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ABSTRACT
Robust joint visual attention is necessary for achieving a
common frame of reference between humans and robots in-
teracting multimodally in order to work together on real-
world spatial tasks involving objects. We make a compre-
hensive examination of one component of this process that is
often otherwise implemented in an ad hoc fashion: the abil-
ity to correctly determine the object referent from deictic
reference including pointing gestures and speech. We de-
velop a modular spatial reasoning framework based around
decomposition and resynthesis of speech and gesture into a
language of pointing and object labeling that supports mul-
timodal and unimodal access in both real-world and mixed-
reality workspaces, accounts for the need to discriminate and
sequence identical and proximate objects, assists in over-
coming inherent precision limitations in deictic gesture, and
assists in the extraction of those gestures. We further discuss
an implementation of the framework that has been deployed
on two humanoid robot platforms to date.

1. INTRODUCTION
Deictic gesture is an important non-verbal component of
multimodal interaction between humans. Identified early
on as a primary candidate metaphor to be transferred to
human-computer interaction, deixis — in particular the “con-
crete” or “specific deictic”, using pointing to refer to a spe-
cific object or function — is now a staple of interfaces in-
volving 2-D spatial metaphors. In the field of human-robot
interaction, deictic object reference is also an attractive com-
munications mode. Ideal scenarios of humans and robots
working together with multiple objects in the 3-D real world,
however, present a more complex and unstructured prob-
lem. We have therefore revisited deictic object reference for
achieving spatial common ground between the human and
the robot in a scalable and robust fashion during such col-
laborative activities.
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In humans, deictic spatial gesture is a component of joint
visual attention, a behavior that is theorized to be one of
the developmental precursors to “theory of mind” [34, 25,
33]. Furthermore, human-human interaction studies have
showed that over 50% of observed spontaneous gestures to
be concrete deictics [9], and that concrete deictic gesture can
effectively substitute for location descriptions in establish-
ing joint attention [19]. We wish to support this process as
part of our broader work in providing robots with the means
to more deeply understand human activities, goals and in-
tentions. The direct goal of the research reported here is
to allow the human to communicate with the robot about
specific objects in space — to always be “on the same page”
about which object is being attended to — using the natu-
ral gestural and speech capabilities adult humans ordinarily
possess: pointing and naming.

Humans’ use of deictic gesture has two important character-
istics which carry over to human-robot interaction. First, it
is only used in cases of what Clark and Marshall refer to as
“physical copresence” [5] — both participants must be able
to view the referent in the situation in which the gesture
occurs. The robot’s pre-existing knowledge of the spatial
state of the world thus should contextualize the gesture; in
fact, the nature of human pointing behavior makes this a
necessity. The precise point indicated by the human (the
demonstratum) is in most cases spatially distinct from the
object the human intends to indicate (the referent) [6] due
to various factors including simple geometric error on the
part of the human (e.g. parallax), the human’s desire not to
allow the gesture itself to occlude the robot’s view, and the
fact that pointing gestures in 3-D contain no inherent dis-
tance argument. Instead, the demonstratum can typically
only constrain the set of potential referents. This argues for
a “spatial database” approach in which deictic gestures are
treated as parameterized spatial queries.

Second, like most gesture, deictic gesture is closely corre-
lated with speech (90% of gesture occurs in conjunction
with speech [22]). Natural language itself contains deictic
expressions that can be disambiguated with the help of ges-
ture, and similarly deictic gestures are usually resolved in
the presence of their accompanying spoken context. Point-
ing gestures unaccompanied by contextualizing utterances
are rare, and depend on other narrow constraints to allow
them to be understood, such as specific hand configurations



Figure 1: Humanoid robot platforms for which this
deictic reference system was designed. Left: Robo-
naut, designed for autonomous teamwork with hu-
man astronauts in space. Right: Leonardo, designed
for research into human-robot interaction.

(index finger outstretched) along with situational context
(e.g. to distinguish a pointing up gesture from a symbolic
reference to the numeral 1). In the typical case the robot
should be able to use the accompanying speech both to as-
sist in the spatio-temporal isolation of the gesture itself, and
to constrain the demonstratum to the referent in cluttered
or hierarchical situations.

The research described in this paper therefore contributes
a framework for multimodally determining object referents
from a combination of deictic gesture, speech, and spatial
knowledge, in support of joint attention during physically
copresent human-robot collaboration. The framework is de-
signed to reflect and accommodate natural human deictic
behavior in terms of precision and timing, and unlike other
approaches to date is designed to support mutual disam-
biguation when referring to multiple physically identical ob-
jects. Rather than a more typical selection-based metaphor,
a metadata approach of object referent labeling is chosen, to
support subsequent reference in both multimodal and uni-
modal fashions.

An implementation of the framework is also presented, in
terms of a modular system designed to interact with an un-
tethered 3-D model-based visual tracking system, a speech
recognition engine and a hierarchical spatial database. The
implementation is further extended to support interactions
with real robots in mixed-reality workspaces containing vir-
tual objects. Results from usage of the implementation — in
conjunction with different humanoid robot platforms (Fig-
ure 1, vision systems, speech recognition systems and spatial
databases — are discussed.

2. RELATED WORK
The “Put-That-There” system of Bolt in 1980 essentially set
the standard for copresent deictic gestural object reference
in human-machine interaction [2]. Conceptually, the task of
this system is similar to that of the human-robot collabo-
ration task: to refer to objects by pointing and speaking.
This system used a Polhemus tracker to monitor the hu-
man’s arms, and the spatial data to be managed consisted
of simple geometric shapes in a 2-D virtual space. Most of
the subsequent advances within this task domain concern
improvements to the underlying components such as track-
ing and speech recognition.

For a comprehensive summary of work on the visual inter-
pretation of hand gestures, including deictic gestures, see [29].
To overcome technological limitations in natural gesture anal-
ysis, investigations into multimodal interfaces involving deixis
were often restricted to constrained domains such as 2-D
spaces and pen-based input (e.g. [24]). The deictic compo-
nents of these efforts can be summarized as enabling this
type of gestural reference in some form as part of the in-
terface, rather than tackling problems in determining the
object referent from the gesture.

Several research efforts chose to concentrate on the object
referent primarily in order to use it as contextual informa-
tion to assist in recognition processes. Kuniyoshi and Inoue
used the object context to aid action recognition in a blocks
world [17]. Moore et al. related object presence to the tra-
jectory of the hand in order to provide action-based object
recognition [26]. Strobel et al. used the spatial context of
the environment (e.g. what object lies along the axis of the
hand) to disambiguate the type of hand gesture being per-
formed in order to command a domestic service robot [35].
Similarly, our first deictic reference system developed to sup-
port human tutelage of our humanoid robot Leonardo used
the presence of a visually identified button object to confirm
a static pointing gesture after being suggested by the hand
tracking system [3]. Nagai reports using object information
as a feedback signal in a system for teaching a robot to
comprehend the relation between deictic gesture and atten-
tional shift [27]. In contrast, our current work is primarily
concerned with robustly connecting the demonstratum with
the desired referent.

The majority of work in determining the object referent from
deixis has been directed towards using gestural information
to disambiguate natural language use. Kobsa et al. used
gestural information in the form of a mouse pointer in a 2-
D space to resolve deictic phrases [15], and more recently
Huls et al. used similar mouse-based pointing as part of a
system to automatically resolve deictic and anaphoric ex-
pressions [12]. Koons et al. resolved deictic expressions
using visual attention in the form of both pointing and gaze
direction [16]. Similar efforts are beginning to appear in the
human-robot interaction literature; for example, Hanafiah
et al. use onboard gaze and hand tracking to assist a robot
in disambiguating inexplicit utterances, though only results
for the gaze component are reported [10]. In contrast to our
work, these systems concentrate on disambiguating speech
as it occurs, rather than augmenting the shared spatial state
with data for future object reference, such as object names.

Research concentrating primarily on determining and man-
aging object referents from pointing is less common. The
ability to use deictic gesture over a range of distances is
an attractive feature in virtual environments (VEs), and
Latoschik and Wachsmuth report a system that classifies
pointing gestures into direction vectors that can be used to
select objects, but do not tackle object discrimination [18].
A later VE system reported by Pfeiffer and Latoschik is more
closely aligned with our efforts, but as above focuses more on
the disambiguation of speech than gesture, and resolves mul-
tiple object reference with relative speech references rather
than further gesture [32]. Hofemann et al. recently report a
system dedicated to simultaneously disambiguating pointing
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Figure 2: The functional units of the object refer-
ence system and their data interconnections.

gestures and determining the object referent by combining
hand trajectory information with the presence of objects
in a “context area”, but does not deal with discrimination
within homogeneous or heterogeneous collections of multiple
objects. In contrast, our system is specifically designed for
working with multiple, potentially visually identical objects
arranged within the margin of error of human pointing and
visual tracking.

3. SYSTEM DESCRIPTION
Our framework for deictic object reference is a distributed,
modular approach based on largely independent functional
units that communicate by message passing. This enables
most modules to be simultaneously available for other tasks
in addition to object reference. Individual modules may be
executed on different computers for performance reasons.
The underlying metaphor is one of using a “deictic gram-
mar” to assemble some combination of gestures and object
names and relationships into queries to the robot’s spatial
database.

3.1 Functional Units
The four functional units of the framework are a vision-
based human tracking system for pointing gesture extrac-
tion, a grammar-based speech understanding system, a spa-
tial database, and the main deictic spatial reasoning system.
The units and their data interconnections are shown in Fig-
ure 2. The first three components are treated in a generic
fashion; they can and have been represented by different
implementations that just need to satisfy the essential data
requirements.

The human tracking system is a 3-D model-based tracker ca-
pable of real-time extraction and reporting of the human’s
arm or arms. While desirable, it is not strictly necessary for
the tracker to also detect pointing “gestures” by incorporat-
ing the configuration of the hand into the model. Distin-
guishing pointing from non-pointing is bootstrapped with
the aid of the speech module. We prefer to use an unteth-
ered vision-based tracker to maintain as much as possible
the naturalness of the interaction, but this is also not a re-
quirement. The local coordinate system of the tracker is
converted into the robot’s egocentric coordinate system.

The speech understanding system incorporates speech recog-
nition and parsing according to a predefined grammar that is
able to be tagged at points relating to deixis, such as direct
references to objects (names and deictic expressions such
as “this” and “that”) and instructions indicating an object
context (such as naming something). The system must thus
provide access to the tags activated for a particular parse.

The spatial database primarily stores the names, locations
and orientations of objects in space. It is independently up-
dated by the robot’s own perceptual and mnemonic systems.
Additional levels of sophistication such as more descriptive
metadata (object types and hierarchies of compound ob-
jects) and the ability to query the database by spatial par-
tition are helpful but not required. At present we encode a
basic type of an object as a prefix of its name.

The core of the system is the deictic spatial reasoning mod-
ule. This unit continuously monitors the output of the hu-
man tracker, and uses the tag signals from the speech pars-
ing to extract pointing gestures and assemble queries for
potential object referents from the spatial database. Candi-
dates returned from the spatial database are matched and
confirmed by this unit, and updated result information, along
with the pointing gestures themselves, are posted back to
the spatial database for subsequent access by the robot’s
attentional mechanisms.

3.2 Gesture Extraction
Hand gestures consistently adhere to a temporal structure,
or “gesture phrase” [14], comprising three phases: prepa-
ration, nucleus (peak or stroke [23]), and retraction. Vi-
sual recognition of deictic gestures is limited to the nucleus
phase, by identifying the characteristic hand configuration
(one finger outstretched) or making pose inference (arm out-
stretched and immobile). However these characteristics are
frequently attenuated or absent in natural pointing actions.
Conversely, as discussed earlier deictic gestures are almost
always accompanied by associated utterances. We therefore
choose to isolate pointing gestures temporally rather than
visually.

Speech is synchronized closely with the gesture phrase, but
the spoken deictic element does not directly overlap the de-
ictic gesture’s nucleus in up to 75of both spoken and gesture
phrases, the overlap is substantial and predictable. Marslen-
Wilson et al. observed that pointing gestures occured si-
multaneously with the demonstrative in the noun phrase of
the utterance, or with the head of the noun phrase if no
demonstrative was included, and that no deictic gestures
occurred after completion of the noun phrase [21]. Kaur et
al. similarly showed that during visual attention shifts, the
speaker’s gaze direction began to shift towards the object
referent before the commencement of speech [13]. These
results were matched by our own informal observations, in
which subjects frequently commenced pointing prior to both
the deictic and noun components of their utterances, dur-
ing human subject experiments using our previous pointing
system [4].

To extract pointing gestures temporally, we therefore con-
sider “dynamic pointing”, incorporating the preparation phase
as well as the nucleus, in addition to the more traditional



“static pointing”. This also allows us to successfully recover
deictic gestures in which the nucleus is not static, i.e. mo-
tioning towards an object. Because we can be confident
that the pointing gesture occurred during or shortly before
the user’s speech, the spatial reasoning system keeps a his-
tory buffer of the arm tracking data. When a deictic phrase
component is received from the speech understanding sys-
tem, this buffer is analyzed to extract the best estimate of
the gesture type and location. For implementation details,
please see Section 4.

3.3 Object Reference
First among the ten myths of multimodal interaction iden-
tified by Oviatt is that users of a multimodal system will
always tend to interact multimodally [28]. In fact, users
frequently prefer unimodal interaction, particularly in the
case of object reference — there should be no need for the
human to point to an object each time the robot’s atten-
tion is to be drawn to it. We therefore treat the traditional
“point-to-select” usage as a special case of a more general
“point-to-label” metaphor. Once an object has been labeled
for the robot, the human can refer to it unimodally by name,
as well as making partial reference by name to constrain po-
tential referents of future deictic gestures.

Object labels are also used to allow ordering of multiple
objects for tasks in which the robot must attend to them
in a particular sequence. Many collaborative tasks that
might be performed with robotic assistance, such as assem-
bly of a complex object from components, require attention
to otherwise identical objects in a specific order, yet this has
not been widely explored in the design of tools for human-
robot interaction. By incorporating a sequence number into
each object label, the robot can generate appropriate be-
havior from future unimodal references (e.g. “first”, “next”,
“last”).

As already discussed, object reference from deictic gesture
must content with a number of ambiguities. For example,
the pars-pro-toto deictic, in which a superordinate object is
indicated by pointing to an individual subcomponent, and
the opposite case, the totum-pro-parte deictic, in which the
superordinate object is used to refer attention to a specific
subcomponent. Moreover, 3-D pointing gestures have no in-
herent distance constraint, so particular spatial layouts can
present perspective ambiguities that are difficult to resolve
geometrically.

We tackle these problems by allowing nested object refer-
ences in which the user can first deictically indicate a parent
object to constrain further references until the constraint is
removed. When such a hierarchical object reference is set
up, the system restricts potential matches to objects physi-
cally or conceptually dependent on the constraining object.
This can occur both at the spatial database level, in terms
of hierarchically constructed compound objects, and at the
spatial reasoning level, in which a plane defined by the hor-
izontal axes of the parent object is used to constrain the
distance implied by the pointing gesture vector.

As mentioned above, pointing gestures themselves are also
treated as virtual object references and thus can be posted
to the spatial database as objects that are referred to by

“On this wheel, this nut is nut one.”

gesture partial-name

spatial-constraint label-constraint

object-reference gesture

spatial-constraint

partial-name

label-constraint

object-reference new-label

pick-act

deictic-act

Figure 3: Parsing a sentence containing a nested
object constraint and multiple deictic gestures into
a single pick action intended to focus the robot’s
attention on an object and label it for potential uni-
modal reference and sequencing.

themselves. This provides a seamless method of providing
access to pointing gestures to other attentional mechanisms
(which may not be interested in object reference directly)
and supports potential future extensions to reasoning about
the spatial behavior of the human.

3.4 Deictic Grammar
Deictic expressions are a grammatical component of natu-
ral language, but non-verbal communication or “body lan-
guage” is not strictly a language — it does not have discrete
rules and grammars, but does convey coded messages that
humans can interpret [20]. Our framework is based on syn-
thesis of the spoken and gestural elements of deictic refer-
ence into a “deictic grammar”, a formal language for phys-
ically and verbally referring to objects in space. Complex
speech and movement are decomposed into simpler features
that are sent to the deictic spatial reasoning system to be
parsed according to the following ruleset, where the vertical
bar ‘|’ represents either-or selection and square brackets ‘[]’
represent optionality:

deictic-act −→ pick-act [go-act] | place-act | delete-act

pick-act −→ object-reference [new-label] [pick-act]

place-act −→ pick-act object-reference

delete-act −→ object-reference

object-reference −→ [spatial-constraint] [label-constraint]

spatial-constraint −→ [gesture] [object-reference]

label-constraint −→ [full-name | partial-name]

In this deictic grammar, pick-act indicates an attention di-
recting command with associated referent relabeling, place-
act indicates a command to move one or more objects,
delete-act indicates a command to remove an object from
the spatial database. The pick-act term has been designed
recursively in order to support multiple simultaneous refer-
ent resolution. In cases of multiple resolution, gestures are
held in a queue and only matched against results from the



Figure 4: Example screenshot from the 3-D visu-
alizer showing four gestures being simultaneously
matched to four objects constrained by a parent ob-
ject, including the actual pointing error in each case.

spatial database when the system is best equipped to do so.
A special end-of-sequence marker, go-act, is therefore nec-
essary to instruct the system to drain the queue of deictic
references in these cases.

The spatial-constraint term is also recursive via object-
reference, in order to support nested object reference as
described in Section 3.3. See Figure 3 for an example parse
of a typical compound deictic act, showing how a combina-
tion of multiple gestures and object references can be used
to relabel a single specific object. The deictic grammar im-
poses some restrictions on the spoken grammar that can
be used to drive it. This is acceptable for our application
because the speech recognition engine itself also requires a
pre-written grammar, so it just requires this framework to
be taken into account when designing the space of utterances
the robot can understand.

The top level commands were chosen in order to primarily
support object reference in the real world, with extensions
to support mixed-reality workspaces (i.e. where objects can
be moved by the spatial database directly, and where object
deletion makes sense). We chose not to specifically incorpo-
rate object creation, as this system is designed for the spatial
reference of objects that the robot knows to be physically
present. None of the current module interconnections specif-
ically deals with objects the robot knows about but which
are not present, so the spatial reasoning system can not post
arbitrary objects to the spatial database. This functionality
could be added by having another module read posted ges-
tures from the spatial database and comminicate with the
speech system directly.

4. IMPLEMENTATION DETAILS
The spatial reasoning system is written in C++ and runs on
an IBM workstation running Windows 2000. It incorporates
a 3-D visualizer of objects and pointing gestures, written
using OpenGL (Figure 4).

The functionality of the other modules has been provided
by a number of other systems. During our involvement with
the Robonaut project, visual tracking of the human was
performed by the system developed by Huber [11]. Speech

Figure 5: The robot currently has untethered real-
time perception of both human upper arms and fore-
arms, using the VTracker articulated body tracker.

recognition was accomplished using ViaVoice and the nat-
ural language understanding system Nautilus developed at
the Naval Research laboratories [30]. The spatial database
used was the Sensory Egosphere (SES) developed at Van-
derbilt University [31]. Intermodule communication used
Network Data Delivery System by Real-Time Innovations,
Inc.

Currently, for our humanoid robot Leonardo, we have re-
placed each of these modules. Human body tracking is per-
formed by the VTracker articulated body tracker, developed
and kindly provided for our use by the Vision Interfaces
Group at the MIT Computer Science and Artificial Intel-
ligence Laboratory, which uses an interval constraint prop-
agation algorithm on stereo range data to provide a real-
time position estimate of the human’s torso and left and
right shoulders, elbows and wrists [8] (Figure 5). Speech
recognition and parsing is performed by CMU Sphinx 4, us-
ing grammars developed in our laboratory [7]. We have
developed our own basic implementations for the spatial
database and intermodule communications, though compat-
ibility with the SES has been retained.

4.1 Gesture Extraction
Extraction of static nucleus deictic gestures is straightfor-
ward but varies with the visual tracking system. The Robo-
naut vision system tracks only the human forearm, so the
principal axis of the forearm from elbow to wrist is used
as the pointing vector. The VTracker system tracks both
forearm and upper arm, so we use the vector between the
shoulder and the wrist, which actually provides a better esti-
mate of the distant pointing location than the forearm alone
for typical human pointing gestures.

To extract the preparation phase of deictic gestures, or those
with a dynamic nucleus, the time series of the position of the
end effector is used instead. Principal component analysis
is performed on a moving buffer of position values prior to
the speech trigger. The first principal component is used as
the orientation vector of the gesture. This vector is then lin-
early best fit to the collection of position values to determine
its translational position and direction. This method has a
lower accuracy than the static case, but is typically used in
situations when the problem is well constrained by the spa-
tial arrangement of the objects or the hierarchical context,
as users tend to point more carefully when the situation is
ambiguous.

4.2 Object Matching
The spatial reasoning system performs geometric matching
between extracted deictic gestures and lists of candidate ob-



discrete-value RetrieveMethod

discrete-value PointType

discrete-value ActionType

discrete-value ActionTime

string-value RetrieveName
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string-value RelabelName
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Figure 6: Contents of the speech message data struc-
ture sent to the spatial reasoning system to control
and coordinate its activities.

jects returned by the spatial database. The spatial database
stores an object by its name and six floating point numbers
representing its position and orientation in the robot’s co-
ordinate frame of reference. Currently the spatial database
returns all objects satisfying a query by full or partial ob-
ject name, although we have designed for future support of
query by object hierarchy or by spatial partition based on
the set of gestures involved in the particular circumstance.

The returned set of candidate objects is compared against
the set of gestures using a linear best fit. Presently the size
of the gesture queue is limited to 12 gestures, which allows
an exhaustive search of the matching space to be performed
to avoid encountering local minima. Clearly the accuracy of
the system increases as the number of simultaneous matches
is performed, but we do not envisage any tasks for our robot
that require simultaneous sequencing of more than this num-
ber of identical objects.

Due to limitations in the spatial databases used so far, which
do not store extent information, objects are currently treated
as point targets and gestures as vectors. When a parent ob-
ject is used as a spatial constraint, the horizontal axes of
the parent object, rotated to match the pose of the object,
are extrapolated to an intersection plane that reduces the
gesture vectors to points from which linear distances can be
calculated. When no parent object has been defined, the or-
thogonal distance from the candidate objects to the gesture
vectors is used.

4.3 Deictic Grammar Parsing
The deictic grammar given in Section 3.4 represents a sys-
tem model, of which our implementation is one realization.
In our implementation the input to the grammar parser con-
sists of a sequence of activated speech tags produced by the
speech recognition system as a result of its parse of the hu-
man’s speech. The structure of the tag is shown in Figure 6.

There are four discrete-valued fields. The ActionTime field
indicates whether the tag represents a tag to be enqueued
or executed immediately. The ActionType field defines the
action context of the tag (and its corresponding gesture),
such as a deictic pick or place action. The PointType field
can be used to force the gesture extraction mechanism to
limit itself to a static or dynamic interpretation of the arm
state, if desired. The RetrieveMethod field informs the spa-
tial reasoning system which parameters to use in its retrieval
of object candidates from the spatial database. The string
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Figure 7: General state model of the spatial rea-
soning system. Edge transitions are caused by in-
coming speech messages, and may have communi-
cations with the spatial database associated with
them. Solid edges represent transitions in which
new object information may be posted to the spa-
tial database (e.g. object relabeling or coordinate
transformations). Dashed edges represent transi-
tions in which object information may be read but
not posted.

fields RetrieveName, ParentName and RelabelName contain
the values for spatial database retrieval and object refer-
ent reposting, if applicable. Finally, a timestamp assists in
maintaining synchronizations between the various modules,
which do not necessarily share a common clock.

These incoming speech tags are processed by using their con-
tents to trigger changes in the state of the spatial reasoning
system that simulate the behavior of the deictic grammar
model. A state diagram of the reasoning system is shown
in Figure 7, and an example tag sequence corresponding to
the example parse of Figure 3 is shown in Figure 8. The
tag structure is easily extended to more complex grammars
and modules (e.g. affirmation/negation of pointing results,
more complex database lookups) with corresponding alter-
ations to the state model. We presently assume properly
formed input from the speech system and simply discard
tag sequences resulting in error conditions.

5. RESULTS
The initial version of this system was used as part of NASA’s
humanoid robot Robonaut (Figure 1 Left) for its Demo 2 for
the DARPA MARS program, a report on which can be found
in [1]. In this task, the human instructed the robot to tighten
the four nuts on an ordinary automobile wheel in a specific
sequence by using deictic gesture and speech to constrain
the robot’s attention to the wheel object and then similarly
pointing and labeling the nuts in order (Figure 9). The
discrimination distance between the nuts was roughly on
the order of the size of the nuts themselves (approximately
3cm).



“On this wheel, this nut is nut one.”

RetrieveMethod Partial Name

PointType Any

ActionType Constrain

ActionTime Delayed

RetrieveName wheel

RetrieveMethod Partial Name

PointType Any

ActionType Pick

ActionTime Immediate

RetrieveName nut

RelabelName nut 1

Figure 8: The example utterance as parsed into
speech tag messages, each of which triggers an ob-
ject reference incorporating a deictic gesture. The
first determines the nested object constraint and the
second matches the ultimate object referent and at-
taches its new label.

Using multiple simultaneous gesture-object matching, the
deictic spatial reference system was able to robustly resolve
the object referents correctly in the presence of tracking and
human pointing error. Using the additional constraint that
in the event that the spatial database returned the same
number of candidate object referents as gestures the system
was to assume a unique one-to-one match, the system was
also able to detect single duplicate labeling errors.

The current version of the system, extended for mixed-reality
workspace support, is intended for use in collaborative tasks
with our humanoid robot Leonardo (Figure 1 Right), re-
placing a less sophisticated earlier deictic object reference
system that operated in two spatial dimensions. We expect
this system to support significantly more complex natural
human-robot interactions involving objects in the world.

6. CONCLUSIONS & FUTURE WORK
By formally incorporating deictic gestures into the language
of object reference, the framework we have developed pro-
vides tighter integration of natural multimodal interaction
between humans and robots. The framework further sup-
ports natural human behavior by explicitly concentrating
on persistent object disambiguation for unimodal speech
reference through the use of user-defined labels. The de-
ictic grammar construct with support for nested object ref-
erence and multiple simultaneous object referent resolution
has been demonstrated to be robust to the imprecision of
contemporary motion tracking and human pointing actions
themselves.

The implementation of the spatial reasoning module that we
have developed is a comprehensive and flexible system for
achieving human-robot joint attention with real and virtual
objects. It has been deployed as part of the computational
resources of two different complex humanoid robots, each
of which has different implementations of the various other
subcomponents such as vision and speech, and has success-
fully been used as part of a demonstration of a real-world
cooperative assembly task.

As this system currently meets our basic requirements, we
do not envisage significant future work on the core elements
of the deictic grammar and spatial reasoning process. The
principal element in need of increased sophistication is the

Figure 9: Execution of the pointing and labeling
component of the Robonaut nut-tightening task.
The four nuts are indicated by the human in or-
der to label them with their sequence numbers, and
the gestures then matched to the correct object ref-
erents simultaneously.

spatial database implementation. Ultimately it would be
useful for the robot’s spatial short term memory to be ar-
ranged more along the lines of a virtual environment scene
graph, incorporating details such as object shape and vol-
umetric extents to allow more accurate gesture matching
and proper geometric querying. It might also be useful to
merge our current work on social referencing into the spatial
database, providing the potential for emotional parameter-
izations to spatial queries (e.g., pointing at a collection of
objects and asking for one’s favorite).
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and Bugajska, M. Building an autonomous humanoid tool user.
In Proc. IEEE-RAS/RSJ Int’l Conf. on Humanoid Robots
(Humanoids ’04), Los Angeles, California, November 2004.

[2] Bolt, R.A. Put-That-There: Voice and gesture at the graphics
interface. ACM Computer Graphics, 14(3):262–270, 1980.

[3] Breazeal, C., Brooks, A.G., Gray, J., Hoffman, G., Kidd, C.,
Lee, H., Lieberman, J., Lockerd, A., and Chilongo, D. Tutelage
and collaboration for humanoid robots. International Journal
of Humanoid Robots, 1(2):315–348, 2004.

[4] Breazeal, C., Kidd, C.D., Lockerd Thomaz, A., Hoffman, G.,
and Berlin, M. Effects of nonverbal communication on



efficiency and robustness in human-robot teamwork. In Proc.
International Conference on Intelligent Robots and Systems,
2004.

[5] Clark, H.H. and Marshall, C.R. Definite reference and mutual
knowledge. In Joshi, A.K., Webber, B.L., and Sag, I.A., editors,
Elements of Discourse Understanding. Cambridge University
Press, Cambridge, 1981.

[6] Clark, H.H., Schreuder, R., and Buttrick, S. Common ground
and the understanding of demonstrative reference. Journal of
Verbal Learning and Verbal Behavior, 22:245–258, 1983.

[7] CMU Sphinx Group. Open Source Speech Recognition Engines.
http://cmusphinx.sourceforge.net/.

[8] Demirdjian, D., Ko, T., and Darrell, T. Constraining human
body tracking. In Proc. International Conference on
Computer Vision, Nice, France, October 2003.

[9] Gullberg, M. Gestures in spatial descriptions. In Working
Papers 47, pages 87–97. Lund University, Department of
Linguistics, 1999.

[10] Hanafiah, Z.M., Yamazaki, C., Nakamura, A., and Kuno, Y.
Human-robot speech interface understanding inexplicit
utterances using vision. In Late Breaking Results of the 2004
Conference on Human Factors and Computing Systems
(CHI’04), pages 1321–1324. ACM Press, April 24–29 2004.

[11] Huber, E. and Baker, K. Using a hybrid of silhouette and range
templates for real-time pose estimation. In Proc. International
Conference on Robotics and Automation, pages 1652–1657,
New Orleans, Louisiana, 2004. IEEE.

[12] Huls, C., Bos, E., and Claassen, W. Automatic referent
resolution of deictic and anaphoric expressions. Computational
Linguistics, 21(1):59–79, 1995.

[13] Kaur, M., Tremaine, M., Huang, N., Wilder, J., and Gacovski,
Z. Where is ’it’? event synchronization in gaze-speech input
systems. In Proc. 5th International Conference on Multimodal
Interfaces (ICMI’03), pages 151–158, November 2003.

[14] Kendon, A. Current issues in the study of gesture. In
Nespoulous, J.-L., Perron, P., and Lecours, A.R., editors, The
Biological Foundations of Gestures, pages 23–47. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1986.

[15] Kobsa, A., Allgayer, J., Reddig, C., Reithinger. N., Schmauks,
D., Harbusch, K., and Wahlster, W. Combining deictic gestures
and natural language for referent identification. In Proc. 11th
Conference on Computational Linguistics, pages 356–361,
Bonn, Germany, 1986.

[16] Koons, D.B., Sparrell, C.J., and Thorisson, K.R. Integrating
simultaneous input from speech, gaze, and hand gestures. In
Maybury, M., editor, Intelligent Multimedia Interfaces, pages
257–276. MIT Press, Menlo Park, CA, 1993.

[17] Kuniyoshi, Y. and Inoue, H. Qualitative recognition of ongoing
human action sequences. In Proc. International Joint
Conference on Artificial Intelligence, pages 1600–1609, 1993.

[18] Latoschik, M.E. and Wachsmuth, I. Exploiting distant pointing
gestures for object selection in a virtual environment. In
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