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Abstract. Measurement of lung ventilation is one of the most reliable techniques
in diagnosing pulmonary diseases. The time-consuming and bias-prone traditional
methods using hyperpolarized H3He and 1H magnetic resonance imageries have
recently been improved by an automated technique based on ‘multiple active
contour evolution’. This method involves a simultaneous evolution of multiple
initial conditions, called ‘snakes’, eventually leading to their ‘merging’ and is
entirely independent of the shapes and sizes of snakes or other parametric details.
The objective of this paper is to show, through a theoretical analysis, that the
functional dynamics of merging as depicted in the active contour method has
a direct analogue in statistical physics and this explains its ‘universality’. We
show that the multiple active contour method has an universal scaling behaviour
akin to that of classical nucleation in two spatial dimensions. We prove our
point by comparing the numerically evaluated exponents with an equivalent
thermodynamic model.
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1. Introduction

Ventilation analysis is an authentic way of diagnosing lung airway diseases. The ratio of
the volume of ventilated (functional) portions of lungs to the total lung volume is known as
lung ventilation, which is used in validating pulmonary drugs [1, 2]. The process involves two
complementary magnetic resonance (MR) imaging modalities, the hyperpolarized helium-3
(H3He) imagery and the proton (1H) imagery. Lung functionality, including the volume of
ventilated lungs, can be obtained from the former modality while lung anatomic details, including
total lung volume, are accessed through the latter [1, 2]. Since manual investigation of the MR
imagery to compute lung ventilation is extremely time consuming, an ‘active contour’ or ‘snake’
based automated method has been proposed [1]–[4] to compute the total lung volume from
proton MR imagery on a two-dimensional (2D) slice-by-slice basis [1]. A snake is defined as
a massless 2D thin string (closed or open) that can move on the image domain driven by two
types of forces, internal elastic forces and external image forces [5]. Under the influence of these
two forces an initial contour (snake) clings to image edges and delineates an object. A snake
always gives continuous edges unlike any traditional edge detector (e.g. the Canny method [7]),
thereby eliminating any post-processing steps to connect the detected broken edges. These two
properties are particularly useful when the object outline is broken and noisy as in most of the
1H MR imagery. The snake method of finding the object boundary relies on the initial snake
placement inside the image. If a small initial snake is placed inside a lung cavity on the MR
image, while growing, the snake may be stopped by the associated numerous artifacts and may
not capture the actual lung outline [1]. Starting with a larger snake may result in missing the lung
cavity completely. A possible solution is to start with multiple non-overlapping small snakes
inside the lung cavity and evolve (grow) them until they merge with each other and capture the
cavity outline [1]. During such a process, the growing snakes merge with each other into a single
contour. This automatic merging of non-overlapping snakes is characterized by certain attributes:
(a) during the evolution process no two snakes overlap with each other, (b) every snake stops
evolving at the object edge as a single snake does during its course of evolution and (c) growing
convex-shaped snakes (e.g., circular or rectangular snakes) inside a convex object recovers the
object boundary.Although merging of multiple snakes is experimentally verified in a multitude of
cases, a concrete theoretical understanding of this merging snake approach remains a challenge.
A principal aim of this paper is to bridge this gap by showing that the underlying principle of
multiple snake-merging is governed by a ‘universal power law’ behaviour which originates from
an inherent ‘nucleating’ structure.
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The other focal point of this study is to demonstrate that under suitable design of the
force field governing snake evolution, parametric active contours [5] can also achieve automatic
merging like geometric contours [6]. Our previous work [1] with the help of segmentation
experiments on real MRI data demonstrates that parametric active contours merge with each
other while evolving under a force field known as generalized gradient vector flow (GGVF).
GGVF is designed by equipping an underlying partial differential equation (PDE) with a Dirichlet
boundary condition (5) on the initial snake locations. Segmentation of 1H MRI imagery can also
be achieved by using GGVF in conjunction with geometric active contour evolution. However,
using multiple parametric snakes for this application is advantageous due to the following reasons.
Firstly, if a multiprocessor machine is available, then multiple parametric snake evolution can be
performed in parallel very easily as these snakes evolve completely independent of each other
from the beginning to the end [1]. Secondly, we can assign different rigidity parameter values
(α and β in the snake equation) to different parametric snakes; this strategy often helps to achieve
more accurate segmentation. For example, to capture the costophrenic angle (CPA) of lungs, we
need a very low value of the rigidity parameters, whereas, in general in other places of the lung
cavity, higher values for rigidity parameters help mitigate obstacles due to noise. Thus from a
prior knowledge about the position of the CPA, we can provide low rigidity parameter values
to the initial snake assigned to delineate CPA. This differential assignment of rigidity parameter
values is extremely difficult with a geometric snake, since after two geometric fronts merge,
it is hard to keep track of them individually.

2. Generalized active contour method

From a biomedical engineering perspective, the study of the efficacy of the lung cavity delineation
method is crucial for robust clinical application. The lung cavity segmentation by merging snake
method involves three steps: (a) initially small non-overlapping contours are placed inside the
lung cavity, (b) GGVF fields [3] are computed with a Dirichlet boundary condition on the initial
circular snakes [1], and (c) all the snakes are evolved simultaneously and independently of each
other with the GGVF force field as the external force for the snakes. This automated lung cavity
segmentation is attractive for a number of reasons. While other merging snake algorithms, such
as the one proposed by McInerney and Terzopolous [8] is computationally non-trivial compared
to the original snake evolution algorithm of Kass et al’s [5], the merging snake algorithm by Ray
et al maintains the same computational simplicity of Kass et al’s algorithm. Also, based on the
position of an initial snake, the rigidity parameters of the snakes can be varied, so that on one hand
delicate high curvature features, such as CPAs, can be accurately captured, while on the other
hand, snakes can be made sufficiently stiff in order to avoid capturing artifacts. Figures 1–3
show multiple snake initialization, evolution, merging and delineation of lung boundary by the
Ray et al method.

In order to map the merging snake scenario to statistical thermodynamical systems, we first
provide the mathematical background for a parametric active contour or snake. A snake is a curve
C(s) = (p(s), q(s)) defined by the parameter s ∈ [0, 1]. The snake is evolved in such a way that
it minimizes the energy functional [3]

Es =
∫ 1

0

(
1
2{α|C′(s)|2 + β|C′′(s)|2} + Eext[C(s)]

)
ds, (1)
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Figure 1. Initial snakes (here circular, although one can use rectangular snakes
as well) assigned into a lung cavity on a 2D MRI slice.

Figure 2. Intermediate snake evolution stage for segmenting the lung cavity
shown in figure 1.

where the first two terms give the internal energy of the snake (α, β � 0) and Eext represents the
external energy added to the system. C′ and C′′ are the first and second derivatives of the snake
with respect to s. An example of external force for the snake is the gradient force

Eext = −|∇I(x, y)|2, (2)
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Figure 3. Lung cavity delineation by merging all the snakes after their evolution
stopped.

where I(x, y) is the image pixel intensity obtained from 2D lung scans. A remarkable feature
of this energy functional is associated with the definition of the external energy Eext. Although
the internal energy reminds one of the traditional Gaussian functional form, the overall energy
functional nevertheless is devoid of any Ginzburg–Landau feature since the external energy part
is not of the φ4 type.

In general, in the presence of an external force V(C(s, t)) (defined by equation (3)), the time
dynamics of such a snake is given by [1, 2]

∂C(s, t)

∂t
= αC′′(s, t) − βC′′′′(s, t) + V(C(s, t)). (3)

The defining force field is the dynamic equivalent of equation (7) and is given by

∂V
∂t

= g(|∇f |)∇2V − (1 − g(|∇f |))(V − ∇f ), (4)

where g(α) = exp(−Kα) and f(x, y) = −Eext(x, y). K is the smoothness defining parameter
which can be adjusted close to high curvature zones to get a better fit. When n such non-
connected snakes, enclosed in regions D, each evolve together in a closed region ∂D, equation
(4) is coupled with the Dirichlet condition

V(x, y) = 0 for (x, y) ∈ D,

V(x, y) = n(x, y) for (x, y) ∈ ∂D,
(5)

where n(x, y) is the unit normal at (x, y) on the image domain boundary ∂D. The desired
driving force can now be derived by solving the boundary value problem defined in the
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vector equation (4) together with equations (5). Numerically, we have used a finite-difference
scheme for the discretization in two spatial dimensions. To do so, we define the vector field
V(x, y) = (u(x, y), w(x, y)). Equation (4) can now be rewritten as

∂u

∂t
= g(|∇f |)∇2u − (1 − g(|∇f |))

(
u − ∂f

∂x

)
,

∂w

∂t
= g(|∇f |)∇2w − (1 − g(|∇f |))

(
w − ∂f

∂y

)
.

(6)

One can now map these equations (6) to that of the Navier–Stokes’ equations for a viscous
incompressible fluid as in [1]. We now solve equations (6) using our self-developed matlab code
using a finite-difference algorithm on a variable grid.

The stationary solution of equation (2) corresponds to a snake that minimizes the energy
functional. Ray et al proposed an external force V(x, y) obtained by solving the following PDE
applying Dirichlet boundary condition on the initial snakes [1]:

g(|∇f |)∇2V − (1 − g(|∇f |))(V − ∇f ) = 0, (7)

where g(α) = exp(−Kα) and f(x, y) = −Eext(x, y), K being a tunable parameter controlling
the smoothness of the external snake force field. V is determined from the above equation using
Dirichlet boundary conditions. In the following portion, we study the resultant dynamics due
to the evolution of a number of such snakes, defined by the above system of forces.

3. Merging dynamics in the active contour method

When multiple snakes are evolved inside the desired closed boundary constrained by specific
boundary conditions (that two snakes never cut across each other), the growth algorithm confirms
that they all finally merge into a single snake after a finite time. This ‘merging of snakes’ is
basically a topological effect and naively the phenomenology reminds one of ‘nucleation’ as
seen in classical first-order thermodynamic systems [9]. To study this dynamics of merging,
we allow a finite number of GGVF snakes, each with a finite starting radius, to evolve in a 2D
plane and then numerically evaluate a few measurables—the nucleation time (NT) in units of
the total number of iterations, the bounding area (BA) in units of square pixels after nucleation
has occurred, the critical radius (CR) in units of pixels at the time of nucleation and also the
non-dimensional nucleation rate (NR), all as functions of a non-dimensionalized (i.e. in number
of iterations) snake evolution time. The respective quantities are defined as follows—NT is the
time required for all the snakes to merge together as a single unit, BA is the sum of the areas
of the initial snakes before complete merging and the area under the single snake after merging,
CR is the equivalent radius of curvature of the ‘nucleated’ structure once all the snakes have
merged together and NR is the ratio of the number of snakes to the bounding area (BA) before
the merging has actually taken place. One should note that by ‘complete merging’ we refer to
the critical phase when all the initial snakes merge together for the first time.

We perform two numerical experiments with merging. In the first experiment, we start with
a circular binary image of radius R containing N number of circular snakes, each of radius
r < R, randomly distributed inside. As described before, the initial snakes are driven by GGVF
forces and they maintain a non-overlapping dynamics. In another numerical experiment, we
vary the radii of the smaller circles and later also vary their total number (5, 10, 15, 20, 25).
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Figure 4. Bounding area (square pixels) versus time (number of iterations) in
log–log scale: (a) shows the scaling using our GGVF numerics, (b) gives the
equivalent scaling using real lung measurement data.

Both numerics are repeated with varying sizes of the initial domain R. The enclosed figures 3
and 4 show the respective variations of the BA and the CR against non-dimensionalized time
in log–log plots. Part (a) of either figure refers to the scaling obtained using GGVF numerical
data while the part (b) in each case refers to the lung segmentation data obtained from real life
experiments. We could have rescaled the numerical data and plotted both of them on the same
graphs, especially since scaling obtained from real data show such remarkable agreement with our
numerics. But unfortunately, the scaling zone observed in actual experiments span only about a
decade as opposed to our experimental data which through simulations over large snake domains
can be stretched up to two decades, essentially retaining nearly the same scaling behaviour. Thus
we plot them as separate figures but the punchline here is the nice agreement between real data
and GGVF numerics. We will shortly find that the same holds true in our thermodynamic theory
as well.

We find that the graphs (figure 4 over two decades in time and figure 5 over one decade
in time, after which they saturate) show excellent scaling, with the nonlinear zones referring
to the saturation limits in each case. These figures were generated by simulations consuming
about 8 computer hours in each case, with a Matlab implementation on a Pentium 4, 2.4 GHz,
1 GB RAM PC. In the figures shown, the bounding image radius is 500 pixel units (i.e., BA
of π5002 square pixel units) while the corresponding starting snake radius is 1 pixel unit. Even
with such large system sizes we find that the CR saturates within a time decade. To get scaling
regimes over larger time periods we would need to employ an inordinately vast amount of
computer resources which we do not have at our disposal at the moment. In our simulations, we
varied the initial conditions by changing the number of snakes and then studying the resulting
dynamics in each case. This is indicated in the legend of the figures (figures 4(a) and 5(a)).
The plots show power-law variations of each of the measured quantities with time, i.e. y ∼ xα

and the two relevant exponents, that of CR and BA, have the values αBA ≈ 1.1–1.2, αCR = 0.26.
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Figure 5. Critical radius (pixels) versus time (number of iterations) in a log–log
plot, after complete merging of the snakes: (a) shows the GGVF scaling and (b)
comes from the real life data.

We have used multiple combinations of the parameter values but the exponents remain ‘universal’,
that is they invariably follow a power-law statistics with the same exponents independent of the
variation in initial conditions or changes in parameter values.

4. Thermodynamic model and discussions

To analyse the results theoretically, we map the merging dynamics scenario to a model of
metastable bubbles nucleating under the action of the forces of surface tension. The analysis
is based on thermodynamics [9, 12, 13] and our focus will be to probe the ‘universal’ behaviour
observed. Theoretically, this would mean that from our thermodynamic model we want to
calculate the critical exponents which are inherent to the active contour dynamics. In what
follows, we try to evaluate the time rate of evolution of a system of coalescing snakes before
and after all the snakes have completely merged with each other. We map this picture to a model
of solutes trying to nucleate in a solution towards a steady, stable state. The thermodynamic
problem is thus to find an energetically preferred solution of a system of condensing droplets
(or bubbles) such that stability implies a droplet with a minimum critical diameter. All droplets
with diameters smaller than this critical value will remain unstable.

Our starting description is that of the diffusive growth of 2D spherical droplets (circles in
two spatial dimensions) in a Lifshitz–Slyozov [9]–[11] type of continuum theory. We start with
the thermodynamic definition of the work �W required to form a nucleus from an aggregate of
solute particles

�W = δ(E − T0S + P0V), (8)

where δ(E − T0S) is the increment in the free energy of the system and δ(P0V) is the associated
external work done. Minimizing this free energy, one can show [9] that the CR of a nucleating

New Journal of Physics 7 (2005) 148 (http://www.njp.org/)

http://www.njp.org/


9 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

system is given by

RCR = ζs′

µ′(P) − µ′
0(P)

. (9)

Here µ′
0 and s′ are the chemical potential and molecular surface area of the nucleus, ζ is the

surface tension and µ′ is the chemical potential of the solute in the solution. To compare with
the active contour mechanism, the CR there is defined by the rate of merger of snakes leading
to a coarsening feature. If c represents the concentration of the solute in the solution and c∞
represents the supersaturated concentration, then one can show that

µ′ − µ′
0 � T(c − c∞)/c∞ (10)

for a solution with temperature T . Combining equations (9) and (10), we get

c = c∞ +
RCR

R
(v − c∞). (11)

As more and more solutes start nucleating, i.e. snakes merge, the solution approaches the critical
limit of supersaturation and in the steady state, the CR grows as

dR(t)

dt
= D

(
∂c

∂r

)∣∣∣∣
r=R

, (12)

where c(R) represents the spherically symmetric concentration distribution of snakes around
a nucleus of radius a, D being the diffusion coefficient. Following the treatment of Lifshitz–
Slyozov [9, 10], it can now be easily shown that if RCR(0) is the CR at the beginning of the
merging process (t = 0), then for a predominantly diffusive dynamics in a 2D plane, the radius
R(t) follows

dR(t)

dt
= R2

CR(0)

R(t)

(
1

RCR(t)
− 1

R(t)

)
. (13)

We now define the dimensionless quantities x(t) = RCR(t)

RCR(0)
, u(t) = R(t)

RCR(t)
and τ = 2 log x(t). The

last one increases monotonically from 0 to ∞ as the time t increases likewise. Combining
equations (12) and (13) in 2D, the dynamics is given by

du2(τ)

dτ
= γ

(
1 − 1

u

)
− u2, (14)

where γ = dt

RCR(0)dx
> 0. A linear stability analysis of the above nonlinear equation gives a fixed

point at γ0 = 27/4. We are interested in the dynamics around an ε-neighbourhood of this point
γ0. If γ(τ) = 27

4 [1 − ε2(τ)] (ε → 0 as γ → ∞), then near the critical point (u0 = (γ/2)1/3 = 3/2)
the merging snakes follow a dynamics defined by

du

dτ
= −2

(
u − 3

2

)2 − 3
4ε

2. (15)
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The time variation of the merging nuclei (snakes) is

x(t) = 4

27

√
t

RCR(0)
. (16)

Thus the BA (∼x2(t)) of the merging snakes grow at the rate of t which is roughly speaking
our numerical estimate (1.1–1.2) also (figure 4(a)). However, the above analysis is only valid
before complete merging of the snakes has occurred. In the ‘merged’ phase, when the resultant
asymmetrical structure continues growing finally to coalesce with the bounding image, the system
dynamics is modified. To analyse the situation, we start from equation (13). The equation may
alternatively be represented as

dR(t)

dt
= Dδc(R(t))

R(t)
∼ 1

T

1

R2(t)
. (17)

T in the above equation is the temperature of the solution in the equivalent thermodynamic
problem, which in our case is a measure of the average surface energy E, E ∝ T , of the system.
This follows from the fluctuation–dissipation theorem which is expected to hold good in the
active contour dynamics as well. Evidently, in 2D, E goes as 2πR/ζ. Using these values in the
above equation, we see that after complete merging of the snakes has taken place, the effective
radius of curvature of the resultant structure grows as RCR(t) ∼ t1/4 (figure 5). Once again our
numerical result is in commendable harmony with the theory.

5. Conclusions

Our above analysis, both numerical and analytical, clearly suggests that below the apparently
simplistic level of the GGVF application, the system dynamics has a more fundamental symmetry.
This symmetry comes from the fact that the GGVF method lies in the same universality class as
that of a classical nucleation model. There is, however, a notable shortcoming with the GGVF
technique, in that it does not allow us the liberty of starting with an initial condition at an arbitrary
location. If the snake starts at a position in which a major portion of the initial snake is outside
the desired boundary or vice versa, then the snake driven by GGVF will not converge to the
actual boundary. Although it can be shown by the Reed–Simon’s theorem [14] that a convex set
(a circle, say) growing within a larger convex set (a larger circle or rectangle, say) will always
merge with the outer boundary under the action of isotropic driving forces, to the best of our
knowledge, no such mathematical lemma exists for a convex set growing in a concave set or
vice versa. In the present paper, we have theoretically analysed the physical foundation of the
GGVF merging technique and have answered the rather puzzling question as to why it works so
accurately. In the process, we have shown that the answer lies in the general scaling behaviour of
the underlying nucleation dynamics, defined by proper scaling laws. This clearly indicates that
an active contour system is in the same universality class as the nucleation model we considered.
Our results, in unison with future biomedical applications, are expected to inspire further studies
in the understanding of lung-based diseases.
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