
The Measured Performance of

Content Distribution Networks

Kirk L. Johnson, John F. Carr, Mark S. Day, M. Frans Kaashoek

SightPath, Inc.

135 Beaver Street, Waltham, MA 02452, USA

Abstract
We have measured the performance of two commercial content distribution networks (CDNs), one
operated by Akamai and one operated by Digital Island. Although there are differences in the
implementation of these services, both CDNs redirect requests by using DNS. In this paper, we describe
our simple measurement technique for a DNS-based CDN, our data for the two commercial services, and
our interpretation of that data. Our main conclusion is that CDNs provide a valuable service, but that
neither Akamai nor Digital Island can consistently pick the best server of those available. Contrary to some
widely-disseminated marketing messages, we argue that CDNs succeed not so much by choosing an
"optimal" server as by avoiding notably bad servers.

1. Introduction
A content distribution network (CDN) is an architecture of Web-based network elements, arranged for
efficient delivery of Web content. For our purposes, "Web content" includes any of the various forms of
data items that can be distributed via the Web. To date, CDNs have been used primarily for the distribution
of heavily-requested graphic files (such as GIF files on the home pages of popular servers). In the absence
of a content distribution network or proxy caches, all requests for web content go to the origin server
named in the host part of the URL identifying the content. Although such an origin server may in fact be
implemented as a large "farm" of server machines, those machines are usually in a single small geographic
area. All of those machines may be far from a given client (in terms of network latency).

In contrast, a content distribution network has multiple replicas of each content item being hosted. A
request from a browser for a single content item is routed to a "good" replica, where "good" usually means
that the item is served to the client quickly compared to the time it would take fetch it from the origin
server. Static information about geographic locations and network connectivity is typically not sufficient to
do a good job of choosing a replica. Instead, a CDN must incorporate dynamic information about network
conditions and load on the replicas, routing requests so as to balance the load. A CDN is effectively a
collection of widely-dispersed caches, with two crucial differences. First, the caches are potentially
populated by a means other than the requests from clients; and second, the caches are coordinated by a
mechanism that routes client requests to a "good" cache.

We have measured the performance of two commercial content distribution networks (CDNs), one
operated by Akamai [1,3] and one operated by Digital Island [2]. Neither company has published details of
its technology, and indeed both companies treat those details as important trade secrets. There are visible
differences in the implementation of these services (for example, the so-called "Akamaizing" of URLs is
different from whatever Digital Island does). Despite the secrecy and visible differences, both CDNs
appear to redirect requests by using DNS. In this paper, we describe our simple measurement technique for
a DNS-based CDN, our data for the two commercial services, and our interpretation of that data.

Our measurements show interesting performance properties of the services. However, our approach has
limits: it is focused on latency; it does not test the load-balancing capability of a CDN; and it does not
allow a head-to-head comparison of the two CDNs on identical data.

Our main conclusion is that CDNs provide a valuable service, but that neither Akamai nor Digital Island
can consistently pick the best server of those available. Contrary to some widely-disseminated marketing
messages, we argue that CDNs succeed not so much by choosing an "optimal" server as by mostly avoiding
notably bad servers.

2. Methodology
We measure these CDNs from the outside, because we have no privileged access to the configuration or
operation of the services. This approach has two advantages: we are thus measuring the end-to-end system
performance as it would be experienced by end users; and almost anyone can use our technique.

We gather data in two steps. In the first step, we repeatedly query well-known and geographically-
distributed DNS name servers to determine the set of servers that are in use by the CDN. In the second step,
we bypass DNS entirely and send requests to the set of servers determined by the first step. By splitting the
process in this way, we are able to compare the choice made by the CDN with the alternatives that were
available to it, so as to understand whether the CDN is doing well at the task of server selection.

In our experiments, we fetch a few-kilobyte GIF file from each server. On such fetches, latency is typically
more interesting than bandwidth.

2.1 Determining the servers
We started with sites that were known to be distributed via the CDN of interest, and mechanically extracted
fully-qualified domain names (FQDNs) of the form known to be used by the CDNs of interest. We then
repeatedly resolved those FQDNs at a collection of 45 name servers in North America, iterating 100 times
with 5 minutes between each iteration, and recording the servers returned.

2.2 Measuring the servers
Armed with a collection of IP addresses for servers, we then measured the performance of each such server
on a request, and compared the performance of the full set to the performance of the server chosen by the
CDN. In each experiment, a particular GIF file was repeatedly fetched via HTTP from each of the
identified servers. The same file was also repeatedly fetched from the server identified by resolving the
FQDN that was used in the URL that named the GIF file. For each fetch, the target IP address, size of
returned object (in bytes), and fetch latency were recorded. The measured latencies include TCP connection
setup time, but do not include time spent performing name resolution for the measurements of the CDN's
selected server.

For our test of Akamai's service, the file was 4672 bytes and was fetched from each server 25 times, with
requests to servers interleaved (i.e., fetch the first time from each server, then fetch the second time from
each server, etc.). Our tests ran on machines in three different geographic locations, which we characterize
as A, B, and C. On each test machine, a shell script was used to repeatedly run a single experiment
(collecting the output to a timestamped file), sleep for 90 minutes, and repeat. Over 80 experiments were
run on each machine in this manner. The tests were carried out on several consecutive days and at different
times, with similar results – we present data from one day.

For our test of Digital Island's service, the file was 3776 bytes. Other conditions were similar to those
described for Akamai. Our tests ran on machines in the same three locations as our Akamai measurements.
However, since the Digital Island tests took place on different dates, fetching different data, and using
different machines, we use the names X, Y, and Z for the locations to emphasize that the tests cannot be
directly compared.

Our location name Geographic location Operating System Narrowest bandwidth
to Internet

A, X Waltham,
Massachusetts, USA

RedHat Linux 5.1 T1 (1.544 Mb/s)

B, Y Cambridge,
Massachusetts, USA

SunOS 5.5.1 10 Mb/sec Ethernet

C, Z Boulder, Colorado,
USA

BSDI 3.1 T1

Table 1. Locations used for measurements

Table 1 shows some relevant information about the physical locations used for our measurements. We
include information about operating system of each test machine (since TCP implementations can vary
considerably in their performance), and identify the narrowest bandwidth to the Internet from that test
machine.

3. Results

For each experiment, we show cumulative distributions plotted versus latency. Since we want to understand
the frequency and magnitude of bad choices, a cumulative distribution is a good way to present this kind of
measurement -- especially compared to presenting best-case or average latency.

On a cumulative distribution plot, an ideal result would coincide with the y-axis, representing 100% of
results with zero latency. Although we can't reasonably expect zero latency, we can hope for consistent
performance, which would correspond to a vertical line. Accordingly, the flatter (less consistent) and
further to the right (slower) a curve is plotted, the worse it is.

16 32 64 128 256 512 1024 2048 4096
latency (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

fr
ac

tio
n

aggregate
akamai

Figure 1. Akamai latency at location A

In each plot, we show each individual server's cumulative distribution as a gray (light) line. Simply by
looking at the gray lines, we can see that there is significant variation among the candidates, and that some
servers would be very poor choices. In Figure 1, for example, the upper-leftmost gray curve shows that the
best server responds in 128ms or less almost 95% of the time. The lower-rightmost gray curve shows that
the worst server has responded within 2 seconds about 70% of the time, and thus that the latency is worse
than 2 seconds for 30% of the requests to that server.

We note that the vertical "bands" of servers are consistent with geography – since location A is on the East
coast of North America, the left-hand group of servers are probably also at East-coast locations. There are a
few servers in the Midwest, then a second group of servers on the right for West-coast locations.

The blue (dashed) line represents measurements taken by resolving the CDN's FQDN (thus invoking the
CDN server selection mechanism). The red (solid) line represents the cumulative distribution function if all
of the individual server measurements are aggregated. This aggregated plot represents a trivial
"randomized" server selection mechanism, choosing a server from a uniform distribution of the available
servers. Such a random server selection incorporates no knowledge of the network.

Figure 1 shows the latency of the Akamai service, as measured at location A. From this plot, we can
observe that Akamai is not always picking the fastest server available from this location. That is, there are
servers with cumulative distribution functions to the left of Akamai's cumulative distribution, meaning that
they have lower latency.

We can also observe that Akamai is usually adding value compared to simply choosing a server at random
from a uniform distribution of the available servers. However, it is not always adding value: because the
CDN is not always picking the fastest server, one could occasionally do better by a random choice (thus the
area on the lower right where the red (solid) line is to the left of the blue (dashed) line). The figure also
shows that sometimes the CDN picks a notably slow server, and a random choice would have been better
(thus the area at the top where the red (solid) line is above the blue (dashed) line.

Finally, we can observe that the highest latencies plotted are large – multiple seconds, rather than
milliseconds. Accordingly, some clients are experiencing long delays despite the use of a CDN. Other
measurements indicated that these long latencies are due to packet losses. Since the losses were usually
after the first packet had been acknowledged, we believe that most of these long latencies were caused by
network congestion.

16 32 64 128 256 512 1024 2048 4096
latency (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

fr
ac

tio
n

aggregate
akamai

Figure 2. Akamai latency at location B

Figures 2 and 3 are two additional plots from the other network locations we used, which show many of the
same features but which also give a sense of the variability due to geography and other factors. In Figure 2,
we see the performance of Akamai as measured from location B, and Akamai is doing better compared to
random selection: that is, there is a much larger gap between the performance of the CDN and the
performance of a random choice.

16 32 64 128 256 512 1024 2048 4096
latency (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

fr
ac

tio
n

aggregate
akamai

Figure 3. Akamai latency at location C

In contrast, Figure 3 shows Akamai's performance as measured from location C. The gap between the
CDN and a random selection is much narrower, but the differences among all servers are also narrower.

For some reason, the CDN is not as effective at delivering content to this location. We speculate that the
nearest node of the CDN is still quite far away from the client at location C.

16 32 64 128 256 512 1024 2048 4096
latency (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0
cu

m
ul

at
iv

e
fr

ac
tio

n

aggregate
digisle

Figure 4. Digital Island latency at location X

Figure 4 shows our first plot of Digital Island data, for location X. This plot is similar in many ways to the
plot of Akamai data for location A, which is what we would expect. Recall that A and X are the same
geographic location but that the experiments are not otherwise comparable – in particular, we cannot
compare Figure 4 to Figure 1 to determine which service is performing better.

16 32 64 128 256 512 1024 2048 4096
latency (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0
cu

m
ul

at
iv

e
fr

ac
tio

n

aggregate
digisle

Figure 5. Digital Island latency at location Y

 Figure 5 shows the latency measured for Digital Island at location Y. As with Akamai at location B, there
is a considerable spread between the latency as delivered by Digital Island and the latency to be expected
from a random choice.

16 32 64 128 256 512 1024 2048 4096
latency (milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0
cu

m
ul

at
iv

e
fr

ac
tio

n

aggregate
digisle

Figure 6. Cumulative distribution of latency, location Z

Finally, Figure 6 shows the latency measured for Digital Island at location Z. As with Akamai at location
C, the value of the CDN has dropped considerably – there is a much smaller distance between the
performance of Digital Island and the performance possible by choosing randomly. However, it's also clear
that the differences among the servers are relatively less conspicuous.

4. Discussion
The data show quite clearly that neither commercial CDN service chooses the optimal server consistently.
However, the claimed advantages of a CDN are real and measurable. The performance improvement can be
quantified not only by comparison to the performance using the origin server alone, but also by comparison
to other choices of server.

Choosing between a server with a latency of 50 ms and one with a latency of 100 ms is not the important
problem for a CDN. In the complexity of the real Internet, the true challenge for a CDN is to pick a
reasonably good server while avoiding any unreasonably bad servers. Although both measured services
mostly do well at this task, both do occasionally pick bad choices. Those bad choices have measured
latencies that are almost certainly worse than the latency achievable by going directly to the origin server.
Although CDNs are intended to improve performance for end users, in a small fraction of cases these
CDNs apparently degrade performance.

5. References

[1] http://www.akamai.com

[2] http://www.digitalisland.com

[3] David Karger, Alex Sherman, Andy Berkheimer, Bill Rogstad, Rizwan Dhanidina, Ken Iwamoto, Brian
Kim, Luke Matkins, and Yoav Yerushalmi. Web Caching with Consistent Hashing. Proceedings of the 8th
World Wide Web Conference (WWW8). See www.www8.org/w8-papers/2a-
webserver/caching/paper2.html.

6. Acknowledgement
The authors gratefully acknowledge Robert Morris's input.

7. Vitae

Kirk Johnson (tuna@sightpath.com) is a Consulting Engineer at SightPath, Inc. His interests include
parallel and distributed systems, computer architecture, digital speech and signal processing, data
compression, and cryptography. He received the Ph.D. degree in electrical engineering and computer
science from the Massachusetts Institute of Technology (MIT) in 1995.

John Carr (jfc@sightpath.com) is a Member of Technical Staff at SightPath. He studied planetary science
at MIT and went into computer programming. He worked for MIT Athena/Information Systems, and later
spent several years as a contractor doing systems and network programming. Among the companies he has
worked for are IBM, DEC, Polaroid, and Rational.

Mark Day (mday@sightpath.com) is Senior Scientist at SightPath. He was previously at Lotus, where his
work on notification and synchronous groupware contributed to Lotus Sametime and to the IETF working
group on Instant Messaging and Presence Protocol. His interests include distributed systems, programming
languages, graphic design, and coordination theory. He received his Ph.D. from MIT in 1995.

Frans Kaashoek (kaashoek@sightpath.com) is Chief Scientist at SightPath and an Associate Professor of
Electrical Engineering and Computer Science at MIT.

