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Abstract— Simulators have played a critical role in robotics
research as tools for quick and efficient testing of new
concepts, strategies, and algorithms. To date, most simulators
have been restricted to 2D worlds, and few have matured
to the point where they are both highly capable and easily
adaptable. Gazebo is designed to fill this niche by creating
a 3D dynamic multi-robot environment capable of recreating
the complex worlds that will be encountered by the next gen-
eration of mobile robots. Its open source status, fine grained
control, and high fidelity place Gazebo in a unique position to
become more than just a stepping stone between the drawing
board and real hardware: data visualization, simulation of
remote environments, and even reverse engineering of black-
box systems are all possible applications.

Gazebo is developed in cooperation with the Player
and Stage projects [1], [2], [3], and is available from
http://playerstage.sourceforge.net/gazebo/
gazebo.html.

I. INTRODUCTION

The Player and Stage projects have been in development
since 2001, during which time they have experienced wide
spread usage in both academia and industry. Player is a
networked device server, and Stage is a simulator for large
populations of mobile robots in complex 2D domains. A
natural complement for these two projects is a high fidelity
outdoor dynamics simulator; this has taken form in the
Gazebo project.

The development of Gazebo has been driven by the
increasing use of robotic vehicles for outdoor applications.
While Stage is quite capable of simulating the interactions
between robots in indoor environments, the need for a
simulator capable of modeling outdoor environments and
providing realistic sensor feedback have become apparent.

Gazebo, therefore, is designed to accurately reproduce
the dynamic environments a robot may encounter. All sim-
ulated objects have mass, velocity, friction, and numerous
other attributes that allow them to behave realistically when
pushed, pulled, knocked over, or carried. These actions
can be used as integral parts of an experiment, such as
construction or foraging.

The robots themselves are dynamic structures composed
of rigid bodies connected via joints. Forces, both angular
and linear, can be applied to surfaces and joints to generate
locomotion and interaction with an environment. The world
itself is described by landscapes, extruded buildings, and
other user created objects. Almost every aspect of the sim-
ulation is controllable, from lighting conditions to friction
coefficients.

Following the principles established by Player and Stage,
Gazebo is completely open source and freely available (a
major advantage over most commercially available pack-
ages). As a result, Gazebo has an active base of contributers
who are rapidly evolving the package to meet their ever-
changing needs.

Gazebo offers a rich environment to quickly develop
and test multi-robot systems in new and interesting ways.
It is an effective, scalable, and simple tool that has also
potential for opening the field of robotics research to a
wider community; thus, for example, Gazebo is being
considered for use in undergraduate teaching.

This paper describes the basic architecture of the Gazebo
package, and illustrates its use and extensibility through a
number of user case-studies. We also give some attention
to future directions for this package.

II. PLAYER AND STAGE

Gazebo has been developed from the ground up to be
fully compatible with the Player device server. The hard-
ware simulated in Gazebo is designed to accurately reflect
the behavior of its physical counterpart. As a result, a client
program sees an identical interface to a real and simulated
robot. This feature allows Gazebo to be seamlessly inserted
into the development process of a robotic system.

Even though it is compatible with Player, Gazebo is
not meant as a replacement for the Stage simulator. The
complexity of simulating rigid body dynamics coupled with
a 3D environment can severely tax even a high performance
computer. This has the effect of limiting Gazebo to the
domain a few robots, currently on the order of ten. On the
other hand, Stage provides a robust and efficient simulator
for projects that require large robot populations or do not
require the full capabilities of Gazebo.

III. RELATED WORK

Gazebo is far from being the only choice for a 3D
dynamics simulator. It is however one of the few that
attempts to create realistic worlds for the robots rather than
just human users. As more advanced sensors are developed
and incorporated into Gazebo the line between simulation
and reality will continue to blur, but accuracy in terms of
robot sensors and actuators will remain an overriding goal.

A few notable systems include COSIMIR [4], developed
at Festo. This is a commercial package primarily designed
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Fig. 1. General Structure of Gazebo components

for industrial simulation of work flows with robotic sys-
tems, but is also applicable to robotic research. COSIMIR
has advanced modeling and physical simulation capabil-
ities that go well beyond the capabilities of Gazebo. It
incorporates many types of grippers, the ability to program
movement in non-robotic models such as assembly lines,
and has tools for analysis of the simulated systems. Another
commercial package is Webots [5] created by Cyberbotics.
Webots allows for the creation of robots using a library of
predefined actuators and sensors. When system testing in
the simulator is complete, a user can transfer their code to
real robots. The principle purpose of Webots is research
and development. Cyberbotics is also developing a Player
interface for compatibility with a wider range of devices.

Darwin2K [6] and OpenSim [7] represent two open
source robot simulators developed along similar lines as
Gazebo. Darwin 2K was created by Chris Leger at Carnegie
Mellon University as a tool for his work on evolution-
ary robotics. This simulator accurately models motor and
gear heads in fine detail while providing stress estimates
on structural bodies. Darwin2K has a strong focus on
evolutionary synthesis, design, and optimization and still
remains a capable general purpose simulator for dynamic
systems. OpenSim, under development by David Jung, is
a generic open source robot simulator similar in design
an purpose to Gazebo. This simulator makes use of the
same third party software packages as Gazebo, and has
some attractive features for constructing and debugging
articulated joint chains.

IV. ARCHITECTURE

Gazebo’s architecture has progressed through a couple
iterations during which we learned how to best create a
simple tool for both developers and end users. We realized

from the start that a major feature of Gazebo should be
the ability to easily create new robots, actuators, sensors,
and arbitrary objects. As a result, Gazebo maintains a
simple API for addition of these objects, which we term
models, and the necessary hooks for interaction with client
programs. A layer below this API resides the third party
libraries that handle both the physics simulation and visu-
alization. The particular libraries used were chosen based
on their open source status, active user base, and maturity.

This architecture is graphically depicted in Figure 1.
The World represents the set of all models and environ-
mental factors such as gravity and lighting. Each model
is composed of at least one body and any number of
joints and sensors. The third party libraries interface with
Gazebo at the lowest level. This prevents models from
becoming dependent on specific tools that may change in
the future. Finally, client commands are received and data
returned through a shared memory interface. A model can
have many interfaces for functions involving, for example,
control of joints and transmission of camera images.

A. Physics Engine

The Open Dynamics Engine [8], created by Russel Smith
is a widely used physics engine in the open source com-
munity. It is designed to simulate the dynamics and kine-
matics associated with articulated rigid bodies. This engine
includes many features such as numerous joints, collision
detection, mass and rotational functions, and many geome-
tries including arbitrary triangle meshes (Figure 6). Gazebo
utilizes these features by providing a layer of abstraction
situated between ODE and Gazebo models. This layer
allows easy creation of both normal and abstract objects
such as laser rays and ground planes while maintaining
all the functionality provided by ODE. With this internal
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abstraction, it is possible to replace the underlying physics
engine, should a better alternative become available.

B. Visualization

A well designed simulator usually provides some form
of user interface, and Gazebo requires one that is both
sophisticated and fast. The heart of Gazebo lies in its ability
to simulate dynamics, and this requires significant work on
behalf of the user’s computer. A slow and cumbersome user
interface would only detract from the simulator’s primary
purpose. To account for this, OpenGL and GLUT (OpenGL
Utility Toolkit) [9] were chosen as the default visualization
tools.

OpenGL is a standard library for the creation of 2D
and 3D interactive applications. It is platform indepen-
dent, highly scalable, stable, and continually evolving.
More importantly, many features in OpenGL have been
implemented in graphic card hardware thereby freeing the
CPU for other work such as the computationally expensive
dynamics engine.

GLUT is a simple window system independent toolkit
for OpenGL applications. Scenes rendered using OpenGL
are displayed in windows created by GLUT. This toolkit
also provides mechanisms for user interaction with Gazebo
via standard input devices such as keyboards and mice.
GLUT was chosen as the default windowing toolkit be-
cause it is lightweight, easy to use, and platform indepen-
dent.

C. The World

A complete environment is essentially a collection of
models and sensors. The ground and buildings represent
stationary models while robots and other objects are dy-
namic. Sensors remain separate from the dynamic simula-
tion since they only collect data, or emit data if it is an
active sensor.

The following is a brief description of each general
component involved in the simulator.

1) Models, Bodies, and Joints: A model is any object
that maintains a physical representation. This encompasses
anything from simple geometry to complex robots. Models
are composed of at least one rigid body, zero or more joints
and sensors, and interfaces to facilitate the flow of data.

Bodies represent the basic building blocks of a model.
Their physical representation take the form of geometric

shapes chosen from boxes, spheres, cylinders, planes, and
lines. Each body has an assigned mass, friction, bounce
factor, and rendering properties such as color, texture,
transparency, etc.

Joints provide the mechanism to connect bodies together
to form kinematic and dynamic relationships. A variety
of joints are available including hinge joints for rotation
along one or two axis, slider joints for translation along a
single axis, ball and socket joints, and universal joints for
rotation about two perpendicular joints. Besides connecting
two bodies together, these joints can act like motors. When
a force is applied to a joint, the friction between the
connected body and other bodies cause motion. However,
special care needs to be taken when connecting many joints
in a single model as both the model and simulation can
easily loose stability if incorrect parameters are chosen.

Interfaces provide the means by which client programs
can access and control models. Commands sent over an
interface can instruct a model to move joints, change the
configuration of associated sensors, or request sensor data.
The interfaces do not place restrictions on a model, thereby
allowing the model to interpret the commands in anyway
it sees fit.

2) Sensors: A robot can’t perform useful tasks without
sensors. A sensor in Gazebo is an abstract device lacking
a physical representation. It only gains embodiment when
incorporated into a model. This feature allows for the reuse
of sensors in numerous models thereby reducing code and
confusion.

There currently are three sensor implementations includ-
ing an odometer, ray proximity, and a camera. Odometry
is easily accessible through integration of the distance
traveled. The ray proximity sensor returns the contact point
of the closest object along the ray’s path. This generic
sensor has been incorporated into a Sick LMS200 model
to simulate a scanning laser range finder, and also into a
sonar array for the Pioneer 2. Finally, the camera renders
a scene using OpenGL from the perspective of the model
it is attached to. Currently the camera sensor is used for
both a Sony VID30 camera and the ”god’s eye” view of
the world.

3) External Interfaces: Gazebo is generally used in
conjunction with Player. The Player device server treats
Gazebo as a normal device capable of sending and re-



Fig. 3. Above is a hand-drawn 2d map, the 3D extrusion created from the 2D map, and finally the laser generated map of the real environment.

ceiving data. From the users point of view, the models
simulated in Gazebo are the same as their real counterparts.
A second key advantage to this approach is that one can
use abstract drivers inside a simulation. For example, it
is possible to use Player’s VFH (Vector Field Histogram)
[10] or AMCL (Adaptive Monte-Carlo Localization) [11]
interchangeably between real and simulated environments.

The interface to Gazebo is not limited to Player alone.
The low-level library provides a mechanism for any third-
party robot device server (Player or otherwise) to interface
with Gazebo. Going even further, a connection to the the
library is not even necessary since Gazebo can be run
independently for rapid model and sensor development.

Currently the Gazebo library offers hooks to set wheel
velocities, read data from a laser range finder, retrieve
images from a camera, and insert simple objects into the
environment at runtime. This data is communicated through
shared memory for speed and efficiency.

D. Construction of Models

Models are currently created by hand. The process starts
with choosing the appropriate bodies and joints necessary
to build an accurate model in both appearance and func-
tionality. Following Figure 2, we will use the construction
of the Pioneer2 AT model as an example. The entire set
of bodies for this model encompass four cylinders for the
wheels and a rectangular box body.

The next step attaches the bodies together using joints.
The end result is a complete physical representation of our
model. For the Pioneer2 AT, each wheel has a single axis
of rotation. Hinge joints match this requirement perfectly.
They are connected to the sides of the rectangular base and
the wheels such that the axis of rotation allows for proper
wheel spin.

Our Pioneer2 AT model now only lacks an interface
for user control. A few functions provided by the Gazebo
library resolve this issue, and allow a user to apply velocity
changes to the wheels and retrieve odometric data. The
Pioneer2 AT model base can also be retro-fitted with any
number of devices such as a sonar ring, gripper, and laser
range finder.

V. CASE STUDIES

Although still a young application, Gazebo has been
used in many interesting ways that have been unavailable
in other simulators. These techniques can be generally
characterized by an improved robot development process.
The first case increased the efficiency at which a complete
robot system is built, another used Gazebo for greater
safety while demonstrating a useful technique at reverse
engineering a robot system, and the final two demonstrate
the use of Gazebo in developing and refining new algo-
rithms.

It should be noted that Gazebo is only a tool whose
extensibility has allowed other researchers the opportunity
to creatively leverage its functionality for improved devel-
opment and data collection.

A. Morphology and Control

The development of new robotic architectures involve a
chicken and egg problem. Is it better to develop a control
system to match the hardware, or the hardware to match
the required controller? A solution to this problem is rapid
prototyping where new iterations of both hardware and
software are developed and tested in unison. This has the
benefit of revealing the strengths and weakness in both
parts with minimal loss of time and effort when mistakes
occur. Prototyping of this nature has long been used in
the software domain, but still remains expensive and slow
in hardware. Gazebo solves this problem by providing
means to easily change the robot’s morphology while also
modifying its software systems.

This design principle was realized in a recent project
[12] at USC. The task involved the creation of a six legged
walking robot that learned various gaits. The process of
designing and building the hardware alone would have
consumed numerous months. Instead Gazebo reduced the
time frame down to less than two months, during which
time both the physical structure and software were modified
and tested in parallel. Clearly, use of this feature allows
developers to easily move from basic concepts to real
working systems in a short period of time.



Fig. 4. Above is a real SegwayRMP and its model in Gazebo below.

B. Reverse Engineering

A recent addition to the Robotics Research Labs at USC
has been a Segway RMP. This is a physically powerful
device initially intended to transport humans that has been
modified to be a robot platform. Over rough terrain, this
robot will sometimes topple, and is therefore quite danger-
ous to both people and the expensive hardware mounted on
it. A method to avoid undue damage during software devel-
opment involves rigorous testing in simulation. However,
creating a realistic model of the Segway RMP offers unique
challenges. In order to move, the Segway RMP must tilt
forward or back to gain acceleration (it is essentially an
inverse pendulum). This tilting affects the interactions it
has with the world and particularly the data received from
any on-board sensors. It is therefore imperative that any
model used to simulate the Segway RMP must accurately
reflect these characteristics.

To overcome this problem, Marin Kobilarov reverse
engineered the controller used on-board the SegwayRMP.
This was accomplished by extensively testing the angles
of inclination at various accelerations. The results from
these tests were used to tune a controller in Gazebo that
now successfully models the characteristics of the real
Segway RMP (see Figure 4).

Reverse engineering is a common practice when trying
to understand how black-box systems operate. In this
case it was necessary as a safety precaution. In other
situations it may simply be impossible to have a control
scheme specified. In the case of human-robot or even robot-
animal interaction, models can only be created through
observations of their behaviors. Gazebo in turn provides an
effective mechanism to implement and test these derived
models.

C. New Environments

Many environments in which robots operate are either
well studied or carefully constructed. Deploying robots in
a never before encountered world may cause unforeseen,
and possibly negative, side effects. Lighting conditions,
reflective surfaces, and odd objects can all play an effect on
how a robot operates. A strategy of online testing can be
extremely slow and tedious. Time can be spent much more
productively by testing and modifying the robot controllers
offline in preparation for the real experiments.

The fine grained control of Gazebo, the ability to ex-
trude 2D images into 3D structures, and terrain generation
(Figure 6) allow for the unique ability to hand create
rough outlines of a new environment. This technique was
recently realized and employed by Andrew Howard, and
demonstrated in Figure 3. When moving into a new envi-
ronment, he first used a sketch of the test site to extruded
a model in Gazebo. This simulated environment was then
used as one of test environments during the development of
his exploration and mapping algorithms. These algorithms
were later successfully deployed in the real environment,
after which the real maps were ported back into Gazebo
for further off-line experiments.

As a result, the development time of the algorithms
employed was greatly reduced. Gazebo made it possible to
continue experimentation in the environment even after the
physical robots were deployed. In this case a simple sketch
map created a sufficient testing environment, however
greater accuracy can be achieved with access to terrain
data. Elevation information collected from satellites, or
other means, can be imported along with relevant structures
to further blur the line between simulation and the real
world. All of this culminates in the ability of Gazebo
to reduce development and test time, and even allow
experiments to virtually take place in almost any part of
the world.

D. Algorithm Design

The design and implementation of new algorithms can
be a difficult task that become particularly acute with the
lack of convenient test environments. In situations such as
this, Gazebo’s sensory realism can play a time saving role.
Traditionally, development of new algorithms either re-
quired custom simulators or direct testing on the hardware;
Gazebo’s realistic environments and simple interface can
drastically reduce the turn around time from a conceptual
stage to functional system.

This technique was used in the creation of a new sensing
device; a visual bar code reader. The purpose of this
device was to identify uniquely marked objects in arbitrary
environments (a black and white bar code system was
chosen based on its simplicity, Figure 5). Gazebo was used
as the sole test platform, and a visual barcode detector
was rapidly developed and tested. Following satisfactory
performance in Gazebo, the system ran unmodified on a
real robot with near identical results [13]. This algorithm
has since been proven robust in a wide range of real
environments.

VI. LIMITATIONS

Gazebo has a number of important limitations. While
it is designed as an outdoor simulator, the fidelity of this
simulation is limited; for example, physics models of soil,
sand, grass, and other pliable surfaces normally found in
nature are well beyond the scope of this project. Added
to this list of have-nots are deformable objects, and fluid
and thermal dynamics. These features are currently lacking



Fig. 5. A sample bar-code fiducial for visual object recognition.

in Gazebo due to their complexity, although some may be
added as the need arises.

Distributed computation tops the list of more useful
features missing from Gazebo. The amount of computation
involved while running such an intensive simulation would
greatly benefit from distributed computation. This has the
possibility of becoming a reality in the future, but currently
presents practical problems due to the used of a monolithic
dynamics engine.

VII. CONCLUSION AND FUTURE WORK

This paper has explained the design principles of Gazebo
and its applicability to the development process of real
world robotics. Our software has deliberately maintained
a simple yet powerful interface to the underlying physics
engine and rendering capabilities while retaining com-
patibility with the Player and Stage initiatives. This has
resulted in a quick and easy adoption of Gazebo by many
people, and has the potential to be used in ways never
before seen in a simulator.

There however remains much work to be done. While
the breadth of robot models has grown rapidly, sensor
implementations remain relatively few, primarily due to im-
plementation complexity. Features such as programmable
objects (doors, elevators, lights) and multi-level image
extrusion will add even more realism and increase the
domains in which Gazebo is applicable. Finally, real-time
interaction will eventually provide mechanisms for on-the-
fly alterations to test scenarios through addition of user
specified forces and commands.

In the relatively short life span of Gazebo, we have
seen adaption and contributions from other universities and
creative uses of Gazebo as not just a simulator but also a
safety device. It is our hope that this simulator will continue
to provide a valuable tool for current researchers, and also
inspire people who lack expensive hardware to perform
new and interesting experiments.
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Fig. 6. Terrain and Pioneer2 AT robots.
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