Chapter Outline

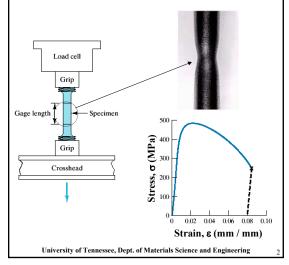
Mechanical Properties of Metals How do metals respond to external loads?

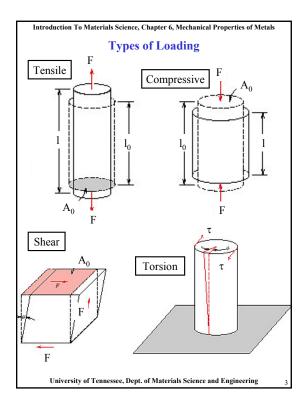
■ Stress and Strain

- ➤ Tension
- ➤ Compression
- ➤ Shear
- > Torsion

■ Elastic deformation

Plastic Deformation


- > Yield Strength
- > Tensile Strength
- ➤ Ductility
- > Toughness
- > Hardness


University of Tennessee, Dept. of Materials Science and Engineering

Introduction To Materials Science, Chapter 6, Mechanical Properties of Metals

Introduction

To understand and describe how materials deform (elongate, compress, twist) or break as a function of applied load, time, temperature, and other conditions we need first to discuss standard test methods and standard language for mechanical properties of materials.

Concepts of Stress and Strain (tension and compression)

To compare specimens of different sizes, the load is calculated per unit area.

Engineering stress: $\sigma = \mathbf{F} / \mathbf{A}_0$

F is load applied perpendicular to specimen cross-section; A_0 is cross-sectional area (perpendicular to the force) **before** application of the load.

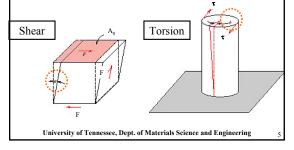
Engineering strain: $\varepsilon = \Delta l / l_o \quad (\times 100 \%)$

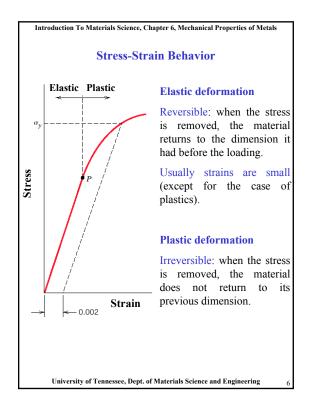
 Δl is change in length, l_o is the original length.

These definitions of stress and strain allow one to compare test results for specimens of different cross-sectional area A_0 and of different length l_0 .

Stress and strain are positive for tensile loads, negative for compressive loads

University of Tennessee, Dept. of Materials Science and Engineering

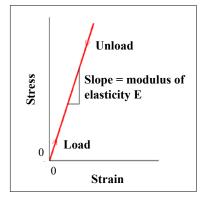

Concepts of Stress and Strain (shear and torsion)


Shear stress: $\tau = \mathbf{F} / \mathbf{A}_0$

F is load applied parallel to the upper and lower faces each of which has an area A_0 .

Shear strain: $\gamma = \tan \theta$ (x 100 %) θ is the strain angle

Torsion is variation of pure shear. A shear stress in this case is a function of applied torque T, shear strain is related to the angle of twist, ϕ .



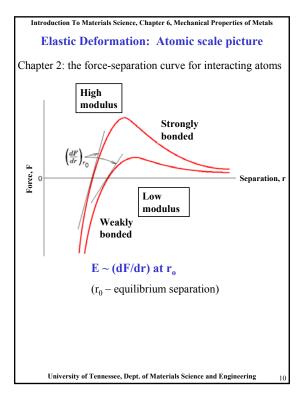
Stress-Strain Behavior: Elastic deformation

In tensile tests, if the deformation is elastic, the stress-strain relationship is called Hooke's law:

$\sigma = \mathbf{E} \, \mathbf{\epsilon}$

E is Young's modulus or modulus of elasticity, has the same units as σ , N/m² or Pa

Higher E → higher "stiffness"


University of Tennessee, Dept. of Materials Science and Engineering

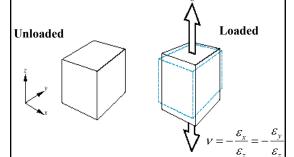
Introduction To Materials Science, Chapter 6, Mechanical Properties of Metals Elastic Deformation: Nonlinear elastic behavior

In some materials (many polymers, concrete...), elastic deformation is not linear, but it is still reversible. $\frac{\sigma_2}{\delta \sigma_0} = \frac{\Delta \sigma}{\Delta \epsilon} = \frac{\Delta \sigma}{\Delta \epsilon$

Strain ϵ

University of Tennessee, Dept. of Materials Science and Engineering

Elastic Deformation: Anelasticity (time dependence of elastic deformation)

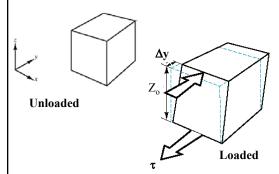

- So far we have assumed that elastic deformation is time independent (i.e. applied stress produces instantaneous elastic strain)
- However, in reality elastic deformation takes time (finite rate of atomic/molecular deformation processes) - continues after initial loading, and after load release. This time dependent elastic behavior is known as anelasticity.
- The effect is normally small for metals but can be significant for polymers ("visco-elastic behavior").

University of Tennessee, Dept. of Materials Science and Engineering

11

Introduction To Materials Science, Chapter 6, Mechanical Properties of Metals

Elastic Deformation: Poisson's ratio


Materials subject to tension shrink laterally. Those subject to compression, bulge. The ratio of lateral and axial strains is called the Poisson's ratio υ .

 υ is dimensionless, sign shows that lateral strain is in opposite sense to longitudinal strain

Theoretical value for isotropic material: 0.25 Maximum value: 0.50, Typical value: 0.24 - 0.30

University of Tennessee, Dept. of Materials Science and Engineering

Elastic Deformation: Shear Modulus

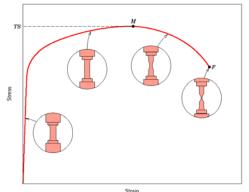
Relationship of shear stress to shear strain:

$$\tau = \mathbf{G} \gamma$$
, where: $\gamma = \tan \theta = \Delta y / z_0$

G is Shear Modulus (Units: N/m²)

For isotropic material:

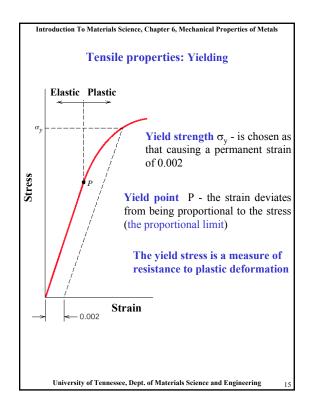
$$E = 2G(1+v) \rightarrow G \sim 0.4E$$

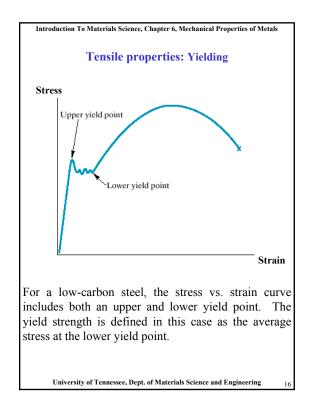

(Note: most materials are elastically anisotropic: the elastic behavior varies with crystallographic direction, see Chapter 3)

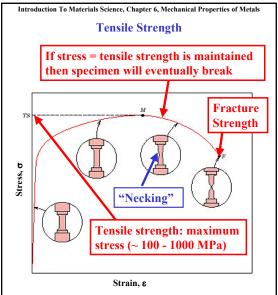
University of Tennessee, Dept. of Materials Science and Engineering

13

Introduction To Materials Science, Chapter 6, Mechanical Properties of Metals


Stress-Strain Behavior: Plastic deformation




Plastic deformation:

- · stress and strain are not proportional
- · the deformation is not reversible
- deformation occurs by breaking and re-arrangement of atomic bonds (in crystalline materials primarily by motion of dislocations, Chapter 7)

University of Tennessee, Dept. of Materials Science and Engineering

For structural applications, the yield stress is usually a more important property than the tensile strength, since once the it is passed, the structure has deformed beyond acceptable limits.

University of Tennessee, Dept. of Materials Science and Engineering

Introduction To Materials Science, Chapter 6, Mechanical Properties of Metals

Tensile properties: Ductility

Brittle

Brittle

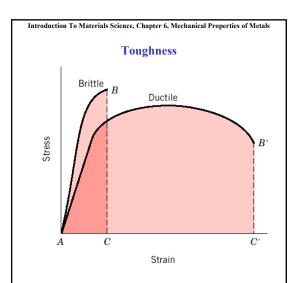
Ductile

Strain

Ductility is a measure of the deformation at fracture

Defined by $\%EL = \left(\frac{l_f - l_0}{l_0}\right) \times 100$ percent elongation or percent reduction in area \implies $\%RA = \left(\frac{A_0 - A_f}{A_0}\right) \times 100$ University of Tennessee, Dept. of Materials Science and Engineering 18

Typical mechanical properties of metals

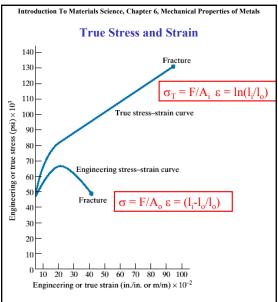

Metal Alloy	Yield Strength MPa (ksi)	Tensile Strength MPa (ksi)	Ductility, %EL [in 50 mm (2 in.)]
Aluminum	35 (5)	90 (13)	40
Copper	69 (10)	200 (29)	45
Brass (70Cu-30Zn	75 (11)	300 (44)	68
Iron	130 (19)	262 (38)	45
Nickel	138 (20)	480 (70)	40
Steel (1020)	180 (26)	380 (55)	25
Titanium	450 (65)	520 (75)	25
Molybdenum	565 (82)	655 (95)	35

The yield strength and tensile strength vary with prior thermal and mechanical treatment, impurity levels, etc. This variability is related to the behavior of dislocations in the material, Chapter 7. But elastic moduli are relatively insensitive to these effects.

The yield and tensile strengths and modulus of elasticity decrease with increasing temperature, ductility increases with temperature.

University of Tennessee, Dept. of Materials Science and Engineering

19



Toughness = the ability to absorb energy up to fracture = the total area under the strain-stress curve up to fracture

Units: the energy per unit volume, e.g. J/m³

Can be measured by an impact test (Chapter 8).

University of Tennessee, Dept. of Materials Science and Engineering

True stress = load divided by **actual area** in the necked-down region, continues to rise to the point of fracture, in contrast to the engineering stress.

University of Tennessee, Dept. of Materials Science and Engineering

Introduction To Materials Science, Chapter 6, Mechanical Properties of Metals

Elastic Recovery During Plastic Deformation $\sigma_{y_1} \longrightarrow \sigma_{y_0} \longrightarrow 0$ Unload

If a material is deformed plastically and the stress is then released, the material ends up with a permanent strain.

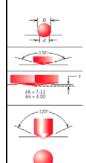
Elastic strain

Reapply

If the stress is reapplied, the material again responds elastically at the beginning up to a new yield point that is higher than the original yield point.

The amount of elastic strain that it will take before reaching the yield point is called **elastic strain recovery**.

University of Tennessee, Dept. of Materials Science and Engineering

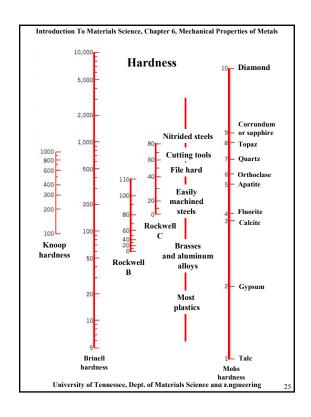

22

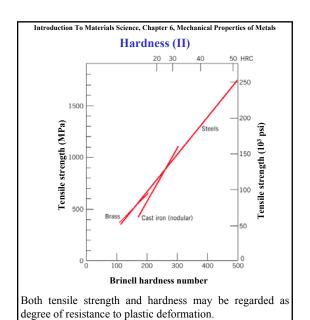
Strain

Hardness (I)

Hardness is a measure of the material's resistance to localized plastic deformation (e.g. dent or scratch)

A qualitative Moh's scale, determined by the ability of a material to scratch another material: from 1 (softest = tale) to 10 (hardest = diamond).

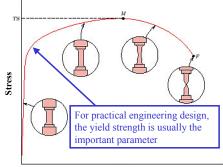



Different types of quantitative hardness test has been designed (Rockwell, Brinell, Vickers, etc.). Usually a small indenter (sphere, cone, or pyramid) is forced into the surface of a material under conditions of controlled magnitude and rate of loading. The depth or size of indentation is measured.

The tests somewhat approximate, but popular because they are easy and non-destructive (except for the small dent).

University of Tennessee, Dept. of Materials Science and Engineering

23



Hardness is proportional to the tensile strength - but note that the proportionality constant is different for

University of Tennessee, Dept. of Materials Science and Engineering

different materials.

What are the limits of "safe" deformation?

Strain

Design stress: $\sigma_d = N'\sigma_c$ where $\sigma_c = maximum$ anticipated stress, N' is the "design factor" > 1. Want to make sure that $\sigma_d < \sigma_v$

Safe or working stress: $\sigma_w = \sigma_y/N$ where N is "factor of safety" > 1.

University of Tennessee, Dept. of Materials Science and Engineering

27

Introduction To Materials Science, Chapter 6, Mechanical Properties of Metals

Take Home Messages

• Make sure you understand

- Language: (Elastic, plastic, stress, strain, modulus, tension, compression, shear, torsion, anelasticity, yield strength, tensile strength, fracture strength, ductility, resilience, toughness, hardness)
- Stress-strain relationships
- Elastic constants: Young's modulus, shear modulus, Poisson ratio
- Geometries: tension, compression, shear, torsion
- Elastic vs. plastic deformation
- Measures of deformation: yield strength, tensile strength, fracture strength, ductility, toughness, hardness

 $University\ of\ Tennessee,\ Dept.\ of\ Materials\ Science\ and\ Engineering$