Statistics formula sheet

Summarising data

Sample mean:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Sample variance:

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = \frac{1}{n-1} \left(\sum_{i=1}^n x_i^2 - n\overline{x}^2 \right).$$

Sample covariance:

$$g = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i y_i - n\overline{x} \, \overline{y} \right)$$

Sample correlation:

$$r = \frac{g}{s_x s_y}.$$

Probability

Addition law:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Multiplication law:

$$P(A \cap B) = P(A)P(B|A) = P(B)P(A|B).$$

Partition law: For a partition B_1, B_2, \ldots, B_k

$$P(A) = \sum_{i=1}^{k} P(A \cap B_i) = \sum_{i=1}^{k} P(A|B_i)P(B_i).$$

Bayes' formula:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{P(A)} = \frac{P(A|B_i)P(B_i)}{\sum_{i=1}^{k} P(A|B_i)P(B_i)}.$$

Discrete distributions

Mean value:

$$E(X) = \mu = \sum_{x_i \in S} x_i p(x_i).$$

Variance:

$$\operatorname{Var}(X) = \sum_{x_i \in S} (x_i - \mu)^2 p(x_i) = \sum_{x_i \in S} x_i^2 p(x_i) - \mu^2.$$

The binomial distribution:

$$p(x) = \binom{n}{x} \theta^x (1-\theta)^{n-x} \text{ for } x = 0, 1, \dots, n.$$

This has mean $n\theta$ and variance $n\theta(1-\theta)$. The Poisson distribution:

$$p(x) = \frac{\lambda^x \exp(-\lambda)}{x!} \text{ for } x = 0, 1, 2, \dots$$

This has mean λ and variance λ .

Continuous distributions

Distribution function:

$$F(y) = P(X \le y) = \int_{-\infty}^{y} f(x) \, \mathrm{d}x.$$

Density function:

$$f(x) = \frac{\mathrm{d}}{\mathrm{d}x}F(x).$$

Evaluating probabilities:

$$P(a < X \le b) = \int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a)$$

Expected value:

$$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x$$

Variance:

$$Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx = \int_{-\infty}^{\infty} x^2 f(x) \, dx - \mu^2.$$

Hazard function:

$$h(t) = \frac{f(t)}{1 - F(t)}.$$

Normal density with mean μ and variance σ^2 :

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\} \text{ for } x \in [-\infty,\infty].$$

Weibull density:

$$f(t) = \lambda \kappa t^{\kappa - 1} \exp(-\lambda t^{\kappa})$$
 for $t \ge 0$

Exponential density:

$$f(t) = \lambda \exp(-\lambda t)$$
 for $t \ge 0$.

This has mean λ^{-1} and variance λ^{-2} .

Test for population mean

Data: Single sample of measurements x_1, \ldots, x_n .

Hypothesis: $H: \mu = \mu_0$.

Method:

- Calculate \overline{x} , s^2 , and $t = |\overline{x} \mu_0|\sqrt{n}/s$.
- Obtain critical value from t-tables, df = n 1.

• **Reject** *H* at the 100*p*% level of significance if |t| > c, where *c* is the tabulated value corresponding to column *p*.

Paired sample *t*-test

Data: Single sample of n measurements x_1, \ldots, x_n which are the pairwise differences between the two original sets of measurements.

Hypothesis: $H : \mu = 0.$

Method:

- Calculate \overline{x} , s^2 and $t = \overline{x}\sqrt{n}/s$.
- Obtain critical value from t-tables, df = n 1.
- Reject H at the 100p% level of significance if |t| > c, where c is the tabulated value corresponding to column p.

Two sample t-test

Data: Two separate samples of measurements x_1, \ldots, x_n and y_1, \ldots, y_m .

Hypothesis: $H: \mu_x = \mu_y$.

Method:

- Calculate \overline{x} , s_x^2 , \overline{y} , and s_y^2 .
- Calculate

$$s^{2} = \left\{ (n-1)s_{x}^{2} + (m-1)s_{y}^{2} \right\} / (n+m-2).$$

- Calculate $t = \frac{\overline{x} \overline{y}}{\sqrt{s^2 \left(\frac{1}{n} + \frac{1}{m}\right)}}.$
- Obtain critical value from t-tables, df = n + m 2.
- **Reject** *H* at the 100*p*% level of significance if |t| > c, where *c* is the tabulated value corresponding to column *p*.

CI for population mean

Data: Sample of measurements x_1, \ldots, x_n .

Method:

- Calculate \overline{x}, s_x^2 .
- Look in t-tables, df = n 1, column p. Let the tabulated value be c say.
- 100(1-p)% confidence interval for μ is $\overline{x} \pm cs_x/\sqrt{n}$.

CI for difference in population means

Data: Separate samples x_1, \ldots, x_n and y_1, \ldots, y_m . Method:

• Calculate $\overline{x}, s_x^2, \overline{y}, s_y^2$.

• Calculate

$$s^{2} = \left\{ (n-1)s_{x}^{2} + (m-1)s_{y}^{2} \right\} / (n+m-2).$$

- Look in t-tables, df = n + m 2, column p. Let the tabulated value be c say.
- 100(1 − p)% confidence interval for the difference in population means i.e. μ_x − μ_y, is

$$(\overline{x} - \overline{y}) \pm c \left\{ \sqrt{s^2 \left(\frac{1}{n} + \frac{1}{m}\right)} \right\}.$$

Regression and correlation

The linear regression model:

$$y_i = \alpha + \beta x_i + z_i.$$

Least squares estimates of α and β :

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i - n \,\overline{x} \,\overline{y}}{(n-1)s_x^2}, \quad \text{and } \hat{\alpha} = \overline{y} - \hat{\beta} \,\overline{x}.$$

Confidence interval for β

- Calculate $\hat{\beta}$ as given previously.
- Calculate $s_{\varepsilon}^2 = s_y^2 \hat{\beta}^2 s_x^2$.
- Calculate $SE(\hat{\beta}) = \sqrt{\frac{s_{\varepsilon}^2}{(n-2)s_x^2}}$.
- Look in t-tables, df = n 2, column p. Let the tabulated value be c.
- 100(1-p)% confidence interval for β is $\hat{\beta} \pm c SE(\hat{\beta})$.

Test for $\rho = 0$

Hypothesis: $H : \rho = 0.$

• Calculate

$$t = r \left(\frac{n-2}{1-r^2}\right)^{1/2}.$$

- Obtain critical value from t-tables, df = n 2.
- **Reject** *H* at 100*p*% level of significance if |t| > c, where *c* is the tabulated value corresponding to column *p*.

Approximate CI for proportion θ

$$p \pm 1.96\sqrt{\frac{p(1-p)}{n-1}}$$

where p is the observed proportion in the sample.

Test for a proportion

Hypothesis: $H: \theta = \theta_0$.

- Test statistic $z = \frac{p \theta_0}{\sqrt{\frac{\theta_0(1 \theta_0)}{n}}}.$
- Obtain critical value from normal tables.

Comparison of proportions

Hypothesis: $H: \theta_1 = \theta_2$.

• Calculate

$$p = \frac{n_1 p_1 + n_2 p_2}{n_1 + n_2}.$$

• Calculate

$$z = \frac{p_1 - p_2}{\sqrt{p(1-p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

• Obtain appropriate critical value from normal tables.

Goodness of fit

Test statistic

$$\chi^{2} = \sum_{i=1}^{m} \frac{(o_{i} - e_{i})^{2}}{e_{i}}$$

where m is the number of categories.

Hypothesis $H: F = F_0$.

- Calculate the expected class frequencies under F_0 .
- Calculate the χ^2 test statistic given above.
- Determine the degrees of freedom, ν say.
- Obtain critical value from χ^2 tables, $df = \nu$.
- Reject $H: F = F_0$ at the 100p% level of significance if $\chi^2 > c$ where c is the tabulated critical value.