can rewrite (3.21) as a sparse matrix equation,

which can be solved efficiently in o(n) operations. We have:

1
∆t

(pj+1−pj) = σ2

4(∆v)2
D

′′
(

pj+1+pj
)

+ g
4(∆v)

D′(V −Veq(t))
(

pj+1+pj
)

, (3.22)

where D′ and D′′ are tri-diagonal matrices corresponding to derivative and

second-derivative operators (with the values [ −1 0 1 ] and [ 1 −2 1 ]

along the main diagonals, respectively), V is a diagonal matrix filled with

the grid points {vi} along the main diagonal, and Veq(tj) is a scalar which

depends on the input during the current time step. By collecting like terms,

this equation can be simplified to have the form

(

A + Veq(tj)
)

pj+1 =
(

B − Veq(tj)
)

pj, (3.23)

where A and B are both tri-diagonal. We used a special routine written in

C to solve this equation for pj+1, which effects the density propagation.

82



Of course, we must also specify the correct boundary conditions (eq. 3.5)

to ensure that probability mass leaks only one way across the spike thresh-

old, which we use to compute p(spike) during each time step. We enforce

the upper (absorbing) boundary condition by replacing the nth columns of

the D′ and D′′ matrices with the nth column of the identity matrix (i.e. zero

except for 1 in the nth position), which conserves probability mass in the

last bin and drift or diffusion from pn to pn−1. We enforce the lower (reflect-

ing) boundary condition by adding to the first entry of D′ and D′′ so that

first column sums to 1, which ensures that probability mass is conserved at

the lower boundary (i.e. it doesn’t leak out of the range of {vi}).

After having initialized the density at p0, we perform density propaga-

tion (computing Veq(t) at each time step and solving equation 3.23) until we

reach the next spike time tk. Here, pk
n gives the cumulative probability of

a spike having occurred by time tk, and the likelihood of a spike occurring

at tk is pk
n−pk−1

n

∆t
.

Appendix D: The Gaussian process V (t)

Here we derive discrete and continuous solutions for the mean and variance

of V (t), the membrane potential of the IF model, in the absence of spiking.

V (t) is a Gaussian (Ornstein-Uhlenbeck) process, and therefore completely

characterized by its mean and variance.
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Mean:

The mean, µ(t), of the Gaussian (governing the evolution of P (V ), the density

over membrane potential) is equal to the solution of the noiseless version of the

integrate-and-fire dynamics, on the interval [0, ti] (eq. 3.10):

dV

dt
= −gV (t) + ~k · ~x(t)

with initial data

V (0) = Vr.

Thus,

µ(t) = Vre
−gt +

∫ t

0

(

~k · ~x(s)
)

e−gsds.

To simplify notation, we can rewrite µ(t) in operator form:

µ(t) = Eg

[

Vrδ(0) + k · ~x(t)
]

,

where Eg is the convolution operator corresponding to e−gt.

If we consider the problem discretized in time bins of width ∆t and set α =

e−g∆t, the operator Eg can be written as a matrix:

Eg =



























1

α 1

α2 α 1

...
. . .

αn . . . α2 α 1



























. (3.24)

The first row corresponds to the filtering during the first time bin and the nth

row corresponds to filtering for the nth time bin, or t = n(∆t) of the solution.
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Analytically, for continuous time, we can express the mean as:

µ(t) = 1
g (1 − e−gt)I,

if I is a (constant) injected current.

Covariance:

The covariance matrix Λ for V (t) is given by the outer product of Eg with

itself (this is true for any linear operator applied to a Gaussian random variable):

Λ = EgE
T
g . Written as a matrix, this gives:

Λ =



























1 α α2 . . . αn

α 1 + α2 α(1 + α2) . . . αn−1(1 + α2)

α2 α(1 + α2) 1 + α2 + α4

...
...

. . .

αn αn−1(1 + α2) 1 + . . . + α2n



























. (3.25)

The nth term along the diagonal is

Λ(n, n) =
n
∑

j=0

αj =
1 − α2n

1 − α2

and off-diagonal terms Λ(i, j) = Λ(i, i)αj−i, for i < j. We can also express Λ

analytically in continuous time. Diagonal terms are given by:

Λ(t, t) =

∫ t

0
e−2gsds = 1

2g (1 − e−2gt)

and off-diagonal terms by Λ(t, t′) = e−g(t′−t)Λ(t, t), for t < t′.
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Figure 3.2: Simulated responses of L-NLIF and LNP models to 20 repetitions

of a fixed 100-ms stimulus segment of temporal white noise. Top: Raster of

responses of L-NLIF model, where σnoise/σsignal = 0.5 and g gives a membrane

time constant of 15 ms. The top row shows the fixed (deterministic) response of

the model with σnoise set to zero. Middle: Raster of responses of LNP model,

with parameters fit with standard methods from a long run of the L-NLIF model

responses to non-repeating stimuli. Bottom: (Black line) Post-stimulus time

histogram (PSTH) of the simulated L-NLIF response. (Gray line) PSTH of

the LNP model. Note that the LNP model fails to preserve the fine temporal

structure of the spike trains, relative to the L-NLIF model.
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Figure 3.3: Illustration of various dynamic behaviors of L-NLIF model. A: Fir-

ing rate adaptation. A positive DC current (top) was injected into three model

cells differing only in their h currents (shown on left: top, h = 0; middle, h depo-

larizing; bottom, h hyperpolarizing). Voltage traces of each cell’s response (right,

with spikes superimposed) exhibit rate facilitation for depolarizing h (middle),

and rate adaptation for hyperpolarizing h (bottom). B: Bursting. The response

of a model cell with a biphasic h current (left) is shown as a function of the

three different levels of DC current. For small current levels (top), the cell re-

sponds rhythmically. For larger currents (middle and bottom), the cell responds

with regular bursts of spikes. C: Bistability. The stimulus (top) is a positive

followed by a negative current pulse. Although a cell with no h current (mid-

dle) responds transiently to the positive pulse, a cell with biphasic h (bottom)

exhibits a bistable response: the positive pulse puts it into a stable firing regime

which persists until the arrival of a negative pulse.
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Figure 3.4: Analysis of a single interspike interval under the L-NLIF model,

for a single (repeated) input current (top). Top: Ten simulated voltage traces

V (t), evaluated up to the first threshold crossing, conditional on a spike at time

zero (Vr = 0). Note the strong correlation between neighboring time points, and

the sparsening of the plot as traces are eliminated by spiking. Middle: Time

evolution of P (V ). Each column represents the conditional distribution of V at

the corresponding time (i.e. for all traces that have not yet crossed threshold).

Bottom: Probability density of the interspike interval (isi) corresponding to this

particular input. Note that probability mass is concentrated at the points where

input drives V0(t) close to threshold.
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Figure 3.5: Demonstration of the estimator’s performance on simulated data.

Dashed lines show the true kernel ~k and aftercurrent h; ~k is a 12-sample function

chosen to resemble the biphasic temporal impulse response of a macaque retinal

ganglion cell, while h is function specified in a five-dimensional vector space,

whose shape induces a slight degree of burstiness in the model’s spike responses.

The L-NLIF model was stimulated with parameters g = 0.05 (corresponding

to a membrane time constant of 20 time-samples), σnoise = 0.5, and Vr = 0.

The stimulus was 30,000 time samples of white Gaussian noise with a standard

deviation of 0.5. With only 600 spikes of output, the estimator is able to retrieve

an estimate of ~k (gray curve) which closely matches the true kernel. Note that

the spike-triggered average (black curve), which is an unbiased estimator for the

kernel of an LNP neuron (Chichilnisky, 2001), differs significantly from this true

kernel (see also (Pillow & Simoncelli, 2003)).
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CHAPTER 4

Prediction and Decoding of Retinal Spike

Responses with a Probabilistic Spiking

Model

Sensory encoding in spiking neurons depends on both the spatiotem-

poral integration of sensory inputs and the intrinsic mechanisms gov-

erning the dynamics and variability of neural spike responses. Here

we show that a generalized integrate-and-fire model can account for

the stimulus selectivity, reliability, and timing precision of primate

retinal ganglion cell (RGC) spike responses. The model consists

of a leaky integrate-and-fire spike generator driven by the linearly

filtered stimulus, a spike after-current, and a Gaussian noise cur-

rent. We used maximum likelihood to fit this model to the ex-

tracellular responses of individual RGCs, stimulated with a non-

repeating stochastic visual stimulus. We show that the model can
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predict the detailed time structure and variability of RGC responses

to repeated presentations of novel stimuli, and provides a mecha-

nistic explanation of RGC spike timing precision in terms of stim-

ulus selectivity, cellular noise, and the dynamics of spike genera-

tion. Moreover, the tractability of the model for computing likeli-

hoods means that it can be used to perform an explicit decoding

of neural spike trains, and provides a tool for assessing the limita-

tions imposed by spike timing variability on sensory performance.

Introduction

Sensory experience depends on the encoding of external events in the spiking

activity of neurons. In the visual system, a large number of experimental studies

of neural encoding have motivated the formulation of a variety of models. The

simplest and most widely known models are receptive field descriptions, which

provide a summary of stimulus selectivity (e.g. (Kuffler, 1953; Hubel & Wiesel,

1968; Movshon & Newsome, 1996)). Other approaches have emphasized the

intrinsic variability of spike responses and have sought to model the statistical

structure of neuronal spike responses (e.g. (Reich et al., 1997; Troy & Lee, 1994;

Berry et al., 1997)). Still others have been constructed from detailed descriptions

of the cellular and biophysical mechanisms that underlie neuronal function (e.g.

(Sterling, 1983; Smith & Sterling, 1990)).
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However, many problems in sensory coding can only be addressed in a frame-

work that integrates stimulus selectivity, response variability, and mechanistic

interpretation. For example, studies of timing precision in retinal spike trains

have emphasized the importance of spike timing for neural coding and infor-

mation transmission, but have failed to explain the observed precision with a

mechanistic model of stimulus selectivity and spike generation. Similarly, studies

of visual sensitivity and performance have emphasized stimulus selectivity and

response variability, but a plausible mechanistic interpretation is also required in

order to guide future experiments at the level of circuits, cells, and channels.

Recent work has revealed that integrate-and-fire (IF) models, which provide a

parsimonious mechanistic description of the conversion of continuous membrane

currents into discrete spike trains, are capable of exhibiting some of the impor-

tant statistical spiking behaviors of real neurons (Reich et al., 1998; Shadlen &

Newsome, 1998; Jolivet, Lewis, & Gerstner, 2003; Keat et al., 2001). Here we

show that a generalized IF model, driven by a linear filtering of the stimulus

and a spike-dependent aftercurrent plus noise, can account for both the stimulus

dependence and variability of light responses in retinal ganglion cells (RGCs)

of the macaque monkey. The resulting model faithfully reproduces the detailed

structure of spike trains elicited by novel stimuli. It also captures the trial-to-

trial variability of responses, despite the fact that its parameters were fit with

responses to a single non-repeating stimulus.

Although the model bears similarity to several recently proposed models of

neural function ((Keat et al., 2001; Jolivet, Lewis, & Gerstner, 2004)), the prob-
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Figure 4.1: Schematic diagrams of the generalized integrate-and-fire model

(left), and the standard linear-nonlinear-Poisson model (right).

abilistic formulation, along with an algorithm for computing response likelihood,

provides two new insights into neural coding. First, the model provides a sim-

ple mechanistic interpretation of the origin of spike timing precision recently

observed in RGCs, as well as a more principled and complete framework for de-

scribing precision than has been previously available. Second, the model provides

an optimal (maximum likelihood) decoding rule for extracting stimulus informa-

tion from spike trains, and our results demonstrate that this method is capable

of extracting information from spike trains more faithfully than a generic linear

filtering model. These findings provide a powerful tool for probing signaling by

sensory neurons, place bounds on the fidelity of spike train decoding in the brain,

and yield specific predictions about the limits on visual performance imposed by

cellular noise and spike generation.

Results

Figure 4.1a illustrates the components of the generalized IF model. It is a stan-

dard leaky integrate-and-fire model driven by three time-varying input currents:
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a stimulus-dependent current Istim, a spike-history dependent current Isp, and a

noise current Inse. Istim is the linear convolution of the stimulus with input filter

~k, which represents the neuron’s spatio-temporal receptive field. Isp results from

a current waveform ~h injected following each spike, and captures the influence of

spike train history. This is equivalent to convolving ~h with the spike train, so ~h

can also be thought of as a linear filter operating on the spike train. Note that ~h

can assume an arbitrary shape, and can therefore generate a diverse array of be-

haviors observed in real neurons, including refractoriness, spike rate adaptation,

spike rate facilitation, bursting and bistability (Jolivet et al., 2004; Paninski et

al., 2004). This flexibility endows the model with more biological realism than

the classic integrate-and-fire model or Poisson models. Inse consists of Gaussian

white noise with standard deviation σn and represents the net contribution of all

noise sources to the membrane potential. The last two parameters of the model

are τ , the membrane time constant, and Vl, the reversal potential of the leak

current. Without loss of generality, the spike threshold voltage is set to 1 and

the reset voltage to 0. The model dynamics are then given by

dV

dt
= −

1

τ
(V − Vl) + Istim + Isp + Inse, (4.1)

When V = 1, a spike occurs and V is reset instantaneously to 0. The full model

is specified by the parameters {~k, g, Vr, σ}. Characterizing a neuron’s response

requires the estimation of these parameters from a sequence of stimuli and the

times of elicited spikes. For this, we use a recently developed algorithm for

computing the maximum likelihood estimator of these parameters, which has

guaranteed global convergence for any stimulus and spike train data (Paninski
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et al., 2004) (see Methods).

Model validation

Responses of parasol (magnocellular-projecting) RGCs were collected using

multi-electrode extracellular recordings from isolated macaque monkey retinas.

Stimuli were spatially uniform, achromatic binary temporal white noise sequences

(random flicker). For these stimuli, ~k represents the temporal receptive field,

while in general ~k can represent the neuron’s spatio-temporal-chromatic recep-

tive field. The IF model parameters were fit to spike responses from a single

(non-repeating) stimulus train. Subsequently, RGC responses to multiple re-

peats of a novel stimulus were recorded, and predictions generated by the IF

model were assessed using several quantitative measures.

Figure 4.2a-c shows model parameters fit to data from a collection of ON

and OFF RGCs recorded simultaneously. Note that the filters, ~k, are consistent

in waveform and timescale within each cell type. The same is true of the spike

current waveforms, ~h, which operate on a faster timescale. The biphasic shape of

the ~h currents allows the model to reproduce burstiness in RGC responses—the

initial positive component drives voltage up close to threshold following volt-

age reset, and the later negative component (possibly accumulated over several

spikes) exerts a hyperpolarizing effect to end a burst. The larger amplitude ~h

in ON cells matches the burstier responses observed in ON compared to OFF

cells (see Figs. 4.3-4.4). Figure 4.2c also shows histograms of the three scalar

parameters {σn, τ, Vl} for all cells.
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Figure 4.2: Parameters obtained from fits to RGC data for IF model (left)

and LNP model (right). (a) Filters ~k and spike-response currents ~h obtained

for five ON cells in one retina. (b) Corresponding filters for four OFF cells.

(c) Histograms of model parameters Vl, τ and σn for all 24 cells in 3 retinas.

(d) Comparison of linear filters for IF model (gray) and LNP models (black),

for one ON cell (above) and one OFF cell (below). (e) Measured LNP point

nonlinearities for converting filter output to instantaneous spike rate.
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To provide a baseline for comparison, the same data were fit using the simplest

and most widely-used cascade model of visual responses: a Linear-Nonlinear-

Poisson (LNP) model, shown schematically in Fig. 4.1. In the LNP model, a

single linear filter captures the neuron’s stimulus dependence. The output of this

filter passes through an instantaneous nonlinearity, which determines the rate

of an inhomogeneous Poisson process that generates spikes. Although Poisson

processes cannot exhibit refractoriness, bursting, or other known statistical fea-

tures of spike trains, the LNP model is widely used because of its computational

simplicity and the ease with which its parameters can be estimated using re-

verse correlation with white noise stimuli(Chichilnisky, 2001). Figure 4.2d shows

linear filters obtained for both the LNP model and the IF model, for one ON

cell and one OFF cell. Note that the linear filter recovered for the LNP model

(i.e. the spike-triggered average) is noticeably different than that obtained for

the IF model (Figure 4.2d). Given that the IF model incorporates more realistic

spike generation and provides more accurate predictions of real spike trains (see

below), this suggests that the LNP model provides an inaccurate description of

how neurons integrate visual inputs over time (Berry & Meister, 1998; Pillow &

Simoncelli, 2003; Arcas & Fairhall, 2003). Also, note that the nonlinear function

of the LNP model (Figure 4.2e) has no direct counterpart in the IF model, in

which firing rate is determined implicitly by the dynamics of the leaky integrator

and spike threshold.

Both models provide predictions about the mean and variability of responses

to any stimulus. We examined the accuracy of these predictions using repeated
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Figure 4.3: Responses of an ON cell to a repeated stimulus. (a) Recorded

responses to repeated one-second stimulus (top), simulated LNP (middle) and

IF model (bottom) spike trains. Each row corresponds to the response during a

single stimulus repeat; 167 repeats are shown. (b) Peristimulus time histogram

(PSTH), or mean spike rate, for the RGC, LNP model and IF model. For this

cell, the IF model accounts for 91% of the variance of the PSTH, while the LNP

model accounts for 75%. (c): spike count variance computed in a sliding 10-ms

window. (d): Magnified sections of rasters, with rows sorted in order of first

spike time within the window. The four sections shown are indicated with blue

brackets in a.
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Figure 4.4: Responses of an OFF cell to a repeated stimulus. Details same as

Fig. 4.3.
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presentations of a novel stimulus sequence. Figures 4.3 and 4.4 illustrate recorded

responses and predictions of the IF model and the LNP model, for an ON and

an OFF cell, respectively. For both models, parameters were fit using responses

to a single 50-second white noise stimulus sequence. Rasters of RGC responses

and corresponding simulated responses from both models illustrate that the IF

model (bottom rows) captures the structure of the RGC spike trains (top rows)

more faithfully than the LNP model (middle rows).

The peristimulus time histogram (PSTH, Figs. 4.3b & 4.4b) summarizes the

time-varying firing rate exhibited by the data and both models. The IF model

(black trace) matches the sharp peaks in the PSTH more accurately than the

LNP model (red trace). Trial-to-trial variability of the responses is reflected by

the peristimulus time variance (PSTV, Figs. 4.3c & 4.4c), computed by sliding a

10-ms window along the response raster and computing the variance across trials

of the number of spikes in that window. Because RGC spike trains have history-

dependence which makes them much less variable than a Poisson process (Uzzell

& Chichilnisky, 2004), it is unsurprising that the LNP model fails to match the

PSTV of the data. The IF model provides a more accurate prediction. Although

integrate-and-fire models have been shown previously to reproduce the spike

count variability in neurons (Reich et al., 1998), it is notable that the IF model

does so despite a fitting procedure (maximum likelihood) that does not include

a measure of variability and does not require repeated stimuli.

A more detailed view of spike train structure and model performance was

obtained by sorting the rows of a response raster in order of the first spike time
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in a given window (Figs. 4.3d and 4.4d). Sorting reveals considerable structure

in RGC interspike intervals, which is largely captured in the sorted responses of

the IF model (bottom) but is completely absent in the sorted responses of the

LNP model (middle).

Summary statistics of IF model performance and comparison to the LNP

model are shown in Fig. 4.5, for all RGCs examined. Figure 4.5a shows a com-

parison of the likelihood of responses to novel stimuli for the IF and LNP models,

obtained by using the fitted parameters for each model to compute the probability

of the observed responses. This provides the most direct and powerful statistical

test of performance, because it measures, in a probabilistic setting, the ability of

each model to predict the response to novel stimuli. Using this metric, the IF

model provided a significantly higher likelihood per spike for all cells, in many

cases nearly two-fold. Figures 4.5b and c show comparisons of the similarity of

PSTH and PSTV obtained from RGC spike trains and model simulations. In

both cases, the IF model outperforms the LNP model for all cells.

To compare the accuracy of model predictions to the intrinsic variability in

RGC spike trains, we also applied a previously-used summary measure of dis-

tances between spike trains (J. D. Victor & Purpura, 1997). This distance is the

minimum cost of transforming one spike train into another using the elementary

operations of adding, deleting, and shifting spikes. A timescale parameter ex-

presses the cost of shifting per unit time relative to that of adding or deleting.

Although this is an imperfect measure of model performance because it neglects

any effect of stimulus or spike train history on the probabilistic cost of shifting
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Figure 4.5: Performance comparison across cells. Empty and filled circles rep-

resent ON and OFF cells, respectively. (a) likelihood per spike of novel RGC

responses under the fitted IF model and LNP model. Value plotted is the geo-

metric mean of the likelihood of over all spikes under each model. Gray dashed

lines represent a factor of 2 above and below identity. Data from 24 cells (3 reti-

nas) are shown. (b) percent of the variance in the PSTH accounted for by both

models, for each cell. Points above the diagonal represent superior performance

by IF model. (c): percent error in the peristimulus time variance for the IF and

LNP models, across cells. (d) Average pairwise distance between spike trains, as

a function of timescale of analysis (see Results). Black trace shows the median

distance between responses of an ON RGC to repeated presentations of the same

stimulus. Dashed trace shows the median distance between IF model response

and data. Gray trace shows median distance between LNP model response and

data. (e) Same as D, for an OFF RGC. (f) Fractional increase in spike-time

distance for the IF and LNP models averaged over all cells. Dashed curve: ratio

of IF model distance to the average pairwise distance between RGC responses,

normalized by the number of spikes from each cell and averaged across cells. Gray

curve: same, for LNP model.
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spikes (e.g. it would not penalize a model for ignoring the refractory period), it is

easy to compute and provides a direct benchmark for comparing the performance

of present and future models.

The solid curves in Fig. 4.5d-f show the average distance between pairs of

RGC responses to repeated presentations of the same stimulus. This provides a

measure of intrinsic variability in spike trains. The distance falls monotonically

as a function of timescale of analysis (Fig. 4.5d,e). Dashed and gray curves

indicate distances between simulated IF and LNP model spike trains and recorded

RGC spike trains. This provides a measure of the discrepancy between model

predictions and data. The IF model distances were systematically higher than

the intrinsic variability, indicating that IF model responses differ noticeably from

RGC spike trains. However, across a wide range of timescales (1-100 ms) and in

all cells, IF model distances were smaller than LNP model distances. Figure 4.5f

shows a summary of the IF and LNP model distances expressed as a fraction of

the intrinsic variability, averaged over all cells. IF model error exceeds intrinsic

variability by up to ∼ 20%; LNP model error is roughly three-fold higher for

most time scales.

Precision of spike times

The accurate descriptions of RGC spike trains provided by the IF model present

an opportunity to examine the origins of spike timing precision, which has been

widely discussed in recent studies. RGCs are capable of firing spikes precisely

time-locked to the onset of a stimulus (Reich et al., 1998; Berry & Meister, 1998;
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Keat et al., 2001; Uzzell & Chichilnisky, 2004). In some cases, the variation in

the onset time of spiking across repeated stimulus presentations is as low as ∼ 1

ms. Although precise timing during periods of rapid firing may be explained

by action potential refractoriness (Berry & Meister, 1998; Uzzell & Chichilnisky,

2004), the origin and significance of the precision in firing onset time is unknown.

A simple hypothesis (see, e.g., (Bryant & Segundo, 1976; Cecchi, Sigman,

Alonso, & Martinez, 2000; Uzzell & Chichilnisky, 2004)) is that more precise

firing onset results from more rapid threshold crossing by the membrane voltage.

If voltage crosses threshold with a steep slope, then the noise current exerts little

influence on the time of the spike; if voltage crosses threshold with a shallow

slope, noise has a greater influence. Fig. 4.6 illustrates this intuition graphically

with an example from an RGC response raster. The raster shows two adjacent

periods of rapid firing. The histograms below show the distributions of the time of

the first spike in each period of firing, and indicate that the first period of firing

exhibited more precise timing. The trace below shows the (noiseless) voltage

response of the IF model, obtained using the stimulus and the parameters fit for

this cell. The slope of V at threshold crossing is indicated by red lines. The

period of firing that begins with a steeper voltage slope exhibits much more

precise timing. Qualitatively, this example supports the simple hypothesis.

As a more thorough and quantitative test, an analysis of precision was per-

formed for all identified firing onsets during the 7-second response raster for this

cell. Firing onsets were defined after periods of silence at least 8 ms long across

all trials, followed by a spike on at least 80% of trials within a window of 40 ms
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Figure 4.6: Precision of firing onset times. (a) 200 ms portion of stimulus and a

response raster showing two periods of firing onset. Below are histograms of the

time of the first spike in each event. Standard deviations: 1.3 ms (left) and 4.7 ms

(right). (b) simulated voltage response from the fitted IF model with noise set to

zero. Tangent at time of firing onset is shown in red. (c) Precision of first spike

times (inverse of standard deviation) as a function of the mean current at the

time of the first spike, over 70 isolated firing onsets. Correlation coefficient: 0.89.

(d) Correlation coefficient between precision and IF model current prediction, as

a function of the inverse of the average SD of the first spike time. Open circles

denote ON cells and filled circles denote OFF cells.
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(see (Uzzell & Chichilnisky, 2004)). The standard deviation of the first spike time

during each onset was computed, and compared to the average current produced

by the IF model at those times. Figure 4.6c shows a scatter plot of precision

(inverse of standard deviation) as a function of model input current (which is

proportional to the slope dV/dt crossing threshold) across 70 such firing onsets.

The model accounted for 89% of the variability in precision for this cell. Note

that total membrane current (plotted on the abscissa) exactly determines the

membrane voltage slope at spike times (equation 4.1).

Figure 4.6d shows correlation coefficients between IF model current and first

spike precision for all cells tested. A significant proportion of the variability in

precision across time for each cell was explained by the membrane voltage slope

at the onset of firing. Note that the IF model captures more of the variability in

precision for ON cells (open circles) than for OFF cells (filled circles). However,

for both ON and OFF cells, spike timing precision is not an intrinsic property

of the cell: it varies substantially as a function of the stimulus history, and in a

manner predicted by elicited currents and the intrinsic noise in the IF model.

One shortcoming of this analysis is that the notion of precision relies on an

arbitrary criterion for identifying firing onsets, assumes a univariate measure

of precision (standard deviation), and ignores all spikes beyond the first. One

indication that this approach is incomplete is that subsequent spikes sometimes

exhibit more precise timing than the first spike. Figure 4.7a shows a period of

firing in which the second spike is more precise than the first, a behavior seen

in more than one third of the firing onsets recorded from this cell. Figure 4.7b
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shows a more unusual example in which the last spike is more precise than the

first. Thus, restricting the analysis to the first spike fails to capture important

aspects of spike train precision. Furthermore, measures of spike precision are

bound up inextricably with the notion of spiking reliability. Attempts to separate

precision (jitter in spike time) from reliability (probability of spike occurrence in a

particular time interval) require the use of ad hoc criteria for defining firing events:

the length of silence preceding an event and the fraction of repeats containing a

spike necessary to constitute an event. In our data set, changes in these criteria

result in the identification of quite different numbers of firing onsets. Given these

difficulties, it is natural to ask whether the IF model can provide a mechanistic

explanation which accounts for the precision and reliability of all recorded spikes.

Such an account emerges naturally from the likelihood function used in fitting

the IF model. The machinery for computing the likelihood of spike trains can be

used to compute the probability density for a particular spike time, conditional

on the stimulus and spike train history, as shown in Fig. 4.7c-d. Using the linear

kernel ~k and after-current waveform ~h, we can compute the predicted intracellular

current (Istim + Isp) during the interval. This input, combined with the noise

current Inse, determines a probability density over subthreshold voltage P (V ) as

a function of time, and can be used to compute the probability density of the

next spike P (next spike) as a function of time.

Of course, the probability density of the next spike time depends on the par-

ticular spike history for that trial, and therefore differs slightly on each trial. For

direct comparison to experiment, the next-spike density may be averaged across
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Figure 4.7: Generalized analysis of timing precision. (a) RGC response raster

sorted in order of first spike time. Below: histogram of first spike (gray) and

second spike (black) in the event, illustrating higher precision in the time of the

second spike than the first. (b) Sorted RGC response raster, with histograms

below showing the distribution of the first (gray) and last (black) spike in this

event. Precision of the last spike is higher than the first. Right: Use of the

IF model formalism to analyze RGC spike timing precision and reliability. (c)

170 msec stimulus fragment and corresponding RGC spike response during one

trial. (d) Probability distribution over subthreshold V for central interspike

interval, on a single trial. The likelihood of the next spike time (below) is given

by the probability mass crossing threshold at each moment in time. Note that

the probability distribution of the next spike time is bimodal. (e) Raster of

repeated RGC responses to this stimulus fragment, with rows sorted in order of

first spike time. Below: probability density of the next spike, averaged across 25

trials. Black trace shows model prediction, Gray bars show actual distribution.
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trials and compared to the observed next spike time distribution. Figure 4.7e

shows an example where the distribution of the next spike time following a pe-

riod of silence is bimodal, a condition where standard measures of spike time

precision are problematic. This bimodality is accurately reflected in the density

of the next spike time computed using the IF model. Thus the next spike time

density provides a more complete description of timing variability than ad hoc

summary measures of precision and reliability.

Decoding of spike responses

Perhaps the most important role for a model of RGC responses is to provide

a precise description of the visual information transmitted to the brain. The

generalized IF model makes it possible to assess the degree to which variability

in spike trains imposes limitations on the fidelity of information transmission.

Specifically, the model can be used to compute the probability that an observed

spike train was elicited by any given stimulus. This provides a powerful method

for decoding the information contained in neural spike responses.

One method to illustrate decoding would be to simply use the model to per-

form stimulus reconstruction from measured spike responses. Given a particular

spike response x, we can obtain the probability that it was elicited by a stimulus

y via Bayes’ rule:

P (y|x) = P (x|y)P (y)/P (x), (4.2)

where P (x|y) is obtained from the model likelihood calculation, P (y) is the prior

over the stimulus, and P (x) is a normalizing term, the marginal probability
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of observing response x. We can perform stimulus reconstruction by choosing

the y which is the maximum or the mean of P (y|x). The maximum provides the

maximum a posteriori (MAP) estimate for the stimulus, while the mean provides

the Bayes estimate under a squared loss function.

Rather than performing a full stimulus reconstruction, which requires choos-

ing a prior P (y) and a search for the y which achieves the maximum or mean

of eq. 4.2, we performed a simple illustration of decoding by using the model to

discriminate stimuli in a 2-alternative forced-choice experiment. In this experi-

ment, an observer is presented with two spike trains and two different stimuli, and

must decide on the correct pairing of stimuli with elicited responses (Fig. 4.8a).

Clearly, the optimal decision rule given a particular model of the response is to

use the pairing with the higher likelihood under that model. (Green & Swets,

1966). We used the likelihood of spike responses under the IF model to discrimi-

nate pairs of stimuli, and by applying this decision rule to each pair of responses

obtained using multiple repeats of the stimuli, we obtained a percent correct for

the performance of the model in discriminating a particular pair of stimuli. As a

benchmark, we compared this procedure against one in which likelihood was com-

puted (and discrimination performed) using the LNP model. Figure 4.8b shows

a comparison of the performance of the two procedures. The predominance of

data above the diagonal indicates that, on average, the IF model provided sig-

nificantly more accurate discrimination than the LNP model. Thus, stimulus

decoding based on the IF model exploits information in temporal patterns of

spikes that is not captured by decoding based only on firing rate.
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Figure 4.8: Decoding responses using model-derived likelihoods. (a) Two stim-

ulus fragments and corresponding fragments of RGC response raster. Gray boxes

highlight a 50-ms interval of the first row of each response raster. A two-

alternative forced-choice (2AFC) discrimination task was performed on these

response fragments, where the task was to determine which stimulus gave rise

to each response. The IF and LNP models were used to compute the likelihood

of these responses given the “correct” and “incorrect” pairing of stimuli and re-

sponses, and the pairing with higher likelihood was selected. This discrimination

procedure was applied to each row of the response raster and used to obtain a

percent correct for the discrimination performance of each model. (b) Discrim-

ination performance of the IF and LNP models. Each point corresponds to the

percent correct of a 2AFC discrimination task using two randomly-selected 50-

ms windows of the response. Although both models obtain perfect performance

for a majority of such randomly-selected response windows, the scatter of points

above the diagonal shows that when discrimination performance is imperfect, the

IF model is far better at decoding the neural spike responses.
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Discussion

An integrate-and-fire model, generalized to include a linear receptive field, a spike

after-current and a noise source, provides an accurate description of the detailed

structure of RGC spike trains elicited by visual stimuli. The model relies only on

measurements of spike times, but provides a full description of the hypothesized

underlying currents, along with detailed, accurate predictions of spiking behav-

ior. The model can be fit reliably to responses from arbitrary stimuli using a

straightforward procedure, and does not require long measurements of responses

to repeated or specialized stimuli. Most importantly, the model provides mech-

anistic insights into the origins of spike timing precision, as well as an optimal

decoding procedure that exploits temporal patterns in spike trains.

Variability, structure, and fidelity of retinal signals

In previous work, the timing precision of firing onsets and the large gaps between

periods of firing have been suggested as the basis for a novel interpretation of reti-

nal coding (Berry et al., 1997; Keat et al., 2001). In this view, the retina encodes

visual information in discrete firing events whose timing and spike count encode

the timing and features of the stimulus, respectively. The IF model provides

a more mechanistic interpretation of spike train structure. Spiking precision at

firing onset results primarily from stimulation that causes the membrane poten-

tial to cross threshold rapidly, leaving little opportunity for current fluctuations

to influence the time of the spike (Fig 4.6) (Bryant & Segundo, 1976; Cecchi et

al., 2000). Similarly, long gaps between periods of firing result from stimuli that
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effectively suppress spiking by providing strong currents of opposite polarity. Pe-

riods of more gradual firing rate modulation, which do not conform easily to the

theory of “firing events”, arise from stimuli poorly matched to the linear filter,

or following periods of maintained firing. Thus, the encoding process is funda-

mentally linear, and the precision and structure of spike trains simply reflect the

interaction of the stimulus with intrinsic filtering, noise, and spike generation.

In the model, a single current noise parameter accounts for all the variability

in neural response, and thus summarizes the effects of noise in transduction,

synaptic transfer, and cellular integration. This summary measure of response

variability could serve as a parsimonious replacement for previously proposed

measures such as spike time precision and reliability (Keat et al., 2001; Berry et

al., 1997; Uzzell & Chichilnisky, 2004; Reinagel & Reid, 2000). Measures of spike

time precision rely ad hoc criteria for identifying of firing onsets, and may exclude

many spikes from analysis. Measures of response reliability require restrictions

on the time window of spike occurrence. These measures do not reveal intrinsic

properties of the cell because they vary greatly with the stimulus (Berry et al.,

1997; Uzzell & Chichilnisky, 2004) and have no mechanistic interpretation. In

contrast, the noise parameter of the IF model, measured with a single stimulus

sequence, explains many different measures of response variability (Fig 4.7), has

a rough physiological interpretation in terms of membrane current (Fig 4.1), and

can be used to predict the variability to novel stimuli.

The IF model also provides a potentially significant technique for assessing

the fidelity of sensory signals (Fig 4.8). Because the probability of an observed
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spike train given any stimulus can be computed directly, the optimal stimulus

discrimination procedure is known. Such an optimal procedure is essential for a

meaningful investigation of the factors that limit sensory performance. Stimu-

lus discrimination based on the IF model was significantly more accurate than

discrimination based on the LNP model, indicating that temporal patterns of

spikes convey information not captured in the time-varying firing rate. Stim-

ulus decoding based on the IF model also provides a bound on the accuracy

with which the brain could decode stimulus information from RGCs. This ap-

proach to describing the fidelity of neural coding in the context of a mechanistic

model could provide a valuable complement to more abstract approaches based

on information theory (Bialek et al., 1991).

Limitations of the IF model

Although the IF model offers many practical and theoretical advantages, it has

some shortcomings. First, although it is clearly outperforms the LNP model by a

variety of measures, the IF model still fails to account for ∼10-25% of the variance

in the PSTH of RGCs (Fig. 4.5b), and deviations from the observed data exceed

the variability of repeated responses by up to ∼20% (Fig. 4.5). One likely source

of error is the existence of nonlinear stimulus dependencies (Hochstein & Shapley,

1976; J. D. Victor & Purpura, 1997; Benardete et al., 1992) not captured by the

linear front end. Nonlinearities may be incorporated into the model without

compromising its stable fitting properties by expanding the filter ~k to operate

on nonlinear functions of the input. In preliminary studies, the inclusion of
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terms with quadratic dependence on the input led to a 5-10% improvement in

the percentage of explained variance. A drawback is that the elaborated model

has more parameters to describe the nonlinear stimulus dependence, and thus

requires more data for estimation of those parameters.

Second, the fitting procedure tends to set the noise parameter somewhat

higher than is necessary to account for the timing variability observed during

periods of rapid firing. This is evident in the sorted rasters of Fig. 4.3, where

the repeated interval structure of the RGC response is more regular than that

of IF model responses. The discrepancy may result from the fact that the noise

parameter accounts for both true variability in neural responses and any system-

atic errors in the model. Specifically, nonlinear mechanisms not captured by the

model require an increase in the noise parameter to keep the observed spike train

likelihood from becoming prohibitively small. This shortcoming could be ad-

dressed by separately optimizing the noise parameter using an objective function

that isolates the stochastic behaviors of the neural response, such as the repeat

interval structure (Fig. 4.3) or the spike-time distance (Fig. 4.5). A complete

solution, however, requires the incorporation of nonlinear stimulus selectivity in

the model (see above). This may be particularly important for applying the IF

characterization to neurons in visual cortex.

Third, although the IF model is clearly more realistic than models with Pois-

son firing, it provides only a simplified description of known mechanisms of neural

response. The model is based on currents rather than conductances, has linear

subthreshold dynamics, and includes only a single Gaussian white noise source
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to account for a variety of real noise sources (e.g. photon noise, synaptic failure,

and channel noise). These simplifying assumptions make the fitting procedure

and interpretation more tractable.

Extensions

The present findings suggest a variety of extensions. First, several studies (Smir-

nakis et al., 1997; Chander & Chichilnisky, 2001; Kim & Rieke, 2001; Baccus &

Meister, 2002) have revealed slow contrast adaptation in RGCs, and integrate-

and-fire models can likewise exhibit a form of spike rate adaptation to stimulus

variance (Rudd & Brown, 1997). Our preliminary observations indicate this is

true of the IF model as well. Second, in cases where responses are driven by non-

linear stimulus transformations of a known form, the model may be augmented

as described above. The model could also be used, as the LNP model has, to

characterize the steady-state results of slow nonlinearities such as adaptation,

perhaps providing more accurate information about its effects on stimulus selec-

tivity, noise, and spike generation (Chander & Chichilnisky, 2001; Kim & Rieke,

2001; Baccus & Meister, 2002). Third, the fitting method is based on gradient

ascent of the likelihood function, and so may be applied to data collected with

any sufficiently rich set of stimuli. Thus, unlike reverse correlation approaches to

estimating LNP model parameters, IF model characterization does not require

white noise stimuli. This raises the possibility of characterizing light responses

using stimuli that drive cortical neurons more strongly than white noise, or that

more closely approximate the environment in which the visual system normally
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operates (Reinagel, 2001).

Methods

Experimental Measurements & Stimuli

The data presented in this paper are a subset of the data in (Uzzell &

Chichilnisky, 2004); experimental methods are described in detail there. Briefly,

multi-electrode extracellular recordings were obtained in vitro from small pieces

of retina from 3 macaque monkeys, with retinal pigment epithelium attached,

maintained at 32-36 degrees C, pH 7.4. The retina was stimulated with a pho-

topic, achromatic, spatially uniform, optically reduced image of a cathode ray

tube display refreshing at 120 Hz. The stimulus was a temporal sequence con-

sisting of two intensity values, pseudo-randomly selected on every refresh. The

contrast (standard deviation divided by mean) of the sequence was 96%. Model

characterization was performed on one pseudo-random sequence (50 sec), and

model validation was performed on a different sequence (7-30 sec) repeated 37-

176 times. Analysis was restricted to two physiologically-defined classes of cells

that very likely correspond to ON and OFF parasol cells based on several lines

of evidence (Chichilnisky & Kalmar, 2002).

Model Parameter Fitting

In previous work, we developed an efficient and computationally tractable al-

gorithm for estimating the parameters of the generalized IF model used in this
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paper (Paninski et al., 2004). Specifically, we showed that the likelihood function

can be computed efficiently, and is log-concave for any stimulus and spike train

data. This guarantees that the IF model, unlike many other models, can be fit

reliably using simple gradient ascent techniques, without risk of converging on

local maxima. The likelihood function itself, described in detail in (Paninski et

al., 2004), was computed by numerically solving the Fokker-Plank equation for

subthreshold voltage during each interspike interval. This amounts to finding

the probability under the Gaussian noise model that voltage crossed threshold

at precisely the observed spike times.

Model parameters {~k, g, Vr, σ} were fit by performing gradient ascent of the

likelihood function P (spikes|stim, {~k, g, Vr, σ}). ~k and ~h were taken to be 15

and 10 dimensional vectors, respectively, in a vector space with basis vectors

of the form sin(log(a ∗ t + b)), where a and b are scalars. These basis vectors

(similar to those in (Keat et al., 2001)) have fine temporal structure near the

time of a spike and are smooth at longer timescales, allowing ~k and ~h to be

represented with relatively few parameters. The basis for ~k accurately reproduced

the shape of the spike-triggered average, taken to be 40 stimulus frames (333 ms)

long. Example comparisons with ~k fit in the full 40-dimensional space of the

spike-triggered average indicated that the choice of basis did not affect model

performance. The basis for ~h spanned a time interval of 200 ms, though (as

shown in fig. 4.2a and b), the actual fits of ~h were essentially zero outside of the

first 20 ms following a spike). Finally, a robust version of maximum likelihood was

used to obtain parameter estimates that were less sensitive to statistical outlier
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spikes. The likelihood of the bottom 5% of the interspike intervals was ignored

when optimizing the parameters. Empirically, this resulted in lower estimates of

noise parameter σn, in keeping with the intuition that the model compensates for

exceedingly low-probability spikes by artificially increasing the noise parameter

(see Discussion). The robust estimate of σ provided an improved match to the

first-spike time precision of spike trains.

The LNP model was fit to spiking data using the method described in

(Chichilnisky, 2001). First, the linear filter was obtained through reverse cor-

relation of stimulus with spike train. The point nonlinearity was then recovered

by examining the firing rate as a function of the linear filter response to the

stimulus. The shape of the nonlinearity was fit using maximum likelihood to

estimate a linear combination Gaussian radial basis functions, and a similar ro-

bust procedure (ignoring the likelihood of the lowest 5% of interspike intervals)

was employed to put likelihood comparisons with the IF model on equal foot-

ing. Nearly identical performance was obtained when point nonlinearities were

instead fit using least-squares estimation of a cubic spline.

Calculation of Percent Error and Distance Between Spike Trains

Figure 4.5b shows the percent of the variance in the PSTH accounted for by each

model, or 100 ∗
(

1− 〈(PSTHRGC −PSTHmodel)
2/(PSTHRGC − 〈PSTHRGC〉)

2〉
)

,

where 〈·〉 indicates an average over time. PSTHs were computed by binning each

response, summing, and filtering with a Gaussian with a standard deviation 1

ms.
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Figure 4.5b shows the percent error in the PSTV for each model, which is

given by 100 ∗ 〈PSTVRGC − PSTVmodel〉/〈PSTVRGC〉. PSTV was computed by

sliding a 10-ms window across the response raster and calculating the variance

(across trials) of the number of spikes in that window.

Figure 4.5d-f examines the similarity between pairs of spike trains to repeated

presentations of an identical stimulus, using a specific spike train distance mea-

sure (J. D. Victor & Purpura, 1997). The measure relies on a timescale parameter

λ and is defined as the minimum cost for bringing one spike train into alignment

with another by shifting and adding/deleting spikes, where adding or deleting has

a cost of 1, and shifting a spike by t ms entails a cost of t/λ. For any two spike

trains, this distance measure is bounded above by the sum of the number spikes

in both spike trains (λ = 0) and bounded below by their spike count difference

(λ = ∞). Software for computing the spike time distance measure was obtained

from the author’s website(J. D. Victor & Purpura, 1997).

Calculation of Likelihoods for Discrimination Task

Suppose an observer is given spike trains {sA, sB} in response to presentation of

stimulus sequences {A, B}, and must decide which of the two stimuli is associated

with which spike train. The optimal decision rule comes from comparing the

likelihood of each stimulus under each observed spike train (Green & Swets,

1966):

R(A, B) =
P (sA|A) · P (sB|B)

P (sA|B) · P (sb|A)
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If R(A, B) is greater than unity, the correct choice is made; otherwise the

stimuli are paired with the wrong spike trains. The conditional probabilities in

this expression may be determined directly from any stochastic model of neural

response, such as the IF or LNP models.
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Discussion

We have examined two models of retinal ganglion cell responses, estimated

using spike responses to white noise stimuli and evaluated using prediction accu-

racy of novel responses. Both models have an explicitly probabilistic formulation

and can be used to compute the encoding probability distribution P (r|s) for

any stimulus. The first model was derived and fit using spike-triggered covari-

ance analysis, to data consisting of recorded spike responses to 1-dimensional

spatiotemporal white noise (flickering bars). The model consisted of a bank

of shifted linear subunit filters, a nonlinear combination rule, divisive temporal

feedback, and Poisson spike generation. The second, a generalized IF model,

was fit with maximum likelihood, using data consisting of spike responses to

temporal binary white noise. This model contained a single linear stimulus filter,

leaky integrate-and-fire spike generation, a linear spike after-current and additive

Gaussian voltage noise.

While we have not yet performed a detailed side-by-side comparison of the

performance of these two models, it is useful to review their most salient theoret-

ical differences. The subunit model captures nonlinearities in the spatial pooling

of information; these nonlinearities are not captured by the IF model, which uses
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a single linear stimulus filter and was fit using purely temporal stimuli. Although

we can locally maximize the likelihood for the parameters of an IF model aug-

mented to include multiple filters and a nonlinear combination rule, we have no

guarantee that the estimator for the resulting model will achieve the global max-

imum of the likelihood function. However, nonlinear stimulus dependence and

log-concavity of the likelihood function can both be achieved if we reframe the

model by using a linear kernel that operates on the stimulus after some (fixed)

mapping to a nonlinear feature space. Unfortunately, it seems hard to know a

priori how to choose the optimal nonlinear feature space, and there is no obvious

sequential learning procedure for first estimating a subspace and then estimating

a nonlinear combination rule, as we did in STC analysis.

On the other hand, one of the principal advantages of the IF model is that,

unlike STC analysis, it can be reliably estimated using any stimulus, not just

Gaussian white noise. It is therefore quite simple to estimate the IF model using

responses to naturalistic stimuli, or any other set of stimuli which might be of

interest. The IF model also provides a more biophysically realistic description of

spike generation, gives a more accurate prediction of RGC spike train statistics

(recall that the subunit model’s output is Poisson), and can exhibit a more diverse

repertoire of dynamical behaviors, due to the history-dependence introduced by

the spike aftercurrent. Incidentally, this feature of the IF model also entails

that the likelihood calculation directly elicits the probability P (r|~s, ~rhist), the

probability of the response conditioned on the stimulus and the spike history

~rhist, rather than just P (r|~s). Explicitly computing P (r|~s) is now more difficult,
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since we must average over all possible spike histories at each moment in time.

Thus, although the IF model may describe the detailed time structure of the

neural response much more accurately than a model with inhomogeneous Poisson

spiking, it is more difficult with such a model to obtain a clear, intuitive picture

of the neuron’s computational transformation of the raw stimulus.

Recently, we have begun to examine a third model that occupies a middle

ground between integrate-and-fire and Poisson spiking models. We call this a

“generalized linear model”(GLM), which we can describe formally as

P (r|~s, ~rhist) = f(~k · ~s + ~h · ~rhist), (4.3)

where ~h is a linear filter that operates on the spike train history. Spike generation

is determined probabilistically by an instantaneous function f applied to the

filtered input, but the resulting process is clearly no longer Poisson, due to the

induced dependence on spike train history. Recent work has shown that log-

likelihood for this model is also concave (implying guaranteed convergence to the

global maximum) if we impose certain constraints on the nonlinear function f1

The likelihood calculation is much simpler and faster to implement than that

for the IF model, and preliminary analyses indicate that its performance is be

comparable to the IF model in accounting for RGC responses. Although the

GLM is less well-known than the IF or LNP models as a description of neural

spike trains, it has a simple interpretation which is not altogether biophysically

implausible: we interpret the linear signal as V = ~k · ~s + ~h · ~rhist, the internal

1Namely, that f(x) be convex and log-concave, a condition satisfied by such functions

as exp(x) (Paninski, 2004)
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voltage of the neuron, and let the accelerating nonlinearity f(V ) represents a

“fuzzy threshold”, such that the instantaneous probability of spiking increases

exponentially as a function of the depolarization of V . We are currently pursuing

a more thorough analysis of this model’s performance on RGC data.

Undoubtedly, the work of applying and extending these ideas to provide more

general and powerful models of the neural code is still in its infancy. In this the-

sis, we have applied statistical characterization procedures to data from retinal

ganglion cells, a class whose functional properties have already been extensively

explored and modeled using classical analyses. Nevertheless, important questions

about the coding properties of such neurons remain unanswered. Two phenomena

which demand immediate attention include the characterization of adaptive be-

havior in the processing of natural scenes, and the modeling of joint encoding by

groups of neurons with common input and correlated responses; we have current

plans to address both of these issues using the IF and GLM models. Our ultimate

goal, nevertheless, is to push ahead with models that will provide insight into

neural responses much deeper in the visual processing pathway. As the develop-

ment of these techniques matures, we are hopeful that statistical characterization

methods will eventually score major advances in revealing the coding properties

of neurons in brain areas not currently understood with classical methods.
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