
Automated Stream-Based Analysis of
Fault-Tolerance�

Scott D. Stoller1 and Fred B. Schneider2

1 Computer Science Dept., Indiana University, Bloomington, IN 47405, USA
stoller@cs.indiana.edu http://www.cs.indiana.edu/~stoller/

2 Dept. of Computer Science, Cornell University, Ithaca, NY 14853, USA
fbs@cs.cornell.edu

Abstract. A rigorous, automated approach to analyzing fault-tolerance
of distributed systems is presented. The method is based on a stream
model of computation that incorporates approximation mechanisms. One
application is described: a protocol for fault-tolerant moving agents.

1 Introduction

As computers are integrated into systems having stringent fault-tolerance re-
quirements, there is a growing need for practical techniques to establish that
these requirements are satisfied. This paper describes such an analysis method.
Automated analysis methods address an important need, because informal argu-
ments do not supply the desired level of assurance for critical systems, and practi-
tioners often lack the background needed to construct the formal proofs required
by proof-based methods, such as those in [ORSvH95,CdR93,PJ94,JJ96,Sch96].
Automated verification techniques based on exhaustive exploration of finite state-
spaces [CGL94,Hol91,Kur94,CS96] have made great progress in the last decade.
But relatively little work has been done on automated verification of fault-
tolerant software systems, partly because exhaustive search of the state-space
of these systems is infeasible in many cases.

This paper discusses a specialized approach to analysis of fault-tolerance
properties for distributed systems. It is a novel hybrid of ideas from stream-
processing (or data-flow) models of networks of processes [Kah74,Bro87] and
abstract interpretation of programs [AH87]. An important feature of our ap-
proach is its emphasis on communication (rather than state), consistent with
the thesis that distributed systems have natural descriptions in terms of com-
munication.

In stream-processing models, each component of a system is represented by
an input-output function describing its input/output behavior. For simplicity, we
assume processes communicate only by messages transmitted along unbounded
FIFO channels. Behaviors of a system can be determined from input-output
functions describing its components by doing a fixed-point calculation; this pro-
vides a clean algorithmic basis for our analysis.

The fixed-point calculation produces a graph, called a message flow graph
(MFG), representing possible communication behaviors of the system. Each node
of the graph corresponds to a component, and each edge is labeled with a de-
scription of the sequence of messages sent from the source node to the target
� This material is based on work supported in part by NSF/DARPA Grant No. CCR-

9014363, NASA/DARPA grant NAG-2-893, and AFOSR grant F49620-94-1-0198.
Any opinions, findings, and conclusions or recommendations expressed in this pub-
lication are those of the authors and do not reflect the views of these agencies.



2 Scott D. Stoller and Fred B. Schneider

node. An exact computation of all possible sequences of messages that might be
sent is generally infeasible. To help make automated analysis feasible, our frame-
work supports flexible and powerful approximations, or abstractions, as they are
called in the literature on abstract interpretation [AH87]. Traditionally, stream-
processing models have not incorporated approximations. The approximations
in our framework enable compact representation of the highly non-deterministic
behavior characteristic of severe failures and also support abstraction from irrel-
evant aspects of a system’s failure-free behavior. The latter reflects a separation
of concerns that is crucial for making the fault-tolerance analysis tractable.

A common approach to modeling failures is to treat them as events that occur
non-deterministically during a computation (e.g., [CdR93,PJ94,LM94]), but this
makes it difficult to separate the effects of failures from other aspects of the
system’s behavior and, consequently, to model the former more finely than the
latter. In particular, one often wants to avoid case analysis corresponding to non-
determinism in a system’s failure-free behavior, while case analysis corresponding
to different combinations of failures appears unavoidable in general in automated
analysis of fault-tolerance. A failure scenario for a system is an assignment of
component failures to a subset of the system’s components. In our approach, each
input-output function is parameterized by possible failures in the corresponding
component; system behavior is analyzed separately for each failure scenario of
interest.

In our framework, possible communications (in a given failure scenario) be-
tween two components are characterized by approximations of values (the data
transmitted in messages), multiplicities (the number of times each value is sent),
and message orderings (the order in which values are sent). Values and multi-
plicities are approximated using a form of abstract interpretation and a form
of symbolic computation. Message orderings are approximated using partial (in-
stead of total) orders.

Our analysis method is implemented in a prototype tool called CRAFT
[Sto97]. We have used CRAFT to analyze a protocol for fault-tolerant moving
agents and the Oral Messages algorithm for Byzantine Agreement [LSP82].

A formal presentation of our analysis method, including a semantics and a
proof of soundness with respect to that semantics, appears in [Sto97]. A dis-
cussion of related and future work, including comparisons with the abstraction
methods of [CGL94,Kur94], can also be found there.

2 Analysis Method

We start by describing how data is approximated in our framework and then
how sets and sequences of messages are approximated. This leads directly to
definitions of MFGs and input-output functions.

Values. As in abstract interpretation, we introduce a set AVal of abstract val-
ues. Each abstract value represents a set of concrete values. For example, we use
abstract value N to represent the set of 64-bit numbers. In Section 3, we use ab-
stract value Arb(kcs,ms) to represent the concrete values that can be generated
using encryption keys in the set kcs and ciphertexts in the set ms .

Abstract values alone capture too little information about relationships be-
tween concrete values. For example, consider a system containing a majority
voter. The voter’s outputs depend on equality relationships among its inputs. If
two inputs both have abstract value N, there is no way to tell from this whether



Automated Stream-Based Analysis of Fault-Tolerance 3

they are equal. So, we introduce a set SVal of symbolic values, which are expres-
sions composed of constants and variables. All occurrences of a symbol (i.e., a
constant or variable) in a single MFG represent the same value. For example, if
two inputs of a 3-way voter contain the same symbolic value, then that symbolic
values represents the majority value and therefore represents the voter’s output.

A constant represents the same value in every execution of a system; most
constants are typeset in a sans-serif font. The meaning of a constant is specified
by an interpretation, which maps constants to concrete values. A variable repre-
sents values that may be different in different executions of a system. Variables
are useful for modeling outputs that are not completely determined by a com-
ponent’s inputs. Such outputs commonly arise with components that interact
with an environment that is not modeled explicitly; they also arise when a com-
ponent’s behavior is approximated. Each variable is local to a single component,
whose outputs in a given execution determine the value represented by that
variable. Making each variable local to a single component enables independent
verification that each input-output function faithfully represents the behavior of
the corresponding process (as described in [Sto97]). We also include in SVal a
special wildcard symbol “ ”, which is used when a value is not known to have any
interesting relationships to other values. Different occurrences of the wildcard in
a MFG do not necessarily represent the same concrete value.

A symbolic value and an abstract value together are often sufficient to char-
acterize the possible data in a message. Analysis of a non-deterministic system
might yield multiple such pairs, each representing some of the possibilities for
the data in a message. So, we use a set of such pairs to represent values, and de-
fine Val Δ= Set(SVal ×AVal) \ {∅}, where Set(S) is the powerset of a set S. Since
abstract values are analogous to types, we usually write 〈s, a〉 ∈ SVal ×AVal as
s:a. We usually omit braces around singleton sets; for example, {〈X,N〉} ∈ Val
may be written X :N. Since a wildcard is similar in meaning to omission of a
symbolic value, we usually elide the wildcard; for example, {〈 ,N〉} ∈ Val may
be written N.

Multiplicities. Uncertainty in the number of messages sent during a computa-
tion may stem from various sources, including non-determinism of components
(especially faulty components), non-determinism of message arrival order, and
approximation of values. For example, a component subject to Byzantine fail-
ures1 might emit outputs with an arbitrary multiplicity. To compactly represent
these possibilities, multiplicity (i.e., the number of messages) also needs to be ap-
proximated. Thinking of multiplicities as natural numbers suggests representing
them in the same way as data. Thus, we define Mul Δ= Set(SVal × AMul) \ {∅},
where the set AMul ⊆ AVal of abstract multiplicities contains abstract values
whose meanings are subsets of the natural numbers, excluding ∅ and {0}.

The symbolic values in multiplicities are useful for efficient analysis of systems
with crash failures [SS97]. Abstract multiplicities are analogous to superscripts
in regular expressions. To promote the resemblance, we assume AVal contains
the following: 1, denoting {1}; ?, denoting {0, 1}; +, denoting the set of positive
natural numbers; and ∗, denoting the set of natural numbers. The notational
conventions for Val also apply to Mul ; for example, {〈 , ∗〉} ∈ Mul may be
written ∗.
1 A Byzantine failure causes a component to exhibit arbitrary behavior.



4 Scott D. Stoller and Fred B. Schneider

Partially-ordered sets of messages. A set of messages is approximated in our
framework by a ms-atom (mnemonic for “message-set atom”). Each ms-atom
approximates a set of messages, using an element of Val to characterize the con-
crete values in the messages and an element of Mul to characterize the number
of messages (i.e., the cardinality of the set). For example, a ms-atom with value
X :N and multiplicity ∗ represents a set S of messages such that: (1) the con-
crete value in each message is an element of (the set represented by) N and is
represented by variable X (hence all the messages in S contain the same concrete
value), and (2) the number of messages in S is arbitrary (but finite). Similarly,
a ms-atom with value :N and multiplicity ∗ represents an arbitrary-sized set
of messages, with each message containing a (possibly different) element of N.

A sequence of messages is approximated in our framework by a partially-
ordered set (abbreviated as “poset”) of ms-atoms. A poset over a set A is a
pair 〈S,≺〉, where S ⊆ A and ≺ is an irreflexive, transitive, and acyclic binary
relation on S. For a poset 〈S,≺〉 of ms-atoms, the meaning of the partial order
is: if x ≺ y, then during an execution of the system, the messages represented
by x would be sent (and received, since channels are FIFO) before the messages
represented by y. As a technicality, in order to allow multiple ms-atoms with the
same value and multiplicity to appear in a poset, we include in each ms-atom
a tag from the set Tag. In examples, we take Tag to be the natural numbers.
Thus, the signature of ms-atoms is MSA Δ= Val × Mul × Tag. To promote the
resemblance to regular expressions, we usually write an ms-atom 〈val ,mul , 0〉 as
valmul ; if the multiplicity mul is 1, we usually elide it.

Message Flow Graphs. A system comprises a set of named components, with
names from the set Name . The signature Hist of histories is Hist Δ= Name →
POSet(MSA), where POSet(MSA) is the set of posets over MSA. When a history
h is used to represent the inputs to a component x, h(y) represents the sequence
of messages sent by y to x; when a history h is used to represent as the outputs
of a component x, h(y) represents the sequence of messages sent by x to y.
Possible behaviors of a system are represented by a MFG, which has signature
MFG Δ= Name → Hist . A concrete MFG g is interpreted, by convention, as a
labeled directed graph with nodes in Name and with edge 〈x, y〉 labeled with
g(y)(x). Thus, by convention, g(y) is the input history of component y in g.

Input-output Functions. Since a component’s behavior depends on what failures
it suffers, input-output functions are parameterized by the possible failures of
the corresponding component. Let Fail denote the set of all possible failures for
the components of a system. For example, Fail might contain an element Byz
corresponding to Byzantine failures. By convention, Fail contains an element OK
corresponding to absence of failure. The behavior of a process is approximated
by an input-output function with signature

IOF Δ= {f ∈ Fail ⇀ (Hist → Hist) | tagUniform (f)}, (1)
where the one-hooked arrow indicates a partial function and tagUniform (f) as-
serts that renaming of tags in the input ms-atoms causes no change in the output
ms-atoms except possibly renaming of tags (this requirement is sensible because
tags do not appear in actual messages). For f ∈ IOF , domain(f) is the set
of failures that the component might suffer, and for each fail ∈ domain(f),
f(fail) characterizes the component’s behavior when failure fail occurs. Specif-
ically, f(fail) maps a history h representing a component’s inputs to a history



Automated Stream-Based Analysis of Fault-Tolerance 5

f(fail)(h) representing that component’s outputs on those inputs. A failure sce-
nario is a function in FS Δ= Name → Fail that maps each component to one of
its possible failures.

A system is represented by a function nf ∈ Name → IOF (“nf” is mnemonic
for “name to input-output function”). A MFG representing a system’s behavior
is computed using the function

stepnf ,fs(g) Δ= (λy :Name . (λx :Name . nf (x)(fs(x))(g(x))(y))). (2)

Informally, stepnf ,fs(g) is the MFG representing the result of each component in
system nf in failure scenario fs processing its inputs in the possibly-incomplete
executions represented by MFG g and producing possibly-extended outputs.
The behavior of a system nf in failure scenario fs is represented by the MFG
lfp(stepnf ,fs), if it exists, where lfp indicates the least fixed-point, and the partial
ordering on MFG, defined in [Sto97], corresponds informally to the prefix order-
ing on sequences. This fixed-point might not exist; one reason, roughly, is that
MFGs do not have canonical forms [Sto97]. The tool searches for a fixed-point
by starting with the “empty” MFG (λx :Name . λy :Name . 〈∅, ∅〉) and repeatedly
applying stepnf ,fs . If the fixed-point does not exist, this procedure diverges.2

Fault-Tolerance Requirements. A fault-tolerance requirement is expressed in our
framework as a function b such that for each failure scenario fs, b(fs) is a predi-
cate on MFGs. A system satisfies fault-tolerance requirement b if, for each failure
scenario, the MFG computed as a fixed-point of stepnf ,fs satisfies b(fs).

3 Analysis of Fault-Tolerant Moving Agent Protocol

An interesting paradigm for programming distributed systems is moving agents.
In this paradigm, an agent moves from site to site in a network. For example, an
agent that starts at site S might move to site S1 in order to access some service
(e.g., a database) available there. The agent might then determine that it needs
to access a service located at site S2 and move there. If the agent has gathered
all of the information it needs, it might finish by moving to a final site A to
deliver the result of the computation. The sequence of sites visited by a moving
agent is generally not known when the computation starts, since it may depend
on information obtained as the computation proceeds.

Replicated Two-Stage Moving Agent. To illustrate the fault-tolerance problems
that arise with moving agents, we consider a “two-stage” moving agent that visits
two replicated services. The moving agent starts at a source S, accesses service
F , which is replicated at sites F1, F2, F3, and then accesses service G, which
is replicated at sites G1,G2,G3. Since G is the last service it needs, the agent
moves to a consolidator B, which is responsible for delivering the result of the
computation to the destination, or “actuator”, A. The consolidator computes
the majority of the values it receives and sends the result to the actuator; in
addition, as discussed below, the consolidator tests validity of received values
and excludes invalid values from the vote.
2 The user can interrupt the calculation and, by inspection of a few MFGs in the

sequence, try to determine the “cause” of the divergence.



6 Scott D. Stoller and Fred B. Schneider

H1

A

H2 H3

G(F(X)):D

G(F(X)):D

G(F(X)):D
B

F(X):D

F(X):D

F(X):D

G(F(X)):D
S

X

X

F2

F3

F1

X

G1

G2

G3

Fig. 1. MFG for replicated two-stage moving agent.

The failure-free behavior of this moving agent is represented by the MFG in
Figure 1. Constants F and G represent the processing done by services F and G,
respectively. A typical moving agent accesses only some of the available services.
To reflect this, the system shown in Figure 1 includes a service H, replicated
at sites H1–H3, which is not used by this particular agent. The fault-tolerance
requirement is:

MA-FTR. Inputs to the actuator should be unaffected by Byzantine
failure of a minority of the replicas of each service used by the moving
agent and by Byzantine failure of any number of replicas of each service
not used by the moving agent.

Suppose faulty components can spoof (i.e., send messages that appear to
be from other components) and eavesdrop (i.e., obtain copies of messages sent
to other components). From the perspective of the recipient of a message, the
possibility of spoofing causes uncertainty about the identity of the actual sender
of the message. We model this uncertainty by using input-output functions that
are independent of the names of the senders in the input history.

To eavesdrop on a component x, a faulty component (the “eavesdropper”)
sends a distinguished value evsdrp to x. The output history of a component that
receives evsdrp must allow the possibility of sending copies of all subsequent
outputs to the eavesdropper.3 We assume that a faulty server is able to eavesdrop
on all components except actuators.

Consider the consolidator B in Figure 1. How does it decide which inputs
are valid? One might be tempted to say that B should treat messages from
G1–G3 as valid and messages from other components as invalid. This criterion is
inappropriate for moving agents, because it assumes B knows in advance that the
last service visited by the moving agent will be service G; however, the sequence
of services visited by a moving agent is generally not known in advance.

At the other extreme, suppose B considers all inputs valid: whenever B
receives the same value from a majority of the replicas of some service, it sends
that value to the actuator. (We assume every component knows which service
is provided by each server.) It is easy to see that this scheme does not tolerate
3 For this purpose, we allow an exception to the rule in the previous paragraph.



Automated Stream-Based Analysis of Fault-Tolerance 7

failure of a majority of the replicas of services (e.g., H1–H3) not used by the
moving agent.

Informally, a message embodying a moving agent should be considered valid
if it has visited the same sequence of services as the corresponding failure-free
moving agent. We consider here a protocol in which digital signatures are used
by the consolidator to determine validity. We assume digital signatures are im-
plemented using public-key cryptography and that each component knows its
own private key and the public key of every other component.

Each message sent by a source or server is signed and augmented with in-
formation about the sequence of services that should be visited. Each source
or server includes in each outgoing message the name of the “destination”, i.e.,
the next service or consolidator to be visited by the moving agent embodied
in that message. A consolidator must verify the entire “history” of the moving
agent (i.e., the entire sequence of visited services), so a server x also includes in
the outgoing message the incoming message that embodied the arrival of that
moving agent at x; by induction, that incoming message contains the history of
the moving agent up to the arrival of the moving agent at x. The signatures on
these recursively included messages provide a chain of evidence documenting the
sequence of services actually visited by the moving agent.

A consolidator tests whether a message is valid by checking that it was orig-
inated by a (legitimate) source, that the consolidator itself is the declared desti-
nation of the message, and that the sequence of declared destinations (obtained
from the included messages) are consistent with the chain of signatures on the
included messages. Of course, the consolidator also verifies each of the signatures
and considers the message invalid if any of those verifications fail. We say a set
S of messages is valid if: (1) each message in S is valid; (2) all the messages in S
contain the same sequence of declared destinations; (3) the final signatures on the
messages in S are (collectively) from a majority of the replicas of some service.
When the consolidator receives a valid set of messages, those messages should
all contain the same data, which the consolidator forwards to the actuator.

To describe this protocol in our framework, we introduce some definitions.
Let D ∈ AVal be the “type” of data carried by moving agents. Let Svc ⊆ Con
denote the set of (names of) services that can be accessed by a moving agent.
The processing done by a service S ∈ Svc is represented by an operator S ∈ Con ,
as in Figure 1. We assume component names can be used as constant symbols,
i.e., that Name ⊆ Con. Let Src ⊆ Name be the set of names of (legitimate)
sources. For x ∈ Name, let Kx ∈ KC represents x’s private key (used to sign
messages); we assume each component’s private key is unique. The set of con-
stants representing private keys is KC =

⋃
x∈Name Kx.

To conveniently represent messages sent by sources, we introduce a constant
msg0 ∈ Con with the following interpretation: symbolic value msg0(k, data , dest)
represents a message signed with key k ∈ KC , carrying data represented by
symbolic value data , and with destination (either a service or the name of a
consolidator) represented by symbolic value dest .

To conveniently represent messages sent by servers, we introduce a constant
msg ∈ Con with the following interpretation: symbolic value msg(k, data , dest ,msg)
represents a message signed with key k ∈ KC , carrying data represented by sym-
bolic value data , with destination (either a service or the name of a consolidator)
represented by symbolic value dest , and with symbolic value msg representing a
message that caused the server that received it to send this message.



8 Scott D. Stoller and Fred B. Schneider

A

H1 H2 H3

S
m0 :Msg

F2

F3

F1

m23,3 :Msg

m21,1 :Msg

m22,2 :Msg
B

G(F(X)):D

m11 :Msg

m12 :Msg

m13 :Msg
G3

G2

G1

m0 :Msg

m0 :Msg

Fig. 2. Run of replicated two-stage moving agent, with authentication.

The MFG in Figure 2 shows the behavior of this protocol for the replicated
two-stage moving agent described above, using the following abbreviations:

m0 = msg0(KS ,X,F )
m1i = msg(KFi

,F(X),G,m0)
m2i,j = msg(KGj

,G(F(X)), B,m1i).
Tolerating Failure of Multiple Visited Services. The above protocol provides
some fault-tolerance but does not satisfy MA-FTR. For example, the above
protocol does not tolerate simultaneous failure of F1 and G2, because two of the
consolidator’s three inputs might be corrupted by these failures.

To make the moving agent more robust, each server sends its outgoing mes-
sages to all replicas of the next service, instead of just one, and validity tests and
voting are incorporated into each stage of the computation after the first. The
validity test and voting are as just described for consolidators.4 Thus, a server
sends messages only after receiving a valid set S of messages; to document the
sequence of services visited by the moving agent, the server includes some mes-
sage from S in the outgoing messages.5 The behavior of the revised protocol
is shown in Figure 3. Each server Gj might include any one of its three input
messages in its output, so the value in its outputs is a set of three possibilities;
specifically, the value is (msj×{Msg}) ∈ Val , where

msj = {m21,j,m22,j ,m23,j}.
Detailed input-output functions for this protocol appear in [Sto97].

3.1 Analysis Results
To determine whether the above protocol satisfies MA-FTR, an MFG repre-
senting the protocol’s behavior is computed for each failure scenario in which a
4 The only remaining differences between a server and a consolidator are: (1) a con-

solidator does not perform application-specific computation, i.e., does not apply an
operator to the data carried by the moving agent; (2) a consolidator does not in-
clude authentication information in its outputs, because the channel between the
consolidator and the actuator is assumed to be secure.

5 The reader who wonders whether multiple messages from S should be included in
the outgoing messages is referred to the comments in Section 3.1.



Automated Stream-Based Analysis of Fault-Tolerance 9

S

H1 H2 H3

m0 :Msg

F2

F3

F1

m
1 1

:M
sg

m
1
3 :M

sg

m0 :Msg
G2

G3

G1

B
G(F(X)):D

A

m
1 2

:M
sg

ms2×{Msg}

ms1×{Msg}

ms3×{Msg}m0 :Msg

Fig. 3. Run of replicated two-stage moving agent, with authentication and with voting
after each stage. Each skewed ms-atom labels each of the three edges it crosses.

minority of the replicas of each service used by the moving agent fail and any
number of replicas of each service not used by the moving agent fail. MA-FTR
is satisfied if, in each of these failure scenarios, the input to the actuator is rep-
resented by G(F(X)) :D, as in the failure-free computation. We describe below
the MFGs obtained for a few representative failure scenarios.

Failure of Visited Servers Only. Consider the failure scenario in which F1 and G2

fail. Let N = {F1, F2, F3,G1,G2,G3,H1,H2,H3, B}. The fixed-point computed
for this failure scenario is the same MFG as in Figure 3, except that the outputs
of the faulty components are different, and other components send messages to
the faulty components as a result of eavesdropping. Specifically, for x ∈ {F1,G2},
for y ∈ N \ {x}, edge 〈x, y〉 is labeled with the ms-atom

{evsdrp ,Arb({KF1 ,KG2}, {m0,m12,m13,m22,1,m23,1,m22,3,m23,3})}∗.
Arb was described in Section 2. Also, for x ∈ {F1,G2} and y ∈ N \ {F1,G2},
edge 〈y, x〉 is labeled with all the output ms-atoms of component y in Figure 3,
but with the multiplicities changed to ?.

Failure of Unvisited Servers Only. Consider the failure scenario in which H1, H2,
and H3 fail. The fixed-point computed for this failure scenario is the same MFG
as in Figure 3, except that the outputs of the faulty components are different,
and other components send messages to the faulty components as a result of
eavesdropping. Specifically, for x ∈ {H1,H2,H3}, for y ∈ N \ {x}, edge 〈x, y〉 is
labeled with the ms-atom

{evsdrp ,Arb({KH1 ,KH2 ,KH3},
⋃

i,j∈{1,2,3}
{m0,m1i,m2i,j})}∗.

Also, for x ∈ {H1,H2,H3} and y ∈ N \ {H1,H2,H3}, edge 〈y, x〉 is labeled with
all the output ms-atoms of component y in Figure 3, but with the multiplicities
changed to ?.

Failure of Visited and Unvisited Servers. Consider the failure scenario in which
F1, H1, and H2 fail. As the reader may have suspected, the protocol violates



10 Scott D. Stoller and Fred B. Schneider

MA-FTR in this failure scenario. Tracing the first three iterations of the fixed-
point computation shows why. Due to space limitations, we omit those MFGs
and describe the behavior informally. F1 includes m0 in a signed message m′
with declared destination H and carrying arbitrary data and sends m′ to H1

and H2, who each include m′ in a signed message with declared destination B
and carrying the same (but otherwise arbitrary) data and send that message
to B. These two messages cause the consolidatorto send arbitrary data to the
actuator. One way to fix the protocol is to have servers include in each output
message input messages from a majority of the replicas of some service. The
analysis of the corrected protocol is similar to the analysis sketched here.

References

[AH87] S. Abramsky and C. Hankin, editors. Abstract Interpretation of Declarative
Languages. Ellis-Horwood, 1987.

[Bro87] M. Broy. Semantics of finite and infinite networks of concurrent communi-
cating agents. Distributed Computing, 2(1):13–31, 1987.

[CdR93] A. Cau and W.-P. de Roever. Using relative refinement for fault tolerance.
In Proc. 1st Intl. Symposium of Formal Methods Europe, pages 19–41, 1993.

[CGL94] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstrac-
tion. ACM Trans. on Prog. Lang. and Sys., 16(5):1512–1542, 1994.

[CS96] R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In Proc.
CAV ’96, volume 1102 of LNCS, pages 394–397. Springer-Verlag, 1996.

[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall, 1991.

[JJ96] T. Janowski and M. Joseph. Dynamic scheduling in the presence of faults:
Specification and verification. In Proc. FTRTFT ’96, volume 1135 of LNCS,
pages 279–297. Springer-Verlag, 1996.

[Kah74] G. Kahn. The semantics of a simple language for parallel programming.
In J. L. Rosenfeld, editor, Information Processing 74: Proc. IFIP Congress
74, pages 471–475. North-Holland, 1974.

[Kur94] R. P. Kurshan. Computer-aided verification of coordinating processes: the
automata-theoretic approach. Princeton University Press, 1994.

[LM94] L. Lamport and S. Merz. Specifying and verifying fault-tolerant systems. In
Proc. Formal Techniques in Real-Time and Fault-Tolerant Systems, volume
863 of LNCS, pages 41–76. Springer-Verlag, 1994.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Trans. on Prog. Languages and Systems, 4(3):382–401, July 1982.

[MvRSS96] Y. Minsky, R. van Renesse, F. B. Schneider, and S. D. Stoller. Crypto-
graphic support for fault-tolerant distributed computing. In Proc. Seventh
ACM SIGOPS European Workshop, pages 109–114. ACM Press, 1996.

[ORSvH95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification
for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE
Transactions on Software Engineering, 21(2):107–125, February 1995.

[PJ94] D. Peled and M. Joseph. A compositional framework for fault-tolerance by
specification transformation. Theoretical Computer Science, 128(1-2):99–
125, 1994.

[Sch96] H. Schepers. Real-time systems and fault-tolerance. In M. Joseph, editor,
Mathematics of Dependable Systems, chapter 7. Prentice-Hall, 1996.

[SS97] S. D. Stoller and F. B. Schneider. Automated analysis of fault-tolerance
in distributed systems. In Proc. First ACM SIGPLAN Workshop on Au-
tomated Analysis of Software, pages 33–44, 1997.

[Sto97] S. D. Stoller. A Method and Tool for Analyzing Fault-Tolerance in
Systems. PhD thesis, Cornell University, May 1997. Available via
http://www.cs.indiana.edu/˜stoller/ .


