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Abstract 

 
Theileria annulata is an intracellular, tick-transmitted apicomplexan parasite, 

which causes tropical theileriosis in cattle. It undergoes a complex life cycle 

with several distinct stages occurring within the bovine host and tick vector. 

ApiAP2 proteins are key candidate transcription factors for regulation of stage-

specific gene expression across apicomplexans. They are differentially expressed 

in specific developmental stages and certain ApiAP2s bind specifically to unique 

DNA sequence motifs. Identification of stage-specific expression of putative 

transcriptional regulators, the motifs they bind to and potential target genes 

provided the rationale for this study to understand the molecular mechanisms 

that control stage differentiation to the merozoite in T. annulata. 

 

The results demonstrated that T. annulata ApiAP2s show marked differences in 

expression levels during the parasite life cycle. ApiAP2 target DNA motifs 

orthologous to those in Plasmodium and Cryptosporidium were also discovered in 

Theileria intergenic regions, indicating that the genes downstream are potential 

targets of Theileria ApiAP2s. These motifs were also found in upstream regions 

of up-regulated TaApiAP2 genes, suggesting possible auto-regulation and an 

interaction network of ApiAP2 transcription factors. Importantly ApiAP2 fusion 

proteins up-regulated during differentiation to the merozoite stage bound to 

their predicted specific DNA motifs validating that ApiAP2 DNA-binding domain 

structure is conserved across Apicomplexa genera.  

 

Evidence was also produced that AP2 proteins play important roles in steps that 

commit a cell to differentiate: TA13515D is the orthologue of the AP2G factor in 

Plasmodium that is a major regulator of gametocytogenesis: TA16485 may be 

involved in down-regulation of genes during merogony and expression of TA11145 

at a higher level in a cell line competent for merogony relative to a line 

severelly attenuated indicated involvement in regulation of this differentiation 

step. Discovery of multiple nuclear factors binding to a 2x(A)CACAC(A) motif 

implicated in autoregulation of TA11145, together with phylogenetic evidence 

for a clade of related domains that bind this motif suggest that multiple 

competing ApiAP2s may operate to regulate stochastic commitment to merozoite 
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production. Based on this data an updated stage differentiation model has been 

generated, with up regulation of the TA11145 gene a key event.  

 

A C-box motif association with genes implicated in establishment of the 

transformed host cell (TashAT, SVSP) suggests it could be important for 

deregulation of this event as the parasite undergoes stage differentiation. In 

contrast the  inverse G-box was found associated with genes up-regulated from 

merozoite to piroplasm. EMSA analysis of parasite nuclear extract with a G/C-

box motif probe showed that the motif is an active binding site for a stage 

regulated nuclear factor. Specific binding of candidate TA12015 protein to the 

G/C-box motif was unable to be confirmed. 

 

Taken together, these results provided evidence that ApiAP2 proteins are 

regulators of stage-specific gene expression in T. annulata. They also provide 

insight into probable ApiAP2 interaction networks and support the postulation of 

a differentiation mechanism conserved across the Apicomplexa. Finally, the data 

suggests that this mechanism is stochastic and is likely to occur via a positive 

feedback loop generating a threshold that commits the cell to differentiate to 

the next stage of the life cycle. 
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1 Introduction 

1.1 Introduction 
 

Apicomplexan parasites are protozoan pathogens of humans and domestic and 

wild animals and represent an on-going threat to livestock productivity across 

much of the world. Theileria annulata is an intra-cellular protozoan parasite 

that causes tropical theileriosis, an economically important tick-borne disease 

(TBD) of cattle. It is found in Southern Europe, largely around the Mediterranean 

coast, the Middle East, North Africa and much of central and East Asia including 

India (Purnell et al., 1978, Lu and Yin, 1994) (Figure 1.1). The geographical 

distribution of T. annulata, and hence tropical theileriosis, is mainly determined 

by the location and biology of its vector, ticks of the Hyalomma genus (Robinson, 

1982). A suitable climate (i.e. warm temperatures and high humidity) is required 

for tick survival, questing and trans-stadial transmission of the parasite. 

Theileria annulata has been reported as transmitted by H. detritum and 

H. truncatum in Africa, H. dromedarii in central Asia, H. asiaticum in China and 

H. anatolicum and H. marginatum in India (Flach and Ouhelli, 1992; Bouattour et 

al., 1996; Islam et al., 2006; Taylor et al., 2007; Meng et al., 2014). 

 

 

Figure 1.1 Distribution of major Theileria species infecting cattle 

Theileria annulata is found in Southern Europe, North Africa and sub-Saharan regions of Sudan 

and Eritrea, the Middle East, India and Southern China (highlighted in brown). Theileria parva is 

found in south-east Africa (highlighted in green). Theileria orientalis is found in far-eastern Asia 

including Japan and Korea (highlighted in blue). 

(www.theileria.org/ahdw/pictures/largemap.gif) 
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Domestic cattle (Bos taurus and Bos indicus) are susceptible to T. annulata 

infection as are yaks (Bos grunniens), water buffalo (Bubalus bubalis) and camels 

(Camelus dromedarius) (Robinson, 1982; Nassar, 1992; Dumanli et al., 2005). 

Theileria annulata sporozoites can be transmitted to goat and sheep and cause 

mild febrile response, however limited experimental studies indicate that 

schizonts and piroplasms are not produced in these host species (Leemans et al., 

1998; Yin et al., 2003) and therefore the parasite cannot complete its life-cycle. 

Infection by T. annulata parasites results in enormous losses in production (beef 

and milk) (Gharbi et al., 2006), with high mortality in susceptible animals 

(Branco et al., 2010). Other major Theileria species of domestic cattle include T. 

parva in sub-saharan Africa, and highly-related phylogenetically T. buffelli/T. 

orientalis group (Sugimoto et al., 1991) with T. orientalis in Japan and Korea 

and T. buffeli over much of the world and considered a recently emerging 

pathogen in Australia (Islam et al., 2011). In sheep and goats, Theileria 

lestoquardi causes severe disease and is associated with high morbidity and 

mortality (Brown, 1990). Many other species of Theileria exist, particularly in 

sub-saharan Africa, and are carried by domesticated and wild ruminants with, in 

general, little or no clinical signs. 

 

1.2 Theileria and closely-related Apicomplexa species 
 

 

The phylum Apicomplexa comprises more than 5,000 species, which display a 

variety of life-cycle adaptations. However, these protozoa share fundamental 

aspects of their biology, i.e. differentiation through sequential life-cycle stages, 

amplification within the host cell and onward transmission to new hosts. At the 

present time little is known about the molecular mechanisms that directly 

regulate these transition events. Apicomplexan species are responsible for many 

important human and animal diseases such as mosquito-borne malaria (caused by 

Plasmodium species) and tick borne disease (TBD) such as babesiosis (caused by 

Babesia), East Coast fever (caused by Theileria parva) and tropical theileriosis 

(caused by T. annulata). Toxoplasma gondii and Cryptosporidium parvum 

parasites cause toxoplasmosis and cryptosporidiosis respectively, however they 

do not require vector organisms as they are transmitted directly from one 
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mammalian host via resistant stages in the environment and, in the case of T. 

gondii, via an intermediate host infected with a tissue cyst. 

Theileria parasites show similarity at the cellular and molecular level to other 

Apicomplexan genera, in particular Babesia and Plasmodium (Figure 1.2). Every 

member of this phylum shares the same infectious stage, the sporozoite, which 

possesses a unique plastid-type organelle involved in energy metabolism (Lim 

and McFadden, 2009), the apicoplast; and the apical complex structure involved 

in host cell penetration. Theileria annulata and T. parva are phylogenetically 

very closely related species, which share the ability to transform and 

immortalise their host cells and induce un-controlled proliferation (Hulliger, 

1965; Irvin and Morrison, 1987; Baylis et al., 1995; Adamson et al., 2000). 

Despite their close relationship, they display different host cell tropism and are 

transmitted by different tick species. Theileria parva has a more limited 

geographical range, as it is transmitted by the Rhipicephalus appendiculatus tick 

and is found only in Eastern and South Africa, south of the Sahara desert. It 

shows higher virulence, in terms of disease severity, than T. annulata (Norval et 

al., 1992). Theileria lestoquardi is a pathogenic species causing malignant 

theileriosis in sheep and goats (Uilenberg, 1981). Phylogenetically, it is highly 

similar to T. annulata and is also capable of reversible host cell transformation 

(Dobbelaere and Heussler, 1999; Pain et al., 2005). Non-transforming species of 

the genus, which tend to be less pathogenic, include parasites within the T. 

buffeli/T. orientalis complex (Onuma et al., 1997). 
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Figure 1.2 Relationship between Apicomplexa species and their genome sizes 

(Kissinger and DeBarry, 2011). Phylogenetic tree of Apicomplexa parasites. Approximate genome 

sizes are shown in Mb. Genomes of Apicomplexa are organised in 4 to 14 linear chromosomes. 

 

 

 

The complete genome of T. annulata has been sequenced and is relatively small 

(~8.5 Mb) in comparison to that of other Apicomplexa, e.g. T. gondii (~63 Mb), P. 

falciparum (~23 Mb) and C. parvum (~9.2 Mb) (Figure 1.2 and Table 1.1). 

Theileria annulata has four chromosomes that range in size from 1.9 to 2.6 Mb 

(Pain et al., 2005). In contrast, the core Plasmodium sp. Genome spans 14 

chromosomes (Lau, 2009). 

 

Table 1.1 Characterisation of Theileria annulata, T. parva and T. orientalis 

genomes (Hayashida et al., 2012). 
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The T. annulata genome shows similarity to T. parva and T. orientalis both in 

terms of gene content and synteny and contains approximately 4,000 protein-

coding genes, 47 tRNA genes and 5 ribosomal RNA genes (Pain et al., 2005; 

Hayashida et al., 2012). Some apicomplexan genomes are more AT-rich than 

others, with P. falciparum having an 80 % AT content (Gardner et al., 2002) 

compared to 67.5 % for T. annulata (Hayashida et al., 2012) and 50% for 

Toxoplasma (Gissot et al., 2008). The small size of the Theileria genome in 

comparison to most other eukaryotes has been attributed, in part, to the 

absence of genes involved in a range of metabolic processes. This includes genes 

involved in the synthesis of purines, polyamines, fatty acids and porphyrin. 

However, the presence of a number of key genes indicates that Theileria are 

capable of glycolysis and probably have a tricarboxylic acid cycle (Gardner et al., 

2005). 

 

1.3 Economic importance and pathogenesis of tropical 

theileriosis 

 

The first description of tropical theileriosis, then called tropical piroplasmosis, 

in cattle was in Transcaucasia, a region comprising today’s Armenia, Azerbaijan 

and Georgia and the borders of Turkey and Iran (Dschunkowsky and Luhs, 1904). 

The parasite, of a similar shape to T. parva erythrocytic forms, was initially 

named Piroplasma annulata, but included in the genus Theileria after discovery 

of the multinucleate intracellular macroschizont stage (Bewttencourt et al., 

1907). Theileria annulata and T. parva are closely related parasites and give rise 

to similar clinical syndromes (Irvin and Morrison, 1987; Allsopp and Allsopp, 

2006), however T. annulata preferentially infects B cells (lymphocytes) and cells 

of myeloid lineage, while T. parva prefers T cells (lymphocytes) (Glass et al., 

1989; Spooner et al., 1989). 

The incubation period for tropical theileriosis lasts between approximately one 

and three weeks (Neitz et al., 1957). The severity of disease is influenced by the 

breed and immune status of the host species and is associated with the number 

of sporozoites inoculated by the tick (Samantaray et al., 1980; Preston et al., 

1992). Both the macroschizont infected leukocyte, and the piroplasm infected 

erythrocyte, contribute to the pathogenesis of tropical theileriosis (Irvin and 
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Morrison, 1987). The most prominent clinical signs of the acute form of disease 

are pyrexia (41°C), lymphadenopathy, anaemia, jaundice, tachycardia and heart 

failure (Irvin et al., 1981; Preston et al., 1992). During the advanced third phase, 

severe anaemia and leukopoenia occurs and this is due to widespread 

lymphocytolysis (Preston et al., 1992; Forsyth et al., 1999; Singh et al., 2001). 

Macroschizont-infected cells can be detected in biopsy smears of lymph nodes of 

live cattle approximately 7 to 28 days post-infection (Young et al., 1977). 

Infiltration of the lungs by infected cells can cause severe pulmonary oedema 

and death may ensue within 3 to 4 weeks of infection (Irvin and Morrison, 1987). 

Theileria-infected cells show many characteristics of neoplastic cells (that 

undergo abnormal growth, not coordinated with other normal cells), including 

migration and proliferation in lymphoid and non-lymphoid tissues and the ability 

to form lesions similar to lymphosarcoma (Dobbelaere and Heussler, 1999). 

Cattle that have recovered from clinical tropical theileriosis, or were sub-

clinically infected, usually remain parasite positive and carry T. annulata for an 

extended period of time. In addition in sub-acutely infected carriers, cows’ 

fertility level may be reduced and milk production can become severely 

impaired (Dobbelaere and Heussler, 1999). In countries where tropical 

theileriosis is endemic, exotic Bos taurus cattle, and cross-breed Holstein-

Friesians, are more susceptible to T. annulata infection with a mortality rate 

around 40-60 %, in contrast to indigenous Bos indicus cattle with mortality of 

only 5 % (Dyer and Tait, 1987; Brown, 1990; Bakheit and Latif, 2002; Glass et al., 

2005). The natural resistance of indigenous cattle to theileriosis may be due to 

adaptive immunity and host/parasite co-evolution. Through immune recognition 

by cattle and the establishment of a carrier state that avoids clearance of the 

parasite a form of endemic stability is created (Antia et al., 1996), characterised 

by high immunity in adult cattle and absence of clinical disease in calves despite 

a high level of infection pressure. In endemic areas ticks usually take in a 

minimal dose of T. annulata from carrier cattle, that maintains infection, and 

may help in establishing endemic stability of theileriosis (epidemiological state 

in which despite high level of infection, the clinical disease is sporadic) by 

limiting the infective dose for naive susceptible animals (Haque et al., 2010). 

Approximately 300 million cattle in endemic regions are at risk from T. annulata 

infection (Norval et al., 1992; Gharbi et al., 2006). In India alone, tropical 

theileriosis is a major health problem for up to ten million cattle and has been 
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associated with estimated economic losses up to 800 US million dollars per year 

(Griffiths and McCosker, 1990; Brown, 1997). These losses include death of 

animals, decreased productivity and the cost of disease control measures. Many 

of the non-transforming Theileria species (e.g. T. mutans) are carried without 

obvious clinical signs in domesticated and wild ruminants, although some can 

cause fever, anaemia or anorexia and increase the severity of East Cost fever or 

tropical theileriosis.  

 

1.4 Theileria annulata control strategies 
 

 

Several methods for the treatment and control of T. annulata infection have 

been used in endemic regions around the world. Tropical theileriosis can be 

controlled by immunisation with a live attenuated (of reduced virulence) vaccine 

(Pipano, 1981), obtained by prolonged cultivation of macroschizont-infected 

cells (Hall et al., 1999). Additionally application of acaracides or chemotherapy 

is advised (Dolan, 1989; Boulter and Hall, 1999). Vaccination against tropical 

theileriosis has been a focus of research for more than half a century and 

vaccination programmes have been deployed, with varying degrees of success, in 

a number of countries. Studies on immune responses to T. annulata suggested 

that recombinant vaccines should at least include antigens against sporozoites 

and macroschizonts (Preston et al., 1999). Immunisation with recombinant 

sporozoite surface antigen: SPAG-1 (T. annulata) and p67 (T. parva) induced a 

degree of protection against the respective Theileria species. Cross-species 

protection was also observed (Hall et al., 2000). Unfortunately, field trials 

against ECF did not support commercialisation and deployment of a recombinant 

vaccine based on this antigen alone (Morzaria et al., 2000). Vaccination with 

attenuated, cultured macroschizonts did not result in transmission to Hyalomma 

ticks, however carrier status developed in vaccinated calves (Gubbles et al., 

2000). Stronger immunity was obtained from blood-delivered macroschizonts 

compared to culture-derived schizonts (Pipano and Shkap, 2000). Duration of 

protection does not appear to be lifelong, however safe and effective in large 

endemic areas. Attempts at developing a subunit vaccine based on the merozoite 

surface antigen (Tams1) were also undertaken, with good protection obtained 

against a blood challenge but only partial protection against a sporozoite 
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challenge (d'Oliveira et al., 1997; Gubbels et al., 2000b). A cocktail of SPAG-1 

and Tams1 was recently shown to generate a synergistic response against 

sporozoite challenge (Gharbi et al., 2011) and similar results have been obtained 

by combining SPAG-1 with a live attenuated vaccine in Tunisia (Darghouth et al., 

2006). Recent attempts have been made to test recombinant vaccine comprised 

of antigens of the tick, H. a. anatolicum, or parasite  T. annulata (Jeyebal et 

al., 2012). Evidence of protection was obtained with the highest immune 

response generated against the tick-derived rHaa86 antigen, which effectively 

protected calves against tick infestation. Upon challenge with T. annulata 

infected ticks, parasite derived SPAG-1+rTaSP antigen immunized calves died, 

while 50% of calves immunised with rHaa85 survived. It was concluded that 

rHaa85 should be considered as a candidate for a vaccine against both H. a.  

anatolicum and T. annulata. 

 

Transformation induced by Theileria is a reversible process and the addition of 

theilericidal drugs has been shown to stop proliferation of cells. Several 

chemotherapeutics have been used to treat theileriosis, such as oxytetracyclines 

(Bansal and Sharma, 1986), parvaquone (McHardy and Morgan, 1985) or 

halofuginone lactate (Mehlhorm and Raether, 1988). However, the most 

effective drug in use worldwide is buparvaquone (BW720C), a second generation 

hydroxynaphthaquinone which has the ability to cure cattle infected with 

T. annulata and T. parva (Dolan et al., 1984; McHardy et al., 1985; Hawa et al., 

1988; Ngumi et al., 1992; Singh et al., 1993). Unfortunately, therapeutics are 

most efficacious if deployed in the early stages of disease and their high cost 

precludes widespread use in developing countries where the disease is endemic 

(Morrison and McKeever, 2006; Osman and Al-Gaabary, 2007). In addition, 

emerging drug resistance and delivery against only the parasite life stages in the 

bovine host limits the effectiveness of the agents (Mallick et al., 1978; Schein 

and Voight, 1979; Singh et al., 1993; Mhadhbi et al., 2010). A combined strategy 

of vector and parasite control is therefore required to combat tropical 

theileriosis. To improve current measures of control, one potential approach is 

to develop a system that targets parasite stage differentiation, thus impairing 

the development of life-cycle stages responsible for the pathogenesis in cattle or 

transmission to the vector. This would require greater understanding of the 

mechanism that controls these events. It is likely that existing drugs operate to 
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modulate stage differentiation of Theileria and other apicomplexans (Shiels et 

al., 1998). 

 

1.5 Life-cycle of T. annulata 

 

Apicomplexan species demonstrate a variety of complex life-cycles most if not 

all involving a step that allows transition from asexual to sexual stages. Theileria  

parasites undergo a number of differentiation stages that are typical of the 

Apicomplexa, including gametocytogenesis, sporogony and merogony (Figure 

1.3). The life-cycle can be divided into two main phases: stages in the tick 

(vector)  and stages within the mammalian host. To be transmitted between 

mammalian hosts or between host and vector, apicomplexan parasites must 

undergo differentiation into morphologically distinct forms adapted to survive in  

different environments. For Plasmodium this involves transition from the 

intraerythrocytic developmental cycle (IDC) stages to the gametocytes and 

sexual determination, while for T. annulata differentiation from the 

intracellular macroschizont to extracellular merozoites is followed by invasion of 

erythrocytes and formation of the piroplasm stage that allows transmission to 

the tick. An array of host-parasite interactions underpin the ability of 

macroschizont-infected cells to survive, proliferate and disseminate. However, if 

the life cycle is to progress and new host to be infected stage differentiation 

must occur. Differentiation is also critical to establish infection, and disease, 

following inoculation of the sporozoite. Thus, stage differentiation allows 

regeneration and expansion of parasite populations and thus can be considered a 

target for controlling the transmission of parasites to their vector and preventing 

infection from reaching clinical outcome. Blocking differentiation events in the 

tick also has the potential to moderate and eliminate transmission of the 

pathogen to susceptible livestock. 

 

 

 

 

 

 

 



 

 

37 

 

 

               GAMETOGENESIS                                                         SPOROGONY 

 

 

               MEROGONY 

 

Figure 1.3 Generalised apicomplexan life-cycle 

 

 

1.5.1 Bovine stages of the T. annulata life-cycle 

There are a number of distinct stages within the bovine phase of the life-cycle, 

each of which are asexual. The bovine phase of the T. annulata life-cycle 

(Figure 1.4) begins with inoculation of parasite sporozoites with the saliva of the 

feeding tick. Sporozoites are oval shaped bodies of approx. 1µm in length that 

invade leukocytes (B lymphocytes or monocytes) by discharging their rhoptries 

and micronemes, specialised secretory organelles involved in facilitating host 

cell invasion, to lyse the host cell plasma membrane (Fawcett et al., 1982, Shaw 

et al., 1991) that initially surrounds the invading sporozoite. This results in a 

free parasite (trophozoite) surrounded by host cell microtubules located in the 

perinuclear region of the host cell. After 2-3 days in the cytoplasm, the 

trophozoite differentiates into the multinuclear macroschizont (Fawcett et al., 

1982, Shaw et al., 1991). It is the macroschizont stage that possesses the ability 

to immortalise the host cell (Baumgartner et al., 2000). This is achieved by 

activation of host cell transcription factors and modulation of host cell gene 

expression (reviewed by Shiels et al., 2005; Durrani et al., 2012; Kinnaird et al., 

2013). The parasite associates closely with the microtubules at the host cell 

spindle in order to ensure distribution of the parasite to each daughter leukocyte 

during cytokinesis (Hullinger et al., 1964; Mehlhorn and Schein, 1984). 

Proliferating macroschizont-infected leukocytes give rise to a large number of 

infected cells, initially in the lymph nodes draining the site of tick attachment. 

They then disseminate to the rest of the lymphoid system and can be found in 

the bloodstream and a variety of non-lymphoid tissues and organs (Forsyth et 

al., 1999; Glass, 2001). Dissemination of infected cells and the host reaction to 

them are responsible for the much of the pathogenesis and clinical signs of the 
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disease, which has been described as being similar to a neoplastic condition 

(Swan et al., 2003; Lizundia et al., 2006; Chaussepied et al., 2010; Cock-Rada et 

al., 2012). The ability to induce the host cell to divide is unique to Theileria and 

is almost certainly linked to the mechanism of proliferation and its ability to co-

opt the host cell mitotic spindle (von Schubert et al., 2010). Plasmodium and 

Toxoplasma, for example can both significantly modulate nucleated host cells, 

but reside within a parasitophorous vacuole and divide within this vacuole 

independently of the host cell (Shaw, 1997). 

Macroschizonts differentiate to become uni-nucleated extracellular invasive 

forms called merozoites through a process known as merogony (Jarret et al., 

1969; Shaw et al., 1992). This is a major point of the differentiation process in 

the bovine phase of the parasite life-cycle as it involves the switch in production 

of macroschizont to merozoite proteins, formation and assembly of merozoite 

nuclei, microneme and rhoptry organelles and is marked by major changes to 

parasite cellular morphology and antigenic profile (Mehlhorn and Shein, 1984; 

Shiels et al., 1992). During the initial phase of merogony proliferation of the 

infected host cell slows down (Shiels et al., 1992), the parasite syncytium 

enlarges to generate host cells containing a large number of mature merozoites 

(Shaw et al., 1992). In contrast to T. annulata and T. parva, merozoite 

production of T. orientalis occurs to a significant degree  in erythrocyte cells 

(Conrad et al., 1985). Theileria orientalis also undergoes merogony in host 

leukocytes, but is incapable of causing host-cell transformation to induce 

proliferation (Nene et al., 2000). Thus immortalised T. orientalis-infected cell 

lines cannot be established in vitro, and in vivo the host cell increases 

substantially in size with macroschizonts undergoing continuous enlargement 

from 4 to 8 days before multiple merozoites are generated and released 

(Hayashida et al., 2012). Theileria parasites, similar to Babesia parasites, are 

thought to undergo sexual differentiation with formation of a zygote in the tick 

vector (Melhorn and Schein, 1984). In Plasmodium species, the sexual 

erythrocytic phase starts with invasion of committed merozoites derived from 

the previous round of asexual schizogony. The resulting ring-form parasites 

differentiate to trophozoites (Garcia et al., 2008) that undergo the process of 

gametocytogenesis, rather than undergo another IDC. In a similar manner the 

Cryptosporidium parvum life-cycle involves both asexual and sexual stages with 

infection initiated by the ingestion of oocysts. Oocysts release sporozoites, 
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which in turn invade intestinal epithelial cells and undergo asexual amplification 

via schizogony and merozoite production. After several rounds of schizogony, the 

merozoites become committed to give rise to gametocyte production (Chen et 

al., 2002). Thus differentiation of the parasite to the merozoite stage and 

subsequently to the sexual stages is common across distantly related 

Apicomplexa genera and it is reasonable to speculate that related underlying 

molecular mechanisms control these life cycle events. 

Following destruction of the leukocyte membrane and budding from the 

syncytial macroschizont, uni-nucleated merozoites are released into the host 

bloodstream. Merozoites proceed to invade the erythrocytes and mature into 

piroplasms within 8-10 days of sporozoite inoculation. Piroplasms are rod or 

oval-shaped bodies surrounded by a single-layered plasma membrane, which lie 

freely in the cytoplasm of the erythrocyte (Mehlhorn and Shein, 1984). They 

have been considered by some authors to be the equivalent of gametocytes 

(Melhorn and Schein, 1984). The life-cycle in the bovine host is completed with 

the ingestion of piroplasm infected erythrocytes by a feeding tick (Norval et al., 

1992). 
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Figure 1.4 The life-cycle of T. annulata 

(www.theileria.org) 
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1.5.2 Tick stages of the T. annulata life-cycle 

 

The tick is infected by feeding on a bovine infected with Theileria piroplasms in 

its red blood cells. These enter the tick gut lumen where gametogenesis and 

fertilisation to produce a zygote occur (Gauer et al., 1995). Piroplasms develop 

into spindle-shaped bodies, micro- or macrogamonts, which then transform into 

uni-nucleated micro- and macrogametes (Schein et al., 1975). Fusion of micro- 

and macrogametes takes place and immotile zygotes are formed (Schein et al., 

1975; Levine, 1985). 

After 12-15 days, the T. annulata zygote differentiates into a motile elongated 

body called a kinete (Mehlhorn and Shein, 1984), which is a polyploid life-cycle 

stage. In T. parva, it has been proposed that the tetraploid zygote undergoes a 

two-step meiosis in the tick gut epithelium and the DNA complement is reduced 

to a haploid level (Gauer et al., 1995). Following the tick moult, the kinete 

invades the salivary glands, undergoes multiple nuclear divisions and forms a 

complex syncytium called the sporoblast (Schein and Friedhoff, 1978; Mehlhorn 

and Schein, 1984). Following 3 or 4 days of feeding on a new host, a large 

number of sporozoites are produced in the salivary glands of the tick by the 

process of asexual nuclear division and budding, known as sporogony (Singh et 

al., 1979; Reid and Bell, 1984). Approximately 40,000 sporozoites are generated 

from each infected gland acinus (Young et al., 1992). Sporozoites are released 

into the tick saliva and delivered into the new bovine host during feeding.  

 

1.6 A stochastic model of stage differentiation in T. annulata 
 

 

 

Although the steps involved in differentiation vary among apicomplexan 

parasites, some common characteristics of these processes have been observed. 

These include alteration of environmental temperature during the life-cycle as 

they move from one vector/host to another (Hullinger et al., 1966; Soete et al., 

1994), and a reduction of parasite proliferation status (Bruce et al, 1990; Bohne 

et. al, 1994; Reuner et al., 1997; Shiels et al., 1992). Changes to heat shock 

gene expression levels were also proposed to be involved in the regulation of 
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differentiation processes in other protozoa: e.g. Leishmania (Van Der Ploeg et 

al., 1985). Signalling mechanisms have been frequently proposed to operate in 

stage differentiation of protozoa. Signalling events controlling  

gametocytogenesis has been poorly characterised in P. falciparum, however 

recent discovery that P. falciparum infected red blood cell-cell communication 

through exosome-like vesicles act as a messenger for the induction of 

differentiation to the sexual forms suggests that signalling might be involved in 

this process (Mantel et al., 2013; Regev-Rudzki et al., 2013). Moreover, the 

cGMP-dependent protein kinase was recently identified as a mediator of this 

process (McRobert et al., 2008). However, contradictory to a signalling event, 

evidence has been generated which indicates that differentiation in protozoa is 

an asynchronous/stochastic process and is associated with stoichiometric 

changes in the level of molecular factors regulating gene expression (Shiels et al., 

1994; Soete et al., 1994). A stochastic (with random probability) differentiation 

process has previously been described for Trypanosoma brucei (Reuner et al., 

1997), T. gondii (Soete et al., 1994), T. annulata (Shiels et al., 1992), 

Plasmodium (Carter and Miller, 1979; Bruce et al. 1990), Eimeria (McDonald and 

Rose, 1987) and Leishmania parasites (Sacks and Perkins, 1894). It has been also 

shown in T. annulata, P. falciparum and T. gondii that certain drugs which 

inhibit DNA synthesis can increase differentiation potential of these parasites 

(Shiels et al., 1997; Bohne et al., 1994; Ono et al., 1993). Other studies observed 

that a number of protozoa show evidence of early expression of stage-specific 

markers in the preceding stage, before the differentiation event occurs 

(Contreras et al., 1985; Soete et al., 1994; Shiels et al., 1994; Abrahamson et al., 

1995; Reuner et al., 1997), implying to a degree that the event is predetermined. 

For the Theileria model an initial low-level increase in expression of merozoite 

genes could be reversed up to a certain point but then became irreversible 

(Shiels et al., 1994). These results indicated a point of commitment determined 

when the differentiation event becomes irreversible. Thus, Shiels et al. (1994) 

proposed that differentiation to the merozoite in T. annulata operates on the 

basis of factors that regulate gene expression reaching a commitment threshold, 

which, once reached, results in an irreversible switch over from macroschizont 

to merozoite gene expression (Figure 1.5). This hypothesis was supported by the 

switch to irreversible high-level Tams1 gene expression, a major antigenic 

component of the merozoite surface, together with loss of expression of 
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macroschizont specific antigens (Shiels et al., 1994). Importantly macroschizonts 

express the Tams1 gene at a detectable level and a small reversible increase in 

expression was described during 2-4 days after the cell line being put at 41°C 

(Shiels et al., 1999). In addition, cells with an attenuated differentiation 

phenotype were unable to significantly increase Tams1 gene expression (Shiels 

et al., 1999), implying that the putative regulator of merozoite gene expression 

was unable to reach the threshold required for the switch to merogony. 

To explain low level expression of the Tams1 gene in the preceding stage it was 

proposed that either merozoite factors function at a low level in the 

macroschizont or there is cross-recognition of merozoite promoters by factors 

that control macroschizont gene expression. Then from experiments that altered 

the level of DNA synthesis relative to protein synthesis (Shiels et al., 1997) it was 

postulated that following placement at 41°C (temperature of fever) a general 

increase in factor production over DNA template leads to a preferential increase 

in regulators of merozoite gene expression via a positive feedback loop until full 

auto-regulation and the commitment point of differentiation is achieved (Shiels 

et al., 1999).  

Further investigation of Tams1 gene expression demonstrated regulation at the 

transcriptional level and provided evidence for both quantitative and qualitative 

changes in complexes that specifically bound to a nucleotide motif 

(TTTGTAGGG) upstream of the transcriptional start site (Shiels et. al., 2000). 

Thus, an electrophoretic mobility-shift assay (EMSA) found that factors derived 

from parasite enriched nuclear extracts of the macroschizont stage formed two 

complexes and that both complexes were detected at greater levels during 

merogony. This confirmed that factor(s) with the potential to regulate 

expression of Tams1 are present in preceding stage of the life cycle and increase 

during differentiation. A third complex, not detected with macroschizont 

extracts, was associated with the transtition to high-level merozoite gene 

expression and production. Mutagenesis of TTTGTAGGG core motif confirmed its 

importance for the specific binding and revealed that flanking nucleotides may 

act to stabilise motif-factor complex (Shiels et al., 2000). Support for this model 

has recently been generated for Plasmodium. Thus in both P. berghei and P. 

falciparum lines that have lost the ability to generate gametocytes production, 

mutations or reduced expression levels were discovered in a putative 

transcription factor. It was subsequently shown that this transcription factor 
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(AP2-G) is required for commitment and is likely to operate via a positive 

feedback auto-regulatory loop (Kafsack et al., 2014; Sinha et al., 2014). 

 

 

 

 

Figure 1.5 Theoretical molecular model for stage differentiation from macroschizont 

to merozoite of T. annulata in vitro. TamS1 - the major merozoite surface antigen 

gene, MeR - a regulator of merozoite gene expression (Shiels et al., 1998). 

 

 

 

1.7 Regulation of gene expression in apicomplexan parasites 
 

 

 

Progression from one parasite life-cycle stage to the next, with both entry and 

exit from the cell cycle, requires a strict programme of expression events, with 

co-expression of subsets of genes linked to different stages. Differential gene 

expression is required to facilitate different aspects of parasite stage 

development, such as biosynthesis and organisation of structural components for 

multiple morphological forms, the generation of parasite-encoded molecules 

that interact with or evade the host immune system (Hakimi and Deitsch, 2007) 

and the establishment of different modes of energy production and motility.  
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For certain parasites such as Trypanosoma or Leishmania sp., gene expression 

mechanisms are unique with multi-cistronic transcription and regulation of 

mRNA stability playing a major role (Johnson et al., 1987; Myler et al., 2011). 

However, for Apicomplexa including T. annulata, differential regulation of gene 

expression can occur at the transcriptional level in a monocistronic manner 

(Roos et al., 1994; Crabb and Cowman, 1996; Horrocks et al., 1998).  

In both prokaryotes and eukaryotes there are three major components of the 

transcriptional machinery: the RNA polymerase complex and associated protein 

complexes responsible for initiation and elongation of the transcript; the general 

transcription factors, that bind to the core promoter of single-stranded DNA 

gene templates and are required for the baseline expression of any gene; and 

the specific transcription factors (TFs) that bind to specific DNA sequences 

upstream of the coding region, thereby controlling the transcription of genetic 

information from DNA to mRNA (Lodish et al., 1999). These specific TFs act to 

either activate or repress the transcription of a gene. Examination of the T. 

annulata genome in comparison to those of other eukaryotes confirmed the 

presence of proteins involved in the majority of known nuclear processes, but a 

lack of conserved transcription factors binding to specific DNA sequences and 

regulatory motifs typically found in similar eukaryotic species was evident 

(Balaji et al., 2005; Pain et al., 2005), and this was unexpected as related 

apicomplexans and T. annulata have complex life-cycles. This paradox suggests 

that apicomplexan genomes encoded other undetected specific TFs that are 

unrelated or distantly related to previously identified DNA binding factors. 

Evolutionary ancestral relationship with photosynthetic organisms (Waller and 

McFadden, 2005) raises the possibility that Apicomplexa adapted their regulatory 

machinery from other species. Alternatively, it was proposed for Apicomplexa 

that stage-specific gene expression does not totally depend on a large number of 

specific transcription factors but involves, for example, post-transcriptional 

regulation by non-coding RNAs or gene-specific chromatin level modulation (Iyer 

et al., 2008). Epigenetic control of the mechanisms of gene expression appears 

to be conserved among the Apicomplexa (Gissot et al., 2009), although it is still 

under investigation and particularly for Theileria the role it plays in stage 

differentiation remains an open question.  
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The possibility that putative TFs had been overlooked in initial genome analysis 

was confirmed with the identification of a group of conserved putative Apetala2 

(AP2) DNA-binding domains in a number of apicomplexan genomes. These were 

termed Apicomplexan Apetala2 (ApiAP2) transcription factors (Balaji et al., 

2005). In addition, the discovery of cis-acting motifs that interact specifically 

with these transcription factors (Campbell et al., 2010) has provided a new 

foundation for the identification of transcription regulation mechanisms in other 

apicomplexan species. The ApiAP2 family was first identified in plants. In 

Arabidopsis thaliana, the AP2 family is the second largest class of transcription 

factors and contains approximately 145 members, which are involved in stress 

responses and the regulation of reproductive and vegetative organ development 

(Drews et al., 1991; Jofuku et al., 1994; Dietz and Vogel, 2010). In plants, AP2 

proteins can function as either activators or repressors of transcription (De Silva 

et al., 2008). It was shown that the architecture of AP2 proteins is related to 

their function: single-domain AP2 genes are responsible for environmental stress 

responses in plants from thermo-tolerance to dehydration and the ethylene 

response, while proteins with two tandem AP2 domains, separated by a short, 

conserved linker sequence of 25 amino acids, are involved in regulating plant 

development (Balaji et al., 2005). 

In apicomplexans, each ApiAP2 protein may contain from one to four AP2 

domains, but most proteins have one, which is often the only globular domain in 

the entire protein. Double AP2 domain proteins are also found in a small family 

of bacterial proteins typified by DP2593 from Desulfotalea psychrophila (Balaji 

et al., 2005). All other AP2 domains found in bacteria (Trichodesmum 

erythraeum), viruses (Enterbacteria phage RB 49 and Bacteriophage Felix 01) 

and mobile DNA elements contain a fusion of the AP2 domain with the EndoVII 

nuclease domain, at least two distinct members of the lambda integrase 

superfamily domain or one to two copies of a novel cysteine-rich domain 

containing five conserved cysteine residues (Magnani et al., 2004; Balaji et. al., 

2005).  
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Comparative studies across apicomplexan species and genera showed that there 

are: 

 35-43 copies of the ApiAP2 domain in 27 predicted proteins of Plasmodium 

species (P. falciparum, Plasmodium chabaudi, Plasmodium yoelii and 

Plasmodium berghei) (Painter et al., 2010); 

 24 copies of the ApiAP2 domain in T. annulata, corresponding to 22 

predicted proteins (Balaji et al., 2005); 

 25-30 copies of the ApiAP2 domain in C. parvum and C. hominis (Balaji 

et.al., 2005); 

 68 ApiAP2 proteins with one or more AP2 domains in Toxoplasma (Behnke 

et al., 2010). 

The number of copies of the ApiAP2 domain appears to be positively correlated 

with genome size among apicomplexan species: Toxoplasma with a genome size 

approximately 80 Mb (Kissinger et al., 2003) has the highest number of ApiAP2 

domains; P. falciparum and C. parvum with genomes of 22.8 Mb (Lau, 2009) and 

approximately 9 Mb (Puiu et al., 2004) respectively show a lower number of 

ApiAP2 proteins, while T. annulata with a genome of 8.3 Mb (Lau, 2009) has 24 

copies. 

Several studies have characterised binding specificities of P. falciparum ApiAP2 

TFs (De Silva et al., 2008; Campbell et al., 2010; Flueck et al., 2010; Lindner et 

al., 2010, Sinha et al., 2014) and some of the ApiAP2 proteins have been 

confirmed to act as essential regulators of the parasite life-cycle (Yuda et al., 

2009; Yuda et al., 2010, Sinha et al., 2014). DNA target motifs for ApiAP2 TFs 

have also been described for T. gondii (Behnke et al., 2010; Radke et al., 2013) 

and C. parvum (Oberstaller et al., 2013). Despite extensive sequence divergence 

between ApiAP2 proteins across distantly related apicomplexan species, the 

DNA-binding specificities of orthologous pairs of ApiAP2 domains are 

fundamentally conserved, although their downstream targets are not (De Silva et 

al., 2008; Campbell et al., 2010). The identified ApiAP2 domains of C. parvum 

and its Plasmodium orthologues have very similar DNA-binding specificities which 

confirms that the apicomplexan parasites have conserved not only the ApiAP2 

DNA binding domain architecture, but also target sequence specificity (De Silva 

et al., 2008), which would suggest similar transcriptional regulation in Theileria 
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species. Moreover, analysis of the expression patterns of ApiAP2 genes in P. 

falciparum and T. gondii confirmed that these transcription factors are 

specifically expressed in different major developmental stages (Iyer et al., 2008; 

Painter et al., 2011; Walker et al., 2013; Radke et al., 2013) and are implicated 

in regulation of developmental transition. Therefore, it is likely that they may 

play an essential role in transcriptional regulation of Theileria stage-specific 

genes. An expression cascade of ApiAP2 proteins has also been observed in the 

IDC in P. falciparum (Campbell et al., 2010) and the tachyzoite cell cycle in 

T. gondii (Behnke et al., 2010). In addition to regulation of expression of their 

target genes, P. falciparum and Toxoplasma ApiAP2 proteins have been 

predicted to form a regulatory interaction network among themselves, 

regulating their own and other ApiAP2 expression by binding to target motifs in 

upstream regions (Campbell et al., 2010; Bougdour et al., 2010).  

 

1.8 Aims and objectives 
 

 

How parasites progress to the next stage of the life-cycle is an important area of 

research. The main aim of this project is to elucidate the molecular mechanisms 

underlying T. annulata stage-specific gene regulation. Evidence from the 

literature indicates that the differentiation process in Theileria involves binding 

of specific transcription factors to DNA motifs located upstream of stage-

regulated target genes. Not only would validation of the Shiels molecular model 

of stage differentiation be important from a biological point of view, it would be 

potentially relevant to the characterisation of specific molecular targets for 

disruption of parasite transmission and thus may inform on the design of novel 

therapeutics or vaccines. Studies testing the validity of the stochastic 

differentiation model in T. annulata will require employing a combination of 

molecular and transcriptomic approaches in order to investigate putative 

transcription factors involved over the period of the differentiation event. 

Identification of TF target motifs and establishing binding specificities of TFs to 

these motifs would prove beneficial in determining whether stage-specific auto-

regulation was a feature of gene expression control in Theileria, as in other 

eukaryotic systems (Serfling, 1989). 
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The ApiA2 proteins are excellent candidates for regulators of precisely timed 

and co-ordinated gene expression events associated with multi-stage 

differentiation steps in T. annulata. Investigating the relationship between 

different apicomplexan ApiAP2 TFs, and their gene targets, may also be 

important for establishing common regulatory processes across the Apicomplexa. 

Little is known of the transcription factors involved in regulation of the Theileria 

life-cycle, however definition of cis-acting DNA motifs associated with stage 

regulated genes or gene families would allow identification of target sites of 

putative regulatory factors. It may also provide greater understanding, based on 

target gene function, of events that are required for stage differentiation to be 

completed; rhoptry production in merozoites, for example. A better 

understanding of factors and target genes that operate to control stage 

differentiation is essential for rationale design of strategies aimed at disrupting 

stage development to inhibit establishment and transmission of tropical 

theileriosis in cattle. 

 

The major objectives of the work presented in this thesis were as follows: 

 

I. Establishment, characterisation and validation of a subset of 

T. annulata genes that show significant differential expression during 

differentiation events in the bovine host. 

II. Bioinformatic identification and characterisation of novel DNA motifs 

found in the upstream regions of subsets of stage-regulated genes and 

investigation of their potential role in gene expression control. 

III. Identification and characterisation of ApiAP2 target motifs in 

upstream regions of T. annulata stage-regulated genes, previously 

found to act as ApiAP2 DNA binding sites in other Apicomplexa. 

IV. Characterisation of a selected panel of any differentially regulated T. 

annulata genes encoding ApiAP2 domains and generation of 

recombinant proteins. 

V. Comparison of expression levels among T. annulata genes encoding 

ApiAP2 domains between differentiation competent and attenuated 

cell lines. 
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VI. Validation of binding specificities of Theileria ApiAP2 factors up-

regulated from the macroschizont to the merozoite stage. 

VII. Validation of the binding potential of putative DNA binding motifs 

using parasite nuclear extracts from macroschizont infected cells and 

cells undergoing merogony. 

VIII. Characterisation of a potential ApiAP2 regulation network for 

merogony in T. annulata. 
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Chapter 2 

Investigation of Theileria annulata gene expression 

during stage differentiation from macroschizont to 

merozoite 
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2 Investigation of Theileria annulata gene expression during 

stage differentiation from macroschizont to merozoite 

2.1  Introduction 

 

Stage differentiation is a fundamental aspect of apicomplexan biology, however, 

there is still very little known about the regulation of gene expression that 

facilitates this process. Characterisation of differentiation events of major 

apicomplexan parasites has shown that they share at least two differentiation 

steps, leading to postulation that events which control this process are 

conserved across the phylum (Shiels et al., 1998). Theileria annulata has a 

complex life cycle, with distinct stages occurring within the bovine host and tick 

vector, and is likely to share mechanisms that control stage differentiation steps 

with other Apicomplexa species. In this study, I focused on the bovine stages of 

the life cycle where multinuclear macroschizonts are formed within infected 

myeloid leucocytes and proliferate together causing transformation of the host 

cell. In vivo, proliferation of the infected cell slows down after a period of 

around 5 to 7 days and macroschizonts differentiate into uni-nucleated 

merozoites (Jarrett et al., 1969). Following destruction of infected leukocytes, 

released merozoites invade erythrocytes and form piroplasms. Piroplasm 

infected erythrocytes are then ingested by a feeding tick (Melhorn and Schein, 

1984). In vitro, progression of the life cycle from macroschizont to merozoite 

stage can be induced by elevation of culture temperature to 41°C (pyrexia) 

(Shiels et al., 1992). 

 

Studies performed by Shiels et al. (1992) demonstrated that differentiation to 

the merozoite is associated with a reduction in host cell proliferation together 

with an increase in parasite  size. Furthermore, it was subsequently shown that 

the differentiation process is always asynchronous, but the longer a culture is 

incubated at 41°C, the greater is the probability that macroschizonts will 

differentiate (Shiels et al., 1992). Moreover, it was established that different 

cloned cell lines that appear to be isogenic, display markedly different abilities 

to undergo differentiation to the merozoite and that early passage lines can 

undergo differentiation at 37°C. These parameters indicate that differentiation 

from the macroschizont to the merozoite stage is a stochastic process, i.e. 

occurs with a random probability that can be altered by culture conditions. 
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Moreover, it was proven that in vivo production of Eimeria gametocytes is an 

asynchronous process (McDonald and Rose, 1987). It has also been found that 

asynchronous differentiation to the gametocytes in Plasmodium can be 

modulated by extracellular conditions (Carter et al., 1979). These studies 

suggest that stochastic differentiation is a common characteristic of many 

Apicomplexa. 

 

To understand how the differentiation process is regulated in T. annulata, 

investigation of its stochastic nature was performed using drugs that inhibit DNA 

or protein synthesis. Cell cultures incubated with oxytetracycline (inhibitor of 

mitochondrial/cytoplamic protein synthesis) increased the time period necessary 

to reach the commitment threshold, while aphidicolin (inhibitor of DNA 

synthesis) reduced it (Shiels et al., 1997). Based on these results, Shiels et al. 

(1999) proposed a stage differentiation model operating on the basis of factors 

that regulate merozoite gene expression reaching a concentration threshold 

which, once reached, commits the parasite to irreversible up-regulation of 

merozoite gene expression (see Chapter 1). The model also proposed that the 

probability of a differentiating event occurring would be dependent on the ratio 

of a protein regulator relative to the DNA target motif to which it binds. While 

recent work has supported the stochastic model of differentiation (Schmuckli-

Maurer et al., 2008), only limited information on motifs and factors that could 

operate to regulate stage-specific gene expression in Theileria has been 

obtained (Shiels et al., 2000). However, demonstration that the probability of a 

differentiation event occurring can be altered highlights its potential as a target 

of control. 

 

Bioinformatic analysis of a number of apicomplexan genome sequences have 

shown that certain transcription factors exhibiting DNA binding domains are 

absent in apicomplexan relative to other eukaryotes (see Chapter 1). The 

paucity of specific TFs in T. annulata and other apicomplexans was surprising, 

because they show a complex developmental life cycle within their hosts and 

also a reproducible pattern of differential gene expression (Balaji et al., 2005). 

In this regard, discovery of the ApiAP2 DNA-binding protein family by Balaji et 

al. (2005), and comparative analysis of apicomplexans such as Plasmodium, 

Theileria, and Cryptosporidium (Iyer et al., 2008; Campbell et al., 2010) has 
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shown that in the T. annulata genome there are 26 copies of the AP2 domain (22 

predicted proteins) (Balaji et al., 2005) (Table 2.1). Moreover, relatively few 

additional hypothetical transcription factors have been identified in the genome 

sequences of T. annulata and T. parva, based on orthology with motifs from 

other eukaryotes (Table 2.2) (Iyer et al., 2008), highlighting ApiAP2 proteins as 

potentially key candidates for transcription regulators in Theileria parasites. 
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Table 2.1. List of hypothetical ApiAP2 proteins in T. annulata (Iyer et al., 2008). 

 

 

 

 

 

 

 

Domain(s) present 
in the protein 

Gene name 
Protein length 

(amino acid 
residues) 

Species Genbank protein description 

ap2 TA09965 400 T. annulata hypothetical protein 

ap2 TA08375 409 T. annulata 
hypothetical protein, 

conserved 

ap2 TA07100 425 T. annulata 
hypothetical protein, 

conserved 

ap2 TA16535 590 T. annulata 
hypothetical protein, 

conserved 

ap2 TA11665 784 T. annulata 
hypothetical protein, 

conserved 

ap2 TA10940 396 T. annulata 
hypothetical protein, 

conserved 

zz+myb+swir
m+ap2 

TA06995 1146 T. annulata 
transcriptional adaptor 

(ADA2 homologue), 
putative 

ap2+ap2+ap2 TA05055 751 T. annulata hypothetical protein 

ap2+ap2 TA20595 718 T. annulata hypothetical protein 

ap2 TA12015 284 T. annulata hypothetical protein 

ap2 TA02615 300 T. annulata hypothetical protein 

ap2 TA04435 370 T. annulata hypothetical protein 

ap2 TA11145 578 T. annulata hypothetical protein 

ap2 TA18095 370 T. annulata 
clathrin adapter 

complex-related protein 

ap2 TA19920 830 T. annulata hypothetical protein 

ap2 TA13515 604 T. annulata hypothetical protein 

ap2 TA17415 193 T. annulata hypothetical protein 

ap2 TA16105 288 T. annulata hypothetical protein 

ap2+ap2 TA07550 541 T. annulata hypothetical protein 

ap2 TA16485 553 T. annulata hypothetical protein 

ap2 TA13395 248 T. annulata hypothetical protein 

ap2 TA04145 1158 T. annulata hypothetical protein 
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Table 2.2. Hypothetical transcription factors of T. annulata other than ApiAP2 (Iyer 

et al., 2008). 

 

From the genome sequence and the work of Balaji et al. (2005), putative DNA 

binding factors that could operate to regulate gene expression during stage 

differentiation in Theileria had been identified. An important aim of this thesis 

was to investigate further this possibility. One way to do this would be to a) 

determine whether the ApiAP2 factors themselves show evidence of differential 

regulation as the parasite differentiates and b) determine whether motifs that 

ApiAP2 factors (or other TFs) may bind to the DNA motifs present in the 

upstream regions of genes that are up- or down-regulated during the stage 

differentiation event. Therefore, identification of sets of genes up- or down-

regulated during differentiation, which may be potential targets for ApiAP2 TFs, 

was the main aim of this chapter and will provide the base for future 

investigation of DNA motifs specific in their upstream regions. The analysis will 

include TashAT and SVSP gene families of unknown functions, but predicted to 

Domain(s) present 
in protein 

Gene name 
Protein 

length (amino 
acid residues) 

Species Genbank protein description 

cbf TA17930 424 T. annulata hypothetical protein 

gata TA10735 574 T. annulata 
GATA-specific transcription 

factor, putative 

rpa TA13200 466 T. annulata hypothetical protein 

rpa TA15495 625 T. annulata replication factor-A protein 1 

znf+znf+znf TA17985 261 T. annulata zinc finger protein, putative 

znf TA19845 605 T. annulata hypothetical protein 

myb TA17065 707 T. annulata 
Myb-like DNA binding protein 

(CDC5 homolohue), putative 

snf+myb TA06490 1012 T. annulata 
SWI/SNF family transcriptional 

activator protein, putative 

Irr+myb+myb TA08790 1545 T. annulata hypothetical protein 

myb TA12995 615 T. annulata hypothetical protein 

zz+myb TA19000 610 T. annulata hypothetical protein 

swirm+myb TA17880 588 T. annulata hypothetical protein 

myb TA15395 578 T. annulata hypothetical protein 

zz+myb+swir

m+ap2 
TA06995 1146 T. annulata 

transcriptional adaptor (ADA2 

homologue), putative 

myb TA06455 665 T. annulata hypothetical protein 
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be involved in host cell transformation (Schmuckli-Mauer, 2009; Shiels et al., 

2006).  

Members of the largest subtelomeric gene family reported for T. annulata and T. 

parva encodes the variable secreted proteins (SVSPs) (Schmuckli-Mauer, 2009). 

The encoded proteins are predicted to be secreted into the host cell cytoplasm 

and are thought to either contribute to host cell transformation or evade the 

bovine immune response (Schmuckli-Mauer, 2009). Based on EST (expressed 

sequence tag) data, most of the SVSP genes are indicated as expressed in 

macroschizont stage (Weir et al., 2010), and it can be predicted that they are 

down-regulated as the parasite differentiates from the macroschizont and 

transformation is reversed. Identification of a large gene family showing 

differential regulation may aid in identification of shared regulatory motifs. 

 

A second gene family associated with the macroschizont stage that may be a 

target for differential gene expression during differentiation is the TashAT/TpHN 

family. The TashAT family is located on chromosome 1 and consists of 17 

members. Six of these genes encode proteins bearing AT-hook DNA binding 

motifs (Johnson et al., 1988) and putative transcriptional transactivation 

domains (Swan et al., 2003). Several have been demonstrated to translocate to 

the host cell nucleus and bind to DNA. An orthologous cluster of 20 genes (TpHN) 

is found in T. parva (Swan et al., 1999; Swan et al., 2001; Shiels et al., 2005). 

Northern blotting has shown that a number of TashAT cluster genes (TashHN, 

TashAT2, TashAT3) are down-regulated early during the differentiation process, 

between day 2 and day 4 in vitro, while others show reduction in mRNA levels 

later in the time course (Tash1 and SuAT1) as the cell becomes committed to 

merozoite production (Swan et al., 2001; Shiels et al., 2004). These studies 

indicate that for the majority of the TashAT cluster gene expression will be 

down-regulated as merogony occurs but that different members show distinct 

temporal regulation. 

 

Families of up-regulated genes have not been identified but there is clear 

evidence that significant up-regulation of gene expression occurs during 

merogony. Thus, it has been shown that the TamS1 gene is up-regulated at the 

transcriptional level during merogony, and a motif upstream of the mapped 

transcriptional start site was identified based on its ability to bind parasite 
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nuclear factors (Shiels el al., 2000). Furthermore, detailed comparison of down-

regulated Tash1 expression relative to the up-regulated Tams1 gene (Swan et 

al., 1999; Swan et al., 2001) provided evidence for a coordinated temporal 

switch in gene regulation during merogony. The complexity of this process was 

not unravelled but was thought (Swan et al., 2001) to involve a switch over in 

factors that control gene expression at both the transcriptional and post 

transcriptional level. A second up-regulated gene identified during merogony 

encodes a rhoptry protein, with evidence that it is controlled further along a 

regulatory cascade, relative to the Tams1 gene (Shiels et al.,1997).  

 

Despite identification of up- and down-regulated genes further work was 

required to generate data sets large enough to perform bioinformatic screening. 

The main aim of this chapter was to identify genes that show significant 

elevated or decreased levels of expression as T. annulata differentiates from the 

macroschizont to merozoite/piroplasm stages using high-throughput analysis of 

gene expression profiling generated by microarray. This would provide a data set 

to search for both nucleotide motifs and putative factors that may bind to such 

motifs and function as regulators of gene expression during merogony. 

Identification of these types of regulatory elements is essential for further 

investigation of the stochastic model of differentiation to the merozoite in 

Theileria parasites. 
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2.2 Materials and methods 

2.2.1  Microarray design 

 

Microarrays are a powerful tool which can be utilised to monitor the expression 

level of many genes simultaneously and identify those genes which are 

differentially expressed under different experimental conditions. A whole-

genome tiling microarray approach was used to investigate T. annulata gene 

expression during differentiation from the macroschizont to the merozoite stage 

and to compare these with gene expression for two additional life-cycle stages, 

the sporozoite and the piroplasm. The genome sequence of T. annulata (Ankara 

C9) (Pain et al., 2005) was utilised to design a custom parasite tiling microarray 

(Weir, unpublished) consisting of abutted 45-mer oligonucleotide probes 

representing both DNA strands on each of the four nuclear chromosomes and the 

mitochondrial genome. The array was designed for use on a 1024 x 768 

resolution chip and comprises 392,778 probes in total, 95 % of which are 

targeted to the T. annulata genome. The remaining probes comprise bovine 

gene-targeted probes or control probes, including a set of over 15,000 

oligonucleotides with random sequence and of mixed GC content. Three 

biological replicates were used per time-point. 

Oligonucleotide probes were mapped to the coding sequence of the parasite 

genome using the BLAST-like Alignment Tool (BLAT)(Kent, 2002) (Figure 2.1) and 

this allowed the identification of gene-specific sense and anti-sense probe sets 

to cover genes expressed on both strands. Parasite gene expression levels were 

determined using log2-transformed median intensity value based on these gene-

specific probe sets and the data was normalised using the Robust Multi-array 

Average (RMA) method (Irizarry et al., 2003). 

 

 

 

 

 

 

 

Figure 2.1. BLAT mapping of T. annulata genes  

(www.theileria.org/ahdw/pictures/fig-5.gif;2013). 
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In order to determine whether a gene is expressed in a particular sample, the 

probe values for each gene were compared with the background values from 

non-specific, random probes with equivalent GC content. The relative levels of 

background hybridisation never exceeded a log2 intensity value of 10 and the 

highest background levels were found in the macroschizont Day 0 and Day 4 

samples and the least background levels for piroplasm samples. Therefore, as a 

broad guideline, genes with a value of 10 or more were assumed to be expressed 

in a given parasite preparation. The proportion of parasite RNA in each 

preparation is estimated at 10 % in the macroschizont-infected cell, 50 % in 

infected cell cultures undergoing differentiation to the merozoite and 95 % or 

higher for purified piroplasm preparations.   

 

2.2.1.1 Statistical analysis of microarray data 

 

Gene expression profiling may be utilised to investigate the molecular 

mechanisms responsible for the regulation of parasite development, as it allows 

genome-wide analysis of the parasite transcriptome. DNASTAR ArrayStar3® 

software was used to perform hierarchical clustering and scatter plot analysis on 

log2-transformed gene expression levels across the complete set of T. annulata 

genes.  Hierarchical clustering is a method that groups data points into clusters 

by successively adding the data points into ever-growing groups using Euclidean 

distance metric which measures the difference in expression levels between the 

genes. The results of hierarchical clustering may be visualised as a heat map 

with the data clustered in two dimensions, i.e. by sample (vertically) and by 

gene (horizontally). Scatter plot analysis was initially performed to investigate 

the agreement between replicate samples and to broadly assess the relationship 

between macroschizont and merozoite/piroplasm gene expression values. A 

scatter plot is a type of diagram that can be used to explore the relationship 

between two quantitative variables, in this case gene expression values from 

different samples.  
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2.2.2  Rank Product analysis of differential gene expression 

 

Rank Product (RP) analysis is a non-parametric statistical test that may be used 

to identify differentially expressed genes between conditions using limited sets 

of replicates (Breitling et al., 2004). Since Rank Products does not depend on an 

estimate of the gene-specific measurement of variance, it is particularly useful 

when only a small number of replicates are available. The normalised 

hybridisation intensity values obtained from the microarray (Weir, unpublished) 

were transformed into log2 expression values and subjected to RP analysis. The 

files generated from RP analysis of sporozoite to macroschizont, macroschizont 

to merozoite, merozoite to piroplasm, and piroplasm to sporozoite pair-wise 

gene expression comparisons were used in subsequent steps. The obtained RP 

score was used to rank all the T. annulata genes in the dataset according to the 

significance of their expression changes between stages and statistical 

confidence levels were assigned to each change in a form of false discovery rates 

(FDR) (Benjamini and Hochberg, 1995). Genes were identified as being up-

regulated or down-regulated between different life-cycle stages based on two 

criteria, i.e. a fold change of greater than two and an associated FDR of less 

than 5 %. Similar criteria have been previously applied in the analysis of 

microarray datasets (Benjamini and Hochberg, 1995; Jensen et al., 2006). 

 

2.2.3  Cell lines and in vitro culture of T. annulata 

 

Three cell lines were used in this study: D7, D7B12 and BL20. BL20 is an 

uninfected bovine lymphosarcoma cell line (Morzaria et al, 1982; Olobo and 

Black, 1989) frequently used in the analysis of Theileria macroschizont-infected 

cells as an uninfected control. D7 is a T. annulata (Ankara) infected cloned cell 

line that was subsequently re-cloned to produce D7B12 cell line (Shiels et al., 

1994). Both clones appear to represent identical parasite genotypes (Shiels et 

al., 1994), however they display a marked difference in their ability to 

differentiate into merozoites when the cells are placed at 41 °C. D7 cells 

differentiate from macroschizont to merozoite with a high efficiency, while 

D7B12 cells remain in the macroschizont phase and do not differentiate to the 

merozoite stage (Shiels et al., 1994). 
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All cells used in this study were cultured in tissue culture flasks (25 cm2 or 

75 cm2) at 37 °C in the presence of 5 % CO2. Cultures were maintained at 2 x 105 

cell/ml by feeding with fresh complete medium every two to three days. Each 

cell feeding cycle represented a ‘passage’ and corresponded to a 1 in 5 dilution 

of growing cells. Standard complete medium for Theileria-infected cells 

consisted of: 100 ml RPMI-1640 with added L-Glutamide and 25 mM HEPES 

(Gibco®); 25 ml Heat-inactivated foetal bovine serum (FBS; Sigma F9665); 200 µl 

Streptomycin/Penicillin (8 µg/ml); 300 µl Amphotericin B (0.6 µg/ml) and 1 ml 

7 % sterile sodium bicarbonate. 

 

2.2.3.1 Cryopreservation of cell lines 

 

Long-term cryopreservation of the cell lines was undertaken using liquid 

nitrogen. 8 ml of cell culture was centrifuged at 1,000 rpm (182 x g) for 5 min at 

4°C and pellets were re-suspended in 3 ml complete medium containing 10 % 

dimethylsulphoxide (DMSO) and then split between two cryotubes. Cryotubes 

were wrapped in cotton wool and frozen in a pre-chilled polystyrene box 

at -80°C overnight before being transferred to liquid nitrogen. 

Cell recovery from liquid nitrogen was performed by quickly thawing 

cryopreserved tubes at 37 °C and immediately adding 8 ml pre-warmed compete 

medium, also at 37 °C. The cells were centrifuged at 1,000 rpm for 5 min at 

room temperature and then washed twice in 5 ml of pre-warmed fresh medium. 

Cell pellets were then re-suspended in 5 ml fresh complete medium and 

transferred to 25 cm2 culture flasks. Overnight incubation was performed at 

37°C with 5 % CO2. The next day a further 5 ml of complete medium was added 

and cells were passaged as normal. 

 

2.2.3.2 T. annulata differentiation time-course 

 

The T. annulata D7 cell line was used to perform a differentiation time-course 

experiment. The material generated from this experiment was used to validate 

the previous microarray data and for further analysis of gene expression changes 

and alterations in nuclear factor concentrations during merogony. D7B12 cells, 

which lack the capability to differentiate, were used as a control. Cells were 

cultured in standard complete medium (see 2.2.3) and induced to differentiate 
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by increasing the temperature from 37 °C to 41 °C. Cultures were established at 

1.4 x 105/ml and split to this concentration at Day 2 and Day 4. Since cell 

division slows down as differentiation progresses, cultures were diluted 1 in 2 at 

Day 6 or Day 7. Cells were harvested by centrifugation (4,000 rpm (3023 x g) for 

differentiating cultures) and total RNA isolated at Day 0, 4, 7 and 9. As 

determined in previous studies (Shiels et al. 1992): Day 0 represents the 

macroschizont stage; Day 4 is an intermediate, reversible time-point 

immediately prior to commitment for the majority of cells; Day 7 and Day 9 

represent post-commitment time-points when merozoites are being generated 

by a significant component of the induced culture. 

 

2.2.3.3 Giemsa staining 

 

Morphological assessment of differentiating cells was undertaken by examining 

Giemsa stained samples at each culture time point. First, 3 x 104 cells/cm3 were 

deposited onto glass slides using a Shandon type 3 cytospin at 1,500 rpm for 

5 min. Slides were left to dry at 37 °C for 20 min, then fixed in ice-cold 

methanol for 30 min, dried again at 37 °C for 10 min and finally stained in 4 % 

Giemsa solution. After 30 min, slides were washed in tap water and left to dry at 

37 °C. The slides were viewed under oil at x100 using an Olympus BX60 

microscope and images were acquired using a SPOT digital camera and SPOTTM 

Advanced Image software Version Mac: 4.6.1.26 (Diagnostic Instruments, Inc). 

 

2.2.4 Total RNA isolation and processing 

 

RNA from the macroschizont stage and from differentiating macroschizonts was 

extracted directly from parasitised bovine cell cultures to provide template 

material for RT-PCR. Total RNA was isolated from D7 cells with TRI Reagent 

(Sigma; T9424) according to the manufacturer’s instructions. Cells were scraped 

to detach them from the flask walls. Cell pellets were re-suspended in TRI 

Reagent (1 ml of TRI Reagent per 5 x 106 cells) and transferred to RNase-free 

14 ml polypropylene Sarstedt tubes. Insoluble debris was removed by 

centrifugation at 12,000 g for 10 min at 4 °C. The supernatant was transferred 

to fresh tubes and allowed to stand at room temperature for 5 min to facilitate 

complete dissociation of nucleoprotein complexes. 0.2 ml chloroform per 1ml 



 

 

64 

TRI Reagent was added and mixed with the lysate by vigorous shaking for 15 sec 

and left at room temperature for 15 min. Following centrifugation at 12,000 g 

for 15 min at 4 °C, the aqueous phase at the top containing RNA was transferred 

into fresh tube. RNA was precipitated by adding 0.5 ml isopropanol per 1 ml of 

TRI Reagent at room temperature for 10 min. Precipitated RNA was pelleted at 

12,000 g for 10 min at 4 °C, washed once with  ethanol (1 ml 75 % ethanol per 

1 ml TRI Reagent), briefly dried and then dissolved in 100 µl 

diethylpyrocarbonate (DEPC) treated water. 

 

RNase contamination was minimised by use of DNase/RNase free plasticware and 

pipette tips. To eliminate possible contamination with genomic DNA, RNA 

samples were treated with DNase I (Qiagen; 79254) according to the 

manufacturer’s protocol. DNase digestion was performed on approximately 

100 µg RNA per tube with the use of RDD buffer (Qiagen, 79254) directly before 

column purification on a silica-gel membrane-based RNeasy column (Qiagen; 

74104). Treated RNA was diluted in 30 µl of RNase-free water and absorbance 

was measured using a NanoDrop™ Spectrophotometer at 260 nm and 280 nm: an 

A260/A280 ratio of two or greater was indicative of good quality RNA. Purified 

RNA was stored in aliquots at -80 °C. 

The quality and integrity of the total RNA was assessed by gel electrophoresis 

(1.2 % agarose TBE gel, with ethidium bromide, 100 V, 1 h) with UV light 

visualisation of 28S and 18S ribosomal RNA subunits using a FluorChem 5500 

transilluminator system and image capturing software (Alpha Innotec; San 

Leandvo, CA USA). 

 

2.2.5 Reverse-Transcription Polymerase Chain Reaction 

 

To confirm the results of the microarray analysis, Reverse-Transcription 

Polymerase Chain Reaction (RT-PCR) was performed in a semi-quantitative and 

quantitative (qRT-PCR) manner. RT-PCR is a powerful method for detecting and 

quantifying gene expression. mRNA transcripts act as a template for the 

synthesis of complementary DNA (cDNA) which is, in turn, used as a template for 

PCR (Figure 2.2).  
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Figure 2.2. Reverse Transcription PCR 
(http://upload.wikimedia.org/wikipedia/en/c/c2/Reverse_transcription_polymerase_chain_reac

tion.jpg). 

 

 

In the present study, the microarray data for a number of differentially 

expressed genes identified from macroschizont to merozoite differentiating 

cultures and from comparisons of distinct life-cycle stages were validated by a 

one-step semi-quantitative RT-PCR approach where the entire reaction from 

cDNA synthesis to PCR amplification occurs in a single tube. Amplicons were then 

subjected to gel electrophoresis (see section 2.2.5.3). 

 

2.2.5.1 Primer design and analysis  

 

Primers for standard semi-quantitative RT-PCR were designed according to the 

following criteria: length 18-26 nucleotides; predicted amplicon size 220-350 bp; 

gene-specific in T. annulata and with minimal risk of amplification in the Bos 

taurus genome (Primer-BLAST; at least 5 total mismatches to unintended 

targets, including at least 2 within the last 5bp at 3’ end). The melting 

temperature of the primer pairs was matched and was always between 50-58 °C. 

 

Well designed primers for qRT-PCR are a prerequisite for a sensitive assay and 

the generation of specific amplicons. As SYBR Green I (see section 2.2.6) binds 

to any double-stranded DNA, it is important to reduce the risk of DNA 
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contamination by designing the primers that avoid forming dimers. Primers were 

designed to be between 18 and 30 nucleotides in length and with a GC content 

of between 40 % and 60 %. Amplicons were limited to 200 bp in size in order to 

obtain a high level of fluorescent dye integration without compromising the PCR 

efficiency. The melting temperature of the primer pairs was matched and was 

between 58-60°C. 

 

Primers for semi-quantitative and qRT-PCR were checked for uniqueness and 

specificity using the NCBI online Primer BLAST program 

(www.blast.ncbi.nlm.nih.gov/Blast.cgi). The Oligonucleotide Properties 

Calculator (www.basic.northwestern.edu/biotools/oligocalc.html) was used to 

avoid self-annealing sites and hairpin formation. Primers were synthesised by 

Eurofins MWG Operon (Ebersberg, Germany). Details of primer sequences, 

GenBank accession number, product length and annealing temperature for all 

gene-specific primers used in this study are listed in the Appendix (1.4). All 

primers were diluted to a stock concentration of 100 µM. The working 

concentration of all primers for semi-quantitative PCR was 5 µM. Initial PCR 

optimisation was performed to ascertain the ideal annealing temperature (Ta) 

and PCR efficiency. To maximise the sensitivity of the qPCR assay, the lowest 

concentration of primers possible was used. 

 

2.2.5.2 Semi-quantitative RT-PCR reagents and cycling 

conditions 

 

Semi-quantitative RT-PCR was performed in a final volume of 25 µl containing 

20 ng of total RNA and using 35 cycles of PCR amplification. PCR reactions were 

performed using the SuperScriptTM One-Step RT-PCR System protocol 

(www.tools.lifetechnologies.com/content/sfs/manuals/superscript_onestepRTP

CR_man.pdf) in total volume of 25 µl with RT/Platinum® Taq DNA Polymerase 

(Invitrogen®; 12574-026) (0,5 µl), 2x Reaction Mix (a buffer containing 0.4 mM of 

each dNTP, 2.4mM MgSO4) (12,5 µl),  ddH20 – 9µl, forward primer (5µM) (1 µl), 

reverse Primer (5µM) (1µl) and RNA (20ng/ul) (1µl). Thermal cycling conditions 

can be found the  Appendix (1.2). 
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2.2.5.3  Gel electrophoresis and quantification of RT-PCR 

products 

 

RT-PCR products were visualised on 1 % agarose gel (Sigma Aldrich) in 1 x TAE 

buffer and ethidium bromide. Gels were run in 1 x TAE buffer using a horizontal 

electrophoretic tank at 100 V for 1 hr. Visualisation and quantification of PCR 

product band intensity was performed relative to a control PCR based on the 

genes encoding the T. annulata heat shock (Hsp) 70 kDa protein (TA11610) and 

heat shock 90 kDa protein (TA07100). Microarray data suggests that these genes 

are constitutively expressed and do not show significant changes in expression 

from the macroschizont through merozoite to the piroplasm stage. Amplicon 

sizes were  estimated using a 100 bp DNA ladder and gel images recorded using 

image analysis software AlphaImager FluorChem 5500 (Biosciences; Santa Clara, 

CA, USA). 

 

2.2.6 Two-step quantitative Reverse-Transcription PCR 

 

Real-time PCR product quantification by the fluorescence-kinetic detection 

method is popular technique for analysing gene expression on a small scale. One 

advantage of this method is that quantitative measurement of the PCR product 

is carried out during sequential amplification cycles and therefore no post-PCR 

manipulation is required. This methodology also enables comparison of the 

predicted melting temperature of the specific product to the observed results to 

determine if non-target products are present. Although one-step qRT-PCR 

minimises the possibility of cross-contamination, the two-step system is 

generally considered to be more sensitive and specific (Bustin, 2000), as the 

reaction conditions are optimised exclusively for both reactions. It also enables 

storing of cDNA samples and simultaneous quantification of several targets. 

Therefore, in order to fully validate the microarray results of selected 

differentially expressed genes, the SYBR Green qRT-PCR methodology was 

applied. 

 

SYBR Green I is a cyanide intercalating dye which is commonly used as a 

fluorescent DNA-binding dye. It preferentially binds to double stranded DNA and 
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generates a fluorescent signal upon binding (Figure 2.3). In qRT-PCR, the DNA 

product accumulates during the amplification process and the fluorescent signal 

increases in proportion to the DNA concentration. The double stranded DNA-dye 

complex absorbs light of 497 nm and emits light at 520 nm, which makes it 

compatible with any real-time thermo-cycler. The initial copy number of cDNA 

targets can be quantified based on the threshold cycle (Ct), which is defined as 

the number of cycles required for the fluorescent signal to exceed the 

background signal. The threshold cycle is inversely proportional to the log of 

initial number of mRNA transcripts (Higuchi et al., 1993). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. SYBR Green dye binding to the DNA. 

(www.nfstc.org/pdi/Subject03/images/pdi_s03_m05_07_a.gif) 

 

 

2.2.6.1 cDNA synthesis 

 

cDNA synthesis was carried out in a total volume of 20 µl using oligo(dT) primers 

provided with the AffinityScript Multi temperature cDNA Synthesis Kit (200436, 

Agilent) in a Techne thermo-cycler system (TC-512, Techne, UK) and following 

the supplier’s protocol  

(www.genomics.agilent.com/files/Manual/200436_B03.pdf).  

First-strand cDNA synthesis reaction products were stored at –20 °C. cDNA 

synthesis reaction components and thermal cycling conditions parameters can be 

found in Appendix (1.3). 
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2.2.6.2 Housekeeping genes 

 

In order to normalise qRT-PCR data, it is necessary to select one or more 

reference genes with stable expression to correct artefactual variation caused 

by differences in cDNA quantity and quality that can affect the efficiency of the 

PCR reaction. In this study, the genes encoding the heat shock 70 kDa protein 

(TA11610) and heat shock 90 kDa protein (TA10720) were used for normalisation. 

These constitutively expressed genes did not show significant changes in 

expression levels during differentiation on the basis of both microarray and 

semi-quantitative RT-PCR data. 

 

2.2.6.3 qRT-PCR reaction parameters 

 

Quantitative RT-PCR was performed in a final volume of 25 µl. Real-time 

fluorescence detection of PCR product was performed using Brilliant SYBR® 

Green QPCR Master Mix protocol (Stratagene, cat. no 600548) 

(www.chem-agilent.com/pdf/strata/600548.pdf). The qRT-PCR reaction details 

and thermal cycling parameters can be found in Appendix (1.5). SYBR® Green 

fluorescence detection was undertaken in 96-well Semi-skirted Flat Deck PCR 

plates (Thermo Fischer Scientific). All qRT-PCR data was captured and analysed 

by MxPro v4.10 software with the Mx3005P Real-Time PCR System (Agilent 

Technologies). Fluorescence was measured at every temperature increment of 

one degree Celcius. After 40 cycles of amplification, melting curve analysis was 

carried out to verify product specificity and determine the presence of primer-

dimers and other non-target products. Technical replicates of each experimental 

time-point and no template controls were included in the PCR reaction for all 

samples. 

 

2.2.6.4 qRT-PCR data analysis 

 

Quantitative RT-PCR data was analysed using MxPro v4.10 software. The 

obtained data were converted using the comparative quantitation experiment 

option. The relative quantity values were normalised to the housekeeping genes 

Hsp70 and Hsp90 and fold-change was calculated relative to the calibrator 
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condition, Day 0 – macroschizont stage. This was performed using -2-ΔΔCt equation 

(Livak and Schmittgen, 2001), which determines the fold-change between the 

sample and control. This allowed graphs to be generated and data was presented 

as normalised mean values of log2 fold change ± the standard error of the mean 

(SEM). Statistical analysis of qRT-PCR data representing D7 differentiation time 

points (Day 0, Day 4, Day 7 and Day 9) and the piroplasm stage (RNA preps of 

Day 14 of an in vivo infection, kindly donated by Dr Laetitia Lempereur, 

Glasgow) was performed using a One Way ANOVA test and post-hoc Dunnett test 

with Excel program (Microsoft) for two up-regulated from macroschizont to 

merozoite stage ApiAP2 genes (TA13515 and TA11145). Selection was based on 

microarray data (fold change ≥ 2 between macroschizont and merozoite stage) 

and literature indicating their potential role as orthologs of regulators of gene 

expression in other Apicomplexa species (Iyer et al., 2008; Campbell et al., 

2010). Additional qRT-PCR reactions were performed for two other selected 

differentially expressed genes from macroschizont to merozoite stage (based on 

RP analysis) (TA10735 and TA15705) to confirm their down-regulation from 

macroschizont to merozoite stage. The difference between particular life stages 

was considered to be significant if the FDR associated with the gene was less 

than 0.05.  
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2.3 Results 

2.3.1  Hierarchical clustering of T. annulata genes 

 

The starting point for this project was a global analysis of microarray data to  

obtain data sets of genes that are up-regulated or down-regulated during 

differentiation from the macroschizont to merozoite/piroplasm stage of T. 

annulata. To detect similarities and differences across the microarray data 

generated for different life cycle stages and the in vitro differentiation time 

course, hierarchical clustering of log2-transformed gene expression levels of all 

3796 T. annulata genes was performed. The results are presented as a heat map 

in Figure 2.4. As expected from robust microarray data, three biological 

replicate samples per each time point cluster together and show strong 

similarity over the heat map profile. Each horizontal line represents an 

individual gene: green bands represent genes expressed at low levels, while 

black and red bands represent intermediate and highly expressed genes 

respectively. Based on this categorization it is clear that changes in expression 

values for particular genes occur across the X-axis of the heat map. Thus the 

detection of genes displaying expression profiles representing up- or down-

regulation during differentiation from macroschizont to merozoite, and across 

the other stages represented by the array data, is evident. It can be seen also 

that the macroschizont ‘Day 4’ sample data clusters with ‘Day 0’ replicates, 

while the ‘Day 7’ replicates shows close similarity to merozoite ‘Day 9’ 

expression data. Clear differences between these two clusters are visible as Day 

0 and 4 both represent macroschizont time points just prior to commitment; Day 

7 and Day 9 on the other hand represent post-commitment time points when uni-

nucleated merozoites are being generated. Sporozoite and piroplasm replicates 

clustered, as might be expected by order of life cycle, as they represent the 

beginning and the end of the tick phase, although major changes in expression 

levels between these two life stages are also evident. It can be concluded that a 

major changes in the control of gene expression, at the mRNA level, occur 

between Day 4 and Day 7 of differentiation to the merozoite in vitro. In 

addition, the heat map indicates a presence of clusters of a significant number 

of constitutively expressed genes with a high level of expression. They 
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correspond to predominantly black and red solid horizontal lines at the top of 

heat map. 

 

 
 
Figure 2.4. Visualisation of changes in gene expression level of 3796 genes 
identified by microarray analysis. Heat map of hierarchical clustering of all T. annulata 

genes shows differential expression across sporozoite, macroschizont, merozoite and piroplasm 
stages. Each horizontal line represents an individual gene. Green bands represent genes 
expressed at low levels, while black and red bands represent intermediate and highly expressed 

    UP-REG. 

DOWN-REG. 
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genes respectively. White arrows indicate areas of differential expression – genes up-regulated 
from macroschizont to merozoite (UP) and down-regulated (DOWN). 
 

2.3.2  Scatter plot analysis 

To confirm statistically significant changes in gene expression and present the 

complete data set for different stage pair-wise comparisons, scatter plot 

analysis was conducted (RMA-normalized log2 expression values). The scatter 

plot represents a distribution of all 3796 genes, revealing up- and down-

regulated genes between macroschizont and merozoite. Of the total number of 

genes used in the analysis, 587 genes showed an absolute change greater than 2-

fold either up or down, 164 displayed a 4 fold or greater change and 43 an 8 fold 

or greater change (Figure 2.5). Each point along the scatter plot corresponds to 

a single gene. Blue dots represent genes expressed at low levels, while orange 

and red dots represent intermediate and highly expressed genes respectively. 

Three solid green lines are drawn diagonally across the scatter plot. The middle 

green line is the reference line and genes exhibiting equal expression levels lie 

along this line. The other two outer lines delineate genes with at least a two-

fold change in expression level. Red line represents the best fit (trend) line.  
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Figure 2.5. Scatter plot of macroschizont vs merozoite gene expression values. Blue 

dots represent genes expressed at low levels, while orange and red dots represent intermediate 

and highly expressed genes respectively. Two green outer lines delineate genes with at least a 

two-fold change in expression level between two life stages. Red dotted line – a trend line. 

 

Scatter plot analysis was also performed to compare expression data across the 

macroschizont to the piroplasm stage to see if this would capture more 

differentially expressed genes i.e. those that may show a trend of up- or down-

regulation from macroschizont to merozoite that only became significantly 

different when comparing macroschizont to piroplasm stage. As expected, an 

even larger number of up-regulated and down-regulated genes were identified 

(Figure 2.6). Out of 3796 analysed genes: 752 genes showed a 2 fold change or 

greater in expression value, 232 genes showed a 4 fold or greater and 74 showed 

a 8 fold or greater change. Black dots on the scatter plot represent the most up-

regulated and down-regulated genes (8 fold change or greater). 48 of these 

genes are of parasite origin: bovine genes that were excluded from further 

analysis are marked by red circle. Bovine genes were placed on the array as a 

control and down-regulation of expression was expected, as  macroschizont RNA 
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is derived from an infected leukocyte, where as piroplasm RNA is derived from 

parasites isolated from infected erythrocytes. 

 

 

Figure 2.6. Scatter plot of macroschizont vs piroplasm gene expression values. Blue 

dots represent genes expressed at low levels, while orange and red dots represent intermediate 

and highly expressed genes, respectively. Black dots represent the most up-regulated and down-

regulated genes with 8 fold change or greater. Two green outer lines delineate genes with at 

least a two-fold change in expression level between two life stages. Red dotted line – a trend 

line. Bovine genes marked by the red circle were used as a control for microarray assay.  
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2.3.3  Pair-wise comparison of genes differentially expressed 

between T. annulata life cycle stages 

 

Following the general analysis of differential gene expression, pairwise 

comparison of normalized data (using RMA method) was performed using Rank 

Product (RP) analysis to support the initial identification of down- or up-

regulated genes. This statistical method sets a cut-off for significance of 

differential gene expression values according to a false discovery rate (FDR). 

Applying a cut-off of FDR≤0.05 and fold change ≥ 2 (absolute), a summary table 

displaying the number of differentially expressed genes for each pair-wise 

comparison (across life-cycle stages) was generated (Table 2.3).  

 

Between stage comparison 
Fold change analysis,  

number of genes  
(≥2-fold genes) 

Rank Product,  
number of genes  

(FDR≤5%) 

 
Sporozoite to macroschizont 

Up Down Up Down 

374 349 66 133 

Macroschizont to merozoite 361 196 152 115 

Merozoite to piroplasm 70 59 24 20 

Piroplasms to sporozoite 239 182 57 35 

 
Table 2.3. Summary data on number of differentially expressed genes obtained by 
pairwise comparison and RP analysis of microarray data sets of T. annulata. 

 

 

The largest number of genes demonstrating a significant difference by RP was 

for the sporozoite to macroschizont (66 up-regulated genes and 133 down-

regulated) and the macroschizont to merozoite (152 up-regulated and 115 down-

regulated genes) pair-wise comparisons. The smallest number of genes was 

observed for the merozoite to piroplasm comparison (24 up-regulated and 20 

down-regulated). Using an arbitrary 2-fold cut-off it was noticed that there is a 

greater number of genes up-regulated than down-regulated between T. annulata 

life-stages. Also there are much less significant changes in gene expression 

between merozoite to piroplasm stage in comparison to other life stages. This 

may have been expected, as previous studies indicated that the merozoite is 

more closely related to the piroplasm than the macroschizont (Shiels et al., 

1992). 
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2.3.3.1 Identification of genes differentially expressed between 

the macroschizont to merozoite stage 

 

Rank Product analysis identified the top 30 up- and down-regulated genes 

differentially expressed between the macroschizont and merozoite in vitro. 

These are listed in Tables 2.4 and 2.5 respectively. To extend the data set for 

subsequent analysis of expression profiles, combined with motif identification 

(see Chapter 3), the top 100 up– and down- regulated genes with an FDR<5% 

were obtained (see Appendix 2.1 and 2.2 for full list of genes obtained by RP). 

The list of 100 up-regulated  genes mostly comprises genes encoding 

hypothetical proteins but also includes genes encoding rhoptry-associated 

proteins (TA05870 – the highest up-regulated gene from macroschizont to 

merozoite, TA05760 and TA05705) and three genes encoding hypothetical 

transcription factors, ApiAP2 domain proteins (TA13515, TA16485 and TA12015). 

Genes encoding a Map2 kinase (TA21080), a cysteine protease (TA04105, 

TA15660), myosin (TA20555), a phosphate transporter (TA13530), a ubiquitin-

conjugating enzyme E2 (TA10690), a cyclin-dependent serine/threonine kinase–

related protein (TA08470) and an aspartyl (acid) protease (TA17685) were also 

identified as being up-regulated, together with Tar/Tpr-related protein family 

members which have an unknown function (Weir et al., 2010). 
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 Gene 

ID 
Annotation 

FC 

(log2) 

RP score 

(up) 

EE 

(up) 

FDR 

(up) 

1 TA05870 rhoptry-associated protein, putative 5.12 3.13E-31 0 0 

2 TA14665 hypothetical protein 5.13 1.41E-30 0 0 

3 TA08360 hypothetical protein, conserved 4.64 1.69E-28 0 0 

4 TA21080 Map2 kinase, putative 4.16 2.40E-26 0 0 

5 TA05340 hypothetical protein, conserved 4.03 1.21E-25 0 0 

6 TA16660 hypothetical protein, conserved 3.96 2.36E-25 0 0 

7 TA05495 hypothetical protein 3.89 2.65E-25 0 0 

8 TA13045 hypothetical protein, conserved 3.67 5.49E-24 0 0 

9 TA13825 hypothetical protein 3.63 1.28E-23 0 0 

10 TA07585 hypothetical protein 3.51 2.58E-23 0 0 

11 TA19390 hypothetical protein, conserved 3.40 1.11E-22 0 0 

12 TA18005 hypothetical protein 3.38 2.06E-22 0 0 

13 TA19040 hypothetical protein, conserved 3.35 2.30E-22 0 0 

14 TA19445 hypothetical protein, conserved 3.24 8.27E-22 0 0 

15 TA11905 hypothetical protein 3.43 9.64E-22 0 0 

16 TA20020 hypothetical protein, conserved 3.08 4.25E-21 0.02 0.001 

17 TA14680 hypothetical protein 3.02 9.70E-21 0.03 0.002 

18 TA21400 hypothetical protein 2.93 2.34E-20 0.04 0.002 

19 TA17325 integral membrane protein, putative 2.95 2.41E-20 0.04 0.002 

20 TA16375 hypothetical protein, conserved 2.94 3.47E-20 0.04 0.002 

21 TA05760 rhoptry-associated protein, putative 2.91 3.70E-20 0.05 0.002 

22 TA21395 hypothetical protein 2.95 4.08E-20 0.05 0.002 

23 TA04105 cysteine proteinase, putative 2.90 5.75E-20 0.07 0.003 

24 TA13515 hypothetical protein, conserved 2.88 8.26E-20 0.07 0.003 

25 TA14955 hypothetical protein 2.85 1.43E-19 0.08 0.003 

26 TA13215 hypothetical protein, conserved 2.79 1.43E-19 0.08 0.003 

27 TA16485 hypothetical protein, conserved 2.78 2.13E-19 0.09 0.003 

28 TA11455 hypothetical protein, conserved 2.76 2.77E-19 0.09 0.003 

29 TA18855 SfiI-sub-telomeric fragment. related protein, 

putative 

2.79 3.15E-19 0.1 0.003 

30 TA16420 hypothetical protein 2.83 3.28E-19 0.1 0.003 

 

Table 2.4. List of the thirty most up-regulated genes during differentiation from 
macroschizont to merozoite stage (ApiAP2 genes are highlighted). 
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Top of the list of 100 genes down-regulated during differentiation from the 

macroschizont to merozoite (Table 2.5) is the gene encoding a surface protein d 

precursor (TA19865). The list also included members of the two gene families 

encoding proteins predicted to be secreted into the host cell compartment and 

implicated in establishment of the macroschizont infected cell. Thus, members 

of the SVSP family and TashAT family (TA20095-TashAT2, TA03125, TA03120, 

TA03145 and TA03165) were found to be significantly down-regulated as the 

macroschizont differentiates to the merozoite. In addition, the gene encoding 

the macroschizont specific T cell antigen, Ta9 (TA15705) was found to be highly 

down-regulated. A gene encoding a predicted GATA-specific transcription factor 

(TA10735) was also found to be present among the most down-regulated 

macroschizont to merozoite  genes.  
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 Gene ID Annotation 
FC 

(log2) 
RP score 
(down) 

EE 
(down) 

FDR 
(down) 

1 TA19865 surface protein d precursor -3.38 7.04E-31 0 0 

2 TA11410 Theileria-specific sub-telomeric protein, SVSP 
family, putative 

-3.20 1.01E-28 0 0 

3 TA11405 subtelomeric sfi-fragment-related protein family 
member, put. 

-3.12 6.57E-28 0 0 

4 TA15705 hypothetical protein (Ta9) -3.10 2.17E-27 0 0 

5 TA09805 Theileria-specific sub-telomeric protein, SVSP 
family 

-2.93 7.76E-26 0 0 

6 TA10505 hypothetical protein -2.91 1.76E-25 0 0 

7 TA09790 Theileria-specific sub-telomeric protein, SVSP 
family 

-2.69 8.78E-24 0 0 

8 TA18010 integral membrane protein, putative -2.69 1.44E-23 0 0 

9 TA09420 Theileria-specific sub-telomeric protein, SVSP 
family, putative 

-2.61 2.04E-23 0 0 

10 TA02480 hexose transporter (HT1 homologue), putative -2.61 3.93E-23 0 0 

11 TA05580 Theileria-specific sub-telomeric protein, SVSP 
family 

-2.59 4.48E-23 0 0 

12 TA15695 hypothetical protein -2.64 4.76E-23 0 0 

13 TA09810 Theileria-specific sub-telomeric protein, SVSP 
family 

-2.54 6.70E-23 0 0 

14 TA09435 Theileria-specific sub-telomeric protein, SVSP 
family, putative 

-2.52 3.11E-22 0 0 

15 TA15710 hypothetical protein -2.50 4.99E-22 0 0 

16 TA18895 conserved Theileria-specific sub-telomeric 
protein, SVSP family 

-2.43 7.76E-22 0 0 

17 TA09430 Theileria-specific sub-telomeric protein, SVSP 
family, putative 

-2.40 1.95E-21 0.01 0.001 

18 TA17555 Theileria-specific sub-telomeric protein, SVSP 
family 

-2.40 2.15E-21 0.01 0.001 

19 TA11940 hypothetical protein -2.39 2.68E-21 0.01 0.001 

20 TA09815 SfiI-subtelomeric fragment related protein family 
member, put. 

-2.36 3.82E-21 0.02 0.001 

21 TA09800 Theileria-specific sub-telomeric protein, SVSP 
family 

-2.37 4.30E-21 0.02 0.001 

22 TA10530 hypothetical protein -2.35 5.18E-21 0.02 0.001 

23 TA17545 Theileria-specific sub-telomeric protein, SVSP 
family 

-2.25 4.52E-20 0.05 0.002 

24 TA05575 Theileria-specific sub-telomeric protein, SVSP 
family 

-2.24 5.32E-20 0.05 0.002 

25 TA19005 conserved Theileria-specific sub-telomeric 
protein, SVSP family 

-2.23 7.05E-20 0.07 0.004 

26 TA17125 Theileria-specific sub-telomeric protein, SVSP 
family 

-2.19 1.21E-19 0.08 0.003 

27 TA09505 SfiI-subtelomeric fragment related protein family 
member, put. 

-2.18 2.01E-19 0.09 0.003 

28 TA18890 conserved Theileria-specific sub-telomeric 
protein, SVSP family 

-2.17 2.72E-19 0.09 0.003 

29 TA20095 Tashat2 protein -2.13 6.55E-19 0.15 0.005 

30 TA02905 hypothetical protein -2.04 8.61E-19 0.16 0.005 

 
Table 2.5. List of the thirty most down-regulated genes during differentiation from 
macroschizont to merozoite stage. 
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2.3.3.2 Identification of genes differentially expressed between 

the sporozoite to macroschizont stage 

 

Rank Product analysis of sporozoite to macroschizont gene expression values  

identified mostly hypothetical proteins for down-regulation genes including the 

SfiI-subtelomeric fragment related proteins (TA07435, TA17595, TA17115, 

TA13020, TA16700), but also contained genes encoding a putative rhoptry 

protein (TA05870), a Map2 kinase (TA21080), Tpr-related protein family 

members (TA04790, TA03855, TA15445), an aspartyl (acid) protease (TA17685), a 

cysteine proteinase (TA04105), a cysteine repeat modular protein homologue 

(TA20782), an endonuclease (TA02660), a cyclin-dependent serine/threonine 

kinase (Cdk)-related protein (TA08470), a calmodulin-like domain protein kinase 

(TA16180), a thrombospondin-related protein (TA07755), an RNA polymerase II 

carboxyterminal domain (CTD) phosphatase (TA02640) and a potential AP2 

domain transcription factor (TA12015).  

 

Genes displaying evidence of up-regulated expression from sporozoite to 

macroschizont included: Tpr-related protein family members and hypothetical 

proteins, a surface protein d precursor (TA19865), chaperonin (HSP60) 

(TA07065), bifunctional dihydrofolate reductase/thymidilate synthase 

(TA08775), ATP synthase beta chain, mitochondrial precursor (TA20945), protein 

disulphide isomerase (TA04450), aminopeptidase n (TA20910), a bacterial 

histone-like protein (TA08715), a polymorphic antigen precursor-like protein 

(TA16685), elongation factor 1-gamma (TA08705) and Theileria-specific sub-

telomeric proteins from the SVSP family (TA09805, TA09790). The full list of 

genes of these two datasets is available in the Appendix (2.3 and 2.4). 

 

2.3.3.3 Identification of genes differentially expressed between 

the merozoite to piroplasm stage 

 

Rank Product analysis of merozoite to piroplasm gene expression values 

identified the most up-regulated genes as: a SfiI-subtelomeric fragment related 

protein (TA05525), two cysteine proteinase precursors tacP (TA03730, TA03750), 

a Tpr-related protein family member (TA15095), SfiI-subtelomeric fragment 
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related protein family members (TA17605, TA17500, TA09450), a leucine 

carboxyl methyltransferase (TA09205), TashAT family member  (TA03115) and a 

putative AP2 domain transcription factor TA13515. 

 

The data set of the most down-regulated genes included: phosphoenolpyruvate 

carboxykinase (TA20590), pepsinogen (TA02750, TA03860), a membrane protein 

family member (TA12045), a Theileria-specific integral membrane protein 

(TA17865), a rhoptry-associated protein (TA05760), a Tpr-related protein family 

member (TA04460), an ABC-transporter protein family member (TA17365) and an 

integral membrane protein (TA20325). The full list of merozoite to piroplasm 

stage regulated genes is available in the Appendix (2.5 and 2.6). 

 

2.3.3.4 Identification of genes differentially expressed between 

the piroplasm to sporozoite stage 

 

The list of most up-regulated genes identified by RP for the pairwise comparison 

of piroplasm vs sporozoite contains: SfiI-subtelomeric fragment related protein 

family members (TA09505, TA12195, TA09510, TA02735, TA12140, TA12275, 

TA16700, TA11400, TA11405), the membrane protein family member (TA12045), 

Theileria-specific sub-telomeric proteins of the SVSP family (TA17550, TA05540, 

TA05580TA17555, TA05555, TA09435, TA16040, TA17540), the sporozoite surface 

antigen SPAG1 (TA03755), a polymorphic antigen precursor (TA17375), 

hexokinase 1 (TA19800), TashAT family member proteins (TA03150-Tash1e and 

TA03130-SuAT2), an ABC transporter (TA05455) and the putative GATA-specific 

transcription factor (TA10735), suggesting that this transcription factor might be 

important for the production of sporozoites in the tick or the expression of 

parasite genes following sporozoite invasion of the leukocyte. Genes down-

regulated in expression between the piroplasm and sporozoite stages include 

Tpr-related protein family members, hypothetical proteins and also the putative 

AP2 domain transcription factor TA13515 suggesting that its expression peaks in 

the piroplasm or early phases of the parasite life cycle within the tick 

(gametocyte to kinete). The full list of piroplasm to sporozoite stage regulated 

genes is available in Appendix (2.7 and 2.8). 
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2.3.4  Microarray life cycle expression profiles of putative 

transcription factors of T. annulata 

 

Scatter plot analysis of macroschizont vs merozoite and macroschizont vs 

piroplasm (Figure 2.7) gene expression values was screened to identify genes 

encoding potential transcription factors (TFs) (see Table 2.1 for list of putative 

ApiAP2 TFs identified for T. annulata). Fold change analysis of expression values 

for the macroschizont vs merozoite differentiation step identified four TF genes 

with an absolute fold change ≥2 (TA13515 – fold change of 7.36; TA16485 – 6.84; 

TA12015 – 4.01; TA11145 – 3.08). For the macroschizont vs piroplasm data set, 

up-regulation of six genes was identified: AP2 domain family members, TA13515 

(absolute fold change (FC) of 25.46), TA12015 (FC, 5.58), TA16485 (FC, 4.28), 

TA11145 (FC, 2.65), TA10940 (FC, 2.49), TA17415 (FC, 2.02). Only three putative 

TF genes showed a statistically significant change in expression level that 

indicated reduced expression from macroschizont to piroplasm  (≥ 2 fold 

change): TA10735 – the GATA transcription factor (fold change of 2.65 reduced 

in piroplasm), and two members of ApiAP2 family TA16536 (FC, 2.37) and 

TA13395 (FC, 2.24). No significant fold change values indicating a down-

regulated TF from macroschizont to merozoite were observed. 
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Figure 2.7. Scatter plot of macroschizont vs piroplasm gene expression log2 values 

with T. annulata potential transcription factors highlighted in black. Blue dots 

represents genes expressed at low levels, while orange and red dots represent 

intermediate and highly expressed genes respectively. Two green outer lines delineate 

genes with at least a two-fold change in expression level between two life stages. Red 

dotted line – a trend line. 

 

 

To further understand the biological function of the ApiAp2 proteins in Theileria 

annulata, especially in the context of stage differentiation, the expression data 

obtained for the life cycle stages from sporozoite through to piroplasm was 

exploited. Twenty two T. annulata ApiAP2 genes were clustered based on their 

expression patterns using K-means clustering. At K=5, this gave rise to four 

major clusters, with each comprising 4-6 distinct ApiAP2 genes. In the cluster A 

four ApiAP2 genes (TA13515, TA16485, TA11145, TA12085) were noticeably up-

regulated and showed the  greatest level of modulation compared to the rest of 

the gene family (Figure 2.8.A). This  suggests that these ApiAP2 factors may be 

functionally required to be up-regulated by the merozoite or piroplasm stages 

and could play a role in the regulation of these stage differentiation event. It 
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should also be noted the three of these genes in particular, showed a marked 

reduction in RNA levels in the macroschizont stage relative to all other analysed 

stages. During the in vitro time course TA13515, TA11145 and TA12015 genes 

shown an elevation to Day 4 followed by slight down-regulation or no change in 

expression levels between day 4 and 7 and then a further elevation to Day 9. 

TA16485 showed a delayed elevation compared to the other three manifest as a 

sharp increase of gene expression level at day 4 that continued to Day 9. Of 

these four ApiAP2s only TA13515 showed a significant increase in expression 

levels from merozoite to piroplasm stage, the others displaying a non significant 

slight  decrease or increase.  

 

In profile B three ApiAP2 genes – TA16535, TA13395 and TA06995 (see Figure 

2.8.B) were found to have an expression profile that indicated higher expression 

levels associated with the macroschizont stage, which then declined during 

differentiation to the merozoite. In profiles C and D (Figure 2.8.C and D) no 

major change to the trend in expression of the ApiAP2 genes was observed 

during the macroschizont to merozoite differentiation step. For some of these 

genes (eg TA07100, TA07550 and TA04145) higher expression in the stages 

associated with the white blood cell was indicated, while for others (TA10940, 

TA05055 and TA08375) the reciprocal trend was detected. Excluding the 

TA10940 and TA16105 genes, all T. annulata ApiAP2 genes showed expression 

values of 10 or more and were predicted to be expressed by the parasite from 

macroschizont to merozoite stage at the RNA level. As the level for TA10940 and 

TA16105 was above 10 for the sporozoite, expression may be specific for this 

stage or stages present in the tick. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. T. annulata ApiAP2 – temporal expression profile. A – genes up-regulated in macroschizont to merozoite stage; B – genes down-regulated 

in macroschizont to merozoite stage; C and D – genes at similar level in macroschizont to merozoite differentiation process. Y-axis denotes log2 

expression values. 
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As shown in Figure 2.9 most of the other (non ApiAP2) predicted transcription 

factors in T. annulata did not show major variation to expression levels during 

macroschizont to merozoite differentiation (Figure 2.9.C). However several 

interesting changes to expression of individual genes were observed. For 

example significant down-regulation of TA10735 (GATA-specific transcription 

factor) gene from sporozoite to day 4 of differentiation was detected and this 

lower level of expression was then maintained through to the piroplasm (Figure 

2.9.A). In contrast, TA06490 (SWI/SNF), TA06995 (ADA2 homologue) and TA17930 

are elevated in stages associated with intracellular infection of the bovine 

leukocyte (Figure 2.9.B). Thus major changes to gene expression levels during 

the life cycle appear to operate for certain other predicted transcription factors.
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Figure 2.9. Temporal expression profile of non-ApiAP2 predicted transcription factors. A – genes down-regulated significantly in macroschizont to 
merozoite stage; B – genes up-regulated in macroschizont and merozoite stages; C - genes at similar level (no significant difference) in different life cycle stages. Y-
axis denotes log2 expression values. 
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2.3.5 Differentiation from macroschizont to merozoite stage of  

         T. annulata in vitro 

 

To validate the microarray data set, a time-course of D7 cells differentiating 

from macroschizont to merozoite was required. This supplied a source of mRNA 

to perform semi-quantitative RT-PCR and qRT-PCR. RNA was isolated as 

described in section 2.2.3. Analysis of differentiation time-courses of T. 

annulata was performed by Giemsa staining of cytospins and microscopy for 

observation of morphological changes known to be associated with the 

differentiation process (Melhorn and Shein, 1984). Representative results are 

presented in Figure 2.10. Day 0 represents the macroschizont stage; Day 4 is an 

intermediate time point just prior to commitment for the majority of cells with 

enlarged multinuclear macroschizonts present within the infected leukocyte; 

Day 7 and Day 9 represent cultures post-commitment time points when uni-

nucleated merozoites are being generated. At these points the parasite can 

virtually occupy the whole host cell cytoplasm, the parasite nuclei become 

enlarged and stain more densely, prior to the detection of small densely staining 

merozoite nuclei within the leukocyte cytoplasm (see Day 9). Destruction of 

infected leukocytes occurs and merozoites are released to the culture medium. 

As documented this process was always asynchronous with a greater proportion 

of the culture generating detectable merozoite nuclei from Day 6 onwards. 
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Figure 2.10. Giemsa stained lymphoblastoid cells infected with T. annulata 

following culture of the D7 cell line  (x100)  at 37°C (DAY 0), and at 41°C for 4 (DAY 

4), 7 (DAY 7) and  9 days (DAY 9). Bar = 10 microns. Arrow heads denote merozoite nuclei. 
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2.3.6 Validation of differentially regulated genes by semi-

quantitative RT-PCR  

 

Six representative genes up-regulated from macroschizont to merozoite 

identified by Rank Product analysis were chosen for validation by semi-

quantitative RT-PCR (Figure 2.11). This was performed using total RNA isolated 

from an in vitro time course of differentiation from macroschizont to merozoite 

(Table 2.6). The results confirmed the trend of up-regulation indicated by the 

array profiles for the selected genes. Some specific differences between time 

points were observed for certain genes when relating band intensity in 

comparison to the microarray results. This is likely to be caused by 

sampling/pipetting error and inaccuracies of the semi-quantitative RT-PCR, as 

well as a tendency of normalised microarray data to flatten out expression 

differences between conditions. However, it can be concluded that in general 

the semi-quantitative RT-PCR confirmed the microarray data indicating that the 

genes classified as significantly different are differentially expressed between 

macroschizont and merozoite.  

 

 

 

Figure 2.11. Temporal expression patterns of 6 representative of most up-regulated 
genes based on Rank Product analysis of microarray data. TA10720 gene (HSP90) 

included as a constitutive control. Y-axis denotes log2 expression values. 
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Table 2.6. Semi-quantitative RT-PCR of up-regulated genes from macroschizont to 

merozoite stage. 

 

Additionally 6 representative genes of most down-regulated from macroschizont 

to merozoite stage based on Rank Product analysis were chosen for validation by 

semi-quantitative RT-PCR (Figure 2.12). As for the up-regulated set of genes the 

semi-quantitative RT-PCR results were consistent with a general trend of down-

regulation of these selected genes between particular time points (Table 2.7).    

  

 

 

GENE ID Gene description 

Up-regulated genes – RT-PCR 
Expression pattern on tRNA from 

macroschizont to merozoite 
     DAY 0   DAY 4    DAY 7   DAY 9 

TA05870 rhoptry-associated protein  

TA14665 hypothetical protein 
 

TA15445 
Tpr-related protein family 
member  

TA14285 
SfiI-subtelomeric 
fragment related protein 
family member 

 

TA16685 
polymorphic antigen 
precursor-like protein   

TA21080 Map2 kinase   

TA10720 
HSP90 – constitutive 
control  
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Figure 2.12. Temporal expression patterns of 6 representative most down-regulated 
genes based on Rank Product analysis of microarray data.TA10720 gene (HSP90) included 

as a constitutive control. Y-axis denotes log2 expression values. 

  

 

GENE ID Gene description 

Down-regulated genes - Expression 
pattern from macroschizont to 

merozoite 
DAY 0, DAY 4, DAY 7, DAY 9 

TA19865 
surface protein d 
precursor  

TA07475 
SfiI-subtelomeric 
fragment related protein 
family member  

TA10735 
GATA-specific 
transcription factor   

TA20095 TashAT2 protein 
       

TA15705 
hypothetical protein 
(Ta9)    

TA13395 
Hypothetical protein 
(ApiAP2)    

TA10720 
HSP90 – constitutive 
control    

 

Table 2.7. Semi-quantitative RT-PCR of down-regulated genes on tRNA from 

macroschizont to merozoite stage in vitro culture. 
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2.3.7  Validation of differential expression patterns of selected 

potential transcription factors by RT-PCR 

 

Based on analysis of expression changes between particular life-stages of           

T. annulata four up-regulated ApiAP2 genes (TA13515, TA12015, TA16485, 

TA11145) (Figure 2.13) and two down-regulated putative TFs (TA10735 (GATA) 

and TA13395 (ApiAP2)) (Figure 2.15) were chosen for analysis by semi-

quantitative RT-PCR. As seen in Figures 2.14 and 2.16 the results confirmed up- 

and down-regulation of the TF genes during macroschizont to merozoite 

differentiation stage. Thus for TA13515, TA12015 and TA11145 both array and 

PCR data showed an initial elevation between Day 0 and 4  while for TA16485 

elevation did not occur until after Day 4. Semi-quantitative RT-PCR was also 

performed for piroplasm stage for these genes and again mirrored the array data 

with up-regulation observed for TA13515 gene, and evidence of lower level 

expression of TA16485 compared to the Day 9/merozoite time point.  

 

 

 

 

 

Figure 2.13. T. annulata temporal expression patterns of four most up-regulated 

potential transcription factors. 
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Figure 2.14. Validation of temporal profile of most up-regulated potential 

transcription factors by semi-quantitative RT-PCR. 

 

 

Down-regulation of the AP2 domain factor TA13395 and the putative GATA TF 

(TA10735) was validated by semi-qRT-PCR (Figure 2.15, Figure 2.16). Only down 

regulation of the GATA factor was scored as significant by the microarray data 

but both genes showed evidence of reduced signal by RT-PCR with RNA from the 

Day 9 time point. 

 

 

 

 

Figure 2.15. T. annulata temporal expression patterns of two most down-regulated 

potential transcription factors. 
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Figure 2.16. Validation of temporal profile of most down-regulated potential 

transcription factors by semi-quantitative RT-PCR. 

 

2.3.8  Validation of expression pattern of selected up-regulated 

and down-regulated genes by qRT-PCR 

 

To further validate the temporal expression profile (Figure 2.13) of two putative 

up-regulated ApiAP2 TFs, quantitative (q) RT-PCR was conducted.  For validation 

by qRT-PCR, it was necessary to select control genes that are constitutively 

expressed. Heat shock 70 kDa protein (TA11610) gene and heat shock protein 

(Hsp) of 90kDa (TA10720) were selected as controls, as their expression profiles 

based on normalised microarray data did not reveal significant changes across 

the life cycle stages (Figure 2.17): this was confirmed by the semi quantitave 

PCR (see above). 

 

 

 

Fig.2.17. Temporal expression profile derived from microarray data of two heat 

shock proteins (TA10720 and TA11610) used as constitutive controls for qRT-PCR. 
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Primers were designed for TA13515 and TA11145 and qRT-PCR performed as 

described (section 2.2.5.3). As shown in Figure 2.18 qRT-PCR data obtained for 

normalised values of TA13515 showed evidence of elevated expression in 

relation to the calibrator time point, Day 0 (macroschizont). Relative to Day 0, a 

3.64 log2 fold change was obtained for Day 4 mRNA while Day 7 gave a 6.20 log2 

fold increase. Day 9 cultures differentiating to merozoites showed a 5.02 log2 

fold change, while a strong up-regulation in mRNA levels from merozoite to 

piroplasm stage was indicated (17.38 log2 fold change, relative to the Day 0 time 

point). Statistical significance (p-value ≤ 0.05) was obtained for all stages except 

Day 4.  

 

TA11145 showed a slightly different profile with a greater increase in mRNA 

levels from Day 4 through to cultures generating merozoites (Day 7 – 5.35 log2 

fold change and Day 9 – 4.5 log2 fold change) and 5.99 log2 fold change for the 

piroplasm. No statistically significant difference (p-value ≤ 0.05) between 

merozoite and piroplasm gene expression levels was found. Except for Day 4, 

statistical significance was obtained for all stages, relative to the 

macroschizont/Day 0 time point. It can be concluded that qRT-PCR validates 

that these two ApiAP2 genes are up-regulated during differentiation to the 

merozoite and the major up-regulation of the TA11145 gene occurs during 

merogony, whereas TA13515 ApiAP2 shows a greater elevation following 

differentiation to the piroplasm within the red cell.  



 

 

98 

 

 

Figure 2.18. QRT-PCR results of A. TA13515 and B.TA11145: using RNA representing 

macroschizont (Day 0) cultures, and a differentiation time course to merozoite 

production (Day 7 and 9) and the piroplasm stage. Technical replicates values are 

normalised against Hsp70 (TA11610) and Hsp90 (TA10720) genes. The asterisk (*) above the bars 

indicates statistical significance (One Way ANOVA test and post hoc Dunnett test, p-value≤0.05) 

relative to macroschizont stage (*) and relative to its preceding stage (**). Whereas, (n.s.) 

indicates non-statistical difference of gene expression in particular stage relative to its 

preceding stage. 
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To validate genes that were indicated as down regulated during differentiation 

qRT-PCR was performed for TA15705 – Ta9 and TA10735 – (GATA TF, Figure 

2.19). The results indicated a rapid, significant down-regulation between 

macroschizont and Day 4 (6.88 log2 fold change reduction relative to 

macroschizont/Day 0, p-value ≤ 0.05) for TA10735, with maintenance of the 

reduced expression level through differentiation to merozoite (Day 7 – 7.14 log2 

fold reduction and Day 9 – 6.66 log2 reduction, p-value ≤ 0.05). Gene TA15705 

encoding the TA9 antigen (Figure 2.20.B) showed a slight up-regulation in the 

Day 4 differentiating culture (0.56 log2 fold change relative to 

macroschizont/Day 0) followed by significant down-regulation at Day 7 (1.34 log2 

fold change reduction in expression level, p-value ≤ 0.05) and Day 9 

differentiating cultures (3.16 log2 fold change reduction, p-value ≤ 0.05).  
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Figure  2.19.  QRT-PCR results of A. TA10735 and B. TA15705 from macroschizont to 

merozoite stage. Technical replicates were normalised against Hsp70 (TA11610) gene. The 

asterisk (*) below the bars indicates the statistical significance of the result (One Way ANOVA 

test and post-hoc Dunnett test, p≤0.05) relative to macroschizont stage (*). Whereas (n.s.) 

indicates non-statistical difference of gene expression in particular stage relative to its 

preceding stage. 
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2.4 Discussion 

 

The aim of the work presented in this chapter was to determine patterns of gene 

expression, at a whole genome level, during life cycle stage differentiation of    

T. annulata. This was achieved by construction of a tiled microarray (Weir, 

unpublished), hybridisation of RNA representing different life cycle stages, 

including an in vitro differentiation time course from macroschizont infected to 

merozoite producing cells. Initial analysis of the microarray data demonstrated 

that major differences in expression levels exist for a significant number of 

Theileria genes between days 4 and 7 of differentiation to the merozoite in 

vitro. Thus, up-regulation of genes encoding predicted and known merozoite 

polypeptides (e.g. rhoptry genes) and down-regulation of genes encoding 

polypeptides previously shown to be associated with the macroschizont stage 

(e.g. TashAT genes, Ta9) were identified.  

 

The array data set indicated that approximately one fifth of the total number of 

T. annulata genes show significant changes in gene expression between 

macroschizont and merozoite life stages. This was illustrated using hierarchical 

clustering analysis and confirmed by Rank Product analysis of the normalised 

data set (W. Weir, unpublished). Interestingly, genes encoding polypeptides that 

are present at a high level in the merozoite stage are, in general, expressed at a 

low level in the macroschizont stage indicating that repression of gene 

expression in different stages is not absolute, based on designation of a baseline 

hybridization level to the microarray of 10 (log2 value).  

The parasite has a relatively small genome (8.3 Mb) compared to the bovine and 

a large proportion of RNA extracted from infected leukocytes was of bovine 

origin. Despite contamination with host and tick vector RNA (sporozoite preps) 

>90% of parasite genes (including constitutively expressed genes) were indicated  

as expressed in each life cycle stage. Thus for the T. annulata candidate ApiAP2 

transcription factors (see Table 2.1 and 2.2) all except TA10940 and TA16105 

were predicted to be expressed at the RNA level during the macroschizont to 

merozoite/piroplasm phase of the life cycle. Furthermore, despite showing 

major up-regulation during differentiation to the merozoite/piroplam all four up 
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regulated ApiAP2s showed a detectable level of expression in the macroschizont 

(see Figure 2.13-14). The results indicate that the conclusion of Shiels et al. 

(1992) that certain merozoite genes are expressed by the preceding 

macroschizont stage is applicable to the majority of merozoite genes, including 

those that may regulate this differentiation step. Similar results have been 

recorded for other Apicomplexa as changes in stage specific gene expression 

occur directly prior to a developmental commitment point. In P. falciparum 

sexual stage (gametocyte) gene expression was found to be present in the 

merozoite stage (Bruce et al., 1990) and similarly in Eimeria bovis merozoite 

genes were detected at the sporozoite life stage (Abrahamsen et al., 1993).  

As shown by Table 2.2., RP analysis identified that a greater number of genes 

are up-regulated than down-regulated across the different stage differentiation 

steps analysed. Thus, 152 potential up-regulated genes and 115  down-regulated 

genes were captured (FDR<5%) between the macroschizont and merozoite 

stages, while using absolute fold change ≥2 denoted 361 up-regulated genes and 

196 down-regulated genes. Such large-scale co-ordinated temporal regulation 

may involve a temporal switch in the level/activity of factors that control gene 

expression at the level of mRNA. Whether this is a single step or involves a 

cascade of regulation is not known. Differences in patterns of expression across 

stages and throughout the differentiation time course were observed for 

different genes at different data points. This suggests that a cascade involving 

multiple regulators is likely to occur. This postulation is supported by results 

from related studies in Plasmodium and Toxoplasma (Behnke et al., 2010; 

Painter et al., 2011), with the prediction of an interacting network of ApiAP2 

DNA binding factors proposed for the intraerthrocytic cycle of Plasmodium 

(Campbell et al., 2010). 

 

Rank Product analysis of particular genes showed that the most of the up-

regulated genes from macroschizont to merozoite are hypothetical proteins, 

which prevented deeper analysis of a predicted function/role in the stage 

differentiation step. However, certain genes linked to known proteins were 

found and a selection those of interest are described. Rhoptry genes were 

clearly identified and their up-regulation was confirmed by semi-quantitative 

RT-PCR. This result was expected as rhoptry formation is known to occur during 

merogony and they are implicated in playing a central role in merozoite invasion 
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of the erythrocyte (Shaw and Tilney, 1992). Increased expression of cysteine 

proteinases genes was also indicated, confirming predictions from EST data 

(Weir, unpublished). This may not be surprising as they encode enzymes that 

degrade protein and could be required for morphological events or degradation 

of host cell proteins (Rosenthal et al., 1988). Surprisingly, the sporozoite surface 

antigen (SPAG) (Hall et al., 1992) was found to be among the top 100 up-

regulated merozoite genes. This could indicate a gradual elevation through the 

life cycle in the tick to culminate at peak levels during sporogony. The gene 

encoding the macroschizont specific T cell antigen, Ta9 (TA15705) was found to 

be down-regulated from macroschizont to merozoite by array data and this was 

confirmed by semi-quantitative and qRT-PCR. Ta9 gene belongs to a small 

secretome gene family (5 genes), is recognized by T cells and is secreted into 

the host cytoplasm (MacHugh et al., 2011). The strong down regulation of this 

gene (also confirmed at the protein level by IFAT, Weir and Shiels unpublished) 

supports a role in transformation of the infected leukocyte. As predicted from 

previous work (Shiels et al, 1994; Shiels et al., 1998) the major merozoite 

surface antigen, Tams1 was found to be highly expressed in all life stages and 

showed up-regulation from macroschizont to merozoite/piroplasm stage. A Map2 

kinase (TA21080) was also identified as up-regulated from macroschizont to 

merozoite stage. It belongs to the mitogen-activated protein kinase family 

involved in many cell processes, especially in directing cellular responses to 

different stress factors such as heat shock. These proteins are also implicated in 

proliferation, gene expression and differentiation and are crucial for 

maintenance of the cell (Schaeffer and Weber, 1999).  

 

The largest Theileria gene families: subtelomeric SVSP genes, Tpr genes and 

TashAT genes were found to be expressed in macroschizont stage and then 

down-regulated in the next stages. This agrees with previous data in the 

literature (Swan et al., 2001; Shiels et al., 2004; Weir et al., 2010) and 

predictions from EST data (Weir, unpublished). Confirmation that TashATs and 

SVSPs are down-regulated during differentiation to the merozoite is of interest 

as the majority of these genes are postulated to contribute to the transformed 

phenotype, either by manipulation of host cell gene expression (TashATs) or the 

bovine immune response (SVSPs). Thus down-regulation may be required as host 

cell proliferation subsides and the leukocyte is destroyed  (Shiels et al., 1992). In 
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addition, the tandem arrangement of related SVSP and TashAT genes could be 

useful to investigate any DNA motifs involved in coordinating their down-

regulated expression.  

 

Transcription in T. annulata has been shown to be a monocistronic process 

(Shiels et al., 2000) and, similar to Plasmodium, mechanisms that influence 

factor accessibility to promoter sites may play important role in regulation of 

gene expression. In P. falciparum it was shown that altered chromatin due to 

histone modification (de/acetylation and methylation) is linked with the 

transcriptional regulation of stage specific genes and progression of the 

Plasmodium life cycle (Luah et al., 2010). It was also proved that the addition of 

apicidin, a histone deacetylase inhibitor, can alter parasite differentiation status 

(Darkin-Rattray et al., 1996) and epigenetic control has been proposed to play 

role in apicomplexan differentiation steps. Epigenetic mechanisms may play a 

critical role especially in post-translational modifications of histone that affect 

the recruitment of chromatin-associated proteins or change interactions 

between histones and DNA (Coleman and Duraisingh, 2008). The presence in the 

T. annulata genome of histone deacetylases and methylases (Cock-Rada et al., 

2012; Kinnaird et al., 2013) and also RNA-binding proteins (Pain et al., 2005) 

suggests that they are involved in regulation of gene expression. However, no 

statistically significant changes to expression levels of histone deacetylases and 

methylases between the macroschizont and merozoite stages were detected  

(data not shown) based on the D7 cell line microarray results. Thus, there is no 

evidence to indicate that a change in the level of histone modification enzymes 

operate to control gene expression in T. annulata, although a proteomic study 

comparing nuclear protein levels would be necessary to confirm this. However, 

based on the results from other studies it is likely that histone modification 

operates together with transcription factors. For example, treatment of P. 

falciparum blood-stage parasites with apidicin causes changes in expression of 

ApiAP2 genes, resulting in up-regulation of normally down-regulated genes 

(Chaal et al., 2010). 

 

Most of the annotated T. annulata transcription factors (see Table 2.1 and 2.2) 

did not show major variation in expression levels, based on the array data, 

during macroschizont to merozoite differentiation. However, in several instances 
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some interesting alterations were observed. Thus, significant down-regulation of 

the TA10735 (a predicted GATA-type TF) was detected from the macroschizont 

to the merozoite stage. Strong down-regulation of TA10735 mRNA was also 

detected from sporozoite to day 4 of the differentiation time course and this low 

level of expression was then maintained through to the piroplasm stage. In total 

only three potential transcription factors showed statistically significant down-

regulation (the other two containing an AP2 domain) suggesting that down- 

regulation of the GATA transcription factor (TA10735) is marked and significant. 

What role it plays in the life cycle is unclear but based on its profile it could be 

required for production of sporozoites or following sporozoite invasion of the 

leukocyte. The known function of GATA factors as regulators of developmental 

expression in higher eukaryotes (Briegel et al., 1996; Rodriguez-Segui et al., 

2012) points to a possible role in regulation of the parasite life cycle. In 

contrast, three potential TFs: TA06490 (SWI/SNF), TA06995 (ADA2 homologue) 

and TA17930 (hypothetical protein) showed a profile of elevated RNA expression 

in stages associated with intracellular infection of the bovine leukocyte. 

SWI/SNP complex is known to be involved in chromatin remodeling and to play 

important roles in gene expression in eucaryota (Sudarsanam and Winston, 2000; 

Tang et al., 2010) and ADA2 was found to regulate the histone acetyltransferase 

activity and promote transcriptional silencing (Hoke et al., 2008; Jacobson and 

Pillus, 2009). Clearly further work is required to investigate their function in 

determination of stage specific expression in Theileria parasites. 

 

Based on the work of Balaji et al. (2008) that discovered the AP2 family of TFs in 

apicomplexan parasites, the identification of ApiAP2 transcription factors 

differentially regulated during differentiation steps of the T. annulata life cycle 

was of importance to this study. AP2 domain TFs are essential for differential 

expression in related Plasmodium (Yuda et al., 2009; Yuda et al., 2010) and 

most importantly, very recent work  has shown that knock out of ApiAP2 genes in 

both Toxoplasma (Radke et al., 2013) and Plasmodium (Sinha et al., 2014; 

Kafssack et al., 2014) can alter the potential/efficiency of a stage 

differentiation event and are involved in sexual determination in Plasmodium.  

 

Analysis of the temporal expression profile of the 22 T. annulata ApiAP2 genes 

demonstrated that the majority of them are expressed at the RNA level above 
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the background threshold during macroschizont to merozoite stage transition 

step. However, one ApiAP2 gene (TA10940) might be considered as sporozoite or 

tick stage specific as its expression values during macroschizont to 

merozoite/piroplasm stage are below the cut-off threshold (expression 

value=10). As microarray assay is not always 100% reliable with respect to mRNA 

expression of particular genes due to a limited number of replicates and 

diversity of experimental conditions, it would be of interest to confirm a 

possible sporozoite or tick stage specificity of this ApiAP2 gene.  

 

Most of the ApiAP2s do not show significant changes in expression level but this 

does not rule out a role in control of gene expression or in stage differentiation. 

Modest changes in expression values may be missed by the application of the 

significance cut-off applied to microarray data – and to some extent this was 

indicated, as microarray data relative to qRT-PCR gave smaller changes in stage 

expression levels. In addition, in other studies relatively small changes in 

expression levels of ApiAP2 during stage differentiation events were recorded 

using array data (Young et al., 2005; Silvestrini et al., 2005; Campbell et al., 

2010). 

 

Four T. annulata ApiAP2 genes (TA13515, TA16485, TA11145 and TA12015) 

showed up-regulated expression relative to the rest of the family (see Figure 

2.9.A). This suggests they may be functionally required by the merozoite or 

piroplasm stages and could play a role in stage differentiation if they act to 

specifically regulate a subset of target genes. Three of these genes (TA13515, 

TA12015, TA16485) were in the 100 most up-regulated genes from macroschizont 

to merozoite and showed a marked reduction in RNA levels in the macroschizont 

stage relative to all other stages. While these profiles of ApiAP2 are of most 

interest, it remains to be established whether they are linked to or required for 

regulation of T. annulata stage differentiation. In Plasmodium, the expression 

profiles of putative co-expressed targets are both positively and negatively 

correlated to the expression profile of the corresponding ApiAP2 gene, indicating 

that they function either as activators or repressors of transcription (Campbell 

et al., 2010; Painter et al., 2011). The differentiation expression pattern of the 

four Theileria up-regulated ApiAP2 genes suggests that they could mediate 

transcriptional regulation of stage specific genes. Thus strong correlation of 
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potential target genes with a particular ApiAP2 gene might suggest regulation by 

this factor. Thus, for example the TA13515 AP2 TF could control target genes 

that are regulated during merogony or more likely following differentiation to 

the piroplasm, since this transition shows the highest level of increase in 

TA13515 expression. Semi-quantitative and quantitative RT-PCR confirmed the 

up-regulated expression pattern of TA13515 and also the TA11145 gene. The 

TA11145 profile was of particular interest as it was proposed that regulators of 

merozoite gene expression would be expressed in the macroschizont stage and 

show an increase prior to a commitment point leading to auto-regulatory control 

(Shiels et al., 2000). TA11145 expression is predicted to be higher than TA13515 

in the macroschizont stage based on microarray data and qRT-PCR results.  

Expression of TA11145 by qRT-PCR data showed a small increase between 

macroschizont stage and Day 4, followed by a more significant increase between 

Day 4 and the Day 7 and Day 9 points were merozoite production has occurred. 

Following merozoite production however, TA11145 mRNA did not show a 

significant elevation to the piroplasm stage, whereas TA13515 expression 

probably peaks in the piroplasm or early phases of the parasite life cycle within 

the tick (gametocyte to kinete – not determined). Work of Sinha et al. (2014) 

and Kafsack et al. (2014) revealed that one of the members of P. berghei ApiAP2 

family, PbAP2-G (an orthologue of P. falciparum PfAP2-G - 

PFL1085w/PF3D7_1222600) is essential for the commitment of asexually 

replicating forms to sexual development. Moreover, this work also confirmed the 

postulation that a cascade of ApiAP2 proteins are involved in commitment to the 

production and maturation of gametocytes. Based on the phylogeny generated in 

the study of Balaji et al. (2005) and confirmed by analysis conducted in this 

study the T. annulata AP2 domain-encoding gene TA13515 is an ortholog of 

PbAP2-G. Thus, the expression profile indicating significant up-regulation of 

TA13515 in the late piroplasm stage points to the possibility of an orthologous 

role in determination of commitment to gametocytogenesis/ sexual phase of the 

T. annulata life cycle. 

 

The presence of the four up-regulated ApiAP2 genes during the macroschizont to 

merozoite stage transition indicates that the genes targeted by these predicted 

DNA binding factors differ. This may point to temporal control of gene 

expression during differentiation or a different role such as enhancer or 
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repressor. To study this further the binding sites of the different T. annulata AP2 

domains requires identification. Conservation of binding sites across 

Apicomplexa species (Guo and Silva, 2008; Essien and Stoeckert, 2010), in 

particular ApiAP2 binding specificities across the Plasmodium genus (Painter et 

al., 2010) has been described. Thus, utilization of orthologous ApiAP2 DNA 

binding motifs described for Plasmodium would be a good starting point for 

analysis of Theileria AP2 binding sites and target genes possessing these sites. A 

general search for shared conserved DNA motifs associated with the 

differentially regulated genes should be performed to identify any putative 

motifs not recognized by selected AP2 ortholog domains. Identifying genes 

encoding potential DNA binding factors together with sets of genes, that possess, 

in their promoter region, the motif the factor is predicted to bind to suggests 

that the factor may regulate these genes. Correlation (both negative and 

positive) of expression patterns of the binding factor and potential target genes 

increase this probability. It is also relevant to see if the motif the factor is 

predicted to bind to is present in its own upstream region, implying auto-

regulation a key element of the stochastic model of stage differentiation.  

 

In summary, the work in this chapter has provided a data set of genes that show 

significant changes to expression levels as the parasite undergoes transition 

between life stages. It has also highlighted changes to expression of important 

potential Theileria transcription factors/DNA binding proteins. This provided 

data sets and candidate factors for further study and set a key goal of:  

identification of nucleotide motifs in the intergenic regions of differentially 

expressed genes that could be bound by the DNA binding proteins; and 

investigation of potential target motifs bound by differentially regulated 

putative ApiAP2 transcription factors in T. annulata. 
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Identification and analysis of  

T. annulata cis-acting promoter elements 
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3 Identification and analysis of T. annulata cis-acting promoter 
elements 

3.1 Introduction 
 
Apicomplexan species have reduced complexity in their transcriptional apparatus 

in comparison to other eukaryotic organisms, hence different mechanisms of 

transcriptional regulation are predicted for these parasites, including Theileria 

species. It has been demonstrated, in many eukaryotic systems, that changes to 

the profile of gene expression following cellular differentiation is mediated by 

interactions between polypeptide factors and short nucleotide motifs located 

upstream of the transcription initiation point (Latchman, 1991; Blau, 1992; 

Thomas and Chiang, 2006; Lengar and Joshi, 2009). This type of mechanism is 

supported by the highly compact genome of T. annulata, with non-coding 

regions forming around 30% of the genome and short intergenic regions (IGRs) of, 

on average, 400 base pairs (Guo and Silva, 2008). Intergenic regions are likely to 

contain cis-regulatory elements (CREs), non-coding DNA motifs of six to eight 

nucleotides in length which act as transcription factors binding motifs (TFBMs). 

The sequence pattern of the DNA motif is very important, as it determines the 

binding affinity of transcription factors (TFs) (Zhang et al., 2003). The effect of 

binding can be either positive (enhancement of transcription) or negative 

(repression of transcription). 

Conservation of regulatory regions between species implies an important 

biological role (Lee et al., 2005). Interspecies comparison of non-coding regions 

of yeast genomes revealed that conserved DNA motif sequences of orthologous 

genes act as binding sites (Kellis et al., 2003; Doniger et al., 2005). A 

considerable degree of variability across regulatory regions between species may 

arise over time due to evolutionary change that can affect non-coding regions 

with a higher frequency than coding sequences (Dermitzakis and Clark, 2002). 

Mutations in cis-element sequences may not block binding completely, as there 

is an amount of flexibility at the motif level and not all positions in the binding 

site equally contribute to binding and therefore a transcription factor (TF) may 

still bind to a mutated cis-element but with lower affinity (Benos et al., 2002). 

In addition to the important role of hydrogen bonding, the efficacy of sequence-

specific binding is also influenced by interactions with other proteins and the 
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chromatin state/structure (Benos et al., 2002). Presently, the most common 

cause of phenotypic divergence in transcriptional control is thought to be 

mutations affecting DNA motif sequences of cis-elements rather than trans-

elements encoding the transcription factors proteins binding to these sequences 

(Carroll, 2008; Stern and Orgogozo, 2008). Mutations arising in non-coding 

regions have been shown to influence gene expression by changing the way 

transcription factors bind to their target sequence, leading to up-regulation, 

down-regulation or complete deactivation of the gene (Wittkopp and Kalay, 

2012). 

The most well characterised types of cis-regulatory elements are enhancers and 

promoters. Promoters are short (~40bp) regions of DNA which are located 

upstream of the transcription start site (Ayoubi, 1996; Butler, 2002). By binding 

to this region, TFs induce transcription of the downstream gene. Apicomplexan 

species, however, lack typical eukaryotic promoter elements such as the TATA-

box and CAAT-box (Millitello et al., 2005) as well as the corresponding 

transcriptional factors such as TATA-binding proteins and TFIIA (Meissner and 

Soldati, 2005). In contrast, enhancers are regions of DNA that act by influencing 

the transcription of the gene. They can be found upstream and downstream of 

the associated gene, within introns or can be located far away from the gene 

they regulate. Multiple enhancers can act together to regulate transcription of 

one gene (Wittkopp and Kalay, 2012). Enhancers are thought to be responsible 

for cis-regulatory divergence as their sequences are more variable between 

species (Wray, 2007) than promoters. Some enhancers have overlapping 

functions hence mutation in single instance may only have a limited effect on 

gene expression (Hong et al., 2008). 

 

The availability of an increasing number of sequenced genomes together with 

publication of various experimental studies have facilitated the development of 

bioinformatic techniques to investigate DNA sequence motifs responsible for 

transcriptional regulation. Using web-based bioinformatics tools, searches at 

genomic-level sequence datasets can be performed for DNA motifs that act as 

known factor recognition sites. Alternatively, genomic sequences can be 

screened for novel motifs that have been conserved, and repeatedly used, 

through evolution by scanning regions upstream of potentially co-regulated 
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genes. Strong conservation of the motif provides additional evidence of its 

functional relevance. In Apicomplexa the process of transcription is considered 

to operate in a monocistronic manner (Iengar and Yoshi, 2009). Evidence that 

this is the case for T. annulata has been generated (Shiels et al., 2000) but only 

limited information on DNA regulatory motifs and TFs of stage-specific 

T. annulata genes has been obtained to date. In the study of Shiels et al. (2000) 

a 9bp core binding site 5’-TTTGTAGGG-3’ was identified in the upstream region 

of the merozoite surface antigen gene, Tams1. Nucleotides flanking this region 

included a CACACA motif that is understood to stabilise the formation of DNA 

motif-factor complexes. 

 

Guo and Silva (2008) demonstrated three putative motifs present in hundreds of 

copies throughout the genomes of T. parva and T. annulata (Figure 3.1). The 

motifs ‘TCCCCAT’ and ‘GATTCCA’ in T. parva were found to be located 60 

nucleotides upstream of the transcriptional start site, which suggests that they 

may play a role as transcription factor binding sites in each species. In contrast, 

the motif ‘TGTGT’ showed no fixed localisation relative to the transcriptional 

start site and was found throughout non-coding regions of the genome. This 

motif was also described for Plasmodium species (Young et al., 2008) and, 

similar to T. parva, was shown to have a widespread distribution in the genome. 

 

 

Figure 3.1. Top three statistically significant MEME-derived motifs in T. parva 
and the most similar motifs in T. annulata (Guo and Silva, 2008) (two left columns). 

Functional annotations enriched in downstream genes of each motif in T. parva are shown on the 
right. The best matches to conserved T. parva motifs are shown in the centre (motif name and 
database source, sequence logo and E-value, which represents a relative measure of similarity 
between two motifs based on simulated position specific score matrix models). 

 
Motif comparison analysis also showed that the top three statistically significant 

motifs in T. parva are almost identical to motif 1, 2 and 4 from the top of the 

list of motifs identified for T. annulata (Guo and Silva, 2008). The ‘TCCCCAT’ 

motif was found to be enriched in T. parva promoter regions of genes encoding 
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signal peptide-containing proteins and also of telomeric open reading frames 

(ORFs) encoding polymorphic secretory gene families (Bishop at al., 2000). This 

motif is similar to the G-box motif previously identified for Plasmodium species 

(Millitello et al., 2004; Sunil et al., 2008, Young et al., 2008) in upstream regions 

of ribosomal and heat shock genes (Millitello et al., 2004). It has been shown in 

P. falciparum that some ApiAP2 domains differentially expressed in specific 

developmental stages have high specificity for unique DNA sequence motifs 

found in the upstream regions of some genes (Campbell et al., 2010) (Figure 3.2) 

and this includes a G-box upstream of the Hsp genes. A G-box motif was also 

identified as a binding site for a C. parvum ApiAP2 transcription factor, 

Cgd8_810 (Oberstaller at al., 2013).  

 

In P. falciparum the ‘CACA’ motif was observed in the upstream regions of genes 

from the DNA replication and chromosome cycle cluster (Young et al., 2008) and 

variations of this motif have been found to act as binding sites for P. falciparum 

AP2 domains (Campbell et al., 2010) (Figure 3.2). This motif was also found in 

the upstream regions of Toxoplasma genes (Gross et al., 1996; Bohne et al., 

1997). The third motif identified by Guo and Silva (2008), ‘GATTCCA’, was found 

to be similar to the binding site of the NF-кB transcription factor known to be 

involved in host cell transformation by Theileria species (Heussler et al., 2002). 

Localisation of these three motifs in 5’ untranslated regions (UTRs) more 

frequently than in the other regions is consistent with the presence of regulatory 

motifs in the upstream region of target genes. Moreover, two putative T. parva 

motifs were located just upstream of transcriptional start sites and were 

preferentially associated with specific protein functions, supporting the 

hypothesis of participation in transcriptional regulation of this parasite (Guo and 

Silva, 2008). Whether this finding is associated with the function of NF-kB in host 

cell transformation remains unknown, but appears unlikely. 

 

Finding an enrichment of the same motifs in closely related Theileria species 

suggests gene expression regulation by similar orthologous transcription factors. 

Examination of orthologous clusters of putative families of transcription factors 

that contain ApiAP2 domains indicated a close relationship between Plasmodium 

and Theileria ApiAP2 genes within the Apicomplexa (Figure 3.3) and suggests 

they may bind similar DNA motifs. They share 16 predicted domains from at least 
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15 distinct proteins; while Cryptosporidium and Plasmodium share only 11 

ApiAP2 domains from nine proteins. It is likely that the common ancestor of 

apicomplexans possessed at least nine members of an ApiAP2 family, which 

appears to have proliferated further through independent gene duplication as 

the different apicomplexan lineages emerged (Balaji et al., 2005). Toxoplasma 

showed a distinctly higher number of ApiAP2 genes than other apicomplexans 

and also larger genome, which may indicate a higher degree of specific 

transcriptional regulation (Iyer et al., 2008). 
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Figure 3.2. P. falciparum ApiAP2 domains and their corresponding target DNA 
motifs. In addition: relative mRNA expression profiles during the intraerythrocytic 

developmental cycle (IDC) (genes not expressed during the IDC are in grey), AP2 domain(s) 
architecture and location in the protein (Campbell et al., 2010). 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. UPGMA tree of the ApiAP2 domain in Apicomplexa (Theileria ApiAP2 domain – highlighted in red) (Balaji et al., 2005) 
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Proteins functioning as regulatory factors involved in the control of Theileria 

gene expression during differentiation to the merozoite still await identification. 

It is likely that genes with similar mRNA expression profiles (co-expressed genes) 

are regulated via the same mechanism (co-regulated). Such co-expressed genes 

are likely to have conserved DNA binding motifs in their promoter region. It was 

shown that some ApiAP2 domains differentially expressed in specific 

developmental stages have a high specificity to unique DNA sequence motifs 

found in the upstream region of the transcription initiation site of some genes 

(Campbell et al., 2010) (Figure 3.2). Individual ApiAP2 genes showed slight 

temporal differences in their expression patterns within stage-specific guilds and 

comparison of these expression patterns with the rest of the gene set expressed 

by individual stages might indicate target genes that they regulate. Thus genes 

showing strongly correlated positive or negative expression with a particular 

guild of ApiAP2 genes might be under the control of the products of that guild 

(Balaji et al., 2005). A number of studies have indicated that ApiAP2-related 

transcription factors are widely used for gene regulation throughout the 

Plasmodium (Yuda et al., 2010; Flueck et al., 2010; Sinha et al., 2014) and 

Toxoplasma (Radke et al., 2013) life-cycle. For example, AP2-Sp (Pf14_0633; 

Pbanka_132980) is a major TF expressed from the late oocyst stage to the 

sporozoite stage and regulates gene expression in the sporozoite by binding to 

the ‘GCATGCA’ DNA motif (De Silva et al., 2008; Lindner et al., 2010; Painter et 

al., 2011). Disruption of this gene does result in a loss of sporozoite formation 

but does not affect parasite replication in the erythrocyte (Yuda et al., 2010). 

 

Computational methods used by the studies described above are an important 

tool for further investigation of potential DNA sequence motifs involved in the 

regulation of gene expression in T. annulata. Moreover, identification of these 

motifs and the factors that bind to them may provide a deeper insight into 

mechanisms that regulate stage differentiation of this parasite. The work 

described in this chapter concentrates on identifying DNA motifs in the genome 

of T. annulata and investigating their potential role in regulation of specific 

subsets of genes differentially expressed during stage differentiation. In 

addition, it was important to gain insight into motifs recognised by the four 

T. annulata genes encoding putative ApiAP2 transcription factors (TA13515, 

TA11145, TA12015, and TA16485) up-regulated during merogony (see Chapter 2). 
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Conservation of these T. annulata ApiAP2 factors across other Theileria species 

(T. parva and T. orientalis) and other Apicomplexan genera may point to the 

possibility that the motifs they recognise are conserved. Thus, an aim of the 

work in this chapter was to determine if AP2 domains represented by these up-

regulated ApiAP2 genes in T. annulata show strong conservation across related 

species and genera. If so, study of the occurrence of binding ApiAP2 sites 

previously indentified in P. falciparum and P. berghei (Campbell et al., 2010) 

(GTGTAC, CACAC, TCTACA) and C. parvum orthologue (Oberstaller, 2013) (G-

box) would then be conducted to determine if there is an association of 

predicted motif with stage-specific regulation of gene expression in T. annulata. 

It was hoped that would provide insight into the regulation of ApiAP2 factors and 

target genes during stage differentiation and lead to further understanding of 

the mechanisms operating in a stochastic model of stage differentiation. 
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3.2 Methods 

3.2.1 Motif discovery in upstream regions of T. annulata co-

expressed genes and gene families 

 

The small size of regulatory sequences and often a lack of positional 

conservation makes it difficult to identify cis-acting elements using local 

alignment approaches such as BLAST. With the increased availability of whole 

genome sequences, several algorithms have been developed to detect over-

represented DNA motifs in the non-coding sequences either de novo or searching 

for known motifs (Tompa et al., 2005). One of the most popular and widely used 

tools for discovering and analysing motifs in sets of DNA or protein sequences is 

MEME (Multiple Expectation Maximization for Elicitation of Motifs), version 4.6.1 

(Bailey and Elkan, 1994). MEME uses a deterministic approach to build models of 

sequence motifs assigning sites to the motif and building on this assignment as 

more occurrences of the same cis-element are found (D'Haeseleer, 2006). It 

operates on the basis of an expectation maximization (EM) algorithm and 

identifies shared motifs and their positions in unaligned sequences. There are 

three options for the motif search: exactly one motif per sequence, one or zero 

motifs per sequence or any number of motifs per sequence. Individual motifs 

provided by MEME do not contain gaps. 

 

Input sequences predicted to share (unknown) motifs were prepared by 

extracting intergenic sequences upstream and downstream of the coding 

sequence (CDS) of genes of interest using the GeneDB database (Hertz-Fowler et 

al., 2004). Since transcription start sites have not been determined for all the 

T. annulata genes, intergenic regions based on the position of the translation 

start site (TSS) - ATG start codon, to the next coding sequence were extracted. 

Sequences of upstream regions from co-expressed genes (up- and down-

regulated from macroschizont to merozoite) and gene families in FASTA format 

were submitted to the MEME (www.meme.nbcr.net) to look for repeated un-

gapped sequence patterns which may represent potential binding sites for the 

transcription factors. One big advantage of MEME software motif prediction is 

the possibility to adapt motif length (Hu et al., 2005) in searches. Motif searches 

were performed using a motif length of between 5 and 8bp, 8 and 12bp and 8 
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and 20bp and the zoops (zero or one occurrence per sequence) option to 

increase probability of finding significant motifs. 

The MEME results are presented as a summary table showing motif sequence 

logo, length, number of sites contributing to the construction of the motif and 

statistical significance. The statistical significance of the motif is presented as 

an E-value based on an estimation of the expected number of motifs with the 

given log likelihood ratio and with the same width and site count that could be 

expected in a similarly sized set of random sequences. Generated sequence 

logos represent the probability of each possible letter occurring at each position 

of the motif. The height of individual letters in the logo represents the 

probability of the letter at that position, multiplied by the total information 

content of the motif. Nucleotides were colored as follows: Adenine – red, 

Guanine – orange, Cytosine – blue, and Thymine – green. Additionally, 

occurrences (sites) of the motif across the dataset were presented as an 

alignment and sequences preceding and following each motif are shown. Motif 

sites were listed in order of increasing statistical significance (p-value) which 

gives the probability of a random sequence motif generated from the 

background letter frequencies having the same match score or higher. Each site 

was identified by the name of the gene where the upstream region occurs, the 

strand (sense and anti-sense in reference to the orientation of the CDS) and 

position in the sequence where the motif starts. For the negative strand the 

start position of the motif is actually the position on the positive strand where 

the motif ends. Statistically significant motifs were presented as coloured blocks 

on a line diagram displaying all the sites in the IGR where the DNA motif was 

identified on the positive or negative strand. The p-value of each occurrence 

and a sequence position scale is additionally shown in each diagram. 

3.2.2 Cross-species MEME analysis of the TashAT cluster  

MEME analysis was additionally performed with T. annulata and T. parva TashAT 

family orthologues, as looking across species in families of genes that have 

diverged may support any functional significance ascribed to any identified 

motifs. Cross-species MEME analysis of the upstream regions of 17 T. annulata 

TashAT genes and 20 T. parva TpHN orthologous genes was previously performed 

(Pain and Shiels, unpublished) as above. Motif searching on both strands was 
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undertaken using a motif length of between 6 and 50bp and zoops (zero or one 

occurrence per sequence). The obtained motifs and their localisation in the 

analysed sequences are presented in the results section. 

 

3.2.2.1  Analysis of the intergenic region of TA03110 (Tash-a) 

across T. annulata, T. parva and T. orientalis 

TA03110 is the only gene in the TashAT cluster which is conserved in the non-

transforming Theileria species, T. orientalis, and is up-regulated during 

merogony, based on microarray data and IFAT (Hayashida et al., 2013). To 

determine if the 4C-box motif (see following section) is associated with down-

regulation of genes in the TashAT cluster, analysis of the 5’ intergenic region of 

the gene encoding Tash-a (TA03110) and its orthologues in T. parva and 

T. orientalis was performed. Intergenic regions upstream of the ATG start codon 

to the margin of the neighbouring coding sequence of T. annulata and T. parva 

were extracted from the GeneDB database. The upstream sequence of 

T. orientalis was extracted manually using Artemis: Genome Browser and 

Annotation Tool (Rutherford et al., 2000). A motif search was carried out using 

MEME with a motif length of between 6 and 14bp and zoops (zero or one 

occurrence per sequence). 

 

3.2.3 Statistical enrichment analysis of 4C-box and 5C-box motifs 

within T. annulata intergenic regions 

Analysis of DNA motifs derived by MEME software revealed 4C-box (TCCCCAT) 

and 5C-box (TCCCCCAT) elements present in the upstream regions of TashAT and 

SVSP family genes, respectively. Based on the hypothesis that genes from the 

same family which are co-expressed should also be co-regulated and may possess 

common upstream regulatory elements, an additional motif enrichment analysis 

was performed for these two putative cis-elements to confirm their statistical 

significance. Based on an average size of T. annulata intergenic regions, a length 

restriction of 400 bp was used in this analysis. Additionally motifs were searched 

for 100bp upstream of the ATG start codon using the DNA Motif Pattern Search 

option in PiroplasmaDB® (www.piroplasmadb.org). A motif enrichment value was 

calculated using a custom Perl script written by Dr William Weir (University of 
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Glasgow), which counts the occurrence of each motif in upstream regions of 

gene clusters or gene families and compares it with the number of occurrences 

in the remainder of the genome. A P-value was calculated using a two-tailed 

Fisher’s exact test (http://www.graphpad.com/quickcalcs/contingency1) and 

statistically significant results (p-value ≤ 0.05) highlighted as significant 

associations between categorical variables. 

 

3.2.4 ApiAP2 domain conservation analysis across Theileria and 

Plasmodium species 

 

Based on expression data from Chapter 2, four up-regulated macroschizont to 

merozoite T. annulata genes (TA13515, TA11145, TA16485 and TA12015) were 

selected for further detailed analysis. Orthologues in T. parva and T. orientalis 

were identified by Protein BLAST search (www.ncbi.nlm.nih.gov/BLAST) and 

ApiAP2 domain regions extracted. Theileria annulata ApiAP2s domain boundaries 

were defined as in Balaji et al. (2008) and confirmed using the Pfam database 

(http://pfam.sanger.ac.uk). In addition, Protein Blast searches for these four 

ApiAP2s was performed and a list of putative Apicomplexan orthologues with a 

minimum of 50% sequence identity with T. annulata ApiAP2 domain sequence 

was generated. 

 

Multiple sequence alignment across the three Theileria species was performed 

for the four up-regulated T. annulata ApiAP2 using ClustalW online software 

(www.ebi.ac.uk/Tools/msa/clustalw2/) and edited with Jalview 

(http://www.jalview.org). Alignments were also performed with the 

P. falciparum ApiAP2s domain orthologues for TA11145, TA13515 and TA16485 to 

visualise domain conservation. As no close P. falciparum orthologue was found 

for TA12015, it was decided to use the C. parvum orthologue instead, as its DNA 

target motif has been established (Oberstaller et al., 2013). An alignment was 

performed for all TaApiAP2s using T-coffee software 

(www.ebi.ac.uk/Tools/msa/tcoffee/) and illustrates general conservation of the 

ApiAP2 domain in T. annulata. 
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3.2.5 Distribution and enrichment analysis of Plasmodium motifs 

identified in Theileria genome 

 

Plasmodium falciparum ApiAP2 domain DNA target motifs were selected for 

further analysis to screen for potential conservation of ApiAP2 DNA binding sites 

in promoter regions of Theileria genes. Theileria annulata genes with the 

Plasmodium DNA binding motif in their upstream region were selected using 

PiroplasmaDB DNA motif pattern search (http://piroplasmadb.org/piro). Due to 

the relatively small T. annulata genome and short (~400bp) intergenic regions 

(Guo and Silva, 2008), a length restriction of 400bp regions upstream of the ATG 

translation start site was chosen to perform motif searches. To investigate motif 

distribution in the Theileria genome, motifs were searched within 0-100bp, 101-

200bp, 201-300bp and 301-400bp regions upstream the translation start site and 

also within the first 200bp of the protein coding region. To identify potential 

target genes of selected TaApiAP2 domains (TA13515, TA11145, TA16485, 

TA12015), groups of genes co-expressed with the ApiAP2 factor across multiple 

differentiation time-points and known stage-regulated gene families were 

screened for the predicted motifs. The obtained data was exported as an Excel 

file and motif distribution data tabulated. A motif enrichment value was 

calculated using the custom Perl script as described above and P-values 

calculated in a similar manner. Analysis was performed for each Plasmodium 

motif (Campbell et al., 2010) separately and motif over-representation 

determined. 

 

3.2.6 Motif enrichment analysis of the upstream regions of 

ApiAP2 genes in Theileria 

 

In order to investigate the issue of TaApiAP2 auto-regulation, a sequence 

alignment of intergenic regions of the four up-regulated ApiAP2 T. annulata and 

their T. parva orthologues was performed using ClustalW software 

(www.ebi.ac.uk/Tools/msa/clustalw2). The alignment was then analysed with 

Jalview software (http://www.jalview.org) to check for motifs potentially 

missed by MEME. Upstream regions of selected TaApiAP2s (TA13515, TA11145, 

TA12015, TA16485) were searched for respective DNA binding motifs (GTGTAC, 

CACACA/ACACAC, G-box/C-box, TCTACA). These had previously been identified 
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for orthologous genes in P. falciparum (Figure 3.2) and C. parvum (Oberstaller et 

al., 2013). 

 

3.2.7 Temporal expression pattern analysis of ApiAP2 genes and 

their potential target genes 

 

Correlation (either positive or negative) of expression pattern of genes which 

possess the same binding motif in their upstream region with the expression 

pattern displayed by particular ApiAP2 genes (predicted to bind the motif) could 

indicate regulation by these putative transcription factors. Microarray expression 

profiles of four up-regulated ApiAP2s (TA11145, TA12015, TA16485 and TA13515) 

were compared to the expression patterns of datasets of genes (selected based 

on motif enrichment analysis (see Sections 3.3.6.1 and 3.3.6.2)). Temporal 

expression pattern comparison was performed for TA12015 with average 

expression pattern of the TashAT gene family, Hsp family and merozoite to 

piroplasm most up-regulated genes; for TA13515 with average expression pattern 

of merozoite to piroplasm most up-regulated genes; for TA16485 with average 

expression pattern of macroschizont to merozoite most down-regulated genes 

and the TashAT family; and for TA11145 with average expression pattern of 

macroschizont to merozoite most down-regulated genes containing the CACACA 

type motif in their upstream region, macroschizont to merozoite most up-

regulated genes and merozoite to piroplasm most up-regulated genes. Expression 

patterns of co-expressed genes were then presented as a graph using Excel and 

the Pearson correlation value was calculated (using Excel Pearson function). 

 

 

 

 

 

 

 

 

 



 

 

125 

3.3 Results 

3.3.1 DNA motifs found in upstream regions of genes co-

expressed from the macroschizont to merozoite stage 

 

A DNA motif search was performed within 5’ (upstream) and 3’ (downstream) 

intergenic regions of the 100 most up- and down-regulated genes of 

macroschizont to merozoite stage differentiation. Due to software limitations, 

intergenic regions shorter than 8 bp (TA17346, TA13925 and TA17100) and 

overlapping genes (TA21395 – small overlap at the 3’ end with TA21390; TA15015 

– small overlap at the 5’ end with TA15010) were excluded from further analysis. 

The three motifs of the lowest E-value (most statistically significant) identified 

in the intergenic regions of these stage-regulated gene sets are detailed in the 

Appendix (3.1-3.4). Only motifs found in 5’ IGR with an E-value less than 10-4 and 

a strong core motif were considered as significant. These were further 

investigated in terms of their genomic location and distribution in relation to the 

translational start site. 

 

Analysis of 5’ IGRs of the 100 most down-regulated genes from macroschizont to 

merozoite stage differentiation revealed the presence of 55 instances of a 20bp 

motif A[TA]TT[TC][TC]AGATCCCCCAT[GT][AG][AT] (E-value = 10-155) with a well 

conserved core motif of AGATCCCCCAT present in 44 sites (Figure 3.4). All the 

motif hits were located on the coding strand except the motif located upstream 

of TA18010, an integral membrane protein, however the last two nucleotides of 

the core motif were different – AGATCCCCCTA. Interestingly, two C-box motif 

variants were found in this dataset: a 5C-box (TCCCCCAT) associated mostly with 

the SVSP gene family and a 4C-box (TCCCCAT) mostly associated with the TashAT 

family. Sequences flanking the core motif were similar between analysed 

regions, with a limited number of nucleotide substitutions present. All the 

identified sites of the C-box motif in the subset of down-regulated 

macroschizont to merozoite genes shown positional conservation close to the 3’ 

end of the IGR and proximal to the ATG start codon (Figure 3.5). Additional 

MEME analysis of TashAT family genes confirmed specificity of the 4C-box motif 

(TTCCCCA[TA]CCA[GA]) for this subset of genes (E-value = 5.7 x 10-43) in 13 sites 

(Figure 3.6). TA03140, TA03150, TA03155 genes had a point mutation in the core 
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sequence (T instead of C), insertion of an A after the 4C sequence and the sites 

were localised on the negative strand in comparison to the other 13 family 

genes. No motif was found by MEME for TA03110 which is the only up-regulated 

gene in this family. Motifs present on the postive strand were localised close to 

the translational start site (TSS). 
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Figure 3.4. ATCCCCCAT motif found in the upstream region of the 100 most down-
regulated genes during differentiation of the macroschizont to merozoite stage in 
T. annulata. 
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Figure 3.5. Distribution of the ATCCCCCAT motif within intergenic regions of down-
regulated genes. The predicted translational start site is at the 3’ end (right side) of the 

intergenic region. 
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Figure 3.6. Motif ‘TCCCCAT’ (4C-box) found upstream of TashAT family genes. 
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Analysis of 5’ IGR of 100 most up-regulated genes from macroschizont and 

merozoite stage revealed presence of 50 sites of a 14 bp motif 

[AG]AATGTGTAA[AG][GT][TAG][AT] (E-value = 1.3 x 10-9) with conserved core 

motif of AATGTGTAA (Figure 3.7). This motif was found on positive and negative 

strands and was neither associated with a particular gene family nor positionally 

associated with the ATG start codon (Figure 3.8). Analysis of the 5’ intergenic 

regions of 100 T. annulata constitutively expressed genes during macroschizont 

to merozoite differentiation also revealed the presence of this motif in 98 sites 

(E-value = 2.3 x 10-15), implying a wide-genome distribution of this motif 

(Appendix, 3.7). 

An additional MEME analysis of intergenic regions of ApiAP2 and other 

transcription factors (see Chapter 2) was performed to look for potential shared 

motifs, but did not reveal any statistically significant results (see Appendix, 3.5-

3.6). This is likely due to the small number of analysed sequences. It is also 

possible that these putative transcription factors do not share common DNA 

motifs regulating their expression, with each gene regulated separately at the 

transcriptional level by incorporating a unique arrangement of a number of 

distinct binding site motifs. This would be unlikely to be detected by the repeat 

pattern software employed in this study. 
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Figure 3.7. TGTGT motif identified in the 5’ intergenic regions of the 100 most up-
regulated genes during macroschizont to merozoite stage differentiation in T. 
annulata. 
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Figure 3.8. Distribution of the TGTGT motif upstream of up-regulated genes. The 
predicted translational start site is at the 3’ (right hand end) of the intergenic 
region. 
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3.3.2 Cross-species analysis for the TashAT cluster 
 

The T. annulata TashAT gene family consists of 16 down-regulated and only one 

up-regulated gene, TA03110. MEME analysis of upstream regions revealed a 

‘TCCCCAT’ (4C-box) motif present on the positive strand close to the TSS. The 

TashAT family is conserved between T. annulata and T. parva and encodes 

proteins predicted to control host cell gene expression. Although a number of 

direct orthologues have been identified across the two families it is clear that 

there has been species-specific expansion and divergence. Thus, towards the 

centre of the locus in T. annulata, genes without direct orthologues in T. parva 

are evident, and DNA binding domains (AT hooks) present in TashAT cluster 

genes are not present in the TpHN family of T. parva (Shiels et al., 2006). The 

availability of a family of genes that have diverged between closely related 

species may provide further evidence that motifs, and the proteins that bind to 

them, are functionally conserved.  

Cross-species MEME analysis of the intergenic regions of T. annulata and T. parva 

TashAT cluster genes has been then performed and an enlarged 4C-box motif, 

‘TTCCCCATCC’, identified that is present in the majority of genes in both 

species (Figure 3.9). Strong positional conservation of this motif, located close 

to the predicted translational start site was also observed (Figure 3.10). A 

second motif with an ‘AGGGTA’ core was also identified in a smaller number of 

genes across the two species (Figure 3.11). This motif also showed a strong 

positional conservation, being close to the predicted translational start site 

(Figure 3.12) but always upstream of the C-box rich motif. 
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Figure 3.9. Cross-species MEME analysis of the intergenic regions of T. annulata and 
T. parva TashAT cluster genes. The 4C-box motif was identified within this region of 

similarity. Discovered sites were aligned with each other. Each site is identified by the 
sequences name (TA - T. annulata, remainder – T. parva), the strand (positive) and the position 
in the strand where the site begins. Sites are listed in order of increasing statistical significance 
(p-value). 

 

 

Figure 3.10. Distribution of the 4C-box motif within upstream regions of down-
regulated TashAT/TpHN family genes. The predicted translational start site is at the 3’ 

(right end) of the intergenic region. Strong positional conservation of the motif is evident. 
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Figure 3.11. Cross-species MEME analysis of the upstream regions of T. annulata and 
T. parva TashAT cluster genes. A second conserved, TAGGGTA, motif was identified. 

Discovered sites were aligned with each other. Each site is identified by the sequences name (TA 
- T. annulata, remainder – T. parva), the strand (positive) and the position in the strand where 
the site begins. Sites are listed in order of increasing statistical significance (p-value). 

 
 

 
Figure 3.12. Distribution of the GGGTA motif within intergenic regions of 
down-regulated TashAT/TpHN family genes. The predicted translational start site is at 

the 3’ (right hand end) of the intergenic region. 

 

 

3.3.2.1 MEME analysis of the intergenic region of TA03110 

(Tash-a) across T. annulata, T. parva and T. orientalis 

 

To determine if the 4C-box motif is associated with down-regulation of genes in 

the TashAT cluster, analysis of the intergenic region of the gene encoding Tash-a 

(TA03110) was performed. Tash-a is the only gene in the cluster that is 

conserved in the non-transforming Theileria species, T. orientalis, and is up-

regulated during merogony, based on microarray data and IFAT (Hyashida et al., 

2013). The 4C-box motif MEME alignment generated for the TashAT cluster did 

not include any motifs in the intergenic region of the TA03110 gene, indicating 

that this region was divergent relative to the rest of the gene family.  
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Motif searching in the upstream region of the TA03110 (Tash-a) gene and its 

orthologues in T. orientalis and T. parva was carried out using MEME with a 

motif length of between 6 and 14bp and zoops (zero or one occurrence per 

sequence) options (Figure 3.13). A 4C-box motif was found on the coding strand 

upstream of the T. orientalis gene and on the non-coding strand upstream of 

T. parva gene, however the flanking nucleotides differed from each other and 

the full length T. annulata C-box motif in Figure 3.9. The sequence upstream of 

TA03110 was also visually analysed and a ‘TCCCCAT’ motif was identified on the 

coding strand (Figure 3.15). This motif shares a similar position to the previously 

identified 4C-box motif (Figure 3.14), close to the predicted translational start 

site of TA03110. The lack of recognition of these motifs in TA03110 by MEME is 

most likely due to divergence from the full length C-box motif conserved in the 

IGRs of other TashAT/TpHN family genes (particularly on the 3’ side of the core 

4C-box) and the more stringent parameters of the MEME search. These results 

suggest that if the motif independently promotes differential expression 

between the up-regulated TA03110 and down-regulated members of the cluster, 

it is due to this divergence. 
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Figure 3.13. Cross-species MEME analysis of the intergenic regions of T. annulata, 
T. orientalis and T. parva TA03110 orthologues. A 4C-box motif was found on the coding 

strand of T. orientalis and the non-coding strand of T. parva (This C-box is a G-box on the coding 
strand). 

 

Figure 3.14. Cross-species MEME analysis of the intergenic regions of T. annulata, 
T. orientalis and T. parva TA03110 orthologues. A G-box motif was found on the coding 

strand of T. orientalis and the non-coding strand of T. parva (This G-box is a C-box on the coding 
strand). 

 
5’-ATATAAATTGAACCTAATTAATTTAAAACAAGACTTTAAAACAGTAATATCTAAATTAAT 

   GTAAAATTAAAAATGAAATGAGGTTGGTTGTGTAATTTAAAAATTTGATGAATAGAGGTT 

   AATTTCCTCAAGATTCCAACCAATTTACAACAACACATTTAAATGATAAGAGGAAAATAC 

   TAGCATAATTAAGGATTAAGTTAAAAAATGTGTAAAAACGATCCCCATATGCATTAACGA 

   TAAAAATCGCATGTTGAAGCGTTATAATATGTTTTAACTTAATAT-3’ 

 

 

Figure 3.15. The sequence upstream of TA03110. A core 4C-box motif is highlighted in 

green. 

 

 

3.3.3 Statistical enrichment analysis of 4C-box motif 
 

Based on MEME analysis of stage-regulated macroschizont to merozoite genes, a 

C-box motif was identified as associated primarily with genes down-regulated 

during differentiation towards tick transmissible stages. To confirm specificity 

and show any statistical enrichment of this motif in T. annulata subsets of 

genes, a Motif Pattern Search was performed using PiroplasmaDB. The 4C-box 

motif, ‘TTCCCCAT’, was found on the positive strand of target genes up to 200bp 

upstream of the start codon. Genes that possess this motif within their 5’ 

intergenic region are presented in a Table 3.1. and include genes from TashAT 

family, Sfil-subtelomeric fragment related protein family members, ribosomal 

subunit proteins, ATP binding proteins and nucleic acid binding proteins. 
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Gene family 
Gene with 4C-box motif  

in the upstream region 

TashAT family 

TA03115, TA03120, TA03125, TA03130, 

TA03135, TA03145, TA03160, TA03165, 

TA20082, TA20083, TA20085, TA20090, 

TA20095 (down-regulated genes) and 

TA03110 (the only up-regulated TashAT 

gene) 

Sfil-subtelomeric fragment related 

protein family members 

TA16050, TA16055, TA17105, TA17110, 

TA17115, TA17355, TA17495, TA17505, 

TA17565, TA02845, TA05530, TA05535, 

TA09450, TA09770, TA09775, TA11395, 

TA11400,   TA11405 

ribosomal subunit proteins 

TA04505, TA07390, TA08205, TA10185, 

TA14730, TA02825, TA10305, TA14270, 

TA15200,   TA20525 

ATP binding proteins 

TA10040, TA21325, TA03485, TA05325, 

TA10790,    TA11560,  TA12510, 

TA20945 

nucleid acid binding proteins 

TA03320, TA05440, TA06205, TA11880, 

TA14280, TA14520, TA19905, TA14970, 

TA20210 

 

Table 3.1. Gene families enriched with the 4C-box motif in their upstream regions. 

 

Of the 3,856 T. annulata genes screened using PiroplasmaDB, 536 4C-box motifs 

were found, but only 170 were placed 200bp upstream of the translational start 

site on the (+) coding strand of the gene. The majority of these genes were 

identified as down-regulated based on microarray data or expressed at the same 

level during the differentiation process. Some up-regulated genes (e.g. TA03110, 

Tash-a) were also found to have the core motif in their upstream region. 

Enrichment analysis for the 4C-box motif showed that within a 400bp upstream 

region on the positive strand 82% of TashAT genes (14 out of 17 genes) possess 

the motif (Table 3.2). In the group of down-regulated from macroschizont to 

merozoite genes, 12 out of 113 genes (11%) shared this motif in the 400bp 
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upstream region and showed a statistically significant enrichment relative to the 

rest of the dataset. Narrowing the area for potential location to 100bp proximal 

to the translational start site confirmed that the motif is close to this site in 

TashAT family genes (82%). Also, the motif was found to be statistically enriched 

in the region 100 bp upstream of the genes which are most down-regulated 

between the macroschizont to merozoite. The motif was also enriched in the 

region 400bp upstream Heat Shock Protein encoding genes on the negative 

strand, which is a G-box on the positive strand. 

 

 

 

 

 

 

 

 

 



 
 
 

 
 
Table 3.2. Statistical enrichment analysis of ‘TCCCCAT’ motif of T. annulata intergenic regions within 400 bp upstream of the 
translation start site. Statistically significant data (P value < 0.05, Fisher’s Exact Test) are shown in yellow. 

 

 

 

 

 

 

 

 

TCCCCAT
motif 

TashAT 
genes 

non- 
TashAT 
genes 

macro-
mero 
most 

down-
regulated 

genes 

non- 
macro- 
mero 
most 

down-
regulated 

genes 

macro-
mero 

most up- 
regulated 

genes 

non 
macro- 
mero 

most up- 
regulated 

genes 

mero-piro 
most up-

regulated 
genes 

non-mero-
piro most 

up-
regulated 

genes 

mero-piro 
most 

down-
regulated 

genes 

non- 
mero-piro 

most 

down-
regulated 

genes 

SVSP 
genes 

non 
SVSP 
genes 

HSP 
genes 

non HSP 
genes 

400 bp 
upstream 
positive 
strand 

82.35% 

(14/17) 
P<0.0001 

5.49% 

(206/3751) 

10.62% 

(12/113) 
P=0.0217 

5.7% 

(208/3665) 

8.1% 

(12/148) 
P=0.2121 

5.74% 

(208/3620) 

12.5% 

(3/24) 
P=0.1619 

5.78% 

(217/3743) 

10% 

(2/20) 
P=0.1077 

5.8% 

(218/3747) 

2% 

(1/48) 
P=0.5265 

5.9% 

(219/3719) 

0% 

(0/34) 
P=0.2619 

5.89% 

(220/3733) 

400 bp 
upstream 
negative 
strand 

0% 
(0/17) 
P=1 

4.08% 

(153/3751) 

0.88% 
(1/113) 

P=0.0896 

4.16% 

(152/3655) 

2.02% 
(3/148) 

P=0.2848 

4.14% 

(150/3620) 

12.5% 
(3/24) 

P=0.0713 

4% 

(150/3743) 

5% 
(1/20) 

P=0.5646 

4% 

(152/3747) 

0% 
(0/48) 

P=0.2637 

4.11% 

(153/3719) 

8.8% 
(3/34) 

P=0.0471 

4% 

(150/3733) 

100 bp 
upstream 
positive 
strand 

82.35% 

(14/17) 
P<0.0001 

2.38% 

(87/3655) 

7.08% 

(8/113) 
P=0.0071 

2.38% 

(87/3568) 

5.4% 

(8/148) 
P=0.1317 

2.4% 

(87/3620) 

12.5% 

(3/24) 
P=0.0027 

2.45% 

(92/3743) 

0% 

(0/20) 
P=1 

2.53% 

(95/3747) 

2% 

(1/48) 
P=1 

2.53% 

(94/3719) 

0% 

(0/34) 
P=1 

2.54% 

(95/3733) 

1
4
0
 



 

 

3.3.4 Enrichment analysis of 5C-box motif 

The 5C-box motif, ‘TCCCCCAT’, was identified on the positive strand within 

200bp upstream of the start codon using the DNA Motif Pattern Search of 

PiroplasmaDB. Of 3,856 screened T. annulata genes, this motif was identified in 

98 segments but only 52 were placed within 200bp upstream of the predicted 

translational start site on the coding (+) strand of the gene. Annotated genes 

containing the 5C-box motif in their upstream regions are presented in the Table 

3.3. and, in addition to hypothetical genes, include genes encoding: SVSP 

(subtelomeric variable secreted proteins) family, a u3 small nuclear 

ribonucleoprotein, a u2 snRNP auxiliary factor, the 60S ribosomal protein l15, a 

serine/threonine-protein kinase, a u5 snRNP-specific subunit, a microneme-

rhoptry antigen and a vacuolar ATP sythetase subunit beta. Only two of these 

genes, TA13535 and TA11485 (hypothetical proteins), were identified as up-

regulated during differentiation based on microarray data. The motif was also 

found on the non-coding strand (-) strand within 200bp upstream of 12 genes. Of 

these, only the phosphate transporter gene (TA13530) was identified as being 

up-regulated during the macroschizont to merozoite differentiation process. 
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Annotation 
Genes containing 5C-box motif in 

upstream region 

SVSP (subtelomeric variable secreted 

proteins) family 

TA19060, TA190005, TA18950, 

TA18890, TA18885, TA18865, TA18860, 

TA16040, TA16035, TA16030, TA16025, 

TA11410, TA11390, TA11385, TA09430, 

TA09435, TA17485, TA17540, TA17535, 

TA02740, TA05580, TA05575, TA05565, 

TA05560, TA05555, TA05550, TA05545, 

TA05540, TA17120,     TA17125,      

TA20460 

u3 small nuclear ribonucleoprotein TA19780 

u2 snRNP auxiliary factor TA03790 

60S ribosomal protein l15  TA18090 

serine/threonine-protein kinase TA18470 

u5 snRNP-specific subunit  TA09305 

T. parva microneme-rhoptry antigen  TA08425 

vacuolar ATP sythetase subunit beta  TA08450 

 

Table 3.3. List of genes with a 5C-box motif in their upstream region 

 

 

For motif enrichment analysis, a p-value of 0.05 or less was taken to indicate 

statistical significance. Analysis of the 5C-box motif located within the 400bp 

upstream region on the positive strand showed enrichment (27.43 %) in IGRs of 

macroschizont to merozoite down-regulated genes (Table 3.4). The motif was 

also found to be strongly associated with SVSP genes and showed positional 

conservation; 70.83 % SVSP IGRs possess this motif within 100bp upstream of the 

ATG codon. 
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Table 3.4. Statistical enrichment analysis of ‘TCCCCCAT’ motif within T. annulata intergenic regions (400 bp upstream of the translation start site). 
Statistically significant data (P value < 0.05, Fisher’s Exact Test) are shown in yellow. 

TCCCCCAT 
motif 

TashAT 
genes 

non- 
TashAT 
genes 

macro-
mero 
most 

down-
regulated 

genes 

non-

macro- 
mero 
most 

down-
regulated 

genes 

macro-
mero 

most up-
regulated 

genes 

non- 
macro- 
mero 

most up-
regulated 

genes 

mero-
piro most 

up-
regulated 

genes 

non- 
mero-
piro 

most up-
regulated 

genes 

mero-
piro most 

down-
regulated 

genes 

non- 
mero-

piro most 
down-

regulated 
genes 

SVSP 
genes 

non- 
SVSP 
genes 

HSP 
genes 

non-HSP 
genes 

400 bp upstream 
positive strand 

0% 
(0/17) 
P=1 

1.413% 
(53/3751) 

27.43% 
(31/113) 

P<0.0001 

0.6% 
(22/3655) 

0.67% 
(1/148) 

P=0.7227 

1.43% 
(52/3620) 

0% 
(0/24) 
P=1 

1.41% 
(53/3743) 

5% 
(1/20) 

P=0.24 

1.39% 
(52/3747) 

70.83% 
(34/48) 

P<0.0001 

0.51% 
(19/3719) 

0% 
(0/34) 

P<0.0001 

1.42% 
(53/3733) 

400 bp upstream 
negative strand 

0% 
(0/17) 
P=1 

0.48% 
(18/3751) 

0.88% 
(1/113) 

P=0.0999 

0.46% 
(17/3665) 

0.67% 
(1/148) 

P=0.5147 

0.47% 
(17/3620) 

0% 
(0/24) 
P=1 

0.48% 
(18/3743) 

0% 
(0/20) 
P=1 

0.48% 
(18/3747) 

0% 
(0/48) 
P=1 

0.48% 
(18/3719) 

0% 
(0/34) 
P=1 

0.48% 
(18/3733) 

100 bp upstream 
positive strand 

0% 
(0/17) 
P=1 

1.09% 
(41/3751) 

26.55% 
(30/113) 

P<0.0001 

0.3% 
(11/3655) 

0% 
(0/148) 

P=0.4083 

1.13% 
(41/3620) 

0% 
(0/24) 
P=1 

1.09% 
(41/3743) 

0% 
(0/20) 
P=1 

1.09% 
(41/3747) 

70.83% 
(34/48) 

P<0.0001 

0.19% 
(7/3719) 

0% 
(0/34) 
P=1 

1.1% 
(41/3733) 

1
4
3
 



3.3.5 ApiAP2 protein conservation across Theileria and 

Plasmodium species  

 

Based on previous studies, ApiAP2 domains are known to be conserved across 

Apicomplexan species and genera. T-coffee analysis of all T. annulata ApiAP2 

domains confirmed strong conservation of secondary structure as all possessed 

three β-strands and an α-helix (Figure 3.16). Previous analysis of expression 

values of genes up-regulated from macroschizont to merozoite stage ApiAP2 

genes identified four AP2 domain genes with a fold change greater than 2: 

TA13515, TA16485, TA11145 and TA12015 (see Chapter 2). Orthologues of these 

domains were identified using BLAST and the NCBI Search Tool for Conserved 

Domains, and the results are presented in Table 3.5. In addition, putative target 

DNA core motifs of respective ApiAP2s and motif-stage activity (predictive effect 

of the AP2 motif on expression of target genes at certain life cycle stage) were 

obtained from published data for P. falciparum (Campbell et al., 2010) and 

C. parvum (Oberstaller et al., 2013). A threshold of a minimum of 50% sequence 

identity over the ApiAP2 domains was used to identify T. annulata ApiAP2 

orthologues. TA13515, TA12015, TA16485 and TA11145 proteins and their AP2 

domain sequences were then aligned in order to identify shared regions/motifs 

between orthologues from T. annulata, T. parva and T. orientalis. The AP2 

alignment (Figure 3.17) confirmed strong conservation of the domain within the 

Theileria genus. Residues corresponding to the three β-strands and the α-helix 

of the AP2 domain displayed the highest level of conservation in comparison to 

the rest of the protein sequence (data not shown). Moreover, the level of 

conservation of a particular AP2 domain (e.g. in TA11145) was greater across the 

three species relative to other distinct AP2 domains within a species (e.g. 

TA11145 vs TA13515) (Figure 3.17). 
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Figure 3.16. Domain alignment of all T. annulata ApiAP2 proteins using T-Coffee. 
Strong conservation of three β-strands and an α-helix is visible (red). D1, D2, D3 – refers to the 
AP2 domain number in the protein numbered from N-to C-terminus.  

    Β-strand       Β-strand                               Β-strand               α-
helix 
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Table 3.5. Orthologues of the ApiAP2 gene up-regulated in T. annulata. Putative target DNA core motif of respective ApiAP2s are 
highlighted in pink; motif stage activity is based on data from P. falciparum (Campbell et al., 2010) and C. parvum (Oberstaller et al., 
2013). A minimum of 50% sequence identity between ApiAP2 domains was used as a cut-off for the identification of orthologues of the T. 
annulata ApiAP2 domains. 

 

T.annulata T.parva T.orientalis P.falciparum P.berghei B.bovis C.parvum motif activity 
core 
motif 

TA13515 TP02_0497 TOT_020000484 PFL1085w PB000234.02.0 BBOV_II005480 - gametocytes GTAC 

TA16485 TP01_1126 TOT_010001070 PFL1900w PB300626.00.0 BBOV_IV011830 - gametocytes TCTA 

TA11145 TP04_0872 TOT_040000066 MAL8P1.153 PB300504.00.0 BBOV_III009600 - 
gametocytes, 

sporozoite 
ACACAC 

TA12015 TP02_0226 TOT_020000208 - - BBOV_III003770 cgd8_810 
gametocytes, 

zygote 
GGGG 

1
4
6
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Figure 3.17. Alignment of the ApiAP2 domain of the four up-regulated T. annulata 
ApiAP2 genes (TA11145, TA13515, TA12015, TA16485) with their orthologues in T. 
parva and T. orientalis. The domain consists of three β-strands and an α-helix and 
shows strong conservation across the three Theileria species. 
 

 

Additionally, each of the four selected Theileria ApiAP2 domains (TA13515, 

TA11145 and TA16485) was aligned to its potential P. falciparum orthologue. 

The TA13515 and TA16485 ApiAP2 domains showed stronger conservation to the 

Plasmodium domain (Figure 3.18) in comparison to the others (TA11145 and 

TA12015 – Figure 3.19. and Figure 3.21.) suggesting similar binding specificities 

of these domains to their DNA motifs across these genera. The TA11145 ApiAP2 

domain also showed a significant degree of conservation with the P. falciparum 

orthologue, particularly over beta strand 1 and 2 and the alpha helix. No 

P. falciparum orthologue of TA12015 was identified either in this study or that of 

Balaji et al. (2005). However, T. annulata, T. parva and T. orientalis 

orthologues of the TA12015 ApiAP2 domain were aligned to a predicted C. 

parvum orthologue. Analysis across this domain showed conservation in 

particular amino acid sequences, suggesting the binding specificities reported 

for C. parvum domain may be similar for Theileria species (Figure 3.21). 
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Figure 3.18. ClustalW2 alignment of ApiAP2 domain of TA13515 in T. annulata and 
orthologues in T. parva, T. orientalis and P. falciparum. Very strong conservation of 
particular sites across the species (100% identity) and genera (92% identity) is visible. 

 

Figure 3.19. ClustalW2 alignment of ApiAP2 domain of TA11145 in T. annulata and 
orthologues in T. parva, T. orientalis and P. falciparum. Very strong conservation of 
sites across the species is visible (100% identity) and strong conservation is also 
indicated across the two genera (80% identity). 
 

 

Figure 3.20. ClustalW2 alignment of ApiAP2 domain of TA16485 in T. annulata and 
orthologues in T. parva, T. orientalis and P. falciparum. Very strong conservation of 

sites across the among Theileria spp. is evident (100% identity) as well as  conservation between 
Theileria and Plasmodium is very high (98% identity). 
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Figure 3.21. ClustalW2 alignment of ApiAP2 domain of TA12015 in T. annulata and 
orthologues in T. parva, T. orientalis and C. parvum. Conservation level of particular 

amino acid substitution across the species (92 % identity) is visible with moderate conservation 
across the two genera (53%). 

 

 

3.3.6 Motif distribution in the genome of T. annulata and 

enrichment analysis of motifs bound by P. falciparum 

ApiAP2s 

 

The distribution of motifs previously identified as targets for Plasmodium ApiAP2 

proteins (Campbell et al., 2010; Painter et al., 2011) was investigated within 

putative promoter (IGRs) regions upstream of T. annulata genes. Based on the 

average size of the T. annulata intergenic region, a length restriction of ~400 bp 

was used in a search to capture relevant regulatory motifs. Regions of 400bp, 

300bp, 200bp, 100bp upstream of the ATG translation start site and also within 

the first 200bp of coding sequence of the gene were interrogated using DNA 

Motif Pattern Search of PiroplasmaDB, with a focus on motifs potentially 

recognised by Plasmodium orthologues of three macro-mero up-regulated 

TaApiAP2 (TA11145, TA12015, TA16485) factors, and the orthologue of the 

Plasmodium AP2-G factors linked to gametocytogenesis (Sinha et al., 2014; 

Kafsack et al., 2014) (Table 3.6). All previously identified Plasmodium motifs 

were found in the T. annulata genome, but no conserved distribution of the 

motifs in particular distance categories of upstream sites was observed. The 

inverse of the ‘CACACA’ motif (GTGTGT) was previously recognised as the most 

over-represented motif throughout non-coding regions in T. annulata and T. 

parva (Guo and Silva, 2008) and a truncated version (GTGTG) was also identified 

by MEME (see section 3.3.1) in the upstream region of T. annulata genes. It can 
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be concluded that motif distribution is either random or further analysis of 

specific gene clusters is required to identify potential ApiAP2 target genes. 

Individual motif enrichment analysis was performed for G-box, ‘GTGTAC’, 

‘TCTACA’ and ‘ACACAC’ AP2 motifs using the custom Perl script and assessed on 

the basis of a two-tailed p-value (Fisher’s exact test) to calculate whether there 

is a significant association between motif occurrence and gene set of interest. 

Results for individual target DNA motifs of TA13515, TA11145, TA12015 and 

TA16485 are detailed in section below. 

 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 3.6. P. falciparum ApiAP2 target gene motifs and distribution in T. annulata upstream regions (blue denotes – three  
up-regulated T. annulata ApiAP2 orthologues – PFL1085w – TA13515, MAL8P1.153 – TA11145 and PFL1900w_DLD – TA16485).

Domain ID in 
Plasmodium  

Motif 

no. of 
total hits 

in 
T.annulata 

400-300bp 
upstream 

on the 
same 
strand 

300-
200bp 

upstream 

200-100bp 
upstream 

100-0bp 
upstream 

0-100bp 
100-

200bp 

PF07_0126_DLD A(T)A(T)TTTCC 10630 199 253 284 285 209 159 

PF14_0633 T(C)G(A)CATGC(T)A(G) 1626 39 37 33 42 24 22 

PF13_0267 AT(A)T(C)C(T)TAG(A)A(T)A(T) 21033 657 742 931 1067 416 424 

PF14_0079 TG(A)C(A)A(C)ACCA(G) 4761 86 93 82 83 96 121 

PF11_0404_D1 T(C)AGAA(T)C(A)AA 5637 171 123 137 123 162 154 

PF13_0097 T(C)A(T)G(A)C(A)TCAG(A)A(G) 7190 171 161 130 130 167 192 

PF13_0235_D1 C(T)G(A)C(A)GGGG(A)C(A)C(T) 1407 30 22 19 17 36 35 

PF10_0075_D1 GG(T)GTCGACC(A)C 12 0 0 2 0 0 0 

PF10_0075_D2 T(C)C(A)TTGCC 1861 28 23 21 27 41 33 

PF10_0075_D3 GTGCAC(T)T(A)A 436 9 9 13 10 11 8 

PFL1075w T(A)A(T)TATAT(A)A(T) 49720 1188 1394 1669 1866 721 773 

PFL1900w_DLD TCTA(C/T)A(A/G)A 2470 68 60 57 76 51 50 

PFE0840c_D2 (T/G)GA(C/T)ATC(A/T) 2830 53 36 35 24 57 48 

PF14_0533 CA(G)CACACAC(A) 124 2 3 4 4 1 2 

PFF0670w_D1 A(T)T(C)A(G)AG(A)C(A)C(A)C(T)A(G) 33214 771 730 757 609 705 728 

PFF0670w_D2 C(A)T(C)C(A)TAG(T)A(G)G(T) 19646 423 429 500 508 306 346 

PFF200c_DLD GGTGCACC(T) 75 2 3 0 0 0 4 

MAL8P1.153 C(T)A(G)CACAC(T)A(T) 5966 184 245 288 265 130 174 

PF11_0091 AGC(A)ATAC 2108 56 60 30 21 0 0 

PF11_0442 AGCTAGCT 70 1 2 3 7 0 1 

PFD0985w_D1 C(T)A(G)CAC(T)AC(T) 15653 404 457 505 485 316 372 

PFD0985w_D2 GTGTTACAC 49 2 0 3 6 2 3 

PF13_0026 T(C)G(A)CACACA(G)C(A) 483 9 10 11 6 6 10 

PFL1085w G(A)TGT(G)A(C)CAC(T) 2870 48 40 35 56 67 55 

1
5
1
 



3.3.6.1.  G-box/C-box motif analysis 

 
 

Enrichment analysis of the G-box motif, which is recognised by the C. parvum 

orthologue of TaApiAP2-TA12015, showed enrichment within 400bp upstream of 

the TSS on the positive strand with 45.8% of merozoite to piroplasm up-regulated 

genes (11 out of 24 genes) possessing the motif and 33.33% (8 out of 24 IGRs) for 

the negative strand (Table 4.8). Within 100bp upstream of the TSS, 20.8% of 

merozoite to piroplasm up-regulated genes were found to possess this motif, 

suggesting a shared position in the majority of this subset of up-regulated genes 

and an association with the piroplasm stage of the life-cycle. In contrast, the motif 

was significantly under-represented upstream of genes down-regulated from 

macroschizont to merozoite, present only in 1.77% of IGRs on the positive strand. 

Because this G-box motif is an inverse of a 4C-box, it was also found on the 

negative strand, within 400bp upstream of the TSS of 82.35% of TashAT genes. As 

expected, no statistically significant enrichment was found for SVSP genes since 

the longer 5C-box motif was previously identified by MEME to be associated with 

this down-regulated gene family. These results were statistically significant, p-

value ≤0.01. 

 

As a G-box motif (inverse of a C-box) was previously found to be associated with 

Heat Shock Protein (HSP) genes in P. falciparum (Militello et al., 2004) and C. 

parvum (Cohn et al., 2010), a MEME analysis was performed for T. annulata HSP 

genes. The presence of both G-box and C-box was confirmed in the upstream 

regions of these genes. A C-box was found in intergenic regions on the positive 

strand and as an inverse of G-box on the negative strand of eight HSPs (Figure 

3.22): TA07065, TA14920, TA06845, TA10500, TA12100, TA12105, TA10720, 

TA11610. Additionally, the PiroplasmaDB DNA Motif Pattern Search tool identified 

the motif, (A/G)NGGGG(C/A) in 8 out of 34 T. annulata HSP genes, 400bp 

upstream of the TSS on the positive strand and in 5 on the negative strand (Table 

3.7). The enrichment was shown to be significant, p-value ≤0.01. 
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Figure 3.22. The C-box motif identified in the T. annulata Heat Shock gene family 
by MEME analysis (C-box – highlighted in blue). 
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Table 3.7. Statistical enrichment analysis of (A/G)NGGGG(C/A) motif within T. annulata intergenic regions (400 bp upstream of the 

translation start site). Statistically significant data (P value < 0.05, Fisher’s Exact Test) is highlighted in yellow. 

[A/G]NGGGG[C/A] 
motif 

TashAT 
genes 

non- 
TashAT 
genes 

macro-
mero most 

down-
regulated 

genes 

non- 
macro- 

mero most 

down-
regulated 

genes 

macro-
mero 

most up-
regulated 

genes 

non- 
macro- 
mero 

most up-
regulated 

genes 

mero-piro 
most up-

regulated 
genes 

non-
mero-piro 

most up-
regulated 

genes 

mero-piro 
most 

down-
regulated 

genes 

non- 
mero-piro 

most 

down-
regulated 

genes 

SVSP 
genes 

non- 
SVSP 
genes 

HSP 
genes 

non-HSP 
genes 

400 bp upstream 
positive strand 

0% 
(0/17) 

P=0.3950 

9.3% 
(349/3751) 

1.77% 
(2/113) 

P=0.0025 

9.49% 
(347/3655) 

6.75% 
(10/148) 

P=0.3836 

9.36% 
(339/3620) 

45.8% 
(11/24) 

P<0.0001 

9.03% 
(338/3743) 

 

5% 
(1/20) 
P=1 

9.28% 
(348/3747) 

0% 
(0/48) 

P=0.0200 

9.38% 
(349/3719) 

23.53% 
(8/34) 

P=0.0106 

9.13% 
(341/3733) 

400 bp upstream 
negative strand 

82.35% 
(14/17) 

P<0.0001 

10.66% 
(400/3751) 

14.15% 
(16/113) 

P=0.2834 

10.9% 
(398/3655) 

15.54% 
(23/148) 

P=0.0802 

10.8% 
(391/3620) 

33.33% 
(8/24) 

P=0.0030 

10.8% 
(406/3743) 

15% 
(3/20) 

P=0.4766 

10.9% 
(411/3747) 

8.3% 
(4/48) 

P=0.8151 

11.02% 
(410/3719) 

14.7% 
(5/34) 

P=0.2614 

10.9% 
(409/3733) 

200-100bp 
upstream positive 

strand 

0% 
(0/17) 
P=1 

2.42% 
(91/3751) 

0.89% 
(1/113) 

P=0.5256 

2.46% 
(90/3655) 

2.7% 
(4/148) 

P=0.7815 

2.4% 
(87/3620) 

37.5% 
(9/24) 

P=0.0001 

2.2% 
(82/3743) 

0% 
(0/20) 
P=1 

2.42% 
(91/3747) 

0% 
(0/48) 

P=0.6306 

2.44% 
(91/3719) 

11.76% 
(4/34) 

P=0.0085 

2.33% 
(87/3733) 

100-0bp upstream 
positive strand 

0% 
(0/17) 
P=1 

2.1% 
(79/3751) 

0% 
(0/113) 

P=0.1748 

2.16% 
(79/3655) 

0.67% 
(1/148) 

P=0.3728 

2.15% 
(78/3620) 

0% 
(0/24) 
P=1 

2.11% 
(79/3743) 

0% 
(0/20) 
P=1 

2.1% 
(79/3747) 

0% 
(0/48) 

P=0.06259 

2.12% 
(79/3719) 

0% 
(0/34) 
P=1 

2.11% 
(79/3733) 

1
5
4
 



 

 

3.3.6.2. GTGTAC, TCTACA and ACACAC motif analysis 

 

Motif enrichment analysis of the ‘GTGTAC’ motif recognised by the Plasmodium 

AP2-G orthologue of TaApiAP2, TA13515, showed that within 400bp upstream on 

the positive strand, the most highly up-regulated merozoite to piroplasm genes  

were enriched for this motif (29.16%). A P-value = 0.0001 was considered as 

highly statistically significant. No statistical enrichment of this motif was found 

in any other stage regulated genes or in the upstream regions of TashAT, SVSP or 

HSP genes, implying this motif is of importance for genes up-regulated from 

merozoite to piroplasm: the precursor to/or the gametocyte stage of the 

Theileria life-cycle (Melhorn and Schein, 1984). 

 

Motif enrichment analysis of the TCTA[C/T]A[A/G]A motif bound by the 

Plasmodium orthologue of TaApiAP2-TA16485, revealed the presence of this 

motif within 400bp upstream on the positive strand of 41.2% (7 out of 17) TashAT 

family genes, and 51.9% (9 out of 17) of TashAT genes on the negative strand. 

Both results are highly statistically significant, p-value ≤ 0.001. The ‘TCTACA’ 

motif was also found to be enriched for macroschizont to merozoite down-

regulated genes (11.5%), in general, 400bp upstream of the TSS on the positive 

strand, p-value = 0.0574 (Table 3.9). No statistical enrichment of this motif was 

found in the upstream regions of SVSP family and HSP genes. 

 

Motif enrichment analysis of the ‘CACACA’ motif bound by the Plasmodium 

orthologue of TaAPiAP2-TA11145 showed that within 400bp upstream on the 

positive strand, the motif was under-represented in IGRs of macroschizont to 

merozoite down-regulated genes. Only 13.27% (15 out of 113) of these genes 

possess the motif and this corresponds with a statistically significant under-

representation (p-value ≤ 0.01). In contrast, evidence of enrichment was found  

in IGRs of macroschizont to merozoite up-regulated genes (31.1%, 46 out of 148; 

p-value = 0.0631) and merozoite to piroplasm up-regulated genes (45.8%, 11 out 

of 24; p-value = 0.028; Table 3.10). No significant enrichment or under-

representation was evident in IGRs representing the TashAT or SVSP gene 

families. 
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Table 3.8. Statistical enrichment analysis of GTGTAC motif within T. annulata intergenic regions (up to 400 bp upstream of the translation start 

site). Statistically significant data (P-value < 0.05, Fisher’s Exact Test) is highlighted in yellow. 

 

 

GTGTAC motif 
TashAT 
genes 

non- 
TashAT 
genes 

macro-
mero 
most 

down-
regulated 

genes 

non- 
macro- 
mero 
most 

down-
regulated 

genes 

macro-
mero 

most up-
regulated 

genes 

non- 
macro- 
mero 

most up-
regulated 

genes 

mero-piro 
most up-
regulated 

genes 

non-
mero-piro 
most up-
regulated 

genes 

mero-piro 
most 

down-
regulated 

genes 

non- 
mero-piro 

most 
down-

regulated 
genes 

SVSP 
genes 

non-
SVSP 
genes 

HSP 
genes 

non-HSP 
genes 

400 bp upstream 
positive strand 

0% 
(0/17) 
P=1 

4.66% 
(175/3751) 

3.54% 
(4/113) 
P=0.81 

4.67% 
(171/3655) 

6.08% 
(9/148) 
P=0.42 

4.58% 
(166/3620) 

29.16% 
(7/24) 

P=0.0001 

4.48% 
(168/3743) 

0% 
(0/20) 
P=1 

4.67% 
(175/3747) 

2.08% 
(1/48) 

P=0.72 

4.67% 
(174/3719) 

0% 
(6/34) 

P=0.40 

4.68% 
(175/3733) 

400 bp upstream 
negative strand 

11.76% 
(2/17) 

P=0.19 

4.71% 
(177/3751) 

3.54% 
(4/113) 
P=0.81 

4.78% 
(175/3655) 

5.40% 
(8/148) 
P=0.69 

4.72% 
(171/3620) 

0% 
(0/24) 

P=0.62 

4.78% 
(179/3743) 

0% 
(0/20) 

P=0.62 

4.77% 
(179/3747) 

4.16% 
(2/48) 
P=1 

4.75% 
(177/3719) 

5.88% 
(2/34) 

P=0.40 

4.74% 
(177/3733) 

1
5
6
 



 

 

 

 

 

 

 

 

Table 3.9. Statistical enrichment analysis of TCTA[C/T]A[A/G]A motif within T. annulata intergenic regions (up to 400 bp upstream of the 

translation start site). Statistically significant data (P-value < 0.05, Fisher’s Exact Test) is highlighted in yellow.

TCTA[C/T]A[A/G]A 
motif 

TashAT 
genes 

non- 
TashAT 
genes 

macro-
mero 
most 

down-
regulated 

genes 

non-
macro- 
mero 
most 

down-
regulated 

genes 

macro-
mero up-

most 
regulated 

genes 

non- 
macro- 
mero 

most up-
regulated 

genes 

mero-piro 
up- most 
regulated 

genes 

non- 
mero-piro 
most up-
regulated 

genes 

mero-piro 
most 

down-
regulated 

genes 

non- 
mero-piro 

most 
down-

regulated 

genes 

SVSP 
genes 

non- 
SVSP 
genes 

HSP 
genes 

non-HSP 
genes 

400 bp upstream 
positive strand 

41.17% 
(7/17) 

P<0.0001 

6.71% 
(252/3751) 

11.5% 
(13/113) 

P=0.0574 

6.7% 
(246/3655) 

4.05% 
(6/148) 

P=0.1873 

6.98% 
(253/3620) 

4.16% 
(1/24) 
P=1 

6.8% 
(258/3743) 

10% 
(2/20) 

P=0.6441 

6.85% 
(257/3747) 

2.08% 
(1/48) 

P=0.2554 

6.93% 
(258/3719) 

5.88% 
(2/34) 
P=1 

6.8% 
(257/3733) 

400 bp upstream 
negative strand 

52.94% 
(9/17) 

P<0.0001 

7.14% 
(268/3751) 

9.73% 
(11/113 

P=0.2742 

7.3% 
(266/3655) 

6.75% 
(10/148) 

P=1 

7.4% 
(267/3620) 

4.16% 
(1/24) 
P=1 

7.37% 
(276/3743) 

15% 
(3/20) 

P=0.1781 

7.3% 
(274/3747) 

10.41% 
(5/48) 

P=0.2587 

7.3% 
(272/3719) 

8.82% 
(3/34) 

P=0.7358 

7.34% 
(274/3733) 

1
5
7

 



 

 

 
 
 
 
 
 
 

 
 
Table 3.10. Statistical enrichment analysis of [C/T][A/G]CACA[C/T][A/T] motif within T. annulata intergenic regions (up to 400 bp 
upstream of the translation start site). Statistically significant data (P-value < 0.05, Fisher’s Exact Test) is highlighted in yellow. 
 
 

 

[C/T][A/G]CACA[C/T][A/T] 
motif 

TashAT 
genes 

non- 
TashAT 
genes 

macro-
mero most 

down-
regulated 

genes 

non-macro -
mero most 

down-
regulated 

genes 

macro-
mero most 

up-
regulated 

genes 

non-macro -
mero most 

up-
regulated 

genes 

mero-piro 
most up-
regulated 

genes 

non mero-
piro most 

up-
regulated 

genes 

mero-piro 
most 

down-
regulated 

genes 

non-mero-
piro most 

down-
regulated 

genes 

SVSP 
genes 

non-SVSP 
genes 

400 bp upstream positive 
strand 

11.76% 
(2/17) 

P=0.3934 

24.47% 
(918/3751) 

13.27% 
(15/113) 

P=0.0038 

24.76% 
(905/3655) 

31.1% 
(46/148) 

P=0.0631 

24.1% 
(874/3620) 

45.8% 
(11/24) 

P=0.0280 

24.3% 
(909/3743) 

40% 
(8/20) 

P=0.1177 

24.33% 
(912/3747) 

16.66% 
(8/48) 

P=0.2396 

24.52% 
(912/3719) 

400 bp upstream negative 
strand 

11.76% 
(2/17) 

P=0.2721 

24.58% 
(922/3751) 

21.23% 
(24/113) 

P=0.4394 

24.62% 
(900/3655) 

27% 
(40/148) 

P=0.4950 

24.4% 
(884/3652) 

16.6% 
(4/24) 

P=0.4792 

24.57% 
(920/3743) 

15% 
(3/20) 

P=0.4382 

24.58% 
(921/3737) 

14.58% 
(7/48) 

P=0.1284 

24.65% 
(917/3719) 

1
5
8
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3.3.7 Motifs found in upstream regions of ApiAP2 genes of 

Theileria 

 

In Plasmodium, ApiAP2 genes form an interaction network with themselves 

(Campbell et al., 2010), which suggests that they may also regulate their own 

expression in Theileria species. Analysis of the upstream regions of the four 

selected up-regulated (macroschizont to merozoite) ApiAP2s revealed the 

presence of their predicted target DNA motifs in their own IGR (Table 3.11) 

suggesting auto-regulation of these putative transcription factors, in addition to 

putative regulation of transcription of other target genes including other ApiAP2 

genes. A complete alignment of upstream sequences of T. annulata and T. parva 

ApiAP2s can be found in the Appendix (3.8-3.11). Minimum four-nucleotide core 

sequences with variable flanking nucleotides were taken into account (based on 

Plasmodium binding specificities; Campbell et al., 2010) in searching for motifs 

upstream of T. annulata ApiAP2 genes. Most notable were the upstream region 

of TA13515, with three copies of the core ‘GTAC’ motif identified, and TA11145 

where seven copies of CACACA/ACACAC motif were found: TA12015 IGR has one 

copy of the C-box (CCCC motif) and TA16485 two copies of the TCTA[C/T] motif 

the ApiAP2 domain is predicted to bind. 
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ApiAP2/Motif [A/G]TGTACA[C/T] [C/T]ACACAC[A/T] G-box/C-box TCTA[C/T]AA 

 
TA13515 

 
3 1 4 1 

 
TA11145 

 
1 7 2 - 

 
TA12015 

 
1 2 1 - 

 
TA16485 

 
1 3 - 2 

 
Table 3.11. Number of DNA motifs (with a minimum of 4 core nucleotides) found in 
the upstream regions of the four macroschizont to merozoite up-regulated ApiAP2 
genes. Underlining represents the core nucleotides involved in specific protein–DNA binding 

interaction defined for orthologous ApiAP2 domains in P. falciparum. The number of motifs in 
the upstream region of the gene that encodes the ApiAP2 motif-binding domain is highlighted in 
yellow. 
 
 
 

3.3.8 Temporal expression pattern analysis of ApiAP2 genes and 

their potential target genes  

 

Comparison of expression profiles of four ApiAP2 genes (TA11145, TA12015, 

TA16485 and TA13515) with profiles of predicted target genes (plotted as a 

mean value for all genes identified) containing the motif bound by the AP2 

domain was performed. 

The Pearson correlation coefficient value measures the strength of the 

relationship between two variables. A highly significant negative correlation (≤-

0.9) was observed for TA11145 and genes most down-regulated from 

macroschizont to merozoite gene with a ‘CACACA’ motif in their IGR (Figure 

3.23.A). A similar correlation was observed for the ApiAP2 encoding TA16485 

gene and TashAT genes possessing the TCTA[C/T]A motif (Figure 3.23.B) in their 

IGR and the most down-regulated macroschizont to merozoite dataset showing 

enrichment for this motif in the IGRs (Figure 3.23.D). In a similar manner, a 

negative correlation between expression of TA12015 and TashAT genes 

possessing the C-box motif (Figure 3.23.C) was found. Perfect positive 

correlation (=1) was identified for TA13515 and merozoite to piroplasm up-

regulated genes (Figure 3.24.C). Moreover, a highly significant positive Pearson 
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correlation (≥0.9) was observed between TA11145 and the macro-mero most up-

regulated gene set enriched for ‘CACACA’ in their IGR (Figure 3.24.A), 

demonstrating a strong relationship between these putative target gene sets and 

the ApiAP2 factors, this correlation suggesting the ApiAP2 factors operate to 

activate these set of genes. A strong negative correlation was also found for 

expression patterns of TA12015 and HSP family genes with a G-box motif 

(Figure 3.23.E). In contrast, the mean expression profile of mero-piro up-

regulated genes with a G-box showed a low correlation with the expression 

pattern of the gene TA12015 encoding the domain (Figure 3.24.B) predicted to 

bind to this motif. A similar lack of correlation was indicated for the mero-piro 

up-regulated genes with the ‘CACACA’ motif (Figure 3.24.D) predicted and the 

ApiAP2 TA11145. This may suggest that other regulatory factors are involved 

regulating expression of these genes. 
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Figure 3.23. Negative correlation plots of ApiAP2 gene mRNA abundance (in red) and 
putative target genes possessing the motif bound by the AP2 domain (in blue). Target 

plot line represents the average mRNA abundance profiles at each time point based on 
T. annulata microarray data. The Pearson correlation values are presented at the bottom right of 
each plot box. A – TA11145 and macro-mero most down-regulated genes with a CACACA motif; B 
– TA16485 and TashAT genes with a TCTAC motif; C – TA12015 and TashAT genes with a C-box 
motif; D - TA16485 and macro-mero most down-regulated genes with a TCTAC motif; E – TA12015 
and Hsp genes with a G-box motif. 
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Figure 3.24. Positive correlation plots of ApiAP2 gene mRNA abundance (in red) and 
putative target genes possessing the motif bound by the AP2 domain (in blue). 
Average targets represent the average mRNA abundance profiles at each time point based on 
T. annulata microarray data. The Pearson correlation values are presented at the bottom right of 
each plot. A – TA11145 and macro-mero most up-regulated genes with a CACACA motif; B – 
TA12015 and mero-piro most up-regulated genes with a G-box motif; C –TA13515 and mero-piro 
up-regulated genes with GTGTAC motif ; D – TA11145 and mero-piro up-regulated genes with a 
CACACA motif. 
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3.4. Discussion 
 

 

Bioinformatic approaches for de novo identification of transcription binding sites 

and other gene regulatory elements have been proved to be successful for 

creating high quality hypotheses of transcriptional control mechanisms (Guo and 

Silva, 2008; Mullapudi et al., 2009; Oberstaller et al., 2013). Since the sequence 

information from closely related species can be a starting point for the 

identification of evolutionarily conserved and biologically important regions of 

DNA (Zhang and Gerstein, 2003), the investigation of the presence of putative 

orthologues ApiAP2 TFs and their target motifs, previously identified for P. 

falciparum (Campbell et al., 2010) and C. parvum (Oberstaller et al., 2013), was 

performed for Theileria. The work presented in this chapter identified de novo 

conserved and over-represented motifs in the upstream regions of functionally 

related and/or co-expressed genes of T. annulata. 

 

MEME screening of T. annulata sets of intergenic regions corresponding to stage-

specifically regulated genes and gene families revealed only a small number of 

shared nucleotide motifs. Since gene families or clusters of similarly expressed 

genes do not always share the same cis-elements (Kundaje et al., 2007), the 

prediction of DNA motifs can be a difficult process. Discovery of only a small 

number of statistically significant motifs may also be due to small differences in 

the flanking regions of a DNA motif that prevent the sequence from being 

considered as significant. A limited number of de novo identified motifs were 

considered as statistically significant in this study and interesting from the 

biological point of view, i.e. 4C- and 5C-rich motifs, a G-rich motif, and 

CACACA/TGTGTG motifs. Forms of these motifs have previously been identified 

in the genome of Theileria (Guo and Silva, 2008) and other Apicomplexan 

species (Campbell et al., 2010, Oberstaller et al., 2013). 

It is worthwhile noting that Guo and Silva (2008) used a different strategy for 

motif discovery, by searching for motifs within 300 bases of IGRs of all T. parva 

and T. annulata genes, while I focused on upstream regions of functionally 

related genes and genes co-expressed from the macroschizont to the merozoite 

stage. All the motifs detailed in my study showed a likelihood of functionality 

based on conservation with other Theileria species and also similarity with 
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motifs identified in P. falciparum. Precise localisation of the DNA binding site in 

relation to the translation start site was also considered in the present analysis, 

as functional motifs are usually found between around 100 and 150 bp upstream 

of the TSS (Hughes et al., 2000; Iengar and Joshi, 2009). While intergenic 

upstream sequences used in this study had a variety of lengths, a strong bias of 

positional location relatively close to the ATG start codon was often observed, 

strongly suggesting functional involvement in expression of genes enriched for 

these motifs in their upstream region. In addition, evidence for significant 

enrichment (p-value<0.01) in sets of genes with similar expression patterns 

indicate these motifs have a potential role in determining differential gene 

expression. 

A C-box motif was identified as enriched in 5’ intergenic regions – almost unique 

– of T. annulata genes that are down-regulated from the macroschizont to the 

merozoite stage. The majority of the most down-regulated genes highlighted by 

this analysis map to gene families predicted to encode proteins that constitute 

the macroschizont secretome (SVSPs and TashAT family) and thus encode a 

signal peptide. This supported Guo and Silva (2008) who showed that a C-box 

motif is associated with genes involved in protein synthesis and genes with a 

signal peptide. The motif is similar to the consensus binding site for C2H2 zinc 

finger protein involved in cellular proliferation and oncogenesis (Guo and Silva, 

2008; Morris et al., 1994). Moreover, in Plasmodium C-rich motifs were 

identified in upstream regions of mitochondrial genes (Iengar and Joshi, 2009) 

and a ‘CCCCTTA’ motif was found enriched 700 to 999 bases upstream of the 

start codon of the genes highly expressed during phases of rapid cellular 

proliferation (Young et al., 2008). This provides an interesting parallel to the 

association of the C-box motif with genes predicted to be involved in the 

transformed phenotype of the Theileria infected cell, upon which the parasite 

depends for cellular division and tissue dissemination (Shiels et al., 2006). 

TashAT family genes function as modulators of host cell phenotype (Shiels et al., 

2004). Phylogenetic and gene synteny analysis of TashAT genes in T. annulata 

and the TpHN family in T. parva indicated that their common ancestor had a 

condensed gene family that expanded and diversified following the T. 

annulata/T. parva split (Shiels et al., 2006). MEME analysis of the cluster across 
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these two species identified an enlarged 4C-box motif (TCCCCAT) that is present 

in the majority of the IGRs of TashAT genes in both species. The TashAT family 

has probably evolved by tandem gene duplication, and this could account for 

identification of the motif also in the 3’ IGR analysis, i.e. it is actually upstream 

of the next member of the cluster. Furthermore, the fact that protein-coding 

regions have diverged considerably within the TashAT cluster and between 

orthologues of T. annulata and T. parva suggests that the strong positional 

conservation of this motif upstream of the majority of TashAT and TpHN genes is 

of functional significance.  

 

To further determine if the 4C-box motif is associated with down-regulation of 

genes in the cluster or with the TashAT family in particular, analysis of the 

intergenic region of the gene encoding the Tash-a (TA03110) protein was 

performed. Tash-a is the only gene in the cluster that is conserved in the non-

transforming Theileria species, T. orientalis, and is up-regulated during 

merogony, based on microarray data and IFAT (Hyashida et al., 2013). While the 

larger motif identified for the rest of the TashAT cluster by MEME was absent in 

the intergenic region of this gene, core C-boxes and G-boxes were identified. 

Thus, whether a core box of TCCCCAT actually confers a signal for down-

regulation is at present unclear and can be considered to be unlikely.  

Interestingly, while TashAT genes were associated with the 4C-box motif, the 

SVSP gene family was shown to be significantly associated with a related 5C-box 

motif. Like TashATs, predicted SVSP proteins possess signal peptides and are 

secreted into the host cell compartment (Schmuckli-Mauerer et al., 2009). 

However, genome localisation of both sets of genes is different and they are 

predicted to have distinct functions (Weir et al., 2010). Both TashAT and SVSP 

genes are down-regulated from the macroschizont to the merozoite stage and 

have similar expression profiles. The presence of similar C-box core-motifs does 

not guarantee regulation by the same transcription factor(s); however it does 

imply that it may operate in a mechanism for coordinated down-regulation. Thus 

the C-box motif can be postulated as a possible binding site whose functionality 

needs to be determined experimentally. This could be a DNA binding site for 

specific transcription factors or represents other signals such as accessibility 

sites for proteins involved in epigenetic regulation. Theileria orientalis, a non-
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transforming Theileria, lacks the SVSP family and possesses only one 

TashAT/TpHN-like gene (Hayashida et al., 2013). The IGR of this gene contains a 

core 4C-box but with significantly different flanking nucleotides. This could 

suggest that a more primitive C-box motif has been co-opted to regulate the 

expression of genes involved in manipulating the host cell phenotype and that it 

has been retained as the secretome gene families expanded in T. annulata and T. 

parva. Further investigation of C-box motifs and the genes they are associated 

with in non-transforming Theileria species may be of interest. Inhibiting 

expression (with the use of RNAi) of genes required for host cell proliferation  

could be a viable target for development of novel therapeutics against tropical 

theileriosis and ECF. 

A second motif was identified in a smaller number of genes across the 

TashAT/TpHN family, a small G-box motif (TAGGGTA) that encompasses the 

‘TAGGG’ gel-shift motif of the up-regulated Tams1 merozoite gene (Shiels et al., 

1999). Moreover, a 4G-rich motif was found in upstream regions of T. annulata 

merozoite to piroplasm most up-regulated genes on both positive and negative 

strands. This motif previously has been associated with ribonucleotide synthesis 

(Young et al., 2008) and its presence was also confirmed in upstream regions of 

Theileria HSP genes (Millitello et al., 2004). Identification of a similar G-box 

motif as a binding site of ApiAP2 TFs (Campbell et al., 2010; Oberstaller et al., 

2013) suggests the potential importance of this DNA motif in regulating gene 

expression in Theileria parasites. 

 

It is possible that a G-box motif may be recognised as the inverse of the C-box 

motif associated with down-regulated macroschizont genes, e.g. the TashAT 

gene family. This presents a potential difficulty as the G-box is more enriched in 

IGRs of genes that are up-regulated from the macroschizont through to 

piroplasm. One possibility is that the factors that recognise these motifs have 

dual function and act as repressors and/or activators of gene expression or there 

is strand-specificity involved in motif recognition and/or factor function (Young 

et al., 2008). 

 

Heat shock as a common stress trigger has been linked to initiation of protozoan 

parasite differentiation events and it may be relevant that a G-box is enriched in 
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the IGR of HSP genes. However, the expression of heat shock genes from the 

macroschizont to merozoite stage is constitutive according to microarray data, 

and data implicating heat shock genes in directly regulating commitment to 

merogony is lacking for T. annulata. Thus, the C/G-boxes may be associated 

with a general mechanism that allows additional factors to bind, even though it 

appears to be associated with genes expressed in a differential manner. A G-box 

motif may also impart properties of intrinsic DNA structure (a special sequence 

repeated in phase with the DNA helical repeat) involved in organisation of local 

chromatin structure to stimulate interactions between DNA-binding motifs and 

transcription factors (Ohyama, 2001). Intrinsic DNA structure may also play a 

significant role in promoting protein-protein contacts between two transcription 

factors. The binding process in this case would require distortion of the DNA 

helix structure either by DNA looping or bending (Kim et al., 1995). Intrinsic DNA 

bending has been described for many prokaryotic genes operating in both 

repression and as well activation (Perez-Martin et al., 1994; Perez-Martin and de 

Lorenzo, 1997).  

 

Since only a small number of motifs were identified de novo in T. annulata, 

further analysis focused on searching for similarities between previously 

described binding motifs sites for AP2 domains of other species that were 

orthologues of the four genes encoding ApiAP2 domains (TA13515, TA11145, 

TA12015 and TA16485) significantly up-regulated from the macroschizont to the 

merozoite/piroplasm stage in T. annulata. These genes vary in size and genome 

localisation, however they all possess a single ApiAP2 DNA-binding domain of 

around 60 amino acid residues in size. Fortunately orthologues of all four 

putative DNA binding domains are well described in the literature (Campbell et 

al., 2010, Oberstaller et al., 2013, Sinha et al., 2014), each with an identified 

DNA binding site motif (Campbell et al., 2010; Oberstaller et al. 2013). None of 

the four selected ApiAP2 factors considered in this analysis were completely 

conserved across all Apicomplexan species. According to the analysis of Balaji et 

al. (2008): the TA16485 ApiAP2 domain does not possess a direct C. parvum 

orthologue; while for TA13515 there is an orthologue in both Plasmodium and 

Cryptosporidium; for TA11145 there are two C. parvum ApiAP2 domains that 

show a phylogenetic relationship with the T. annulata/Plasmodium cluster; 

lastly, no orthologue of the TA12015 ApiAP2 domain was found among 
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Plasmodium species, but an orthologue was found in C. parvum. Differences 

between the Balaji et al. (2008) phylogeny and the orthologues described in this 

chapter are likely due to sequence identity thresholds used in the different 

analyses. Identified ApiAP2 domain orthologues showed stronger identity across 

genera in comparison to the relationship between the four up-regulated 

paralogous ApiAP2 domains within Theileria species. This provides evidence for 

recognition of a similar DNA motif by orthologous ApiAP2 domains while different 

paralogous domains recognise distinct binding sites. 

 

All motifs previously identified for P. falciparum ApiAP2 domains (Campbell et 

al., 2010; Painter et al., 2011) were found to be present in regions of the 

T. annulata genome upstream of coding sequences. However, distribution 

analysis did not show any specific enrichment within specific regions of upstream 

sequences. It can be concluded that motif distribution is either random or 

further analysis of smaller gene sets is required to identify specific local 

enrichment. Moreover, no significantly enriched, common motifs were found by 

MEME in the upstream regions of ApiAP2 gene family or other putative 

transcription factors. This suggests the lack of an essential motif required for 

gene expression and unique patterns of motifs associated with regulation of 

different genes. 

 

A statistical enrichment of the Plasmodium ‘GTGTAC’ motif in IGRs of the 

Theileria merozoite to piroplasm up-regulated gene set and a perfect positive 

expression correlation with putative target genes was of particular interest. The 

Plasmodium ApiAP2 factor (AP2-G) binding to this motif is involved in regulation 

of sexual development of the parasite (Sinha et al., 2014). Based on the 

Theileria expression pattern of the orthologous ApiAP2 TA13515 gene (see 

chapter 2) together with the pattern of expression of putative target genes, it is 

likely that these orthologues regulate gene expression at related points of the 

life-cycle of the two genera. This might suggest that a commitment step to the 

precursor of sexual development and sex determination has been conserved 

across related genera. 

 

Analysis for enrichment of the TCTA[C/T]A motif showed a statistically 

significant result for upstream regions of TashAT cluster genes. However, it was 
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not present in upstream region of  TA03110 gene. This motif was found adjacent 

the C-box motif. It is possible that TashAT genes require two or more separate 

transcription factors for regulation of their expression, which could act as 

activator and/or repressor or operate as a hetero-dimer involving recognition of 

two distinct motifs. As the expression pattern of TA16485 and TashAT genes was 

highly negatively correlated (Pearson correlation = -0.92) it is most likely that 

this factor acts as a repressor of some of these genes. Statistical enrichment of 

the ‘TCTA[C/T]A’ motif was also shown for the most down-regulated 

macroschizont to merozoite set of genes, and their expression patterns were 

strongly negatively correlated to TA16485 (Pearson correlation = -0.92). The 

TA16485 gene was found to have in its upstream region two copies of the 

‘TCTA[C/T]A’ motif the AP2 domain is predicted to bind, one copy of ‘GTGTAC’ 

and three copies of the ‘CACAC’ motif. Thus auto-regulation as well as 

regulation by other ApiAP2 domain factors is a possibility. 

 

The C. parvum orthologue Cgd8_810 (Oberstaller et al., 2013) of the up-

regulated, macroschizont to merozoite, TA12015 ApiAP2 gene has been shown to 

bind to a G-box motif. Based on lack of a P. falciparum orthologue, this DNA 

motif was considered to be a reasonable choice for further investigation of 

binding specificity of this AP2 domain. The expression pattern of TA12015 was 

strongly negatively correlated with genes of the TashAT cluster but also showed 

positive correlation with merozoite to piroplasm up-regulated genes and heat 

shock genes with a G-box motif. Additionally, an analysis of the upstream region 

of TA12015 revealed presence of a G-box, ‘GTGTAC’ and two ‘CACAC’ motifs. 

This data predicts that motifs present upstream of the TA12015 gene can be 

recognised by the AP2 domain it encodes and the domains encoded by other AP2 

factor genes that are up-regulated during differentiation to the merozoite. 

 

The ‘ACACACA’ motif was previously found to be the most overrepresented motif 

throughout non-coding regions in T. annulata and T. parva (Guo and Silva, 2008), 

Plasmodium and Toxoplasma genes (Bohne et al., 1997; Guo and Silva, 2008, 

Young et al., 2008). However, Young et al. (2008) observed the ‘NTGTGTGA’ 

motif in a large group of genes expressed during the middle to later stages of 

the Intraerythrocytic Developmental Cycle (IDC) of P. falciparum. Analysis of 

upstream regions of T. annulata stage-regulated genes revealed enrichment of 
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this motif in those up-regulated during merogony, whereas a significant 

depletion (p<0.05) of the motif was detected in macroschizont genes down-

regulated during differentiation to the merozoite. A significant enrichment of 

the motif in genes up-regulated from merozoite to piroplasm stage was also 

obtained (p<0.05). Taken together, these results suggest an association of this 

motif with stage differentiation to the merozoite/piroplasm, despite an 

occurrence of nearly 25% in the intergenic regions of the genome. This may point 

to a general type of function for factors that bind to the motif, the most obvious 

being modulation of chromatin status. Thus factors that bind to this motif may 

act as accessory factors for transcriptional regulation rather than as direct 

activators or repressors. The importance of accessory factors, such as HMG 

proteins, acting as hubs of nuclear function in higher eukaryotic cells is well 

known (Reeves et al., 2001). 

A ‘CACACA’ motif was previously found in the upstream region of the merozoite 

surface antigen gene Tams1 proximal to a motif ‘TTTGTAGGG’ (Shiels et al., 

2000) that was specifically bound by a complex in parasite-enriched nuclear 

extracts of cells undergoing merogony. It was postulated that the ‘CACACA’ 

sequence was involved in stabilising the protein-DNA complex formation, as its 

deletion had a quantitative effect on factor binding. As this motif has also been 

found to be a binding site for some Plasmodium ApiAP2s it will be of importance 

to continue its analysis by use of experimental approaches to validate 

functionality of this putative DNA binding site in T. annulata. It is possible that 

an ApiAP2 factor binding to the ‘CACACA’ sequence may form a heterodimer 

complex or promote binding of a second factor and enhance Tams1 gene 

expression during differentiation to the merozoite. 

In summary, upstream regions of T. annulata genes with similar stage-regulated 

expression profiles show enrichment for motifs that could be targets for DNA 

binding proteins, indicating regulation by the same or related transcription 

factors. However, the results of this chapter also indicate that diversity in gene 

expression is probably associated with arrangements of distinct motifs that 

generate different combinations of DNA binding factors. While bioinformatic 

methods provide a starting point to explore regulatory motifs associated with 

stage differentiation, experimental work such as gel shift analysis is required to 
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validate recognition of putative motifs by DNA binding factors with emphasis on 

the up-regulated T. annulata ApiAP2 proteins identified in this study. Thus, 

while the data for TA13515 and TA11145 ApiAP2 genes (and their associated 

motifs) predict a function related to that of the Plasmodium orthologues, 

experimental validation of AP2 domain (and if possible factors in nuclear 

extracts) binding to predicted motifs is required. It was hoped that this could 

provide greater understanding of mechanisms involved in regulating 

differentiation to the merozoite in Theileria parasites. 
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Chapter 4 

 

ApiAP2 genes as a candidate transcription factors 

for T. annulata 
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4 ApiAP2 genes as candidate transcription factors for T. 

annulata 

4.1 Introduction 

 

After the completion of genome sequencing projects for Apicomplexa it became 

clear that there was a significant gap in understanding transcription regulation, 

as only a limited set of putative transcription factors were identified. However, 

in 2005 Balaji et al. described a group of proteins containing putative conserved 

AP2 DNA-binding domains (Apetala2 - integrase DNA binding domain) in 

Plasmodium. AP2 domain proteins were also found in other Apicomplexa species 

including Theileria, Cryptosporidium and Toxoplasma and are known nowadays 

as the Apicomplexan AP2 (ApiAP2) protein family (Campbell et al., 2010). ApiAP2 

proteins are currently primary candidates for the major family of T. annulata 

transcription factors. 

 

Full-length ApiAP2 proteins vary in size from a few hundred to several thousand 

amino acids. A single ApiAP2 domain has approximately 60AA and is built of 

three β-sheets and one α-helix. The domain also has a relatively long insert 

between the second and third β-sheet (Balaji et al., 2005), and this basic 

structure is highly conserved across all Apicomplexa species. ApiAP2 genes are 

not clustered on any particular chromosome or chromosomal region (De Silva et 

al., 2008). There is data suggesting that some ApiAP2 proteins may be processed 

during parasite development so that multiple forms may exist for individual 

proteins such as Plasmodium PFF0200c (PfSIP2) which has been shown to be 

proteolytically processed from the full length (230 kDa) form to a 50–60 kDa N-

terminal segment containing the two ApiAP2 DNA-binding domains (De Silva et 

al., 2008). 
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Figure 4.1. Alignment of the ApiAP2 domain from P. falciparum Pf140633 (amino 

acids 63–123) with  five additional Plasmodium spp. and six apicomplexan  (T. 

gondii, T. parva, T. annulata, B. bovis, C. hominis and C. parvum) orthologues (De 

Silva et al., 2008). Highlighted in dark blue box – Theileria ApiAP2 domains. 

 

 

Conservation of residues likely to be involved in DNA binding are found in the 

three β-sheets (highlighted in red) with 12 residues highly conserved, based on 

at least 241 representatives of 285 diverse ApiAP2 domains tested by Balaji et 

al. (2005) (Figure 4.1). These residues appear to form key stabilising 

hydrophobic interactions and determine the backbone of the ApiAP2 domain. 

The crystal structure of the P. falciparum ApiAP2 domain from PF140633 which 

bound to its DNA motif has been also determined, revealing four important 

residues within the β-strand region that are directly in contact with the DNA. 

These four amino acids are highly conserved among all apicomplexan orthologues 

of PF140633 suggesting that DNA sequence specificity is well-conserved. β-sheets 

are stabilised by the alpha-helix which does not contact DNA (Allen et al., 1998; 

Lindner et al., 2010). 

 

Complete understanding of the role of ApiAP2 proteins will require 

characterising possible stage-specific DNA interactions with other co-factor 

proteins. There is some evidence for this kind of interaction, although functional 

domains outside of the majority of ApiAP2 DNA - binding regions have yet to be 

identified. In 2010, Lindner et al. proposed a model of DNA-induced ApiAP2 

dimerisation that would facilitate conformational rearrangements of the ApiAP2 

protein or its partners. Binding of one ApiAP2 monomer to DNA induces a 

conformational change that recruits a second ApiAP2 domain, with the dimer 

forming a more stable interaction with the DNA. The ability of ApiAP2 proteins 

to form homo- and hetero-dimers is thought to increase the potential number of 
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target genes that could be differentially regulated by a small number of factors 

(Iyer et al., 2008; Campbell et al., 2010). Additional identified DNA binding 

proteins, such as Myb1, Myb2 or the high mobility group (HMGB) proteins will 

also likely contribute to the overall picture of transcriptional regulation. It can 

be predicted that the identification of ApiAP2 complexes will be a key step in 

describing transcription factor-based control of gene expression in Plasmodium 

and other Apicomplexa species (Painter et al., 2011).  

Moreover, it has been previously demonstrated in plants that the A. thaliana 

CBF1, AP2 transcription factor interacts with GCN5, a histone acetyltransferase 

(HAT) that functions as a co-activator in transcriptional regulation (Stockinger, 

2001) and these homo- and heterotypic interactions were also demonstrated for 

Plasmodium (LaCount et al., 2005). In T. gondii, the association of an ApiAP2 

protein with GCN5 has also been successfully demonstrated (Painter et al., 

2011). Recently GCN5b lysine acetyltransferase was proven to interact with 

Toxoplasma ApiAP2 factors and play a role in gene expression regulation and T. 

gondii proliferation (Wang et al., 2014). ApiAP2 are likely to function by 

recruiting histone-modifying and chromatin remodeling factors to promoter sites 

of their target genes. Depending on the type of factor bound by them, they 

might be involved in either transcription activation (by binding for example a 

member of GCN5-family lysine acetyltransferases) or repression (by recruiting 

CHD1 histone deacetylase) (Iyer et al., 2008).  

 

The identification of the DNA-binding specificities of ApiAP2 proteins is very 

important for exploration of their role as transcriptional regulators during all 

stages of parasite development. Their striking differential expression in specific 

developmental stages of apicomplexans such as Plasmodium and Toxoplasma 

strongly suggest that they may also play an essential role in mediation of 

transcriptional regulation of Theileria stage specific genes. An analysis of the 

expression patterns of ApiAP2 genes in P. falciparum confirmed that different 

guilds of these transcription factors are specifically expressed in four major 

intraerythrocytic developmental stages - ring, trophozoite, early schizont and 

late schizont–merozoite stage (Balaji et al., 2005; Iyer et al., 2008). Microarray 

data has demonstrated that 21 of the 27 P. falciparum ApiAP2 genes are 

transcribed during the intraerythrocytic development cycle. Transcripts of 
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Pf13_0235 (Mikołajczak et al., 2008) and Pf14_0633 (Yuda et al., 2010) were 

found to be up-regulated in the sporozoite stage. Moreover, the P. yoelli 

orthologue of Pf13_0235 is highly expressed during the liver developmental 

phase (Tarun et al., 2008). In addition, very few ApiAP2 genes have been 

successfully knocked out, indicating that they are essential to blood-stage 

development and that the ApiAP2 proteins might maintain the progression of this 

developmental process. However, ApiAP2 factors may act also as suppressors of 

gene expression or have roles in regulating chromatin structure (Behnke et al., 

2010). In Plasmodium Pff0200c (PfSIP2) domains were found to bind to SPE2 

motif (GTGCAC) located upstream of var genes, and it was proposed that this 

particular Plasmodium ApiAP2 is involved in maintenance of heterochromatin 

more than acting as a regular specific transcription factor (Flueck et al., 2010). 

 

An interesting example of a differentially expressed ApiAP2 is Plasmodium AP2-O 

protein (Pf11_0442; Pbanka_090590). AP2-O activates gene expression in the 

ookinete, which is a motile stage that invades the mosquito midgut. Similar to 

AP2-Sp (Yuda et al., 2010), the AP2-O gene is expressed in the preceding stage 

(gametocyte) and repressed, at the translational level by the DOZI (development 

of zygote inhibited) complex until ookinete formation (Mair et al., 2006).  The 

amino acid sequences of the single ApiAP2 domain of this gene are almost 

identical among Plasmodium spp. orthologues, strongly suggesting that they 

mediate transcriptional regulation of stage specific genes across the Plasmodium 

genus (Yuda et al., 2009). Also the knockout of this gene generated an inability 

to undergo oocyst development (Mair et al., 2006). AP2-O requires two copies of 

a TAGCTA DNA motif, present in ookinete target genes, for high affinity binding 

(Yuda et al., 2009).  

 

Interestingly, Toxoplasma gondii ApiAP2 genes are also cell cycle regulated and 

24 ApiAP2 genes of Toxoplasma show peak expression times distributed 

throughout the tachyzoite cell cycle. This suggests a role in regulating 

progression of the tachyzoite cell cycle. In addition, surveys based on or using 

microarray (data) in Toxoplasma identified 11 ApiAP2 mRNAs induced during 

bradyzoite differentiation (Painter et al., 2011), indicating they may have roles 

in cyst formation. Radke et al. (2013) showed that the Toxoplasma AP2IX-9 

protein, which binds to the CAGTGT DNA motif, is expressed at minimal level in 
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tachyzoites and fully expressed in the early brazyzoite stage nucleus. AP2IX-9 

acts as repressor of bradyzoite genes; its over-expression significantly reduced 

tissue cyst formation, whereas loss of gene functionality caused an increase in 

the tissue cyst formation. 

 

Other interesting motifs recognised by ApiAP2 factors that may have a role in 

Theileria stage differentiation are - the G-box motif bound by P. falciparum 

PF13_0235 (Campbell et al., 2010) and C. parvum Cgd8_810 (Oberstaller at al., 

2013). This motif was found in upstream regions of Plasmodium ribosomal and 

heat shock genes (Millitello et al., 2004) and a heat shock/stress response has 

been implicated in differentiation to the merozoite in T. annulata (Shiels at al., 

1992). In addition, motifs related to the CACACA motif (De Silva et al., 2008), 

also found in upstream regions of T. annulata genes (Guo and Silva, 2008 – see 

previous chapter) are of considerable interest. In Plasmodium, a group of four 

related ApiAP2 domains (Pfd0985w, Mal8P1.153 and Pf14_0533, and Pf13_002) 

recognise this type of sequence (see Figure 4.2), the first three of which are 

expressed during IDC (late trophozoite/early schizont stage; Campbell et al., 

2010).   

 

Figure 4.2. Plasmodium ApiAP2 proteins binding the CACACA motif. Three of these 

ApiAP2 factors are expressed in the late IDC stages (Campbell et al., 2010). 

 

In addition to the primary DNA motif, ApiAP2 domains can have up to four 

secondary motifs that display changes to end or core nucleotides or differences 

in spacer distances, which could significantly increase the number of genes they 

bind to and the complexity of the regulatory network. For example, domain 2 of 

P. falciparum ApiAP2 PFD0985 is predicted to have three secondary motifs, in 

addition to the primary GTGTTACAC motif (Campbell et. al., 2010). Also, the 

DNA-binding domain of P. falciparum AP2-Sp recognises several eight-base 
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sequences, beginning with TGCATG, present in the proximal promoter region of 

all known sporozoite-specific genes, but the specific binding properties vary 

across the different motifs (Yuda et al., 2010). Despite recognition of secondary 

motifs by individual ApiAP2 domains there is little overlapping binding specificity 

between different domains. Indeed, many upstream sequence elements have 

more than one ApiAP2 binding site suggesting combinatorial gene regulation. 

This may provide the diversity required to control a large number of genes using 

a small number of factors. Interestingly, in addition to regulating other genes, 

ApiAP2 factors can also form an interaction network with themselves by binding 

to the target motifs in their upstream regions (Campbell et al., 2010). The 

occurrence of target motifs in upstream regions of ApiAP2s and cascades of gene 

expression during developmental events suggests that auto-regulatory feedback 

involving ApiAP2 transcription factors is also likely to occur. Indeed it has been 

proposed for P. falciparum that AP2-G (Kafsack et al., 2014) and PFF0200c (De 

Silva et al., 2008) are auto-regulated, supporting the original hypothesis of a 

stochastic model of differentiation for apicomplexan parasites (Shiels et al., 

1999). 

 

Based on detailed studies performed in related Apicomplexa, the ApiAP2 

proteins are excellent candidates for regulators of precisely timed and 

coordinated gene expression events associated with multistage differentiation 

steps in T. annulata. Importantly, identification of DNA sequence motifs bound 

by ApiAP2 factors allows for the prediction of putative target genes based on 

motif occurrence in upstream regions. Furthermore, these targets provide a 

good starting point for characterising a potential role for ApiAP2 proteins in 

stage differentiation. A better understanding of these transcription factors may 

facilitate investigation of strategies to disrupt interaction of ApiAP2 proteins 

with their target DNAs and inhibit parasite stage development. Investigating 

whether ApiAP2s are involved in the differentiation process of T. annulata may 

also shed further light on establishment of common regulatory processes across 

the Apicomplexa.  

 

The main aim of the work presented in this chapter was to characterise selected 

putative stage-specific T. annulata transcriptional regulators and identify their 

associated nucleotide motifs. Based on previous data (see Chapter 2) the four 
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most up-regulated TaApiAP2 genes at the RNA level during differentiation from 

macroschizont to merozoite stage (TA13515, TA11145, TA12015 and TA16485) 

were chosen for further investigation. It was hoped that these TaApiAP2 domains 

could be shown to bind specific motifs recognized by their Plasmodium 

orthologues. Finally, it was a significant aim to test if any identified motifs could 

bind native nuclear factors and generate data that would implicate motif and 

factor in a mechanism regulating differentiation from the macroschizont to 

merozoite. 
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4.2 Material and Methods 

4.2.1  ApiAP2 proteins: general characteristics and selected 

domain conservation analysis across Theileria and 

Plasmodium species 

 

General characterisation of the 22 T. annulata sequences predicted to encode 

ApiAP2 proteins transcription factors was performed with data obtained from the 

PiroplasmaDB Genomic Resource, version 5.0 (http://piroplasmadb.org). 

Generated data included: position in genome, predicted function, size of gene 

and protein, ApiAP2 domain number and position in protein.  

 

Five TaApiAP2 domains potentially binding to the CACACA type motif (TA11145, 

TA07100, TA07550, TA19920 and TA02615) based on their orthology with P. 

falciparum CACACA motif binding ApiAP2s (Balaji et al., 2005; Campbell et al., 

2010) were aligned together with their T. parva, T. orientalis and P. falciparum 

orthologues. Domain boundaries were defined using the Pfam database 

(http://pfam.sanger.ac.uk). A phylogenetic tree was constructed with the use of 

Jalview (neighbor joining method using percentage identity) on the basis of a 

measure of similarity between each pair of sequences in the alignment. Branch 

length was estimated from the differences between these sequences.  

 

4.2.2  ApiAP2 domain structure prediction 

 

To predict protein structure and function, Phyre2 was used (Protein 

Homology/Analogy Recognition Engine; www.sbg.bio.ic.ac.uk/phyre2/index.cgi).  

Secondary and three-dimensional (3D) structure of selected ApiAP2 domains was 

predicted based on orthologue sequence comparison and experimentally 

determined structure. The Phyre2 server uses the Structural Classification of 

Protein (SCOP) (Murzin et al., 1995) and Protein Data Bank (Berman et al., 2000) 

databases as a library of known proteins and scans the query sequence with the 

use of PSI-Blast in order to construct the protein profile. Domain secondary 

structure was predicted within Phyre2 using three independent secondary 

structure prediction programs: Psi-Pred (McGuffin et al., 2000), SSPro (Pollastri 

et al., 2002) and JNet (Cole et al., 2008), with the output in the form of the 
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three-state prediction: alpha helix, beta strand and coil. The 3-D model of the 

ApiAP2 domains was finally constructed based on the protein homology profile 

and its secondary structure based on assumption that two homologues will share 

very similar structures. Generated by Phyre2, pdb files were then visualised by 

FirstGlance software (http://bioinformatics.org/firstglance/fgij/) to produce a 

final 3-D structure prediction of ApiAP2 domains.  

 

4.2.3  Generation of selected Theileria ApiAP2 GST-fusion 

proteins  

 

The P-gex glutathione S-transferase (GST) fusion protein system is a widely used 

method for high expression and fast purification of fusion proteins produced in 

E. coli cells. It has been used in many studies including DNA-protein interactions 

(De Silva et al., 2008; Campbell et al. 2010). Glutathione S-transferase (GST) is a 

211 amino acid protein (26kDa) which is fused to the N-terminus of the 

recombinant protein. Fusion proteins are constructed by inserting a gene or gene 

fragment into selected cloning site of the pGex vector. Expression of the GST-

fusion protein is then induced by isopropyl β-D thiogalactoside (IPTG). The pGex-

X vector provides three translational reading frames beginning with the Eco R I 

restriction site (Figure 4.3). Use of two different restriction enzymes enables 

directional cloning of inserts into the vector. GST-fusion proteins are purified 

from bacterial lysates by affinity chromatography via enzyme-substrate binding 

using immobilized glutathione. GST-fusion protein is then eluted from the 

column using reduced glutathione. A detailed protocol for generation T. 

annulata GST-ApiAP2 fusion proteins is presented below. Recipes of buffers and 

solutions used to generate GST-fusion proteins can be found in Appendix (1.1). 
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Figure 4.3. Map of the GST- fusion vectors showing the reading frames and main 

features. 

(http://brf.anu.edu.au/files/gst_fusion_handbook.pdf). 

 

 

4.2.3.1 PCR amplification and cloning of ApiAP2 domains from T. 
annulata genomic DNA  

 

 

TA13515, TA11145, TA16485 and TA12015 ApiAP2 domain boundaries were 

defined as in Balaji et al. (2005) and confirmed by Pfam domain search 

(http://pfam.sanger.ac.uk/search). Extensions of 10-20 nucleotides were 

included to make sure whole domain was covered and primers designed to 

create N-terminal GST-fusion constructs by cloning. Primers contained EcoRI and 

Xhol restriction sites – forward with EcoRI and reverse with Xhol (see Appendix 

1.8), and manufactured by Eurofins MWG Operon, Germany. Primers were 

dissolved in Ultra pure sterile H20 to 100pmol/µl stock. PCR for each gene was 

performed with a proof-reading activity Polymerase (Pfu), in triplicate. T. 

annulata DNA (strain Ankara) isolated from piroplasms purified from the blood of 

an infected calf (kindly donated by Dr Laetitia Lempereur, Glasgow) was used as 

template. PCR amplification of the four ApiAP2 domains was then performed 

(see Appendix 1.6 for reaction components and conditions). 5 µl of each PCR 

sample was then run on 1.5% agarose TAE gel to determine fragment size. A 

QiaQuick PCR Purification Kit (Qiagen, 28104) was then used, according to the 

manufacturer’s instructions  
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(http://2012.igem.org/wiki/images/a/a3/QIAquick_PCR-purification.pdf), to 

remove free oligos and dNTPs. Purified DNA amplicons were eluted using 30µl 

elution buffer.  

 

 

4.2.3.2 Construction of recombinant plasmids 
 

 

28µl of DNA representing individual ApiAP2 domain DNA was double digested 

with 2µl EcoRI and 2µl Xhol together with 4,5µl of 10xReact2 buffer and 4µl of 

ddH20. Following incubation for 2h at 37°C, enzymes were inactivated by 

incubating samples in a 65°C water bath for 10 min. Samples were then run on a 

1.5% agarose gel and DNA fragments excised, under long wave UV visualisation. 

Samples were placed in 1.5 ml eppendorf tubes and weighed. QiaQuick gel 

extraction for small fragments was then performed, according to the supplied 

protocol(www.sites.bio.indiana.edu/~chenlab/protocol_files/agarose_gel_extrac

tion.pd). Samples were eluted in 30µl of elution buffer and fragment 

concentration estimated by running on 1.5% agarose gels relative to size markers 

(10, 20, 50 and 100ng – 10µl per lane). pGex5x-2 vector (Sigma-Aldrich, GE28-

9545-54)  DNA was also cut with EcoRI and Xhol restriction enzymes in x1 One-

Phor-All Buffer PLUS according to the GST Gene Fusion System Handbook 

instructions (http://brf.anu.edu.au/files/gst_fusion_handbook.pdf) and stored 

at a concentration of 40ng/µl. A ligation calculator (www.insilico.uni-

duesseldorf.de/Lig_Input.html) was then used to calculate amount of vector and 

insert needed, and a vector to insert ratio of 1 to 3 was used. Vector and insert 

were mixed with 2µl of 5x ligase buffer, 1µl of ligase and water added to a final 

volume of 10µl. Reactions were left O/N at 15°C and 90µl of ddH20 added the 

next day. Ligated plasmids DNA were stored frozen in –20°C or directly followed 

by bacterial transformation. 

 

 

4.2.3.3 Bacterial transformation 
 

 
Aliquots of competent XL-1 Blue cells (Stratagene, 200249) were split into 

2x100µl following the bacterial transformation protocol of the supplier 

(www.genomics.agilent.com/files/Manual/200249.pdf). 10µl of each ligation 

reaction was added to competent cells and 0.9ml SOC medium. 100-300µl of 
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each transformation was then spread on LB/ampicillin (50 µg/ml) plates and 

incubated O/N at 37°C.  Visible colonies were counted the next day. Colonies 

were picked into separate universal tubes containing 5ml of LB with antibiotic 

(final concentration 100µg/ml of Ampicillin). They were grown O/N with shaking 

at 37°C and plasmids were isolated the next day using the PureLink Quick 

Plasmid Miniprep Kit (InvitrogenTM) according to manufacturer’s instructions 

(www.tools.lifetechnologies.com/content/sfs/manuals/purelink_quick_plasmid_

qrc.pdf). Plasmid DNA was then digested with EcoRI and Xhol enzymes to check 

for inserts of the correct size. Alternatively, PCR was performed (using the 

ApiAP2 domain specific primers) to check if the insert could be amplified. Stocks 

of bacteria transformed with recombinant plasmids were stored at -80°C (150µl 

of autoclaved glycerol + 850µl of transfected E. coli). Plasmid DNA was stored at 

-20°C. DNA samples were sent for sequencing (Eurofins MWG Operon, Germany) 

with commercial pGex5x-2 sequencing primers to validate the construct 

representing the selected ApiAP2 domain based on the sequence from T. 

annulata Gene DB (www.genedb.org/Homepage/Tannulata).  

 
 

4.2.3.4 Test induction of GST fusion proteins 
 

 
For expression of fusion protein, selected pGex constructs were re-transfected in 

BL21 Codon Plus (DE3)-RIL (StratagenTM) competent cells, according to the 

manufacturer’s instructions 

(http://www.med.unc.edu/pharm/sondeklab/Lab%20Resources/manuals/codon

_plus_manual.pdf), spread on ampicillin plates and grown O/N at 37°C. A colony 

from each transfection was transferred into 10ml LB medium with antibiotic and 

grown O/N at 37°C in a shaking incubator. An experiment to test fusion protein 

expression and solubility was set up. Two vials for each construct were 

prepared, each with 10ml of LB medium/antibiotic and 1ml (1/10 dilution) of 

fresh overnight culture. Cells were grown for 2h at 37°C with shaking and IPTG 

added (final concentration of 0.2mM) to one of the vials. Cultures were grown 

for a further 4h at 26°C and then transferred to 15ml centrifuge tubes and 

centrifuged at 5000rpm (1956xg) for 15 min. Cell pellets were then washed X2 

with 5ml of PBS, centrifuged (as above), drained carefully and stored at -20°C. 

The next day pellets were thawed and resuspended in 200µl of PBS containing 

fresh 1mg/ml lysozyme. Cells were then incubated on ice for 30min and 
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sonicated 4 times, 6 sec burst at amplitude 7 with 10 sec cooling intervals 

between each burst. 20µl of 10% TritonX-100 was added to the tube, mixed and 

tubes incubated on ice for another 20min.  Samples were then centrifuged at 

13000rpm (13225xg) for 15min at 4°C. Supernatant containing the soluble 

fraction was transferred into a fresh tube and 200µl 2xSDS sample buffer was 

added. Pellets containing the insoluble fraction were resuspended in 200µl+200µl 

2x SDS sample buffer and boiled for 5min. 10µl of each sample (supernatant and 

pellet, un-induced and induced for each clone) was run on a 10% SDS-page gel at 

120V for 2h and the gel stained with Coomassie Blue (1h) and destained (O/N). 

 

4.2.3.5 Enhancing solubility of expressed recombinant proteins 
in E. coli  

 
One of the disadvantages of using E. coli cells for an expression system is the 

formation of insoluble aggregates (known also as inclusion bodies) of folding 

protein intermediates. This is caused by the rate of protein translation 

exceeding the capacity of cells to fold newly synthetised protein correctly 

(Kiefhaber et al., 1991). Decreasing the rate of protein production is one of the 

strategies used to overcome this problem. Unfortunately, several methods used 

in this study (applying a lower temperature of induction, induction at a low IPTG 

concentration) failed to increase expression of soluble GST-TA12015D. A novel 

method of enhancing solubility of the expressed GST-fusion proteins in E. coli 

(Ghosh et al., 2004) by inducing GST-TA12015D expression in the presence of the 

dipeptide glycylglycine (Gly-Gly – Sigma, G1002). GST-TA12015D protein 

expression was performed adding different concentrations (0, 50, 200, 500mM 

and 1M) of Gly-Gly to the TB medium.  

 
4.2.3.6 Protein expression for large-scale production 

 
Two 250ml flasks of TB (Terrific Broth) with ampicilin (with addition of 500nM of 

Gly-Gly for GST-TA12015D expression) were inoculated with BL21 competent 

cells transformed with AP2-PGex constructs (1/10 dilution of fresh over-night 

culture). 0.2% (w/v) glucose was added to prevent inclusion body formation. 

Cultures were grown at 37°C for 1h (until OD600 reached 0.2), and the 

temperature reduced to 30°C for another 1h (till OD600 of 0.6). 0.2mM IPTG was 

then added to one of the flasks to induce protein expression and cultures grown 

for another 4h at 26°C. Cultures were transferred to pre-weighed 50ml tubes, 
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and spun at 6000xg for 10 min (3000rpm for 20min), the resulting supernatant 

was decanted and the pellet washed 1x in cold PBS. Drained pellets were 

weighed and stored at –20°C.  

 

10ml of fresh GST buffer with 100µl of 100mM PMSF, 50µl of 10% TritonX-100, 

1mg/ml lysozyme and protease inhibitor cocktail (Sigma Aldrich®) was added to 

thawed samples. Samples were incubated for 30min at 4°C on a nutator at 

20rpm and frozen for 30min (to overnight) at -80°C. Cells were then thawed and 

sonicated using the 6mm probe in a cut-off 50ml falcon tube sitting in ice water 

at amplitude 7 for 15s, with 30s cooling for 7 cycles.  Cell debris was spun out at 

4000rpm (3094xg) for 30min and the supernatant transferred to another tube 

and kept on ice.  

 

4.2.3.7 GST- fusion protein purification 

 

Glutathione sepharose affinity beads (Sigma-Aldrich®, GE17-0756-01) were 

prepared according to the manufacturer’s instructions 

(http://www.gelifesciences.com/gehcls_images/GELS/Related%20Content/Files

/1314807262343/litdoc18115758_20140113001413.pdf) and added to 100ml of 

prepared supernatant and kept at 4°C for 30min. The GST column was washed 

X2 with 2ml of cold PBS + 0.1% TritonX-100 and then samples run through the 

column. The column was washed again with 10x5ml PBS+Triton, and each wash 

collected into separate tubes for further testing. GST-fusion proteins were 

eluted with 10x500µl of glutathione elution buffer, with each elution fraction 

collected into separate tubes. As most protein will be in fractions 2-7, 10µl of 

each fraction was removed for analysis on SDS PAGE gel before pooling fractions 

with the clearest profile. Additionally, flow-through samples and the 10th wash 

sample were run on the gel to make sure the GST-fusion protein was eluted 

completely from the column. Protein concentration were established by use of 

Coomassie Plus – The Better BradfordTM Assay Reagent, (Pierce Biotechnology, 

23238) according to manufacturer`s instructions  

(www.wolfson.huji.ac.il/purification/PDF/Protein_Quantification/PIERCE_Coom

asie_KIT.pdf). 
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GST-fusion proteins were concentrated using Amicon® Ultra-15 Centrifugal Filter 

Units with an Ultracel-3 membrane (Millipore, UFC900308: 

www.millipore.com/userguides/files/centrifugal/$file/PR03520TR_RevA_English

.pdf). Eluted proteins were stored at -80°C in 25-50µl aliquots, at concentration 

1mg/ml. 

 

 
4.2.4  Chemiluminescent Electrophoretic Mobility Shift Assay 

(EMSA) 
 

 

Electrophoretic Mobility Shift Assay (EMSA) has become a technique of choice for 

studying qualitative and quantitative protein-nucleic acid interactions and 

determining potential gene regulation (Garner and Revzin, 1986; Fried, 1989). 

The Thermo Scientific LightShift® Chemiluminescent Electrophoretic Mobility 

Shift Assay is a fast and easy method for detecting DNA and protein interactions 

via fluorescence detection. This technique is based on DNA-protein complex 

migration time in comparison to free non-bound DNA probe (Figure 4.4). Purified 

fusion protein or nuclear extract are incubated with biotin-labeled DNA and then 

run on a native polyacrylamide gel and transferred to a nylon membrane. The 

biotin-labeled DNA is detected using Streptavidin-Horseradish Peroxidase 

Conjugate and a Chemiluminescent substrate. Poly (dI•dC) (Poly(deoxyinosinic-

deoxycytidylic) acid) used in the reaction mix is a DNA competitor used for 

blocking non-specific binding of proteins to the labeled probe. Unlabelled-

specific competitor may be added in excess to remove the band shift and 

confirm DNA binding motif specificity. Use of a mutated biotin-labeled oligo 

provides an easy way to determine specificity of the motif sequence. The control 

EBNA System was used according to the manufacturer`s instructions 

(www.piercenet.com/instructions/2160919.pdf). 
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Figure 4.4. Electrophoretic mobility shift assay (EMSA). Binding reaction complexes are 

separated by electrophoresis and then transferred onto a membrane to detect the biotynylated 

probe. Addition of specific competitor completely eliminates the protein-DNA shift 

(www.piercenet.com/method/gel-shift-assays-emsa). 

 

 

All EMSA reaction components were added in the specific order presented in 

Table 4.1. for GST-fusion protein reactions and Table 4.2., for reactions with 

Parasite Nuclear Extracts (PNE) derived from the D7 infected cell line (donated 

by Prof. B. Shiels and Dr J. Kinnaird, Glasgow University). Parasite enriched 

fractions were obtained based on the method of Shiels et al. (2000) but using 

the NE-PER™ Nuclear and Cytoplasmic Extraction Reagent kit, following the 

supplier’s instructions (Thermo Scientific™, 78835; 

www.piercenet.com/instructions/2160872.pdf). 

 

Single-stranded HPLC purified 5`biotynylated oligonucleotides containing an 

ApiAP2 target or mutated motif (synthesized by Eurofins Genomics, Germany) 

were diluted in ddH20 to 100 pmol/µl. Equal volumes of both labelled and 

complementary unlabelled oligonucleotides (at equimolar concentrations) were 

mixed with 10x annealing buffer (1ml Tris-HCl, 1ml 100mM; pH 8, NaCl (2M) and 

8ml ddH20) and annealed using a thermocycler following the protocol of Thermo 

scientific (www.piercenet.com/files/TR0045-Anneal-oligos.pdf). Annealed 

oligonucleotides were diluted to 1pmol/µl for non-labelled and 20 fmol/µl for 

biotinylated probes. All oligos used in this study can be found in Appendix (1.9). 
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A 4% polyacrylamide gel was prepared (see Appendix – 1.1) and run at 100V, at 

4°C. Free and bound probes were transferred to Biodyne® Precut Nylon 

Membrane (Thermo Scientific, 77015), cross-linked to the membrane at 

120mJ/cm2 using  UV-light and detection performed with the Chemiluminescent 

Nucleid Acid Detection Module (Thermo Scientific, 89880; 

www.regulatorylogic.files.wordpress.com/2012/01/chemiluminescent-nucleic-

acid-detection-module-thermo-scientific-898801.pdf). 

 

 DNA-PROTEIN 

Ultrapure water to 20µl 

10x binding  buffer (kit) 2 µl 

1µg/µl Poly (dIdC) (kit) 1 µl 

50% glycerol (kit) 1 µl 

100mM MgCl2 (kit) 1 µl 

1% NP40 (kit) 1 µl 

Unlabelled oligo (1pmol/µl) x µl 

Protein (0.7-1mg/µl) 2 µl 

Biotinylated oligo (20fmol/µl) 1 µl 

 
Table 4.1. EMSA reaction components to study ApiAP2 domain fusion protein-DNA 

interactions. 

 

 

 DNA-PNE 

Ultrapure water  to 20µl 

10x binding  buffer (kit) 2 µl 

1µg/µl Poly (dIdC) (kit) 1 µl 

50% glycerol (kit) 1 µl 

100mM MgCl2 (kit) 1 µl 

1% NP40 (kit) 1 µl 

EDTA 1 µl 

Unlabelled oligo (1pmol/µl) x µl 

PNE  5 µl 

Biotinylated oligo (40fmol/µl) 2 µl 

 
Table 4.2.EMSA reaction components to study parasite nuclear extract-DNA 

interactions. 
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4.2.4.1 EMSA with Polyamide inhibitors 
 

EMSA was also performed in the presence of polyamide synthetic ligands (PAs) 

containing N-methylimidazole and N-methylpyrrole amino acids, which by 

binding to specific DNA sequences compete out the binding of transcription 

factors and modulate gene expression. Polyamide molecules bind DNA in the 

minor groove by forming sequence specific side-by-side aromatic acid pairing 

complexes: Imidazole (Im) opposite Pyrrole (Py) targets a G•C base pair, Py/Im 

targets C•G and Py/Py targets T•A and A•T with affinities comparable to those 

of natural DNA-binding transcription factors. 

 

EMSA was performed with GST-TA13515D fusion protein and an ISS-15 inhibitor 

specific for the GTGTAC sequence (target motif of PfAP2-G), and as a negative 

control an ISS-33 inhibitor specific for the TAGCTA sequence (target motif for 

PfAP2-0) was used. Both inhibitors were kindly donated by Prof. A. Waters 

(Glasgow University). PA-EMSA reaction components were added in the order 

presented in Table 4.3. and the assay performed as above. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3. EMSA reaction components to study protein-DNA interactions in the 

presence of specific PA inhibitors. 

 

 

 

 

 

 DNA-PROTEIN-

INHIBITOR 

Ultrapure water  to 20µl 

10x binding  buffer (kit) 2 µl 

1µg/µl Poly (dIdC) (kit) 1 µl 

50% glycerol (kit) 1 µl 

100mM MgCl2 (kit) 1 µl 

1% NP40 (kit) 1 µl 

Inhibitor (x nM) x µl 

Protein (0,7-1mg/µl) 1 µl 

Biotinylated oligo (40fmol/µl) 2 µl 
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4.2.5 Comparison of expression data from the D7 cell line and 

the D7B12 cell line attenuated for merogony 

 

The D7 infected cloned cell line differentiates from the macroschizont to 

merozoite stage at 41°C, whereas in the cell line D7B12, derived from recloning 

D7, the parasite is severely attenuated for the differentiation step (Shiels et al., 

1994). To compare expression patterns of the ApiAP2 encoding TA11145 and 

TA07100 genes between these two cell lines, qRT-PCR was performed for Day 0 

(37°C), Day 4 and Day 7 (41°C) RNA samples derived from D7 and D7B12 (as 

described in Chapter 2). The list of specific primers designed for qRT-PCR is 

given in Appendix (1.7). qRT-PCR was performed as described in section 2.2.5.3 

and data analysed by MxPro v4.10 software, as described in section 2.2.5.4. The 

relative quantity values were normalised to the housekeeping gene Hsp70 and 

fold change calculated relative to the calibrator condition, Day 0 – 

macroschizont infected cells. Generated graphs represent normalised mean 

values ± standard error of the mean (SEM). Statistical analysis was performed 

using a two-tailed Student`s t-test in the Excel program. The difference 

between expression levels in D7 and D7B12 cell lines was considered to be 

significant if the p-value was less than 0.05. 

 

4.2.6  Immunofluorescent Antibody Test  (IFAT)  

 

The Indirect Immunofluorescent Antibody Test (IFAT) is a two-step method for 

routine sero-diagnosis. In this study, an IFAT test of D7 cells undergoing a time-

course differentiation was performed to assess whether changes observed by 

qPCR are reflecting modifications in antigenic profile associated with merogony. 

Two antisera were raised commercially (Scottish National Blood Transfusion 

Service) by immunization of host animals (rabbits) with antigens (TA13515D and 

TA11145D GST-fusion proteins). Pre-Immune sera were obtained to use as a 

negative control in IFAT. The obtained immune sera were run through a GST-

column (see section 4.2.6.7) to remove antibodies that bound to GST. 

 

D7 cells were grown to ~3-8x105 ml-1 and 3 x 104 cells cytospun on to a glass slide 

at 1500RPM for 5 min (Shandon cytospin 2 centrifuge). Slides were incubated in 

ice cold 3.7% p-formaldehyde in PBS for 30 min, rinsed briefly 3x in 1x PBS and 
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then permeabilised in pre-chilled methanol at -20°C for 10 min. After 

permeabilisation slides were washed 3 times in 1xPBS for ~1 min each wash. 

Drained slides were arranged in a wet box and RPMI-20% foetal calf serum 

(culture medium) was applied to block unspecific binding. 30µl of anti-serum 

diluted at 1/100, 1/200 and 1/400 in culture medium was applied. Slides were 

then incubated in a wet box at room temperature for 1h and then washed 3 x in 

1xPBS for 1 min each. Slides were drained and then incubated with 1/200 

dilution of AlexaFluor 488 Anty-Rabbit Ig (Invitrogen) conjugated 2° antibody in 

culture medium for 30 min. Slides were washed 3 x in 1xPBS 1min each, drained 

and counter-stained in 0.2% Evans blue, 1x PBS. Slides were then rinsed 2x in 

PBS, allowed to dry and mounted in 10µl of mounting medium (50% glycerol, 4, 

6-diamindino-2-phenylindole (DAPI) at 1µg/ml and an anti-fade DABCO) with a 

cover slip. Images were acquired using an Olympus BX60 microscope, a SPOT 

camera and SPOTTM Advanced image software (Version Mac: 4.6.1.26; Diagnostic 

Instruments, Inc). 
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4.3 Results 

4.3.1 T. annulata ApiAP2 family, general characteristics 

 

The T. annulata ApiAP2 family consists of 22 proteins (Table 4.4), the majority 

of which are annotated in Gene DB as hypothetical proteins (TA06995 is denoted 

as putative transcriptional adaptor - ADA2 homologue). However, due to the 

presence of the AP2 domain they are predicted to bind to specific DNA 

sequences, and could be involved in regulation of transcription. All the ApiAP2 

genes are spread throughout the genome of T. annulata and are located in each 

of the 4 chromosomes, with the open reading frame encoded on either DNA 

strand. 

 

Most T. annulata ApiAP2 proteins possess only one DNA-binding AP2 domain. Two 

proteins (TA07550 and TA20595) have two AP2 domains and one predicted 

protein – TA05055 possesses three AP2 domains. Very few of the ApiAP2 proteins 

have additional known conserved domains – TA07550 has a cytadhesin-P30 

domain thought to be important in cytoadherence and virulence; TA16485 and 

TA09965 possess the ACDC (AP2-coincident C-terminal) domain of unknown 

function, found previously at the C-terminus of other apicomplexan proteins 

containing the ApiAP2 domain. TA18095 encodes a clathrin adapter complex-

related domain. Analysis of TA06995 by NCBI Conserved Domain Search revealed 

three additional domains in addition to the independent ApiAP2: a ZZ_ADA2 

domain (zinc finger, coordinating two zinc ions and likely to participate in ligand 

binding or molecular scaffolding); SANT complex (SWI3, ADA2, N-CoR and TFIIIB') 

DNA-binding domains that are often found in regulatory transcriptional repressor 

complexes; and a histone acetyltransferase complex SAGA/ADA, involved in 

regulation of chromatin structure and dynamics. 



Gene ID Annotation Chromosome 
Gene 

Strand 
Exons 

Transcript 
length 

Protein 
length 

AP2 
domains 

Other 
domains 

AP2 
position in 

protein 
Predicted GO function 

Predicted GO 
process 

TA13515 hypothetical protein 2 reverse 1 1815 604 1 0 390 - 439 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA13395 hypothetical protein 2 forward 3 747 248 1 0 100 - 158 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA12015 hypothetical protein 2 reverse 2 855 284 1 0 66 - 127 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA11665 hypothetical protein 2 reverse 1 2355 784 1 0 179 - 237 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA02615 hypothetical protein 3 forward 1 903 300 1 0 227 - 285 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA04145 hypothetical protein 3 reverse 3 3477 1158 1 0 969 - 1029 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA04435 hypothetical protein 3 forward 5 1113 370 1 0 243 - 301 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA05055 hypothetical protein 3 forward 1 2256 751 3 0 
386 - 445,  
456 - 516,  
699 - 751 

sequence-specific DNA binding 
transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA17415 hypothetical protein 3 reverse 4 582 193 1 0 102 - 159 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA07100 hypothetical protein 4 reverse 1 1278 425 1 0 332 - 381 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

1
9
5
 



 

Table 4.4. Characterisation of TaApiAP2 gene family. Highlighted in yellow – four most up-regulated from macroschizont to merozoite ApiAP2s. 

 

Gene ID Annotation Chromosome 
Gene 

Strand 
Exons 

Transcript 
length 

Protein 
length 

AP2 
domains 

Other 
domains 

AP2 
position in 

protein 
Predicted GO function 

Predicted GO 
process 

TA08375 hypothetical protein 4 reversec 2 1230 409 1 0 66 - 126 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA10940 hypothetical protein 4 reverse 1 1191 396 1 0 227 - 282  
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA09965 hypothetical protein 4 reverse 1 1203 400 1 1 210 - 268 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA11145 hypothetical protein 4 reverse 1 1737 578 1 0 518 - 576 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA19920 hypothetical protein 1 forward 1 2493 830 1 0 384 - 432 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA20595 hypothetical protein 1 forward 2 2157 718 2 0 
201 – 295,  
506 - 564 

sequence-specific DNA binding 
transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA06995 

transcriptional 
adaptor (ADA2 

homologue), 
putative 

1 forward 8 3441 1146 1 3 1093 - 1146 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA16105 hypothetical protein 1 reverse 1 867 288 1 0 222 - 278 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA16485 hypothetical protein 1 reverse 1 1662 553 1 1 280 - 332 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA18095 
clathrin adapter 
complex-related 
protein, putative 

3 forward 11 1113 370 1 1 268 - 322 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

TA16535 hypothetical protein 1 reverse 3 1773 590 1 0 381 - 441 
sequence-specific DNA binding 

transcription factor activity 

regulation of 
transcription, 

DNA-dependent 

1
9
6
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4.3.2  ApiAP2 proteins structure prediction  
 

Protein structure prediction via Phyre2 homology modelling is based on the 

assumption that two or more homologues proteins share very similar structure, 

which is evolutionary conserved. The accuracy of the protein structure 

prediction depends mainly on sequence similarity between the query sequence 

and template deposited in the database. As ApiAP2 protein conservation applies 

only to the ApiAP2 domain, a low overall sequence identity percentage was 

anticipated. However, at high confidence match (>90% confidence), even with a 

sequence identity of ~20%, the overall fold of the protein model is expected to 

be correct, and its central core to be accurate (Kelley and Sternberg, 2009). T. 

annulata ApiAP2 proteins (TA13515, TA11145, TA16485 and TA12015) showed 

similarity with a 2.2a crystal structure of the ApiAP2 domain of Pf14_0633 from 

P. falciparum, bound as a domain-swapped dimer to its cognate DNA; with a 

confidence of 98.5% (for TA11145) with 20% protein identity (Figure 4.6), 97.12% 

(for TA13515) with 27%  protein identity (Figure 4.5), 61.6% (for TA16485) with 

24% of protein identity (Figure 4.7) and 98.1% (for TA12015) with 22% identity 

(Figure 4.8). All proteins showed high conservation of the ApiAP2 domain. 

Additionally, part of the TA13515 protein showed statistically significant 

similarity to a beta-beta-alpha zinc finger domain with a confidence of 81.2% 

and 26% identity (Figure 4.5). According to the Phyre2 prediction TA16485 

showed similarity to the transmembrane protein (colicin ia) with 92.3% 

confidence and 8% identity (Figure 4.7). However, 59% of the protein sequence 

was predicted disordered and these regions cannot be meaningfully structurally 

predicted.  

 

Secondary structure prediction of TaApiAP2s (Figure 4.9-12) was built based on 

alignment with a known secondary structure template. The SS confidence line 

was added as a representation of the prediction confidence level: with red 

representing high confidence and blue low confidence. The disorder line 

represents prediction of regions that lack a fixed tertiary structure and these are 

indicated by question marks (?). It was observed that the weakest regions of 

secondary structure prediction corresponded to a strong prediction of disorder. 

3D structure prediction of all analysed TaApiAP2s showed the presence of the 

three anti-parallel beta-strands that (have been shown) are predicted to be in 
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contact with target DNA sequence and the alpha-helix which stabilizes strands 

but does not have contact with DNA (Figure 4.13). These results support 

postulation that the TaApiAP2 domains function to bind specific DNA motifs in a 

similar manner to that described for related apicomplexan AP2 factors. 

 

 

 
 
Figure 4.5. View of the top three hits of the TA13515 fold recognition results, 
including images of the protein models produced. Matches are colour-coded for 

confidence value with a red background high confidence (97.2% probability) prediction. 
 
 

 

 
 
Figure 4.6 View of the top three hits of the TA11145 fold recognition results, 
including images of the protein models produced. Matches are colour-coded for 

confidence value with a red background high confidence (98.5% probability) prediction. 
 
 
 
 

 
 



 

 

199 

 
 

Figure 4.7. View of the top three hits of the TA16485 fold recognition results, 
including images of the protein models produced. Matches are colour-coded for 
confidence value with a red background high confidence (61.6% probability) prediction. 
 
 

 
 

Figure 4.8. View of the top three hits of the TA12015 fold recognition results, 

including images of the protein models produced. Matches are colour-coded for 

confidence value with a red background high confidence (98.1% probability) prediction. 

 
 

Figure 4.9. Secondary structure prediction of the TA13515 ApiAP2 domain. Blue 

arrows represent β-strands, green helices indicate α-helices and lines indicate coil state.  

Disordered regions are indicated by question marks (?). Prediction confidence levels are colour-

coded with red representing high confidence and blue low confidence. 
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Figure 4.10. Secondary structure prediction of the TA16485 ApiAP2 domain. Blue 

arrows represent β-strands, green helices indicate α-helices and lines indicate coil 

state.  Disordered regions are indicated by question marks (?). Prediction confidence 

levels are colour-coded with red representing high confidence and blue low confidence. 

 
Figure 4.11. Secondary structure prediction of the TA11145 ApiAP2 domain. Blue 

arrows represent β-strands, green helices indicate α-helices and lines indicate coil state.  

Disordered regions are indicated by question marks (?). Prediction confidence levels are colour-

coded with red representing high confidence and blue low confidence. 

 

 

Figure 4.12. Secondary structure prediction of the TA12015 ApiAP2 domain. Blue 

arrows represent β-strands, green helices indicate α-helices and lines indicate coil state.  

Disordered regions are indicated by question marks (?). Prediction confidence levels are colour-

coded with red representing high confidence and blue low confidence. 
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TA11145                                             TA13515 

 

 

TA12015        TA16485 

 

Figure 4.13. A 3-Dimensional structural prediction of four T. annulata ApiAP2 

domains. Yellow arrows represent β-stands; pink rockets indicate α-helices and lines indicate 

coil state. Arrowheads point towards the carboxy termini. 
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4.3.3  Validation of GST-TA13515D AP2 domain binding to its 
putative binding motif by EMSA 

 

 

Four GST-fusion proteins (TA13515D, TA11145D, TA16485D and TA12015D) were 

generated, with TA13515D reaching the highest expression level (Figure 4.14). 

Generated fusion protein sizes are presented in Table 4.5. 

 

 

Figure 4.14. GST-ApiAP2 domain fusion proteins generated in this study. GST-

TA12015D -34.1kDa,  GST-TA11145D – 33.7kDa, GST-TA16485 – 47.6kDa and GST-TA13515D – 

45kDa. 

 

ApiAp2 
domain 

Putative 
target motif 

Domain with 
extension 

(kDa) 

GST tag 
(kDa) 

GST-DBD 
(kDA) 

TA13515 GTGTAC 19 26 45 

TA11145 CACACA 7.7 26 33.7 

TA12015 G-box/C-box 8.1 26 34.1 

TA16485 TCTACA 21.6 26 47.6 

 

Table.4.5. Properties of the recombinant fusion proteins produced in this study. 

 
 

Based on ApiAP2 gene orthology and motif enrichment results for gene 

expression data sets for T. annulata presented above, combined with analysis of 

published data on Plasmodium ApiAP2 cis-acting elements, the two ApiAP2 

encoding genes of T. annulata that showed greatest potential for further study 

was considered to be TA13515 and TA11145. This was because of the strong 

identity across the AP2 domain of TA13515 and the Plasmodium orthologues 

together with a data indicating a role in commitment to gametocytogenesis in 

Plasmodium. For TA11145, further interest was based on the early expression 

profile during merogony and the identification of a phylogenetically related 
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cluster of AP2 domains that detect CACACA type motifs in Plasmodium 

falciparum (see below). 

 

To validate binding of TaApiAP2 domains to putative motifs recognised by the 

Plasmodium orthologues, EMSA was performed using GST-AP2 domain fusion 

proteins and biotin labelled double stranded oligonucleotide probes. For the 

domain of TA13515, EMSA assay was performed with 0.7µg of purified GST-

TA13515D and 20fmol of biotin-labelled probe containing the GTGTACAC 

sequence motif (Figure 4.15). The probe, oligonucleotides kindly donated by 

Abhinav Sinha (University of Glasgow), was designed based on the motif reported 

by Campbell et al., (2010). As shown in the Figure 4.15 the recombinant ApiAP2 

domain of TA13515 strongly bound to the probe representing the GTGTAC motif 

with a strong shift of the probe observed (lane 2). No binding was observed with 

GST alone as a negative control (lane 3). Furthermore the shift was gradually 

competed with unlabelled probe, with complete competition at 8pmol (Figure 

4.16., lane 3-5). No shift was observed with a mutated biotinylated oligo (G/C 

replaced with A in motif) (lane 6) and with a no motif biotinylated probe 

(AAAAAAAA instead of the motif) (lane 7). It can be concluded that the AP2 

domain of TA13515 specifically binds to the GTGTAC motif predicted by the 

Plasmodium data.  

                                               GST-TA13515D 

                          LT          +LT         GST+LT 

 

 
 
Figure 4.15. EMSA assay performed with 0.7µg of purified GST-TA13515D and 20fmol 

of a 62bp 5`-biotin-labelled probe containing the GTGTACAC sequence motif. Lane 1 

– biotin Labelled Target (LT) probe alone. Lane 2 - GST-TA13515D with Labelled Target. Lane 3 – 

GST with Labelled Target.  

 

 

 

 

 



 

 

204 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   20fmol labelled probe 

 

 
 

Figure 4.16. EMSA assay performed with 0.7µg of purified GST-TA13515D and 20fmol 

of biotin-labelled probe containing GTGTACAC motif; specific competitor and 

mutated probes. Lane 1 - labelled oligo only (GTGTACAC motif). Lane 2 - labelled oligo + 

GST-TA13515D. Lane 3 - labelled oligo + GST-TA13515D + unlabelled competitor (4pmol). Lane 4 

- labelled oligo + GST-TA13515D + unlabelled competitor (6pmol). Lane 5 - labelled oligo + GST-

TA13515D + unlabelled competitor (8pmol). Lane 6 - labelled mutated probe (G/C in core 

sequence replaced with A) + GST-TA13515D. Lane 7 - labelled mutated oligo (no motif – 

AAAAAAAA instead) + GST-TA13515D. The position of the shift is designated by the arrow. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Labelled probe                                                  GTGTACAC       

Unlabelled competitor (pmol)             -            -          4        6         8        -          - 

 Protein (µg)                        -          0.7    0.7       0.7     0.7     0.7    0.7     

 Lane           1           2         3         4         5        6       7 
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A Mobility shift assay was repeated for GST-TA13515D protein with the 

biotinylated DNA sequence obtained from the upstream region of the TA10735 

gene (GATA TF) that contained the GTGTAC motif. A specific band shift was 

observed for GST-TA13515D (Figure 4.17, lane 2) and with the P. falciparum 

AP2-G protein (lane 6). A competition experiment (lane 3-5) showed that 

unlabelled competitor reduced intensity of the shifted bands; however in this 

case competition was not 100% .  

 

 

 

 

 

 

 

 

 

 

 

 

 

20fmol labelled probe          
 

 

Figure 4.17. EMSA assay performed with 0.7µg of purified GST-TA13515D and 20fmol 

of biotin-labelled oligo probe containing the GTGTAC motif derived from the 

upstream region of the TA10735 gene and cold competitor probe. Lane 1 – Labelled 

GTGTAC oligo. Lane 2 - Labelled oligo + GST-TA13515D. Lane 3 - Labelled oligo + GST-TA13515D 

+ 6 pmol of unlabelled competitor. Lane 4 - Labelled oligo + GST-TA13515D + 8 pmol of 

unlabelled competitor. Lane 5 - Labelled oligo + GST-TA13515D + 10pmol of unlabelled 

competitor. Lane 6 – Labelled oligo + PfAP2-G. Position of the shift is designated by the arrow. 

 

 

 

 

 

 

 

 

 

 

 

 

Labelled probe                                                                     GTGTAC 

Unlabelled competitor (pmol)                -          -           6            8             10           - 

Protein (µg)                                              -        0.7        0.7         0.7           0.7         0.7    

Lane             1        2            3            4              5            6       
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Binding to the biotynylated probe containing the GTGTAC motif (putative target 

motif of TA13515) was confirmed to be protein specific, the band only being 

obtained when GST-TA13515D protein was added. No interaction was observed 

between the probe and other GST-AP2 domain fusion proteins. Thus, GST-

TA11145D, GST-TA12015, GST-TA16485 proteins did not shift the GTGTAC motif 

probe (Figure 4.18. lane 3-5). In addition no shift was observed for pure GST 

protein added to the assay as a negative control (lane 6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

     20fmol labelled probe 
 

 

 

Figure 4.18. EMSA assay performed with 0.7µg of purified GST-AP2 domain fusion 

proteins and 20fmol of biotin-labelled oligo containing GTGTAC motif derived from 

the upstream region of the TA10735 gene. Lane 1- labelled oligo only; Lane 2- Labelled 

oligo probe + GST-TA13515D; Lane 3- labelled oligo probe + GST-TA11145D; Lane 4 – labelled 

oligo probe + GST-TA12015D; Lane 5 – Labelled oligo probe + GST-TA11145D; Lane 6 – Labelled 

oligo probe + GST (control). The position of the shift is designated by the arrow. 

 

 

 

4.3.3.1 EMSA assay of GST-TA13515D with PA inhibitors 

  

To determine the potential for a synthetic polyamide compound to block ApiAP2 

function by competing out the ability to bind to its target motif, EMSA analysis 

was performed. This was conducted by pre-incubation of the GTGTAC target 

probe with PA inhibitor, prior to the addition of the TA13515D fusion protein, 

with a PA designed to bind GTGTAC in the narrow minor groove of DNA  (PfAP2-G 

motif inhibitor ISS-15) or a PA inhibitor designed to recognise the motif TAGCTA 

         

Labelled probe                                                                        GTGTAC 

Unlabelled competitor (pmol)                              -         -        -        -        -         - 

Protein (µg)                                                            -       0.7     0.7    0.7    0.7    0.7   

 Lane                            1       2        3       4         5        6   
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bound by a second Plasmodium AP2 domain (PfAP2-O, motif inhibitor ISS-33). 

Both inhibitors were synthesised in the laboratory of Dr. Glenn Burley and kindly 

donated by Prof. A. Waters (Glasgow University). The results indicated that the 

ISS-15 inhibitor specific to GTGTAC prevented the AP2 domain of GST-TA13515D 

from binding to the biotinylated oligo probe as only faint shifted bands were 

detected (Figure 4.19, lane 3-4). In contrast, addition of the ISS-33 PA against 

the unrelated motif, included as a negative control, did not cause a loss in 

binding between the GST-TA13515D AP2 fusion protein and the target probe. It 

can be concluded that the ISS-15 PA can specifically compete out binding of 

ApiAP2 domains to target motifs, as ISS-33 does not recognise the GTGTAC motif 

and hence no competition is present (Figure 4.20, lane 4-5). 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

20 fmol labelled probe 

 

 

 

Figure 4.19. EMSA assay performed with 0.7µg of purified GST-TA13515D fusion 

protein and 20 fmol of biotin-labelled oligo containing the GTGTAC motif derived 

from the upstream region of TA10735 gene plus the addition of a PA sequence 

specific inhibitor (ISS-15). Lane 1 – Labelled oligo only; Lane 2 – Labelled oligo + GST-

TA13515D; Lane 3-  Labelled oligo + GST-TA13515D + ISS-15 (100nM); Lane 4 – Labelled oligo + 

GST-TA13515D + ISS-15 (1000nM). The position of the shift is designated by the arrow. 
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            20fmol labeled probe 

      

 

Figure 4.20. EMSA assay performed with 0.7µg of purified GST-TA13515D fusion 

protein and 20 fmol of biotin-labelled oligo probe containing the GTGTAC motif 

derived from upstream region of TA10735 gene with the addition of a control PA for 

non- specific binding (ISS-33). Lane 1 – labelled oligo; Lane 2 – labelled oligo + GST-

TA13515D; Lane 3 – labelled oligo + ISS-33 without fusion protein; Lane 4 – labelled oligo + GST-

TA13515D + ISS-33 (100nM); lane 5 – labelled oligo + GST-TA13515D + ISS-33 (1000nM). The 

position of the shift is denoted by the arrow. 

 

 

 

4.3.4 EMSA results of the GST-TA11145D fusion protein and its 
putative binding motif 

 

An initial EMSA experiment was performed with GST-TA11145D and a 

biotinylated double stranded oligo probe containing a single CACACAC motif. The 

result indicated binding to the probe but a diffuse shift rather than a tight band 

was obtained (Figure 4.21, lane 2). No shift was observed when fusion proteins 

representing unrelated ApiAP2 domains, GST-TA13515D (lane 3), GST-TA12015D 

(lane 4) and GST-TA16485D (lane 5), were incubated with the probe. Addition of 

a biotinytylated oligo probe lacking a specific AP2 domain motif (AAAAAAAA 

instead of the CACAC motif) (lane 6), a mutated ATATAAAA motif  (lane 7) and 

an unrelated motif recognized by a distinct ApiAP2 domain, PF14_0633 

(TGCATGCA) (lane 8) also failed to show clear specific gel shifts with the 

CACACAC probe.   Thus, although the shift was not tight, it did demonstrate that 

the GST-TA11145D protein showed specificity for the predicted CACACAC motif. 

It has been found that specificity of AP2 domain binding is improved using probes 

derived from upstream region of target genes containing the core motif and 

 

 Labelled probe                                                                   GTGTAC 

 

Inhibitor (nM)                                                      -         -        100     100    1000 

Protein (µg)                                                           -        0.7         -       0.7    0.7 

Lane                          1           2         3        4       5        
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flanking nucleotides. Moreover these types of experiments are relevant to show 

that the domain could potentially bind to target genes, including the upstream 

region of the gene encoding the AP2 domain if auto-regulation is implicated. As 

indicated in Chapter 3 there are multiple ACACAC and CACACA type motifs in the 

upstream region of the TA11145 that show conservation across T. annulata and 

T. parva, implying possible auto-regulation. To determine if TA11145D can bind 

to these motifs, a probe representing two motifs ACACAC and CACACA separated 

by five nucleotides and present in IGR of TA11145 was generated (see Appendix – 

1.9) and used in EMSA. This probe was called the 2x(A)CACAC(A) probe. The 

fusion protein generated a strong shift for this probe (Figure 4.22). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20fmol 

labelled 
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Figure 4.21. EMSA assay performed with 0.7µg of purified GST-ApiAP2 fusion 

proteins and 20 fmol of biotin-labelled oligo containing the CACAC motif derived 

from Plasmodium AP2 domain binding data. Lane 1, – labelled oligo only; Lane 2, – 

labelled oligo + GST-TA11145D; Lane 3, –labelled oligo + GST-TA13525D; Lane 4, – Labelled oligo 

+ GST-TA12015D; Lane 5, – Labelled oligo + GST-TA16485; Lane 6, – GST-TA11145D + mutated 

oligo (AAAAAAAA in the place of the CACAC motif); Lane 7, – GST-TA11145D + probe with the 

ATATAAAA probe; Lane 8, – GST-TA11145D + oligo probe with the TGCATGCA motif. The position 

of the specific shift is designated by the arrow. 
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Figure 4.22. EMSA assay performed with GST-TA11145D and labelled oligo probe 

containing 2x(A)CACAC(A) motifs derived from upstream region of the TA11145 

ApiAP2 encoding gene. Lane 1 – Labelled oligo only; Lane 2 – Labelled oligo + GST-TA11145D. 

Shift position is designated by the arrow. 

 

4.3.5 EMSA results of GST-TA12015 and TA16485D fusion 
proteins and their putative binding motif 

 

The orthologue of the TA12015 ApiAP2 domain in C. parvum (cgd8_810) was 

found to specifically bind to a G-box motif (Oberstaller et al., 2013). Previously 

identified by Guo and Silva (2008) and confirmed by MEME analysis (see Chapter 

3) TCCCCAT motif is enriched in the upstream regions of T. annulata genes 

implicated in modulation of host cell gene expression that are down-regulated 

during merogony. Clearly on the opposite strand, the inverse sequence 

represents a G-box motif. In addition, based on the C. parvum data it could be 

predicted that the AP2 domain of the TA12015 encoded protein could bind a G-

box rich motif. TA12015 was difficult to express in a soluble state (Figure 4.23), 

however and with increasing concentration of Gly-Gly, the amount of soluble 

GST-TA12015D increased with 500mM of Gly-Gly being the most effective (Figure 

4.24). 

 Labelled probe                            2x(A)CACAC(A) 

 

Unlabelled competitor (pmol)            -               -           

Protein (µg)                                          -              1 

Lane         1              2     
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Figure 4.23. GST-TA12015D expression in BL21 cells in TB medium. Lane 1 

represents a control (uninduced competent cells in TB medium only). Lane 2 

represents soluble GST of 26kDa running at 29kDa, Lane 3 – induced with IPTG 

insoluble fraction (pellet) with GST-TA12015D fusion protein of 34.1kDa and Lane 4 – 

induced with IPTG soluble fraction (supernatant) with small amount of GST-TA12015. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24. Enhanced solubility of the GST-TA12015D in supernatant fraction by 

induction of protein expression in the presence of the different concentrations of 

Gly-Gly. Lane 1 represents uninduced cells in TB medium, Lane 2 – supernatant in TB 

medium, Lane 3 – GST-TA12015D expressed in the presence of 500mM of Gly-Gly, Lane 4 – 

200mM Gly-Gly, Lane 5 – 50mM Gly-Gly, Lane 6 – 1M Gly-Gly. 
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The biotinylated oligo probe represented a TCCCCAT/AGGGGTA motif present in 

the upstream region of the Tash1-like gene (TA03125) was used in the EMSA 

assay with GST-TA12015D. However no specific DNA – protein binding was 

observed (Figure 4.25).  

 

 

 

 

 

 

 

 

 

 

 

20fmol labelled probe 
 

      

       
 

Figure 4.25. EMSA assay performed with labelled oligo probe containing C/G-box 

motif derived from the upstream region of the Tash1-like gene (TA03125) and 

increasing concentrations of GST-TA12015D. Lane 1, –labelled oligo only; Lane 2, – 

labelled oligo + GST-TA12015D (0.6µg); Lane 3, – labelled oligo + GST-TA12015D (0.9µg); Lane 4, 

– Labelled oligo + GST-TA12015D (1.2µg); Lane 5, – Labelled oligo + GST-TA12015D (1.6µg). No 

shift was observed. 

 

 

 

Gel shift analysis also performed with GST-TA16485D using a biotinylated oligo 

probe derived from the upstream region of Tash1-like gene, TA03125 containing 

the putative target DNA core motif identified for the orthologue of this AP2 

domain by binding studies performed for Plasmodium (Campbell et al., 2010). 

TCTATA motif is located down-stream of the C-box motif separated by six 

nucleotides. The EMSA generated a clear band shift (Figure 4.26, lane 2). A 

competition experiment (Figure 4.38, lane 3-4) showed that unlabelled 

competitor reduced intensity of the detected shifted bands, however 

competition was not 100%.  

 

 

 

 

 

Labelled probe                                                    TCCCCAT/AGGGGTA 

Unlabelled competitor (pmol)                          -           -            -           -           - 

Protein (µg)                                                        -         0.6        0.9        1.2       1.6     

 Lane                       1           2           3           4         5  
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20 fmol labelled probe 

 

Figure 4.26. EMSA assay performed with GST-TA16485D and biotinylated oligo probe 

containing the TCTATA motif. Lane 1 – labelled oligo only; Lane 2 – labelled oligo + GST-

TA16485; Lane 3 – labelled oligo + GST-TA16485D + cold oligo (2pmol); Lane 4 – labelled oligo + 

GST-TA16485 + cold oligo (4pmol). Shift position is designated by the arrow. 

  

 

4.3.6 Detection by EMSA of down-regulated T. annulata parasite 
nuclear factors that bind to the C-box oligonucleotide motif 
probe 

 

Using MEME and enrichment analysis a C-box motif was identified in the IGRs of 

TashAT genes family (see chapter 3). The majority of TashAT genes have been 

shown to be down-regulated during differentiation by Northern blot, microarray or 

Western blot analysis. However, no T. annulata AP2 polypeptide domain could be 

shown to bind the motif, even though TA12015 was considered as a suitable 

candidate. To test if a binding activity could be detected for this motif in parasite 

nuclear extracts, a macroschizont infected cell derived PNE (Day 0) was tested 

with a probe containing the C-box oligo present in the intergenic regions of the 

TashAT gene family (sequence from TA03125). As shown in Fig 4.27, a strong 

probe shift was obtained with PNE from Day 0 culture. Specificity of the band shift 

was observed when cold competitor was added to the reaction mix (Figure 4.27, 

lane 3) as cold probe removed the shift while a cold version of the 2x(A)CACAC(A) 

motif did not compete out the band shift  (Figure 4.27, lane 4). It was concluded 

that G-box/C-box motif is an active cis-binding site for a nuclear factor in T. 

annulata. EMSA was additionally performed with C-box oligo and parasite nuclear 

 

Labelled probe                                                                     TCTATA 

Unlabelled competitor (pmol)                           -            -           2           4 

Protein (µg)                                                                -          0.7        0.7       0.7     

 Lane                               1           2           3         4     
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extracts derived from macroschizont stage (Day 0) and differentiating culture (Day 

7 and Day 9) (Figure 4.28). Strong down-regulation of the shift (Figure 4.28, line 3-

4) was observed in nuclear extracts derived from Day 7 and 9 of differentiating  

merozoite stage cultures. 

 

 

 

 

 

 

 

   

 

 

 

 

                       40fmol labelled probe 

 

   

Figure 4.27. EMSA experiment with PNE (D7, Day 0) and the labelled C-box oligo 

probe derived from the intergenic region of Tash1-like (TA03125) gene with and 

without cold probe competition. Lane 1 - labelled oligo only. Lane 2 – labelled oligo + D7 

PNE Day 0; Lane 3 –labelled oligo + D7 PNE Day 0 + cold C-box probe; Lane 4 – labelled oligo + 

D7 PNE Day 0 + cold 2x(A)CACAC(A). Shift position is designated by the arrow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Labelled probe                                            TCCCCAT/AGGGGTA 

 

Unlabelled competitor (pmol)                   -            -           4           4 

PNE                                                             -            +          +           +   

Lane                1           2           3           4        
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Figure 4.28. EMSA experiment with PNE and the labelled C-box oligo probe derived 

from the intergenic region of Tash1-like (TA03125) gene. Lane 1 – labelled oligo only; 

Lane 2 – Labelled oligo + D7 PNE Day 0; Lane 3 – Labelled oligo + D7 PNE Day 7; Lane 4 – D7 PNE 

Day 9. Shift position is designated by the arrow. 

 

 

4.3.7 Multiple AP2 domains are predicted to bind (A)CACAC(A) 

type motifs 

 

Protein binding microarray experiments performed for Plasmodium indicated 

that multiple AP2 domains bind to related versions of the (A)CACAC(A) 

nucleotide motif (Campbell et al., 2010). Given the identification of a clear 

orthologue of the up-regulated TA11145 AP2 domain in Plasmodium and 

evidence for enrichment/depletion of (A)CACAC(A) type motifs in the intergenic 

region of differentially expressed genes in the T. annulata data sets, analysis of 

all potential (A)CACAC(A) type binding domains in the Theileria genome was 

performed. Five T. annulata ApiAP2 genes with potential to bind to this motif 

based on the identification of a Plasmodium orthologue in the analysis of Balaji 

et al. (2005) were found (TA11145 – orthologue of MAL8P1.153 that binds to 

CACACACA; TA07550, closest to PFD0985w_D2 that binds to GTGTTACAC; 

TA07100 orthologue of PFD0985w_D1 that binds to ACACAC; TA19920 – 

orthologue of PF14_0533 that binds to CACACA and TA02615 – orthologue 

PF13_0026 that binds TGCACACA). Of these genes, based on the microarray 

                                                                         

                  

Labelled probe                   TCCCCAT/AGGGGTA 

Unlabelled competitor       -           -          -            - 

PNE                                     -          +          +           +      

Lane                         1         2           3           4      
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data, only TA11145 was significantly up-regulated during macroschizont to 

merozoite stage differentiation (Fig 4.29). TA07550 was generally highly 

expressed during differentiation and showed a small transient increase in mRNA 

level early in merogony at Day 4. TA07100, TA19920 and TA02615 expression was 

almost constitutive with only a slight up-regulation of TA19920 from the 

macroschizont (Day 0) to Day 4, while TA07100 showed down-regulation from 

Day 7/Day 9 to the piroplasm stage. 

 

Analysis of ClustalW2 sequence alignment of TA11145, TA07550, TA07100, 

TA19920 and TA02515 ApiAP2 domains with their orthologues from T. parva and 

T. orientalis showed high level of conservation of particular residues between 

species; however differences between particular domains are visible (Figure 

4.30). TA02615 ApiAP2 domain and its orthologues showed higher divergence at 

the amino acid level in comparison to the four other TaApiAP2s. Additionally, 

the neighbor joining phylogenetic tree with PID (% identity) of the predicted 

three Theileria species and P. falciparum was performed (Figure 4.31) with the 

use of Jalview software. Phylogenetic analysis showed that four putative 

(A)CACAC(A)-binding T. annulata ApiAP2 domains form a separate group distant 

from the TA02615 domain that is identical to its P. falciparum orthologue. This 

suggests that it may be playing role in later developmental stages, as in P. 

berghei, the (A)CACAC(A)-binding motif for this protein was identified in zygote 

stage (Campbell et al., 2010). The other motifs TA11145 and TA07100 have clear 

orthologues in Plasmodium and show close relationship to one another. TA07550 

and TA19920 do not appear to have a clear orthologue in Plasmodium but by 

blast are most closely related to PF14_0533 which is supporting the tree. Thus, 

as in Plasmodium, there appear multiple phylogenetically related AP2 domains 

in T. annulata predicted to bind (A)CACAC(A) type motifs.  
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Figure 4.29. Differential expression profiles of five ApiAP2 genes potentially binding 

CACACA motif in the D7 cell line. Y-axis denotes log2 expression values. 

 

 

Figure 4.30. T. annulata, T. parva and T. orientalis ApiAP2 alignment of domains 

that are likely to bind the CACACA motif. Alignment of 5 ApiAP2 factor domains performed 

using ClustalW showed that these factors demonstrated a high level of similarity between the 

species and between particular CACACA-binding proteins. Identical residues are highlighted 

across all the species and proteins. TA02615 and its orthologues showed bigger divergence in on 

the amino acid level in comparison to four other TaApiAP2s. 

. 
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Figure 4.31. Neighbour joining phylogenetic tree of the predicted Theileria and 

Plasmodium CACACA-binding ApiAP2 domains. The tree demonstrates that the four 

TaApiAP2 factors (TA07100, TA19920, TA11145 and TA07550) are more similar to one another 

than to TA02615 ApiAP2 domain. The tree was created using Jalview, using neighbor joining 

method with PID (% identity). 

 

 

4.3.7.1  Detection by EMSA of T. annulata parasite nuclear factors 

that bind to TA11145 oligonucleotide motif probes 

 

In addition to analysis of GST-fusion proteins binding specificity, EMSA was 

performed with parasite nuclear extract (PNE) generated from the D7 cloned cell 

lines cultured at 37°C (Day 0, macroschizont) and following culture at 41°C (Day 

7 and Day 9) to induce merogony. The upstream region of the TA11145 gene 

containing two (A)CACAC(A) type motifs was used as a probe. This 

2x(A)CACAC(A) probe is bound by the TA11145D fusion protein (Figure 4.22). In 

addition, from analysis of AP2 domain orthologues of Theileria and Plasmodium, 

together with confirmation that close orthologues can bind the same motif, this 

probe is a potential target for another four TaApiAP2s (TA07100, TA07550, 

TA19920, TA02615). EMSA with the biotinylated 2x(A)CACAC(A) probe and 

nuclear extracts derived from parasite enriched nuclei at Day 0, Day 7 and Day 9 
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time points generated four detectable probe shifts (Figure 4.32). The slowest 

shift (A) was detected with extracts of all three time points, while the next shift 

complex was clearly detected in extracts of differentiating culture (Day 7 and 

Day 9) but not in extracts derived from Day 0 (macroschizont infected cells). The 

two faster shifts C and D were obtained with Day 0 extracts but were clearly 

either absent or markedly reduced in extracts derived from cultures 

differentiating to merozoites. 
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Figure 4.32. EMSA assay performed with D7 Parasite Enriched Nuclear Extract (PNE) 

from macroschizont (Day 0) and differentiating cultures (Day 7 and Day 9) in the 

presence of labelled oligo probe containing the ACACAC:CACACA tandem motifs 

derived from the upstream region of TA11145. Lane 1 –  labelled oligo only; Lane 2 – 

labelled oligo + D7 Day 0 PNE; Lane 3 – labelled oligo + D7 Day 7 PNE; Lane 4 – labelled oligo + 

D7 Day 9 PNE. A-D – four detected shifts. 

 

EMSA was additionally performed with the D7 parasite nuclear extract (PNE) 

from Day 0 culture and the TA11145 upstream motif probe to test for specificity 

by adding unlabelled specific competitor. With probe and extract alone two 

shifts designated as shift A and C (relative position on repeated EMSA) were 

obtained (Figure 4.33, lane 2). On addition of unlabelled probe at increasing 

concentration (2 pmol – lane 3, 4 pmol – lane 4 and 6 pmol – lane 5) reduced 

 Labelled probe                                      2x(A)CACAC(A) 

 

Unlabelled competitor                  -            -             -           - 

PNE                                                -            +            +          +   

Lane                         1           2            3           4         

5        6       7 
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binding at 2 pmol concentration was obtained for shift A. This result was also 

obtained at 4 and 6 pmol and a reduction of shift C was detected at 4 pmol. 

Addition of second unlabelled competitor was also performed (TA03125  

upstream region probe containing C-box and TCTATA motifs) (lane 7-9). This cold 

probe showed evidence for a reduction in the level of both A and C shifts 

compared to the reaction without competitor: it should be noted that the probe 

contains an ACA motif on its reverse strand and therefore may be expected to 

show a level of competition relative to the labelled probe (see probe sequence 

in Appendix – 1.9). It was concluded that shift A showed greater specificity for 

the TA11145 probe than shift C under these conditions, although greater 

abundance of shift C relative to A may have influenced the result. 
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Figure 4.33. EMSA assay performed with D7 Parasite Nuclear Extract (PNE) from 

macroschizont (Day 0) in the presence of labelled oligo containing two (A)CACAC(A) 

motifs derived from the upstream region of TA11145 and specific and non-specific 

competitors. Lane 1 – Labelled oligo only; Lane 2 – Labelled oligo + D7 Day 0 PNE; Lane 3 – 

Labelled oligo + D7 Day 0 PNE + specific competitor (2pmol); Lane 4 – Labelled oligo + D7 Day 0 

PNE + specific competitor (4pmol); Lane 5 – Labelled oligo + D7 Day 0 PNE + specific competitor 

(6pmol); Lane 6 – Labelled oligo + D7 Day 0 PNE + non-specific competitor (2pmol); Lane 7 – 

Labelled oligo + D7 Day 0 PNE + non-specific competitor (4pmol); Lane 8 – Labelled oligo + D7 

Day 0 PNE + non-specific competitor (6pmol). 

 

 Labelled probe                                                  2x (A)CACAC(A) 

 

                                                                    2x(A)CACAC(A)      C-box+TCTATA 

 

Unlabelled competitor        -            -           +        +        +          +         +          + 

PNE                                       -           +          +        +         +                +               +                +    

Lane                           1          2           3        4         5          6          7          8 
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To confirm that binding was related to the (A)CACAC(A) motifs in the TA11145 

probe, nucleotide substitution in the ACACAC and CACACA motifs was performed 

to generate the mutant probes shown in Table 4.6.   

 

Oligo name Oligo sequence 

2x(A)CACAC(A) oligo GATACACACTTATGCACACACA 

(A)CACAC(A)-MUT oligo GATACACACTTATGCAGAATAT 

(A)CACAC(A)-2xMUT oligo GATATAGAATTATGCAGAATAT 

 

Table 4.6. Mutated biotinylated oligos used in EMSA experiment obtained from 

upstream region of TA11145 gene. 

 

Using the double motif mutated probe, none of the 4 mobility shifts that were 

obtained with the control wild type probe could be detected (Figure 4.34, lane 

7-8). To test if there was any binding to the probe when only one of the motifs 

was present, a second mutant probe where motif CACACA was altered to 

CAGAAT was used. In contrast to the double mutant, shift complex B (upper part 

of doublet with non mutated probe) detected with PNE derived from 

differentiating culture, was clearly observed with the mutant 2 probe (Figure 

4.34, lane 5-6). A markedly reduced level of binding was observed for the other 

three shifts (absent for A and D), with shift C still detectable at a faint level in 

Day O PNE (lower part of doublet with shift B). These results indicate 

differential specificity of different complexes to the two motifs in the probe, 

with the up-regulated shift complex B showing preference for the ACACAC motif, 

or there is a greater requirement for both motifs by the other 3 complexes.  
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Figure 4.34. EMSA assay performed with D7 Parasite Nuclear Extract (PNE) and 

TA11145 upstream ACACA-CACACA labelled probe and mutated versions of this 

probe. Lane 1 – Labelled 2x(A)CACAC(A) oligo only; Lane 2  - Labelled 2x(A)CACAC(A) oligo + 

PNE Day 0; Lane 3 - Labelled 2x(A)CACAC(A) oligo + PNE Day 7; Lane 4 - Labelled 2x(A)CACAC(A) 

oligo + PNE Day 9; Lane 5 – Labelled mutant probe where motif CACACA was altered to CAGAAT 

+ PNE Day 0; Lane 6 - Labelled mutant probe where motif CACACA was altered to CAGAAT + PNE 

Day 9; Lane 7 – Labelled double mutant probe + PNE Day 0; Lane 8 – Labelled double mutant 

probe + PNE Day 9. 

 

 

                 ACACAC+       ATAGAA+ 

Labelled probe                      ACACAC+CACACACA           CAGAATAT  CAGAATAT 

 

Unlabelled competitor         -          -               -              -            -             -             -          -        

PNE                                       -          +              +             +           +            +            +          +       

 Lane                           1         2               3             4           5             6            7          8 
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4.3.7.2 Comparative analysis of two putative (A)CACAC(A)-

binding ApiAP2 proteins in cell lines competant or 

attenuated for differentiation to the merozoite 

 

T. annulata-infected clonal cell lines D7 and D7B12 have the same genetic 

background; however while in the D7 cell line, T. annulata differentiates from 

the macroschizont to the merozoite at 41°C, the D7B12 cell line is severely 

attenuated for the differentiation process. Altered gene expression levels at the 

macroschizont life cycle stage between these two cell lines may reflect an 

altered baseline state related to their potential to differentiate and could 

identify possible candidate regulators of the differentiation process: a 

hypothesis that is tenable as expression of the merozoite surface antigen gene, 

TamS1 is detectable at this stage and is higher in D7 than D7B12 (Shiels et al., 

1994).  

 

To test for differential expression of ApiAP2 genes between D7 and D7B12 

analysis of microarray data representing macroschizont infected cells for both 

lines was performed by Dr W. Weir using a Rank Product approach (Table 4.7). 

The Rank Product results showed that expression levels of three AP2 domain 

genes showed a significant reduced expression level (>2 fold difference, 

FDR<0.5) in the D7B12 line that is attenuated for differentiation. Of interest, 

two of these ApiAP2 genes TA11145 and TA07550 bind or are predicted to bind 

(A)CACAC(A) motifs: a 3.95 fold decrease for TA11145 and a 3.23 fold change 

decrease for TA07550 in the D7B12 line compared to the D7 cell line. In contrast, 

the three other potentially (A)CACAC(A) binding ApiAP2s (TA07100, TA19920 and 

TA02615) did not show a significant difference in expression levels between D7 

and D7B12 cell lines (1.13 fold reduction in expression in D7B12 for TA07100, 

TA19920 and 1.51 for TA02615). Based on the above data, two ApiAP2s (TA11145 

and TA07100) were chosen for further validation by qRT-PCR to assess 

differences in gene expression levels between the cell lines. These two genes 

represent the most up-regulated (TA11145) and the most down-regulated 

(TA07100) of the five (A)CACAC(A) ApiAP2 encoding genes during differentiation 

from the macroschizont to piroplasm.  
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Gene ID 
D7 vs D7B12 

FC 

D7 vs D7B12 

Min FDR 

TA07550 -3.23 0.01 

TA13395 -1.10 1.20 

TA07100 -1.13 1.21 

TA19920 -1.13 1.21 

TA18095 -1.14 1.21 

TA02615 -1.51 0.82 

TA09965 -1.55 0.75 

TA16535 -1.66 0.49 

TA11665 -2.00 0.21 

TA11145 -3.95 0.01 

TA04435 -7.38 0.00 

TA16485 -1.45 0.81 

TA17415 -1.56 0.74 

TA16105 -2.42 0.06 

TA08375 -1.72 0.47 

TA12015 -1.79 0.41 

TA05055 -1.51 0.79 

TA04145 1.00 1.02 

TA13515 -1.87 0.32 

 

Table 4.7. Differential expression of TaApiAP2 genes between D7 and D7B12 cell 

lines (FC - fold change (log2), Min FDR – mimimum false dicovery rate). Highlighted in blue – 

putative TaApiAP2s binding to (A)CACAC(A) motif. 

 

 

qRT-PCR results confirmed the TA11145 microarray results showing a change in 

relative difference in expression level (Figure 4.35) for these two genes across 

the D7/D7B12 comparison. Thus at the D0 time point there was an approximately 

42 fold (absolute) increased expression in TA11145 in the D7 line relative to 

D7B12 and this difference increased, as might be expected to 427 fold at Day 4 

and 2076 fold at Day 7. In contrast, differences in expression level of TA07100 

were less marked with a relative increased expression in D7 vs D7B12 of 1.23, 

1.55 and 4.92 fold at Day 0, 4 and 7, respectively. In addition analysis of 

expression levels indicated that TA07100 is expressed at a higher level in D7, Day 

O cells. This difference in favor of TA01700 over TA11145 was found to be, as 
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expected, increased in the D7B12 line at the Day 0 time point (see Appendix 

4.1). This difference was maintained when D7B12 cells were placed at 41°C but 

the ratio was significantly altered in favor of TA11145 in the D7 line, when 

induced to differentiate at the elevated temperature. 

 

 

 
 

Figure 4.35. Comparison of expression levels of TA11145 and TA07100 

((A)CACAC(A)-binding ApiAP2 genes) of particular time-points between D7 and 

D7B12 cell lines based on qRT-PCR data. Increased expression of TA11145 (orange colour) 

in D7 cell line during differentiation event is clearly detectable (5.4 for Day 0; 8.7 for Day 4 and 

11.02 for Day 7 fold difference in log2 scale). Small increase in expression of TA07100 (blue 

colour) in D7 vs D7B12 cell line is visible (0.29 for Day 0, 0.64 for Day 4 and 2,29 for day 7). 

Observed differences between cell lines were significantly lower for TA07100 compared to 

TA11145. The asterisk (*) next to the bars indicates statistical significance (two-tailed Student`s 

t-test, p-value≤0.05) relative to macroschizont stage. 

 

 

Finally, to test whether there may be a difference in the level of nuclear factors 

that bind to the (A)CACAC(A) type double motif upstream of TA11145 an EMSA 

experiment using macroschizont enriched nuclear extracts for D7 and D7B12 was  

performed. The results revealed presence of bands A and C in PNE (Day 0) 

derived from the D7 cell line. In contrast with PNE derived from the D7B12 cell 

line (Day 0) only band C was present and a slight reduction of intensity in 

comparison to D7 culture was observed for this band (Figure 4.36; lane 3). Band 

D is not always seen in D7 extracts and it might be due to host origin or run 

variability. It is equally possible that all four bands are of parasite origin and are 

binding to the (A)CACAC(A)-type motif, but this will require further 

* 

* 

* 

* 
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investigation, such as gel shifts with host-nuclear extracts from all analysed 

Theileria life-stages.   
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Figure 4.36. EMSA assay performed with D7 and D7B12 Parasite Nuclear Extracts 

(PNEs) and the TA11145 upstream ACACAC-CACACA labelled probe. Lane 1 – non 

mutant 2x(A)CACAC(A) probe only; Lane 2 - 2x(A)CACAC(A) probe + D7 Day 0 PNE; Lane 3 – 

2x(A)CACAC(A) motif + D7B12 Day 0 PNE. 
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Unlabelled competitor                  -            -             -           

PNE                                                -            +            +         

Lane                         1           2            3                 

5        6       7 

  

 



 

 

227 

4.3.8 IFAT results 

 

To detect native AP2 domain proteins in T. annulata attempts were made to 

raise antisera against purified fusion protein representing TA13515D and 

TA11145D. Antisera were produced in rabbits under commercial contract by 

Scottish National Blood Transfusion Service. To test for specificity reactivity, 

Indirect Immunofluorescent Analysis (IFA) was performed with both TA13515D 

and TA11145D anti-sera. With sera against TA13515, a punctate staining pattern 

could be detected in slides of the purified piroplasm stage but it was difficult to 

conclude that the staining co-localised with the nuclei. For sera against TA11145 

there was strong detection of parasite nuclei and an elevation of reactivity in 

parasites differentiating to the merozoite. However, pre-immune serum from 

one rabbit showed an almost identical pattern and it was impossible to conclude 

that the observed reactivity was due to detection of the TA11145 encoded 

protein. Similar results were obtained by Western Blot. It was unknown why the 

pre-screen IFA failed to show this obvious reactivity with this PI serum, but was 

most likely due to a technical error.  Selected sera were run over a GST column 

to remove Ab against GST but no improvement was observed in terms of 

specificity. One possibility for the observed reactivity of the PI serum is that this 

rabbit had been infected previously with an apicomplexan parasite. Cross 

recognition of AP2 domains or other conserved nuclear proteins might then be 

predicted.  
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4.4 Discussion 

 

Identification of the DNA-binding specificity of ApiAP2 proteins is very important 

for exploring their role as transcriptional regulators during all stages of parasite 

development. Differential expression of ApiAP2 encoding genes in specific 

developmental stages of apicomplexans such as Plasmodium and Toxoplasma 

strongly suggests that they may also play an essential role in mediation of 

transcriptional regulation of Theileria stage specific genes. It has been 

hypothesised that a complex regulatory system operates to regulate 

differentiation in Plasmodium with evidence for epigenetic control, specific TFs 

and post-transcriptional regulation of gene expression. While it is likely that 

similar mechanisms also operate in other Apicomplexa species, in this study 

focus was primarily made on characterisation of selected specific TaApiAP2 

transcription factors with validation of specific binding to predicted DNA motifs. 

The aim of this work was to lay the foundation for further exploration of their 

role in regulation of stage specific gene expression during merogony of T. 

annulata. 

 

The closest orthologue of TA13515 is PFL1085w (named as AP2-G by Sinha et al., 

2014) that binds the motif GxGTACxC (where x denotes any residue) and is now 

known to be essential for commitment to gamecytogenesis in Plasmodium (Sinha 

et al., 2014; Kafsack et al., 2014). Strong conservation to the Plasmodium 

ApiAP2 domain suggested similar binding specificities for TA13515, while strong 

up-regulation from macroschizont to merozoite/piroplasm indicated a role in 

regulation of differential gene expression during or after stage differentiation. 

Strong binding of GST-TA13515 fusion construct to the GTGTAC motif was 

confirmed and addition of specific competitor to the EMSA assay completely 

reduced the binding affinity of this cis-element – protein complex. A binding site 

upstream of the down-regulated gene encoding a GATA transcription factor was 

also validated by EMSA for the TA13515 domain. Additionally, EMSA performed 

with mutated biotinylated oligo (G/C nucleotides were replaced with A) gave no 

shift, indicating the importance of these nucleotides in specific binding to 

TA13515D. Finally, a polyamide inhibitor designed to preferentially bind to                                                 

GTGTAC  
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GTGTAC motif sequence prevented formation of the DNA-protein complex, 

providing further evidence of motif specificity for this ApiAP2 protein. 

 

The GTGTAC motif was found in three copies in the upstream region of TA13515, 

together with one copy of a (A)CACAC(A) motif and 4 copies of a G-box/C-box, 

suggesting auto-regulation of this ApiAP2, as well as possible regulation by other 

ApiAP2 factors. It has been postulated that AP2-G expression is auto-regulated 

(Kafsack et al., 2014) by a positive feedback loop mechanism that commits 

parasites to production of this ApiAP2 and gametocyte production. As postulated 

previously (Shiels et al., 1999) this model may also operate in Theileria and 

across the Apicomplexa. This is supported by conservation of the motifs and 

ApiAP2 domains in factors showing related kinetics of expression during stage 

differentiation events. Moreover, the presence of many copies of cis-binding 

elements upstream of TA13515 may indicate that simple binding of one factor to 

the DNA motif is not sufficient for control of this gene. This emphasises the 

potential complexity of combinatorial binding of several ApiAP2s and the 

requirement of additional TFs to regulate parasite gene expression during stage 

differentiation events. 

 

EMSA experiment performed to detect the presence of G/C-box binding proteins 

in the parasite enriched nuclear extract revealed a shift specific for the 

macroschizont stage, indicating that this motif is likely to be an active binding 

site for Theileria nuclear factor(s) down-regulated during differentiation to the 

merozoite. This motif was previously detected as enriched in the upstream 

regions of Theileria genes (Guo and Silva, 2008) and is significantly enriched in 

the data set of down-regulated genes encoded by the TashAT cluster. A further 

variant of this motif was also significantly enriched upstream of SVSP family 

genes and genes down–regulated during differentiation to the merozoite, but 

EMSA was not performed with this motif. It is highly likely that the C-box rich 

motif and unknown nuclear factor(s) operate in regulation of differential 

expression of the TashAT cluster and other genes down-regulated during 

merogony. Unfortunately, no specific shift was detected for the GST-TA12015D 

fusion protein. This may have been due to poor quality (in terms of 

functionality/domain folding) of the generated fusion protein. It is also possible  
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that, similar to P. falciparum, the presence of only one G-box motif is not 

sufficient for high affinity binding (Campbell et al., 2010). Finally, a G-box motif 

may not be a target for TA12015 at all. The possibility that TA12015 represents 

the native protein that binds to the C-box motif of TashAT cluster genes 

(inverted G box) on EMSA is unlikely, as this factor appears to be down-regulated 

whereas the mRNA for TA12015 is up-regulated during merogony. Nevertheless, 

further study of the binding affinities of this ApiAP2 and its role in merogony are 

warranted. 

 

ApiAP2 encoding gene TA16485 is an orthologue of PFL1900w that binds to the 

TCTA[C/T]A motif in Plasmodium (Campbell et al., 2010). This domain was found 

to have the highest level of domain conservation of the studied TaApiAP2s in 

comparison to its P. falciparum orthologue, confirmed by reciprocal BLAST. 

However, 59% of the whole TA16485 protein structure was predicted as 

distorted, preventing meaningful characterisation of secondary and tertiary 

structure. EMSA showed strong binding of the TA16485 ApiAP2 domain to the 

upstream region of a Tash1-like gene (TA03125) containing a TCTATA and a C-

box motif. The addition of cold oligo reduced the binding affinity of the 

complex. Furthermore, a strong negative Pearson correlation between 

TashAT/down-regulated from macroschizont to merozoite genes and TA16485 

expression (-0.92, see Chapter 3, Figure 3.23B, D) raises the possibility that 

TA16485 could act to regulate this subsets of genes, with repressor activity being 

most likely.  The network of ApiAP2 genes in the IDC of P. falciparum also 

indicates function as a repressor: as the ApiAP2 domain encoding gene is 

expressed later in the cycle than its predicted target genes. However, further 

investigation on TA16485 binding specificity and its target genes is required. 

 

The TA11145 protein is an orthologue of P. falciparum MAL8P1.153 ApiAP2 that 

binds to a (A)CACAC(A)-type motif. Based on orthology and phylogenetic 

comparison with Plasmodium, four other genes in the T. annulata genome 

(TA07550, TA07100, TA19920 and TA02615) can also be considered as putative 

(A)CACAC(A)-binding factors. Additionally, it is possible that some ApiAP2s have 

secondary binding motif specificity, as Toxoplasma AP2IX-9 (TGME49_306620), 

orthologue of TA19920 binds to a CAGTGT motif (Radke et al., 2013): 

alternatively the AP2 domain of Theileria/Plasmodium orthologues may have 
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diverged from Toxoplasma. On comparison of expression levels, using microarray 

data between differentiation competent (D7) and deficient (D7B12) cell lines, 

TA11145 and TA07550 showed significantly (FD > 2, FDR, 0.5) higher relative 

expression levels in the D7 cell line at Day 0. This result could indicate their 

importance for macroschizont to merozoite differentiation, together with 

TA11145 being one of the four most up-regulated ApiAP2 genes during this 

event.  

 

Further confirmation that expression of TA11145 was elevated in D7 relative to 

D7B12 was achieved by performing qRT-PCR (Figure 4.35). qRT-PCR was 

performed relative to TA07100, a predicted (A)CACAC(A) binding ApiAP2 gene 

that was expected to be constitutively expressed from macroschizont to 

merozoite and down-regulated at the piroplasm stage. It was clear that TA11145 

showed higher expression in D7 than D7B12 cells at the macroschizont stage, 

while there was no significant difference in TA07100 values, and as expected 

this higher level of TA11145 expression was exacerbated as cells progressed 

through Day 4 towards the commitment to differentiate. While a rise in 

expression was also detected for TA07100 at 41°C in the D7 line, the differential 

in expression compared to the D7B12 line was significantly lower than that 

computed for TA11145 (see Figure 4.35). These results indicate that there is 

differential expression of AP2 factors that are predicted to bind related 

ACACAC/CACACA motifs that is associated with the ability of an infected cell 

line to undergo stage differentiation. Moreover the ability to differentiate is also 

associated with the change in the ratio of their expression level in favor of 

TA11145. While qRT-PCR was not performed for the TA07550 gene it is also 

likely, based on the array data, that it is elevated in the differentiation 

competent line while TA19920 is less likely to show a difference. Furthermore, 

gel shift experiment revealed difference in binding potential of nuclear factors 

to (A)CACAC(A) motifs between D7 and D7B12 cell lines. These results lend 

evidence to postulation that that these ApiAP2 genes encode candidate 

regulators of differentiation to the merozoite stage. Similar results of elevated 

expression of the AP2-G regulator in lines competent for gametocytogenesis 

aaaaa 
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relative to lines deficient for this commitment step was found by Sinha et al., 

(2014).   

 

The reduced ability of ApiAP2 factors to increase expression level in the 

attenuated D7B12 line supports the previous stochastic model incorporating an 

auto-regulatory loop and quantitative commitment point (Shiels et al., 1994). In 

this model it is more difficult for D7B12 cells to attain this point. Also stochastic 

activation can be related to a mechanism of flexible baseline protein 

production, which can be modulated in response to environmental changes 

(Sinha et al., 2014; Kafsack et al., 2014). The detection of low-level expression 

of merozoite genes in the preceding macroschizont stage (Shiels et al., 1994,  

Shiels et al., 2000) together with evidence for elevated expression of ApiAP2 

factor genes in the macroschizont stage (one of which is associated with 

merogony) in the D7 line relative to D7B12 add further support that a stochastic 

mechanism operates, and that AP2 factors are involved.   

 

The mechanism for altered expression of the ApiAP2 genes between the two cell 

lines remains unknown. It may well be linked to epigenetic changes causing 

altered ApiAP2 access to critical binding sites. Activation of gene expression 

requires remodeling of chromatin structure and opening up the regions that are 

involved in DNA binding (Constanze and Cockerill, 2000). Modifications of 

parasite chromatin in the D7B12 cell line, or a lack of them, may block access 

for binding of critical ApiAP2s to their sites. It is also possible a point mutation 

in either a regulatory domain, or the motif bound by a domain, critical for stage 

differentiation has occurred in the D7B12 line (Shiels et al., 1998). Evidence has 

been found for epigenetic regulation of stage differentiation in a range of 

apicomplexan parasites, including Plasmodium and Toxoplasma (Bougdour et al., 

2009), and the recent model proposed for commitment to gametocytogenesis 

incorporates chromatin modification via acetylation status (Chaal et al., 2010; 

Kafsack et al., 2014). With regard to this model and merogony in Theileria, it is 

highly significant that ApiAP2 domain proteins are associated with either 

recruitment or predicted histone acetylase/deacetylase activity (Lopez-Rubio et 

al., 2009; Salcedo-Amaya et al., 2009; Chaal et al., 2010). Investigation for 

motif/factor point mutations would require sequencing of the genome or 

aaaaaaa 
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selected regions of the D7B12 genome. This approach was used by Sinha et al., 

(2014) for discovery of AP2-G but here the loss of differentiation potential was 

absolute not quantitative.  

 

The stochastic model of T. annulata stage differentiation predicts the existence 

of auto-regulation of factors critical for commitment (Shiels et al., 1994). The 

presence of seven copies of CACACA/ACACAC motif in the upstream region of 

TA11145 strongly indicates that this ApiAP2 binds to its own promoter region and 

is auto-regulated. Despite this being a common motif of intergenic regions this 

level of occurrence is likely to be of functional significance, again supporting 

involvement of the TA11145 ApiAP2 in the differentiation process. Indeed, 

relative to the other (A)CACAC(A) motif binding ApiAP2s, the number of motifs 

upstream of TA11145 is greater. A full CACACA/ACACAC motif was found in only 

one copy in the upstream region of TA07100 and was not identified in IGR of 

TA19920. For TA07550 one ACACAC motif and a truncated GTCACA were 

detected on the sense strand and an ACACA and CACAC motif on the reverse.  

 

The multiple presence of sites bound by an ApiAP2 in its own upstream region 

have also been found for AP2-G in P. falciparum, but the function of this 

arrangement remains to be determined. They may be required for higher affinity 

binding and for homo- or hetero-dimer formation and recruitment, as described 

for Plasmodium ApiAP2 domains (Lindner et al., 2010; Bougdour et al., 2010). 

One possibility is that it allows a quantitative increase in factor occupancy 

leading to an increase in factor levels. A second possibility is that it allows for 

occupancy of this promoter region by multiple factors binding to related motifs. 

The identification of five factors potentially binding (A)CACAC(A) motif in the 

genome of T. annulata with evidence of overlapping expression at the mRNA 

level suggests such a scenario could operate and supports a possible functional 

overlap of, or competition between, factors (Shiels et al., 1994). Gene 

expression in one stage could be then controlled by factors from a preceding or 

post stage that have differential affinity to the (A)CACAC(A)-motifs. Thus, 

although there is a high level of domain conservation between these ApiAP2 

genes, differences between particular domains are visible, suggesting possible 

divergence in their optimally recognised target motifs. In this regard, it may be 

a 
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of relevance that in the upstream region of TA11145 motif representation is: 

ACACAC x3; ACACACA x1 and CACACAC x1 and CACACA x1 (reverse strand), with 

one further ACACAC motif for T. annulata not conserved in T. parva.  

 

Finally, the confirmation of CACACAC-binding by TA11145 AP2 domain fusion 

protein was achieved by EMSA. In addition, it was demonstrated that the domain 

binds to the double ACACAC/CACACA motif from its own upstream region 

suggesting that expression of the TA11145 gene involves auto-regulation by itself 

and/or other (A)CACAC(A)-binding factors. The possibility of multiple factor 

binding to this double ACACAC/CACACA motif was confirmed by EMSA with 

parasite enriched nuclear extracts from macroschizont infected (Day 0) and 

differentiating D7 cultures. Four potential band complexes (A-D, see Figure 4.32) 

were detected, although complex D was not observed in all EMSA experiments. 

Complex B was only detected in EMSA with PNE from differentiating parasite-

infected cells while the two slower complexes C and D showed a distinct 

reduction using PNE derived from Day 7 and Day 9 D7 cultures. Specificity of 

binding of all four complexes was indicated by mutagenesis of the double motif. 

Moreover, the mutagenesis of motif 2 in isolation indicated that complex B 

showed differential specificity for the sequence ACACAC relative to complex C, 

or that the other complexes required the presence of both motifs. EMSA was also 

performed for the double ACACAC/CACACA motif with PNE from Day 0 

(macroschizont) D7 compared to D7B12 cultures. As seen in Fig 4.36 only two of 

the specific complexes A and C were detected in D7, while for D7B12 only 

complex C was observed. This result indicates that there is a difference in 

expression of factors that bind this motif in cells that are competent or 

attenuated for T. annulata stage differentiation.  

 

Clearly further work is required to identify the factors responsible for the native 

EMSA complexes, and validate that these complexes are conferred by the 

(A)CACAC(A) binding ApiAP2 factors identified in this study. Taking the 

accumulated results, it would seem most likely that the up-regulated complex B 

involves the TA11145 ApiAP2 domain based on its confirmed expression pattern. 

In a similar fashion shift A and possibly C can be associated with TA07550 based 

on the significantly reduced level of expression in the D7B12 line relative to D7. 

For the down-regulated complexes any of the other three (A)CACAC(A) AP2 
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domain proteins (and possibly TA07550) could be predicted and generation of 

specific antibodies could put more light on this subject. However, the data 

clearly indicates potential for a mechanism based on competition for motifs by 

factors with differential regulatory function, followed by a change-over to a 

regulatory factor governed by an auto-regulatory circuit.  
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5 General discussion 

 

How a group of regulatory proteins accomplishes the change-over in expression 

of Theileria stage-specific gene sets was an interesting question and required 

both bioinformatics and molecular approaches to identify potential regulatory 

components of this process. Evidence had been generated previously allowing 

postulation that the mechanism that controls certain differentiation steps in 

Apicomplexa is conserved between members of this phylum, and may represent 

a primitive cellular differentiation mechanism retained by lower and higher 

eukaryotes (Shiels et al., 1997). Moreover, since the discovery of the ApiAP2 

proteins by Balaji et al. (2008), several have been experimentally identified as 

stage-specific regulators of gene expression and commitment during the 

Plasmodium life cycle (Iyer et al., 2008; Yuda et al., 2009, Yuda et al., 2010; 

Iwanaga et al., 2012; Kafsack et al., 2014, Sinha et al., 2014), while others have 

been found to act as DNA-tethering proteins involved in control of 

heterochromatin dynamics (Flueck et al., 2010). Likewise, a study on T. gondii 

has revealed an ApiAP2 acting as a repressor of bradyzoite development (Radke 

et al., 2013). Therefore, it was not surprising that ApiAP2 proteins were 

identified as strong candidates to operate in the molecular mechanism 

responsible for regulating a key stage differentiation step in Theileria.  

 

In this thesis, I present evidence that T. annulata ApiAP2s act as DNA binding 

proteins and are likely to function in transcriptional regulation. The data 

supported and expanded upon the hypothesis of a stochastic regulatory 

mechanism that controls the T. annulata macroschizont to merozoite transition 

(Shiels et al., 1994). Thus, analysis of T. annulata transcriptome data and 

bioinformatics revealed the genes encoding four ApiAP2 factors are up-regulated 

during merogony. The TaApiAP2 domains in these predicted polypeptides were 

conserved across three Theileria species and had orthologues either in 

Plasmodium, Toxoplasma or Cryptosporidium species. EMSA performed in 

Chapter 4 showed that they bind DNA motifs similar to those described for P. 

falciparum (Campbell et al., 2010), work in Chapter 3 showed that such motifs 

are over-represented in upstream regions of co-expressed gene clusters and that 

there is correlation between expression of AP2 domain genes and their putative 

targets.  
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While ApiAP2 orthologues may not operate in the same stage differentiation 

events, data generated in this study produced interesting correlation across 

Theileria and Plasmodium, suggesting that some commitment events could be 

conserved. In Plasmodium and Theileria a set of multiple AP2 domain factors 

bind (or can be predicted to bind to) (A)CACAC(A) motifs. These motifs are 

enriched in genes expressed during merogony. Moreover, the ApiAP2 factors 

predicted to bind the motif show a similar, overlapping expression pattern, with 

TA11145 clearly up-regulated. This data indicates that multiple factors could 

bind to the same motif and the same factor can bind to variant motif types. Both 

possibilities seem to be valid: four potential complexes were found to bind to 

the (A)CACAC(A) double motif upstream of TA11145, and it has been found that 

Plasmodium recombinant domains bind a primary motif but also recognise 

alternatives (Campbell et al., 2010). Based on the upstream region of the 

TA11145 gene a modified stochastic model for merogony, incorporating 

competitive binding to (A)CACAC(A) motifs can be postulated. This model 

assumes that auto-regulation of ApiAP2 gene-TA11145 is critical for 

commitment. Expression of the gene occurs at a low level in the macroschizont 

stage (based on array data) due to binding of (A)CACAC(A) motifs in the 

promoter by macroschizont ApiAP2 factors, with competition between factors 

that promote low (or repress) or high (or activate) level expression of the gene. 

When cells are placed at 41°C an increase in protein levels relative to DNA 

generates a competitive advantage for up-regulation of TA11145 via preferential 

binding of its AP2 domain to multiple (A)CACAC(A) motifs in its own promoter 

(auto-regulation). A prediction of the model is that baseline expression and up-

regulation of a merozoite regulator would be reduced in cells attenuated for the 

stage differentiation step, making the commitment step more difficult to attain. 

Two (A)CACAC(A) binding ApiAP2 factors (TA11145 and TA07550) fit this profile 

relative to the other three. Thus, initially low-level expression of TA11145 might 

involve TA07550 competing with other (A)CACAC(A) binding ApiAP2 factors, 

while high level expression only occurs following transition to full auto-

regulation by TA11145 binding. One possibility is that this competitive binding 

operates to dictate factor accessibility by modulation of heterochromatin, with 

different ratios of competitors established between lines competent or 

attenuated for stage differentiation. Recent studies confirmed that P. 
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falciparum and Toxoplasma ApiAP2s are involved in heterochromatin 

maintenance (Flueck et al., 2010; Melo et al., 2013). It is likely that ApiAP2 

factors are also involved in organization of heterochromatin in Theileria. 

Changes in expression levels of these ApiAP2(s) could affect not only their own 

expression, if they are auto-regulated, but also expression of other TFs and 

ultimately a large number of target genes that determine cellular status. 

H3K9me3 gene repression marks (trimethylation of histone 3 lysine 9) were 

found in the Pfl1085w (AP2-G) locus (an orthologue of TA13515 gene – T. 

annulata ApiAP2) (Lopez-Rubio et al., 2009; Salcedo-Amaya et al., 2009) and 

inhibition of P. falciparum histone deacetylases by apidicin interfered with 

methylation of this histone and was associated with elevated expression of 

Pfl1085w (Chaal et al., 2010).  

 

Significant experimental investigation of the validity of this model is required, 

but was beyond the scope of this study due to time constraint. Fusion protein 

domains of all putative (A)CACAC(A) need to be generated with motif binding 

affinity established and evidence of competitive binding generated. Direct 

evidence that the EMSA complexes generated by nuclear extracts are due to 

binding of the candidate ApiAP2 factors is also needed. This would require 

raising antibodies against the ApiAP2 proteins and performing supershift EMSA. 

Data has been produced that apicidin can alter the differentiation potential and 

stage specific expression profile in T. annulata (Katzer and Shiels, unpublished) 

but a link to ApiAP2 factors and histone modifying enzymes requires to be 

established. 

 

The updated model for merogony predicts that inhibition of (A)CACAC(A)-binding 

factor(s) would influence merozoite formation and provide a logical target for 

control strategies of parasite infection/transmission. One possibly would be to 

employ Py-Im polyamide mimetics developed to block binding of proteins to DNA 

(Dervan and Edelson, 2003). A Py-Im polyamide inhibitor was clearly shown in 

Chapter 4 to block binding of the AP2 domain of TA13515 by EMSA (see Figure 

4.19). A preliminary experiment using a PA designed to bind to ACACAC showed a 

possible reduction in the level of the up-regulated EMSA shift obtained with 

nuclear extracts from cultures undergoing merogony. Further work using a PA 
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with higher predicted affinity is required. A major challenge for this type of 

strategy is delivery of the PA into the parasite nucleus.  

 

Recent studies suggest that Plasmodium AP2-G transcription factor essential for 

commitment to gametogenesis is auto-regulated by a positive feedback loop 

mechanism (Sinha et al., 2014; Kafsack et al., 2014). A clear orthologue 

(TA13515) is present in Theileria and Babesia with evidence of up-regulation 

from merozoite to piroplasm stage and potential for auto-regulation. This 

suggests that this factor is expressed just prior to production of gametocytes in 

Theileria, as the piroplasm is the form ingested by the tick that gives rise to 

sexual stages in the lumen of the gut (Melhorn and Schein, 1984). It is therefore 

possible that the mechanism that governs transition to the sexual phase of the 

life cycle is conserved across apicomplexan genera. It will be of significance to 

further investigate this ApiAP2 at the protein level and if possible, validate, its 

potential essential role for Theileria sexual differentiation.  

 

Analysis of T. annulata transcriptome and bioinformatics screening revealed two 

gene families (TashAT and SVSP) down-regulated from macroschizont to 

merozoite, which were found to contain specific C-box motifs in their upstream 

regions (4C-box for TashAT and 5C-box for SVSPs). Only one TashAT/TpHN-like 

gene, orthologue of the up-regulated Tash-a (TA03110) and TP01_0621, has been 

identified in the genome of the non-transforming T. orientalis. Phylogenetic 

data indicates that this gene is an ancestral member of the T. annulata TashAT 

and T. parva TpHN clusters, as no TashAT orthologues were found in Plasmodium 

and B. bovis genomes (Hayashida et al., 2012). The TA03110 gene also has a core 

C-box motif in its upstream region but lacked the flanking nucleotides found in 

the enlarged motif identified for other members of the cluster. A direct 

orthologue of Plasmodium AP2 domain genes that bind a C-box was not 

identified, but the TA12015 domain is an orthologue of a C. parvum AP2 domain 

that binds this motif. However, EMSA conducted with the binding domain of 

TA12015 and a G-box probe was unsuccessful. An EMSA experiment with 

differentiating PNE confirmed the C-box motif as a DNA binding site, however it 

also showed that nuclear factor binding to the C-box motif is down-regulated 

during merogony, suggesting it is unlikely to represent TA12015. In some 

members of the TashAT cluster the C-box motif is flanked by a TCTA motif 
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predicted to be recognised by the Plasmodium orthologue of TA16485. EMSA 

with a probe representing the upstream region of Tash1-like gene (TA03135) 

containing both the C-box and TCTA motifs gave clear shift with the TA16485 

AP2 domain fusion protein suggesting that this TaApiAP2 may be involved in 

regulation of TashAT genes and, since it is up-regulated during merogony, would 

be likely to act as a repressor. A more complete understanding of the role the C-

box motif plays in regulation of TashAT and SVSP gene expression is required, 

including identification of the down-regulated nuclear factor that binds to this 

motif. Regulation of these gene families could be associated with ability of        

T. annulata in establishment of the transformed infected leukocyte. 

 

Presently, there is no proteomics data for the majority of the T. annulata life 

cycle. Examination of correlation between mRNA levels of TaApiAP2s and their 

respective proteins would provide information on the stages where they are 

most likely to function. Generation of specific ApiAP2 antibodies could confirm 

their cellular location during the differentiation event and assess whether 

changes observed at the mRNA levels are reflected in changes in the protein 

profile associated with merogony. Moreover, chromatin immunoprecipitation 

(ChIP) assay coupled with high-throughput next generation sequencing 

methodology could be used to investigate and map binding sites of T. annulata 

ApiAP2s and whether these are altered following a stage differentiation event or 

in cell lines with attenuated phenotypes.  

 

Studies performed by Shiels et al. (1999) demonstrated that differentiation from 

the macroschizont to the merozoite stage is stochastic, however only limited 

information was available for T. annulata DNA motifs and factors that operate in 

this process. In Plasmodium ApiAP2 proteins have been predicted to form a 

regulator factor interaction network involving auto-regulation via their own 

promoter and recognition of other ApiAP2 gene promoters (Campbell et al., 

2010). In Theileria, progression towards a quantitative commitment point has 

been proposed previously to operate via an auto-regulation event (Shiels et al., 

1999) and this is supported by evidence that this occurs for TaApiAP2 genes up-

regulated during merogony, particularly TA11145 with 7 potential sites of auto-

regulation. In addition, like Plasmodium, regulation of TaApiAP2 expression may 

occur as a part of a cascade of factors during the differentiation event.  
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The identification of multiple motifs for ApiAP2 factor binding within the 4 up-

regulated ApiAP2 identify potential forward and reverse (feedback) interactions 

together with auto-regulation in an ApiAP2 family regulation network (Figure 

5.1) for T. annulata. As binding sites were only confirmed for TA13515, TA11145 

and TA16485, TA12015 protein was excluded from the network. However, it is 

likely that other ApiAP2(s) and TFs are involved in such a regulator network; 

TA07750 and GATA, for example. Positive or negative regulatory feedback 

between ApiAP2s genes is possible. TA16485 is most likely to be the end point of 

the regulatory circuit, based on its expression profile (elevated late) and 

because it has least interactions predicted. The possibility that it acts 

downstream of TA11145 to down-regulate genes expressed in the macroschizont 

stage is a possibility, as it can bind to its motif in a TashAT gene IGR. It is 

probable that most of the ApiAP2s do not act in a master switch role, but are 

still important for defining a life cycle stage. In P. berghei a second ApiAP2 

called AP2-G2 was identified as necessary although not essential for 

gametocytogenesis (Sinha et al., 2014). 

 

The presence of predicted DNA motifs in upstream regions of regulator genes is 

not sufficient to explain the complex interplay with transcription factors that 

probably operates. The number and arrangement of motifs in upstream regions, 

orientation and spacing need to be taken into account. Multiple potential 

interactions between repressors and activators may occur. Moreover, some 

factors will be responsible for formation and maintenance of heterochromatin, 

as described for P. falciparum ApiAP2 (Flueck et al., 2010), and stabilisation of 

altered expression profiles.  
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Figure 5.1. A regulatory network for the three macroschizont to merozoite up-
regulated ApiAP2 genes. The network is based on the presence of AP2 domain target 
motifs in the upstream regions of the ApiAP2 genes. Arrows pointing away from ApiAP2 
factors indicate regulation of other putative ApiAP2 target genes; auto-regulation is 
designated by the looped arrows. Positive or negative regulatory feedback between 
ApiAP2s is possible. TA16485 is most likely to be the end point of the regulatory circuit, 
as it has least interactions predicted. 
 

In conclusion, work presented in the previous chapters of this thesis provides 

novel information on binding specificities of selected T. annulata ApiAP2 

transcription factors and indentifies them as candidate regulators of stage 

differentiation. Furthermore they point to potential commonality of 

differentiation steps across different Apicomplexa genera, support a stochastic 

differentiation model initially postulated by Shiels et al. (1999) and more 

recently suggested for Plasmodium gametocytogenesis (Kafsack et al., 2014). 

DNA binding factors conserved within the Apicomplexa performing functions 

critical for cellular survival or stage differentiation could provide targets for 

development of novel therapeutics. Thus blocking parasite progression from one 

stage to another could inhibit development of stages that generate pathology or 

allow transmission from mammalian host to vector. Based on this study and 

others, AP2-G and AP2 factors that bind the (A)CACAC(A) motifs are candidates 

for such a strategy. Further research is required to fully understand the 

functional role of ApiAP2 factors and how they interact with additional 

modulators of gene expression to regulate stage differentiation events.  
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Appendix 1 – Materials and methods  
 
1.1. List of buffer and solution recipes commonly used in the 

experimental protocols of this thesis. 
 

Phosphate buffered saline (PBS X 1)  

Dissolve 8g NaCl, 0.2g KCl, 1.15g Na2HPO4 and 0.2g KH2PO4 in dH2O (up to 1L of 

total volume) and adjust to pH 7.4.  

 

DNA electrophoresis Gel 

Dissolve 1g UltraPure Agorose in 100ml 1 X TAE, heat in microwave. Cool down 

and add 2-3µl of Ethidium Bromide. 

 

Paraformaldehyde fixation solution (3.7 %)  

Dissolve 3.7g paraformaldehyde in 100ml of 1 X PBS. Add 150μl of 1M NaOH, heat 

to 50ºC in microwave (do not boil), cool on ice and adjust pH to 7.4 with HCl. 

Store at 4°C. 

Permeabilisation solution (Triton X 0.2) 

Mix 200μl Triton X-100 with 100ml 1 x PBS, stir continuously until dissolved and 

store at room temperature. 

 

Mounting medium 

For 1 ml solution, add 50% glycerol in 1 x PBS (i.e. 0.5ml glycerol, 0.5ml 1 X 

PBS), 10μl of anti-fade reagent (diphenylamine at 100mg/ml) and 1μl of DAPI (4', 

6-diamidino-2-phenylindole, dihydrochloride) for nuclear staining. Store at -20°C 

before use (lasts for about 1 month).  

 

0.1% Evans blue stain 

Dissolve 0.1g Evans blue in 90ml 1 x PBS and bring to 100 ml with 1 X PBS. Store 

at room temperature. 

 

10% SDS 

Dissolve 10g SDS in 90 ml dH2O and bring to 100 ml with dH2O. Store at room 

temperature. 
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10x SDS-PAGE running buffer, pH 8.3 (1 L) 

Dissolve 30.3 g Tris-base, 144.0 g Glycine, and 10.0 g SDS with dH2O up to 1 L of 

total volume and store at 4°C before use. Dilute 50 ml of 10x stock with 450 ml 

dH2O for each electrophoresis. 

 

Separating gel buffer (1.5 M Tris-HCl, pH 8.8) 

Dissolve 18.2 g Tris-base in 80 ml dH2O. Adjust to pH 8.8 with HCl. Bring total 

volume to 100 ml with dH2O and store at 4°C. 

 

Stacking gel buffer (0.25 M Tris-HCl, 0.2 % SDS, pH 6.8) 

Dissolve 3 g Tris base, 2 ml of 10 % SDS in 60 ml dH2O. Adjust to pH 6.8 with HCl. 

Bring total volume to 100 ml with dH2O and store at 4°C. 

10% ammonium persulfate (APS) 

Dissolve 0.1 g ammonium persulfate (APS) in 1 ml dH2O. Prepare fresh when 

required. 

 

Separating gel formulation (10% SDS-PAGE gel) 

For 10% resolving gel, mix 4.05 ml dH2O, 3.3 ml 30% Acrylamide/Bis, 2.5 ml 1.5M 

Tris-HCl pH 8.8, 100 μl 10% SDS, 50 μl 10% APS and 5 μl TEMED. 

 

5% Stacking gel formulation 

Mix 1.8 ml dH2O, 0.63 ml 30% Acrylamide/Bis, 2.5 ml of stacking gel buffer, 50 μl 

10% SDS, 50 μl 10% APS and 5.0 μl TEMED. 

 

Coomassie blue staining R-250 (500 ml) 

Dissolve 1.25 g of Coomassie blue in 250 ml methanol, 50 ml acetic acid and 200 

ml dH2O. Store at room temperature. 

 

Destaining solution (1.7 L, 10% acetic acid solution) 

Add 175 ml of acetic acid and 500 ml methanol to 1.025 L of dH2O. Store at room 

temperature. 
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Tris-acetate-EDTA (TAE) buffer 50X (1 L) 

Dissolve 242 g Tris in 100 ml of 0.5 M EDTA pH 8.0 with glacial acetic acid, make 

up to 1 L with sterile dH2O. Store at room temperature. Dilute to 1 X for working 

concentration. 

 

Tris-borate-EDTA (TBE) buffer 5X (1 L) 

Dissolve 54g of Tris base, 27.5g of Boric acid in 700 ml of dH2O and add 20ml of 

0.5M EDTA (pH 8.0). Make up to 1 L with sterile dH2O. Dilute to 1 X for working 

concentration. 

 

10 X Annealing Buffer (10ml) 

Mix 1ml of Tris-HCl (100mM; pH 8.0), 1ml of NaCl (2M) and 8ml of ddH20. Store 

at room temperature. 

 

DNA loading buffer 

0.25% bromophenol blue, 0.25% xylene cyanol FF, 15% Ficoll (type 400; 

Pharmacia) in dH2O. Store at room temperature. 

 

Lysogeny Broth (LB) 

Dissolve 10g Bacto-tryptone, 5g yeast extract and 10g NaCl in 800 ml of dH2O. 

Adjust pH to 7.5 with NaOH. Adjust volume up to 1L. Sterilise by autoclaving and 

store at room temperature. 

LB agar-plates  

Add 15g/L of agar to LB medium and autoclave. Cool to approx. 55°C, add 

antibiotic and pour into petri dishes. Let harden, then invert and store at +4°C 

in the dark. 

Terrific Broth (TB)   

Dissolve 15g of Bacto-tryptone, 24g of yeast extract, 4ml of glycerol in 500ml of 

ddH20. Adjust ddH20 up to 900 ml. Sterilise by autoclaving. Cool down to approx. 

60°C and then add sterile solution of 0.17M KH2PO4, 0.72M K2HPO4 (made by 

dissolving 2.31 g of KH2PO4 and 12.54 g of K2HPO4 in 90 ml of ddH2O, adjusting 

the volume of the solution to 100 ml with ddH2O and sterilizing by autoclaving).  
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SOC Media Recipe (100 ml) 

Dissolve 2g of Bacto-tryptone, 0.5g of yeast extract, 0.2ml of 5M NaCl, 0.25ml of 

1M KCl, 1ml of 1M MgCl2, 1ml of 1M MgSO4, 2ml of 1M glucose in 90ml of ddH2O. 

Adjust ddH2O up to 100 ml. Sterilise by autoclaving. 

Brilliant SYBR® Green QPCR Master Mix, Cat no. 600548 

Kit Components (100-rxn kit) 

2 x Brilliant SYBR Green QPCR master mix - 2 x 2.5 ml 

Reference dye - 1 mM 100 μl 

 

GST Buffer (50ml)                    

Mix 1.25ml of 1M Tris-HCl pH 8.0, 1.5 ml of 5M NaCl and 260µl of 1M DTT. Adjust 

pH to 8.0 and add ddH2O up to 50ml. Store at 4°C. 

 

1M Dithiothreitol (DTT)            

Dissolve 1.54g in 10ml of ddH2O. 

 

Glutathione elution buffer (10mM glutathione (reduced) in 50mM Tris-HCl pH 

8.0)       Mix 1.25ml of 1M Tris-HCl pH 8.0, 77g reduced glutathione and add 

ddH20 up to 25ml. Store at -20°C. 

 

4% non-denaturing TBA gel for EMSA (15ml)               

Mix 2ml of 30% acrylamide, 1.5ml 5 X TBE buffer, 11.35ml of ddH20, 150µl of 

Ammonium persulphate and 15µl of TEMED. 

 

1.2. Semi-quantitative RT-PCR reaction components and cycling 

conditions 

 

SuperScriptTM One-Step Semi-quantitative RT-PCR System Platinum® Taq, cat 

no. 12574-026; Kit Components (100-rxn kit) 

RT/ Platinum® Taq Mix - 100 μl 

2X Reaction Mix (a buffer containing 0.4 mM of each dNTP, 2.4 mM MgSO4) - 1 ml 

5 mM Magnesium Sulfate - 500 μl 

5 mM Magnesium Sulfate - 1 ml 
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Standard reaction mix used in the RT-PCR (total volume 25 μl) 

1. 2x Reaction Mix - 12.5 μl 

2. Forward primer (10 μM) - 0.5 μl 

3. Reverse primer (10 μM) - 0.5 μl 

4. Template RNA (20 ng) - 1 μl 

5. RT/ Platinum® Taq Mix - 0.5 μl 

6. Autoclaved ddH2O – up to 25 μl 

 

Thermal cycling conditions of semi-quantitative RT-PCR 

 Number of 

cycles 
Temperature and time 

cDNA synthesis and 

pre-denaturation 
1 cycle 

50°C for 30min 

94°C for 2min 

PCR amplification 

 

35 cycles 

 

Denaturation: 94°C for 15s 

Annealing: X°C for 30s (where 

X is experimentally            

determined annealing 

temperature (generally Tm of 

primers minus 3°C)) 

Extension: 72°C for 1min:  

Final extension 1 cycle 72°C for 10min 

 

 

1.3. cDNA synthesis reaction components and thermal cycling 

conditions 

AffinityScript Multi temperature cDNA Synthesis Kit; 200436, Agilent; Kit 

components: 

 AffinityScript Multiple Temperature Reverse Transcriptase  

 10× AffinityScript RT buffer  

 RNase Block Ribonuclease Inhibitor (40 U/μl)  

 Oligo(dT) primer (0.5 μg/μl)  

 Random primers (0.1 μg/μl)  

 100 mM dNTPs (25 mM each dNTP)  

 RNase-free water 
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cDNA synthesis reaction components and thermal cycling conditions: 

 Add the following to a microcentrufuge tube:  

o 1ng–5 μg of total RNA  

o RNase-free water to a total volume 15.7 μl 

o 1.0μl of oligo(dT) primer (0.5 μg/μl)  

 Incubate the reaction at 65°C for 5 minutes and then cool it at room 

temperature (~10 minutes) to allow the primers to anneal to the RNA. 

 Add the following components to a final reaction volume of 20ul  

o 2.0 μl of 10× AffinityScript RT Buffer  

o 0.8 μl of dNTP mix (25 mM each dNTP)  

o 0.5 μl of RNase Block Ribonuclease Inhibitor (40 U/μl)  

o 1 μl of AffinityScript Multiple Temperature RT  

 Incubate the reactions at 42°C for 5 minutes, then at 55°C for 55min. 

 Terminate the reaction by incubating at 70ºC for 15 minutes. 
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1.4. Table showing  details of primers used for semi-quantitative 

RT-PCR.  

Name of 

the primer/ 

Gene ID 

Forward/ 
Reverse 

Primer sequence 
(5’->3’) 

length 

(bp) 

Product 

length 

(bp) 

Tm 

(°C) 

TA05870 
F 
R 

AGCGTGAATTCCTCAACTC 
TCAGTTCATCACCGTCAAG 

19 
19 

222 
54.5 
54.5 

TA14665 
F 
R 

CAACCTACAGGCATTATCGC 
ATTGGCCATAGAATCGTCGA 

20 
20 

229 
57.3 
55.3 

TA15445 
F 
R 

TGGTTGTTCTGCTGGAGTTA 
CGTGAAGTGTGGCCAAATAA 

20 
20 

278 
55.3 
55.3 

TA14285 
F 
R 

TACTTACCTTCGTGCCAACA 
TGGAGGTTGTGATTCAGGAG 

20 
20 

310 
55.3 
57.3 

TA16685 
F 
R 

CCCACACCACATACTCTTGA 
ATGTATGCTGAGGGAAGTCC 

20 
20 

221 
57.3 
57.3 

TA21080 
F 
R 

CTCAGGGTCCTATGGTCATG 
CAGGTGACCTTACCAATTGC 

20 
20 

266 
59.4 
57.3 

TA19865 
F 
R 

CCTGGAACAAGAGTAGAC 
CCAATCACAAGGATTCGG 

18 
18 

249 
53.7 
53.7 

TA07475 
F 
R 

AAAGAGGCTCACAAGGAACA 
CATGCCGTTGTGAGTAACAA 

20 
20 

232 
55.3 
55.3 

TA10735 
F 
R 

TCTGACCTCGTCAAATGTG 
CGTGGGTCGTATGGAATAG 

19 
19 

296 
54.5 
56.7 

TA20095 
F 
R 

ATGATCCATCTCGGTCCAAG 
TGGACCTTGACCCTTAGAGA 

20 
20 

260 
57.3 
57.3 

TA15705 
F 
R 

TGGAGATGGAGATAGCATGC 
CTGGACCTCCAGATGCAC 

20 
18 

239 
57.3 
58.2 

TA13395 
F 
R 

AGTTAACGAGCAGTGGGAAG 
AGCCTTATTGGTATCACTGG 

20 
20 

178 
57.5 
54.5 

TA10720 
F 
R 

ACAATAGCAGAATCAGGAACAG 
TATTGGGAAACGGATGAATTCTG 

22 
23 

354 
56.5 
57.1 

TA13515 
F 
R 

CATCCAATCCACTGTGTA 
TACGCTCTACTGGAGTG 

18 
17 

178 
51.0 
51.8 

TA11145 
F 
R 

CGTTGAGGGATCTTGTGAC 
CTTCACACTCCTGTTCCCA 

19 
19 

236 
56.7 
56.7 

TA12015 
F 
R 

TGTGGCCGTATTCTCGTTCC 
TGAAACGAGAGGGTAGGGGA 

20 
20 

318 
60.0 
59.5 

TA16485 
F 
R 

CAAATTACTACCGAAGATTAGAG 
CTGTGAGTTTCTGAAAGCG 

23 
19 

169 
52.5 
54.4 

 

1.5. SYBR Green qRT-PCR reaction details and thermal cycling 

parameters 

QRT-PCR reaction: 

 500ng cDNA 

 1µl Forward primer (0.5pM) 

 1µl Reverse Primer (0.5pM) 

 10µl SYBR Green I Master Mix 

 Nuclease-free PCR-grade water to the final volume of 20µl 
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Number of 

cycles 
Temperature and time 

enzyme activation 

and initial 

denaturation 

1 cycle 
10min at 95°C 

 

PCR amplification 40 cycles 

Denaturation: 30 sec at 95°C 

Annealing: 60 sec of at 60°C 

Elongation: 60 sec at 72°C 

dissociation curve 1 cycle 

60 sec at 95°C 

30 sec at 55°C 

30 sec at 95°C 

 

 

1.6. PCR conditions with Pfu polymerase and reaction 

components 
 

PCR reaction (25 µl total volume) 
Pfu - 0.5µl (2.5U/1µl) 
dNTP - 2,5µl (2mM stock) 
DNA – 2,5µl 
buffer - 2,5µl (max 1/10 of total volume) 
Forward primer - 1µl 
Reverse primer - 1µl 
ddH20 - 15µl 
 
 

PCR Number of cycles Temperature and time 

Heated lid 1 cycle 105°C 

Initial denaturation 1 cycle 95°C 3min 

 
35 cycles 

95°C 30s 
X°C 30s 
72°C 4min 

Final extension 1 cycle 72°C 10min 

Final hold 1 cycle 10°C 

 

 

 

 

 

 

 

 

 

 



 

 

281 

1.7. Table showing  details of primers used for quantitative real 

time RT-PCR. 

Name of 

the 

primer/ 

Gene ID 

Forward/ 
Reverse 

Primer sequence 
(5’->3’) 

length 

(bp) 

Product 

length 

(bp) 

Tm 

(°C) 

TA13515 
F 
R 

CGGGGAAGAGTGTAAAAATGAGT

G  
GGAGGTGATGGTCGTGATGG 

24 
20 

 
61.0 
61.4 

TA11145 
F 
R 

CGTTGAGGGATCTTGTGAC 
CTTCACACTCCTGTTCCCA 

19 
19 

 
56.7 
56.7 

TA07100 
F 
R 

GCCACCCAGTAGACCTTCA 
GTCGAGCATCAGCAAGTGT 

19 
19 

 
58.8 
56.7 

TA10735 
F 
R 

TCTGACCTCGTCAAATGTG 
CGTGGGTCGTATGGAATAG 

19 
19 

 
54.5 
56.7 

TA15705 
F 
R 

TGGAGATGGAGATAGCATGC 
CTGGACCTCCAGATGCAC 

20 
18 

 
57.3 
58.2 

TA11610 
F 
R 

ACGCAAATGGAATCCTCAAC 
TATTCGTCGTGCTCTGCTAA 

20 
20 

 
55.3 
55.3 

TA10720 
F 
R 

ACAATAGCAGAATCAGGAACAG 
TATTGGGAAACGGATGAATTCTG 

22 
23 

 
56.5 
57.1 

 

 

1.8. Table showing primers with restriction sites used for 

cloning. 

Primer name Sequence 5’->3’  
Length 

(bp) 
Tm 

(°C) 

TA13515D-

EcorRI_F 
CAGGAATTCGTACAGGGTATGGTTGGATATTCT 

33 
58.8 

TA13515D-

Xhol_R 
GCACTCGAGGCTGAATACGCTCTACTGGAGTGC 

33 
73.2 

TA12015D-

EcoRi_F 
CAGGAATTCTACCGAAGGAAGCCAATCTCATC 

32 
68.2 

TA12015D-

Xhol_R 
GCACTCGAGAGATGTGGTTCCTCTCGGT 

29 
69.5 

TA11145D-

EcorRI_F 
CAGGAATTCCAAAGAACGAGCGCAAAGATTC 

32 
66.9 

TA11145D-

Xhol_R 
GTTCTCGAGTGTTAAATCTTATCATTATGTCTAAGTGC 

38 
66.2 

TA16485D-

EcorRI_F 
CAGGAATTCAGAGCAAATTACTACCGAAGATTAG 

34 
65.9 

TA16485D-

Xhol_R 
GCACTCGAGCGGTCAGAT TTGTTGGTTGGT TTC TG 

35 
71.8 
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1.9. Table showing list of oligos used for EMSA experiment. 

Oligo name  Sequence 5’->3’ Description 

Bio-2x(A)CACAC(A)_F 
Bio-
GATACACACTTATGCACACACA 

Biotynylated target motif for TA11145; 
Upstream region of TA11145; forward 
strand 

2x(A)CACAC(A)_F GATACACACTTATGCACACACA 
Target motif for TA11145; Upstream region 
of TA11145 

2x(A)CACAC(A)_R TGTGTGTGCATAAGTGTGTATC 
Target motif for TA11145; Upstream region 
of TA11145, reverse strand 

(A)CACAC(A)_MUT_F 
Bio - 
GATACACACTTATGCAGAATAT 

Biotinylated mutated target motif for 
TA11145; upstream region of TA11145; 
forward strand 

(A)CACAC(A)_MUT_F          GATACACACTTATGCAGAATAT 
Mutated target motif for TA11145; 
upstream region of TA11145; reverse 
strand 

(A)CACAC(A)_MUT_R 
ATATTCTGCATAAGTGTGTATC 
 

Mutated biotinylated target motif for 
TA11145; upstream region of TA11145; 
reverse primer 

Bio(A)CACAC(A)-
2xMUT_F    

Bio - 
GATATAGAATTATGCAGAATAT 
 

Double mutated biotinylated target motif 
for TA11145; upstream region of TA11145; 
forward primer 

(A)CACAC(A)-
2xMUT_F    

GATATAGAATTATGCAGAATAT 
 

Double mutated target motif for TA11145; 
upstream region of TA11145; forward 
primer 

(A)CACAC(A)-
2MUT_R:          

ATATTCTGCATAATTCTATATC  
 

Double mutated target motif for TA11145; 
upstream region of TA11145; reverse 
strand 

Bio-GTGTAC_F 

Bio-
AATATTATAATAGTCGTAGCCAT
CAATGTGTACACATGGTAATAT
AGATTTTCGTTTATATT 

Biotinylated target motif of 
PBANKA_143750/PFL1085w/TA13515, 
forward primer 

Bio-NoMotif_F 

Bio-
AATATTATAATAGTCGTAGCCAT
CAATAAAAAAAAATGGTAATATA
GATTTTCGTTTATATT 

Biotinylated no motif oligo (negative 
control), forward primer 

Bio-GTGTAC-MUT_F 

Bio-
AATATTATAATAGTCGTAGCCAT
CAATATATAAAAATGGTAATATA
GATTTTCGTTTATATT 

Biotinylated mutated motif of 
PBANKA_143750/PFL1085w/TA13515 
(negative control; G/C replaced with A); 
forward primer 

Bio-TGCATGCA_F 

Bio-
AATATTATAATAGTCGTAGCCAT
CAATTGCATGCAATGGTAATAT
AGATTTTCGTTTATATT 

Biotinylated another ApiAP2 motif 
(negative control; 
PBANKA_132980/PF14_0633), forward 
primer 

GTGTAC_F 
AATATTATAATAGTCGTAGCCAT
CAATGTGTACACATGGTAATAT
AGATTTTCGTTTATATT 

Target motif 
(PBANKA_143750/PFL1085w/TA13515; 
forward primer  

NoMotif_F 
AATATTATAATAGTCGTAGCCAT
CAATAAAAAAAAATGGTAATATA
GATTTTCGTTTATATT 

No motif oligo (negative control), forward 
primer  

GTGTAC-MUT_F 
AATATTATAATAGTCGTAGCCAT
CAATATATAAAAATGGTAATATA
GATTTTCGTTTATATT 

Mutated motif (negative control; G/C 
replaced with A)  

TGCATGCA_F 
AATATTATAATAGTCGTAGCCAT
CAATTGCATGCAATGGTAATAT
AGATTTTCGTTTATATT 

Another ApiAP2 motif (negative control; 
PBANKA_132980/PF14_0633)  

GTGTAC_R 
AATATAAACGAAAATCTATATTA
CCATGTGTACACATTGATGGCT
ACGACTATTATAATATT 

REVERSE Target motif 
(PBANKA_143750/PFL1085w/TA13515)  

NoMotif_R 
AATATAAACGAAAATCTATATTA
CCATTTTTTTTTATTGATGGCTA

REVERSE No motif (negative control)  
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CGACTATTATAATATT 

GTGTAC-MUT_R 
AATATAAACGAAAATCTATATTA
CCATTTTTATATATTGATGGCTA
CGACTATTATAATATT 

REVERSE mutated motif (negative control; 
G/C replaced with A)  

TGCATGCA_R 
AATATAAACGAAAATCTATATTA
CCATTGCATGCAATTGATGGCT
ACGACTATTATAATATT 

REVERSE Another ApiAP2 motif (negative 
control; PBANKA_132980/PF14_0633)  

Bio-
TA13515Target_F 

Bio-
ATGAGATAAATGTGTACGTAGG
AATCTTCA 

Biotinylated target motif  for TA13515 ; 
TA10735 (GATA TF) upstream region; 
forward primer 

TA13515Target_F 
ATGAGATAAATGTGTACGTAGG
AATCTTCA 

Target motif  for TA13515 ; TA10735 
(GATA TF) upstream region, forward 
primer 

TA13515Target_R 
TGAAGATTCCTACGTACACATTT
ATCTCAT 

Reverse target motif for TA13515, 
TA10735 (GATA  TF) upstream region 

Bio-TA11145D_F 

BIO-
AATATTATAATAGTCGTAGCCAT
CAATCCACACACCATGGTAATAT
AGATTTTCGTTTATATT 

Biotinylated target motif for TA11145, 
forward primer 

TA11145D_F 
AATATTATAATAGTCGTAGCCAT
CAATCCACACACCATGGTAATAT
AGATTTTCGTTTATATT 

Target motif for TA11145, forward primer 

TA11145D_R 
AATATAAACGAAAATCTATATTA
CCATGGTGTGTGGATTGATGGC
TACGACTATTATAATATT 

Reverse target motif for TA11145 

Bio-Tash1u_F 
BIO-
ATTGTTAATTCCCCATCCAGATC
TATAAAA 

Biotinylated oligo containing C-box and 
TCTATA motif; upstream region of 
TA03125; forward primer 

Tash1u_F 
ATTGTTAATTCCCCATCCAGATC
TATAAAA 

Oligo containing C-box and TCTATA motif; 
upstream region of TA03125; forward 
primer 

Tash1u_R 
TTTTATAGATCTGGATGGGGAA
TTAACAAT 

Reverse oligo containing C-box and 
TCTATA motif; upstream region of 
TA03125 
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Appendix 2 - Rank Product results from Chapter 2 
 
2.1. Full list of genes up-regulated from macroschizont to merozoite 
obtained by Rank Product  (n=152, FDR≤0.05) 
Gene ID Annotation FC RP score  EE FDR 
TA05870 rhoptry-associated protein, putative 5,12 3,13E-31 0 0 

TA14665 hypothetical protein 5,133333 1,41E-30 0 0 

TA08360 hypothetical protein, conserved 4,636667 1,69E-28 0 0 

TA21080 Map2 kinase, putative 4,156667 2,40E-26 0 0 

TA05340 hypothetical protein, conserved 4,033333 1,21E-25 0 0 

TA16660 hypothetical protein, conserved 3,956667 2,36E-25 0 0 

TA05495 hypothetical protein 3,893333 2,65E-25 0 0 

TA13045 hypothetical protein, conserved 3,673333 5,49E-24 0 0 

TA13825 hypothetical protein 3,63 1,28E-23 0 0 

TA07585 hypothetical protein 3,506667 2,58E-23 0 0 

TA19390 hypothetical protein, conserved 3,396667 1,11E-22 0 0 

TA18005 hypothetical protein 3,383333 2,06E-22 0 0 

TA19040 hypothetical protein, conserved 3,353333 2,30E-22 0 0 

TA19445 hypothetical protein, conserved 3,243333 8,27E-22 0 0 

TA11905 hypothetical protein 3,426667 9,64E-22 0 0 

TA20020 hypothetical protein, conserved 3,076667 4,25E-21 0,02 0,00125 

TA14680 hypothetical protein 3,016667 9,70E-21 0,03 0,00176 

TA21400 hypothetical protein 2,926667 2,34E-20 0,04 0,00222 

TA17325 integral membrane protein, putative 2,953333 2,41E-20 0,04 0,00211 

TA16375 hypothetical protein, conserved 2,943333 3,47E-20 0,04 0,002 

TA05760 rhoptry-associated protein, putative 2,906667 3,70E-20 0,05 0,00238 

TA21395 hypothetical protein 2,946667 4,08E-20 0,05 0,00227 

TA04105 cysteine proteinase, putative 2,896667 5,75E-20 0,07 0,00304 

TA13515 hypothetical protein, conserved 2,88 8,26E-20 0,07 0,00292 

TA14955 hypothetical protein 2,846667 1,43E-19 0,08 0,0032 

TA13215 hypothetical protein, conserved 2,79 1,43E-19 0,08 0,00308 

TA16485 hypothetical protein, conserved 2,776667 2,13E-19 0,09 0,00333 

TA11455 hypothetical protein, conserved 2,756667 2,77E-19 0,09 0,00321 

TA18855 SfiI-subtelomeric fragment related 
protein family member, putative 

2,79 3,15E-19 0,1 0,00345 

TA16420 hypothetical protein 2,833333 3,28E-19 0,1 0,00333 

TA18195 hypothetical protein 2,753333 4,13E-19 0,12 0,00387 

TA15485 hypothetical protein, conserved 2,743333 4,60E-19 0,13 0,00406 

TA14205 hypothetical protein 2,67 9,74E-19 0,16 0,00485 

TA16155 hypothetical protein 2,66 1,04E-18 0,16 0,00471 

TA17100 hypothetical protein 2,673333 1,20E-18 0,17 0,00486 

TA04660 hypothetical protein, conserved 2,64 1,28E-18 0,17 0,00472 

TA21390 Theileria parva Tpr-related protein, 
putative 

2,653333 1,29E-18 0,17 0,00459 

TA11285 hypothetical protein 2,7 1,62E-18 0,19 0,005 

TA17490  2,653333 2,07E-18 0,19 0,00487 

TA08480 hypothetical protein, conserved 2,613333 2,91E-18 0,21 0,00525 

TA07985 hypothetical protein 2,61 4,77E-18 0,22 0,00537 

TA07025 Tpr-related protein family member, 
putative 

2,56 5,58E-18 0,23 0,00548 

TA21385 hypothetical protein 2,536667 5,62E-18 0,23 0,00535 

TA03260 hypothetical protein 2,53 6,10E-18 0,23 0,00523 

TA20555 myosin a, putative 2,493333 1,09E-17 0,3 0,00667 

TA19610 hypothetical protein, conserved 2,49 1,91E-17 0,34 0,00739 

TA14210 hypothetical protein 2,443333 1,92E-17 0,34 0,00723 

TA07920 hypothetical protein 2,456667 2,96E-17 0,43 0,00896 

TA15445 Tpr-related protein family member, 2,403333 3,39E-17 0,48 0,0098 
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putative 

TA15620 hypothetical protein 2,396667 4,06E-17 0,52 0,0104 

TA15625 hypothetical protein 2,413333 4,21E-17 0,52 0,0102 

TA19275 hypothetical protein 2,42 4,43E-17 0,53 0,01019 

TA14285 SfiI-subtelomeric fragment related 
protein family member, putative 

2,413333 4,53E-17 0,53 0,01 

TA07630 hypothetical protein, conserved 2,393333 5,90E-17 0,56 0,01037 

TA16685 polymorphic antigen precursor-like 
protein, putative 

2,393333 6,37E-17 0,56 0,01018 

TA13890 hypothetical protein 2,32 2,07E-16 0,83 0,01482 

TA04565 hypothetical protein 2,303333 2,20E-16 0,84 0,01474 

TA19505 hypothetical protein, conserved 2,303333 2,37E-16 0,84 0,01448 

TA17055 hypothetical protein 2,29 2,42E-16 0,84 0,01424 

TA08235 hypothetical protein 2,303333 2,42E-16 0,84 0,014 

TA14310 hypothetical protein 2,276667 3,29E-16 1 0,01639 

TA13540 hypothetical protein 2,27 3,34E-16 1 0,01613 

TA17358  2,253333 3,82E-16 1,01 0,01603 

TA13530 phosphate transporter, putative 2,246667 3,97E-16 1,01 0,01578 

TA15490 hypothetical protein 2,253333 4,84E-16 1,04 0,016 

TA17115 SfiI-subtelomeric fragment related 
protein family member, putative 

2,25 5,20E-16 1,07 0,01621 

TA20435 hypothetical protein 2,233333 5,44E-16 1,12 0,01672 

TA06795 hypothetical protein, conserved 2,226667 5,55E-16 1,14 0,01676 

TA18275 hypothetical protein 2,223333 5,91E-16 1,17 0,01696 

TA20150 Theileria-specific hypothetical protein 2,22 6,00E-16 1,17 0,01671 

TA14130 Tpr-related protein family member, 
putative 

2,226667 6,31E-16 1,19 0,01676 

TA04355 hypothetical protein 2,19 8,91E-16 1,31 0,01819 

TA13940 hypothetical protein 2,21 9,32E-16 1,36 0,01863 

TA07435 SfiI-subtelomeric fragment related 
protein family member, putative 

2,153333 1,15E-15 1,47 0,01986 

TA10645 hypothetical protein 2,176667 1,20E-15 1,49 0,01987 

TA20985 hypothetical protein 2,153333 1,30E-15 1,55 0,02039 

TA15095 Tpr-related protein family member, 
putative 

2,176667 1,35E-15 1,55 0,02013 

TA15090 Tpr-related protein family member, 
putative 

2,166667 1,37E-15 1,55 0,01987 

TA15355 hypothetical protein 2,15 1,51E-15 1,62 0,02051 

TA19675 hypothetical protein 2,153333 1,58E-15 1,65 0,02063 

TA17960 hypothetical protein 2,15 1,62E-15 1,65 0,02037 

TA13535 hypothetical protein 2,106667 1,62E-15 1,65 0,02012 

TA05375 hypothetical protein 2,163333 1,67E-15 1,71 0,0206 

TA14335 hypothetical protein 2,15 1,72E-15 1,73 0,0206 

TA10690 ubiquitin-conjugating enzyme E2, 
putative 

2,116667 2,36E-15 1,88 0,02212 

TA19975 integral membrane protein, putative 2,106667 2,73E-15 1,95 0,02267 

TA03850 Tpr-related protein family member, 
putative 

2,126667 2,85E-15 1,98 0,02276 

TA14120 Tpr-related protein family member, 
putative 

2,093333 3,18E-15 2,04 0,02318 

TA03540 hypothetical protein 2,06 3,40E-15 2,12 0,02382 

TA14135 Tpr-related protein family member, 
putative 

2,103333 3,87E-15 2,15 0,02389 

TA03755 sporozoite surface antigen (spag -1) 2,083333 3,87E-15 2,15 0,02363 

TA17500 SfiI-subtelomeric fragment related 
protein family member, putative 

2,093333 3,92E-15 2,16 0,02348 

TA13345 hypothetical protein 2,07 5,14E-15 2,32 0,02495 

TA19575 hypothetical protein, conserved 2,06 5,66E-15 2,37 0,02521 

TA09600 Tpr-related protein family member, 
putative 

2,01 7,70E-15 2,61 0,02747 
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TA03480 hypothetical protein, conserved 2,033333 8,04E-15 2,61 0,02719 

TA19075 hypothetical protein 2,026667 8,17E-15 2,63 0,02711 

TA21050 hypothetical protein 2,016667 8,20E-15 2,63 0,02684 

TA03855 Tpr-related protein family member, 
putative 

2,026667 9,80E-15 2,74 0,02768 

TA12015 hypothetical protein 2,003333 1,02E-14 2,79 0,0279 

TA03845 hypothetical protein, conserved 2 1,04E-14 2,8 0,02772 

TA15500 Tpr-related protein family member, 
putative 

1,996667 1,10E-14 2,84 0,02784 

TA17705 hypothetical protein 1,996667 1,24E-14 2,93 0,02845 

TA17595 SfiI-subtelomeric fragment related 
protein family member, putative 

2,013333 1,26E-14 2,95 0,02837 

TA14835 hypothetical protein 2 1,45E-14 3,08 0,02933 

TA14125 hypothetical protein 1,983333 1,48E-14 3,09 0,02915 

TA15405 hypothetical protein 1,92 1,63E-14 3,18 0,02972 

TA19115 SfiI-subtelomeric fragment related 
protein family member, putative 

1,986667 1,72E-14 3,2 0,02963 

TA21345 hypothetical protein 1,943333 1,74E-14 3,25 0,02982 

TA21380 hypothetical protein 1,976667 1,76E-14 3,27 0,02973 

TA04370 hypothetical protein, conserved 1,973333 2,16E-14 3,5 0,03153 

TA08470 cyclin-dependent serimne/threonine 
kinase (Cdk)-related protein, putative 

1,95 2,33E-14 3,55 0,0317 

TA11680 hypothetical membrane protein, 
conserved 

1,94 2,41E-14 3,58 0,03168 

TA07305 hypothetical protein 1,963333 2,45E-14 3,59 0,03149 

TA20220 hypothetical protein, conserved 1,94 2,47E-14 3,6 0,0313 

TA21205 hypothetical protein 1,966667 2,55E-14 3,64 0,03138 

TA03475 hypothetical protein 1,956667 2,59E-14 3,66 0,03128 

TA15320 hypothetical protein, conserved 1,923333 2,74E-14 3,72 0,03153 

TA18780 hypothetical protein 1,93 2,77E-14 3,73 0,03134 

TA05615 hypothetical protein 1,92 2,78E-14 3,73 0,03108 

TA03300 hypothetical protein 1,936667 2,87E-14 3,75 0,03099 

TA04790 Tpr-related protein family member, 
putative 

1,96 2,92E-14 3,76 0,03082 

TA15350 hypothetical protein 1,916667 3,61E-14 4,12 0,0335 

TA06765 hypothetical protein, conserved 1,916667 4,15E-14 4,36 0,03516 

TA17685 aspartyl(acid) protease, putative 1,906667 4,32E-14 4,42 0,03536 

TA18600 hypothetical protein 1,89 4,63E-14 4,56 0,03619 

TA16050 SfiI-subtelomeric fragment related 
protein family member, putative 

1,873333 4,78E-14 4,6 0,03622 

TA15660 cysteine protease, putative 1,903333 5,18E-14 4,75 0,03711 

TA09115 hypothetical protein 1,876667 5,22E-14 4,75 0,03682 

TA18980 hypothetical protein 1,893333 5,32E-14 4,78 0,03677 

TA15815 hypothetical protein 1,816667 5,67E-14 4,83 0,03687 

TA19530 hypothetical protein 1,88 5,97E-14 4,95 0,0375 

TA13665 hypothetical protein 1,846667 6,53E-14 5,11 0,03842 

TA04130 hypothetical protein, conserved 1,866667 6,77E-14 5,16 0,03851 

TA04635 hypothetical protein 1,866667 7,63E-14 5,36 0,0397 

TA14605 Tpr-related protein family member, 
putative 

1,85 1,01E-13 5,91 0,04346 

TA08525 hypothetical protein, conserved 1,833333 1,08E-13 6,02 0,04394 

TA17491  1,81 1,20E-13 6,17 0,04471 

TA05705 rhoptry-associated protein, putative 1,81 1,29E-13 6,4 0,04604 

TA11195 hypothetical protein 1,803333 1,34E-13 6,46 0,04614 

TA18295 Theileria-specific hypothetical protein 1,823333 1,42E-13 6,55 0,04645 

TA03640 hypothetical protein 1,83 1,51E-13 6,67 0,04697 

TA21370 hypothetical protein 1,77 1,51E-13 6,67 0,04664 

TA07955 hypothetical protein 1,79 1,69E-13 6,89 0,04785 

TA07162  1,786667 1,92E-13 7,16 0,04938 
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TA14140 Tpr-related protein family member, 
putative 

1,783333 2,05E-13 7,3 0,05 

TA05245 Tpr-related protein family member, 
putative 

1,776667 2,07E-13 7,32 0,0498 

TA03521 Theileria-specific hypothetical 
telomeric sfii fragment-related protein 

1,78 2,12E-13 7,34 0,04959 

TA21375 hypothetical protein 1,79 2,15E-13 7,4 0,04966 

TA04825 hypothetical protein, conserved 1,773333 2,29E-13 7,51 0,05007 

TA04795 hypothetical protein 1,786667 2,32E-13 7,55 0,05 

TA12440 hypothetical protein 1,773333 2,33E-13 7,57 0,0498 

 
 
2.2. Full list of genes down-regulated from macroschizont to merozoite 
obtained by Rank Product  (n=115, FDR≤0.05) 
Gene ID Annotation FC RP score EE FDR  

TA19865 surface protein d precursor -
3,383333333 

7,04E-31 0 0 

TA11410 Theileria-specific sub-telomeric 
protein, SVSP family, putative 

-
3,203333333 

1,01E-28 0 0 

TA11405 subtelomeric sfi-fragment-
related protein family member, 
putative 

-
3,116666667 

6,57E-28 0 0 

TA15705 hypothetical protein (ta9) -3,1 2,17E-27 0 0 

TA09805 Theileria-specific sub-telomeric 
protein, SVSP family 

-2,93 7,76E-26 0 0 

TA10505 hypothetical protein -
2,913333333 

1,76E-25 0 0 

TA09790 Theileria-specific sub-telomeric 
protein, SVSP family 

-2,69 8,78E-24 0 0 

TA18010 integral membrane protein, 
putative 

-
2,693333333 

1,44E-23 0 0 

TA09420 Theileria-specific sub-telomeric 
protein, SVSP family, putative 

-
2,613333333 

2,04E-23 0 0 

TA02480 hexose transporter (HT1 
homologue), putative 

-
2,613333333 

3,93E-23 0 0 

TA05580 Theileria-specific sub-telomeric 
protein, SVSP family 

-2,59 4,48E-23 0 0 

TA15695 hypothetical protein -
2,636666667 

4,76E-23 0 0 

TA09810 Theileria-specific sub-telomeric 
protein, SVSP family 

-
2,543333333 

6,70E-23 0 0 

TA09435 Theileria-specific sub-telomeric 
protein, SVSP family, putative 

-
2,516666667 

3,11E-22 0 0 

TA15710 hypothetical protein -2,5 4,99E-22 0 0 

TA18895 conserved Theileria-specific 
sub-telomeric protein, SVSP 
family 

-
2,433333333 

7,76E-22 0 0 

TA09430 Theileria-specific sub-telomeric 
protein, SVSP family, putative 

-2,4 1,95E-21 0,01 0,000588235 

TA17555 Theileria-specific sub-telomeric 
protein, SVSP family 

-
2,396666667 

2,15E-21 0,01 0,000555556 

TA11940 hypothetical protein -
2,386666667 

2,68E-21 0,01 0,000526316 

TA09815 SfiI-subtelomeric fragment 
related protein family member, 
putative 

-
2,363333333 

3,82E-21 0,02 0,001 

TA09800 Theileria-specific sub-telomeric 
protein, SVSP family 

-
2,373333333 

4,30E-21 0,02 0,000952381 

TA10530 hypothetical protein -
2,353333333 

5,18E-21 0,02 0,000909091 

TA17545 Theileria-specific sub-telomeric 
protein, SVSP family 

-2,25 4,52E-20 0,05 0,002173913 
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TA05575 Theileria-specific sub-telomeric 
protein, SVSP family 

-
2,243333333 

5,32E-20 0,05 0,002083333 

TA19005 conserved Theileria-specific 
sub-telomeric protein, SVSP 
family 

-2,23 7,05E-20 0,07 0,0028 

TA17125 Theileria-specific sub-telomeric 
protein, SVSP family 

-
2,193333333 

1,21E-19 0,08 0,003076923 

TA09505 SfiI-subtelomeric fragment 
related protein family member, 
putative 

-
2,183333333 

2,01E-19 0,09 0,003333333 

TA18890 conserved Theileria-specific 
sub-telomeric protein, SVSP 
family 

-2,17 2,72E-19 0,09 0,003214286 

TA20095 Tashat2 protein -
2,126666667 

6,55E-19 0,15 0,005172414 

TA02905 hypothetical protein -
2,043333333 

8,61E-19 0,16 0,005333333 

TA16035 Theileria-specific sub-telomeric 
protein, SVSP family, putative 

-
2,086666667 

8,76E-19 0,16 0,00516129 

TA16030 Theileria-specific sub-telomeric 
protein, SVSP family, putative 

-2,07 1,10E-18 0,17 0,0053125 

TA09510 SfiI-subtelomeric fragment 
related protein family member, 
putative 

-
1,976666667 

1,21E-18 0,17 0,005151515 

TA12265 SfiI-subtelomeric fragment 
related protein family member, 
putative 

-2,08 1,23E-18 0,17 0,005 

TA11945 hypothetical protein -
2,056666667 

1,73E-18 0,19 0,005428571 

TA04675 hypothetical protein -1,98 1,93E-18 0,19 0,005277778 

TA11400 SfiI-subtelomeric fragment 
related protein family member, 
putative 

-2,05 2,20E-18 0,2 0,005405405 

TA16090 glutenin, putative -
1,966666667 

2,95E-18 0,21 0,005526316 

TA17485 hypothetical protein -
1,903333333 

4,18E-18 0,21 0,005384615 

TA05540 Theileria-specific sub-telomeric 
protein, SVSP family 

-
2,013333333 

5,41E-18 0,23 0,00575 

TA10420 hypothetical protein -
1,926666667 

5,90E-18 0,23 0,005609756 

TA05960 Tpr-related protein family 
member, putative 

-1,88 7,87E-18 0,28 0,006666667 

TA18950 conserved Theileria-specific 
sub-telomeric protein, SVSP 
family 

-
1,963333333 

1,15E-17 0,3 0,006976744 

TA15015 Tpr-related protein family 
member, putative 

-
1,943333333 

1,31E-17 0,3 0,006818182 

TA05565 Theileria-specific sub-telomeric 
protein, SVSP family 

-
1,926666667 

2,12E-17 0,37 0,008222222 

TA18865 conserved Theileria-specific 
sub-telomeric protein, SVSP 
family 

-1,93 2,15E-17 0,37 0,008043478 

TA17915 hypothetical protein -1,82 2,96E-17 0,43 0,009148936 

TA16025 Theileria-specific sub-telomeric 
protein, SVSP family, putative 

-
1,913333333 

3,02E-17 0,43 0,008958333 

TA07475 SfiI-subtelomeric fragment 
related protein family member, 
putative 

-
1,813333333 

3,60E-17 0,49 0,01 

TA18540 hypothetical protein -
1,766666667 

3,99E-17 0,51 0,0102 

TA05150 hypothetical protein, conserved -
1,873333333 

5,19E-17 0,54 0,010588235 
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TA17375 polymorphic antigen precursor, 
putative 

-1,79 5,83E-17 0,56 0,010769231 

TA11950 hypothetical P-, Q-rich protein 
family protein, putative 

-
1,783333333 

6,87E-17 0,56 0,010566038 

TA16185 haloacid dehalogenase-like 
family hydrolase, putative 

-
1,776666667 

7,17E-17 0,59 0,010925926 

TA09425 Theileria-specific sub-telomeric 
protein, SVSP family, putative 

-1,84 9,61E-17 0,67 0,012181818 

TA11385 Theileria-specific sub-telomeric 
protein, SVSP family, putative 

-1,84 1,03E-16 0,67 0,011964286 

TA17120 Theileria-specific sub-telomeric 
protein, SVSP family 

-1,83 1,34E-16 0,71 0,01245614 

TA04470 hypothetical protein -1,72 1,68E-16 0,81 0,013965517 

TA05560 Theileria-specific sub-telomeric 
protein, SVSP family 

-
1,773333333 

2,21E-16 0,84 0,014237288 

TA19060 conserved Theileria-specific 
sub-telomeric protein, SVSP 
family 

-1,72 2,22E-16 0,84 0,014 

TA05965 Tpr-related protein family 
member, putative 

-
1,646666667 

2,22E-16 0,84 0,013770492 

TA05555 Theileria-specific sub-telomeric 
protein, SVSP family 

-
1,766666667 

2,31E-16 0,84 0,013548387 

TA10655 hypothetical protein, conserved -
1,713333333 

2,50E-16 0,85 0,013492063 

TA17550 Theileria-specific sub-telomeric 
protein, SVSP family 

-
1,783333333 

2,56E-16 0,87 0,01359375 

TA05570 Theileria-specific sub-telomeric 
protein, SVSP family 

-
1,793333333 

2,64E-16 0,89 0,013692308 

TA03125 Tash1-like protein, putative -1,69 2,89E-16 0,94 0,014242424 

TA11415 SfiI-subtelomeric fragment 
related protein family member, 
putative 

-
1,766666667 

3,73E-16 1,01 0,015074627 

TA17540 Theileria-specific sub-telomeric 
protein, SVSP family 

-
1,763333333 

3,77E-16 1,01 0,014852941 

TA13350 hypothetical protein -1,74 4,01E-16 1,01 0,014637681 

TA04895 hypothetical protein, conserved -
1,613333333 

4,98E-16 1,05 0,015 

TA15580 hypothetical protein -1,57 5,57E-16 1,14 0,016056338 

TA11935 hypothetical protein -
1,746666667 

5,69E-16 1,16 0,016111111 

TA03120 Tash-like protein, putative -
1,636666667 

5,84E-16 1,17 0,016027397 

TA16555 hypothetical protein -
1,623333333 

6,38E-16 1,19 0,016081081 

TA05545 Theileria-specific sub-telomeric 
protein, SVSP family 

-
1,723333333 

8,30E-16 1,29 0,0172 

TA13965 hypothetical protein -
1,553333333 

1,14E-15 1,46 0,019210526 

TA09785 Theileria-specific sub-telomeric 
protein, SVSP family 

-1,7 1,30E-15 1,54 0,02 

TA17535 Theileria-specific sub-telomeric 
protein, SVSP family 

-1,64 1,31E-15 1,55 0,019871795 

TA16820 hypothetical protein -1,57 1,54E-15 1,62 0,020506329 

TA10865 Tpr-related protein family 
member, putative 

-
1,546666667 

1,56E-15 1,64 0,0205 

TA03535 hypothetical protein -
1,633333333 

1,61E-15 1,65 0,02037037 

TA09865 Theileria-specific sub-telomeric 
protein, SVSP family 

-
1,596666667 

2,04E-15 1,77 0,021585366 

TA12370 hypothetical protein, conserved -
1,516666667 

2,49E-15 1,92 0,02313253 

TA17346 hypothetical protein -1,48 3,44E-15 2,12 0,025238095 

TA04550 hypothetical protein -1,49 3,81E-15 2,14 0,025176471 
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TA10735 GATA-specific transcription 
factor, putative 

-
1,496666667 

4,85E-15 2,28 0,026511628 

TA10755 hypothetical protein, conserved -
1,473333333 

5,10E-15 2,32 0,026666667 

TA09025 hypothetical protein, conserved -
1,446666667 

5,73E-15 2,37 0,026931818 

TA03145 Tash1-like protein, putative -
1,526666667 

5,91E-15 2,39 0,026853933 

TA08365 hypothetical protein -1,44 7,29E-15 2,54 0,028222222 

TA12635 Theileria-specific hypothetical 
protein family member, putative 

-1,43 7,89E-15 2,61 0,028681319 

TA09795 Theileria-specific sub-telomeric 
protein, SVSP family 

-
1,563333333 

9,30E-15 2,72 0,029565217 

TA11390 Theileria-specific sub-telomeric 
protein, SVSP family, putative 

-
1,466666667 

1,43E-14 3,07 0,033010753 

TA11960 hypothetical P-,Q-rich family 
protein, putative 

-
1,406666667 

1,88E-14 3,34 0,035531915 

TA10770 hypothetical protein, conserved -1,36 2,18E-14 3,51 0,036947368 

TA12945 hypothetical protein, conserved -
1,393333333 

2,32E-14 3,54 0,036875 

TA12525 Theileria-specific hypothetical 
protein family member, putative 

-
1,353333333 

2,87E-14 3,75 0,038659794 

TA06330 Tpr-related protein family 
member, putative 

-
1,353333333 

3,54E-14 4,08 0,041632653 

TA06060 hypothetical protein, conserved -
1,346666667 

3,79E-14 4,26 0,043030303 

TA10800 hypothetical protein, conserved -
1,346666667 

4,20E-14 4,39 0,0439 

TA11605 hypothetical protein -
1,313333333 

4,23E-14 4,41 0,043663366 

TA12315 hypothetical protein -
1,343333333 

4,83E-14 4,63 0,045392157 

TA06355 hypothetical protein -
1,333333333 

5,05E-14 4,71 0,045728155 

TA21060 hypothetical protein -
1,326666667 

5,66E-14 4,83 0,046442308 

TA20990 hypothetical protein -
1,356666667 

5,73E-14 4,86 0,046285714 

TA13925 hypothetical protein -
1,286666667 

7,07E-14 5,22 0,049245283 

TA12580 Theileria-specific hypothetical 
protein family member, putative 

-1,3 7,43E-14 5,33 0,049813084 

TA04620 hypothetical protein, conserved -
1,313333333 

7,63E-14 5,36 0,04962963 

TA09360 hypothetical protein, conserved -
1,283333333 

7,84E-14 5,43 0,049816514 

TA03165 Tash1-like protein, putative -
1,383333333 

8,03E-14 5,46 0,049636364 

TA07725 hypothetical protein -
1,236666667 

8,06E-14 5,46 0,049189189 

TA17135 Theileria-specific sub-telomeric 
protein, SVSP family 

-
1,286666667 

8,47E-14 5,53 0,049375 

TA20460 tryptophanyl-trna synthetase, 
putative 

-1,29 8,60E-14 5,57 0,049292035 

TA18335 hypothetical protein -
1,323333333 

8,74E-14 5,6 0,049122807 

TA06360 Tpr-related protein family 
member, putative 

-
1,346666667 

8,92E-14 5,63 0,048956522 
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2.3. Full list of genes up-regulated from sporozoite to macroschizont 
obtained by Rank Product  (n=67; FDR≤0.05) 

Gene ID Annotation FC 
RP 

score 
EE FDR 

TA16900 Tpr-related protein family 
member, putative 

5,846666667 1,49E-
31 

0 0 

TA08535 Tpr-related protein family 
member, putative 

5,44 1,12E-
29 

0 0 

TA08540 Tpr-related protein family 
member, putative 

5,56 1,20E-
29 

0 0 

TA16895 Tpr-related protein family 
member, putative 

5,39 3,81E-
28 

0 0 

TA16870 Tpr-related protein family 
member, putative 

4,786666667 5,06E-
26 

0 0 

TA19865 surface protein d precursor 4,503333333 8,25E-
26 

0 0 

TA16875 Tpr-related protein family 
member, putative 

4,116666667 1,26E-
24 

0 0 

TA15705 hypothetical protein 3,75 1,32E-
23 

0 0 

TA06635 Tpr-related protein family 
member, putative 

3,37 1,48E-
23 

0 0 

TA06580 Tpr-related protein family 
member, putative 

3,236666667 4,97E-
23 

0,01 0,001 

TA16765 Tpr-related protein family 
member, putative 

3,233333333 6,92E-
23 

0,01 0,000909091 

TA06260 Tpr-related protein family 
member, putative 

3 8,45E-
22 

0,02 0,001666667 

TA10420 hypothetical protein 3,606666667 8,97E-
22 

0,02 0,001538462 

TA16790 Tpr-related protein family 
member, putative 

2,79 2,12E-
21 

0,02 0,001428571 

TA06880 Tpr-related protein family 
member, putative 

2,663333333 6,22E-
21 

0,04 0,002666667 

TA06330 Tpr-related protein family 
member, putative 

2,63 7,45E-
21 

0,04 0,0025 

TA05605 hypothetical protein, 
conserved 

3,03 1,19E-
20 

0,04 0,002352941 

TA06740 Tpr-related protein family 
member, putative 

2,62 1,67E-
20 

0,04 0,002222222 

TA06675 hypothetical protein 2,52 3,75E-
20 

0,05 0,002631579 

TA08365 hypothetical protein 2,5 4,35E-
20 

0,06 0,003 

TA19824  hypothetical protein 2,473333333 9,67E-
20 

0,08 0,003809524 

TA05965 Tpr-related protein family 
member, putative 

2,436666667 2,72E-
19 

0,11 0,005 

TA06895 Tpr-related protein family 
member, putative 

2,4 2,79E-
19 

0,11 0,004782609 

TA02905 hypothetical protein 2,39 2,97E-
19 

0,12 0,005 

TA06265 Tpr-related protein family 
member, putative 

2,28 2,85E-
18 

0,23 0,0092 

TA04235 Tpr-related protein family 
member, putative 

2,19 4,33E-
18 

0,24 0,009230769 

TA06745 Tpr-related protein family 
member, putative 

2,23 5,81E-
18 

0,28 0,01037037 

TA04240 Tpr-related protein family 
member, putative 

2,186666667 6,27E-
18 

0,28 0,01 

TA15695 hypothetical protein 2,61 6,91E-
18 

0,32 0,011034483 

TA06900 Tpr-related protein family 2,19 9,48E- 0,36 0,012 
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member, putative 18 

TA06925 hypothetical protein, 
conserved 

2,18 9,74E-
18 

0,38 0,012258065 

TA07065 chaperonin (HSP60), putative 2,106666667 1,10E-
17 

0,38 0,011875 

TA05960 Tpr-related protein family 
member, putative 

2,233333333 1,48E-
17 

0,4 0,012121212 

TA15580 hypothetical protein 2,23 2,62E-
17 

0,45 0,013235294 

TA08775 bifunctional dihydrofolate 
reductase/thymidilate 
synthase, putative 

2,003333333 6,34E-
17 

0,57 0,016285714 

TA10530 hypothetical protein 1,983333333 8,03E-
17 

0,61 0,016944444 

TA06535 hypothetical protein 2,643333333 8,82E-
17 

0,62 0,016756757 

TA16795 Tpr-related protein family 
member, putative 

2,03 9,33E-
17 

0,63 0,016578947 

TA09790 Theileria-specific sub-telomeric 
protein, SVSP family 

2,146666667 1,83E-
16 

0,73 0,018717949 

TA08675 hypothetical protein, 
conserved 

1,966666667 2,08E-
16 

0,73 0,01825 

TA13085 hypothetical protein 2,056666667 3,72E-
16 

0,89 0,021707317 

TA10475 hypothetical protein 2,096666667 6,42E-
16 

1,04 0,024761905 

TA09340 hypothetical protein, 
conserved 

1,99 6,48E-
16 

1,04 0,024186047 

TA13090 hypothetical protein 2,02 6,70E-
16 

1,06 0,024090909 

TA13970 hypothetical protein, 
conserved 

1,916666667 8,71E-
16 

1,14 0,025333333 

TA20945 ATP synthase beta chain, 
mitochondrial precursor, 
putative 

1,86 1,08E-
15 

1,27 0,027608696 

TA06400 hypothetical protein, 
conserved 

1,846666667 1,23E-
15 

1,35 0,028723404 

TA16910 hypothetical protein 1,873333333 1,26E-
15 

1,35 0,028125 

TA13330 hypothetical protein 1,866666667 1,45E-
15 

1,39 0,028367347 

TA04420 hypothetical protein 2,003333333 1,85E-
15 

1,6 0,032 

TA04450 protein disulphide isomerase, 
putative 

1,813333333 3,92E-
15 

2,08 0,040784314 

TA13990 hypothetical protein 1,916666667 4,26E-
15 

2,12 0,040769231 

TA20550 hypothetical protein 1,79 4,56E-
15 

2,15 0,040566038 

TA06670 hypothetical protein 1,78 4,83E-
15 

2,17 0,040185185 

TA08220 hypothetical protein 1,81 7,83E-
15 

2,49 0,045272727 

TA09655 hypothetical protein 1,9 7,94E-
15 

2,49 0,044464286 

TA20910 aminopeptidase n, putative 1,763333333 9,28E-
15 

2,6 0,045614035 

TA02865 Tpr-related protein family 
member, putative 

1,743333333 1,01E-
14 

2,66 0,045862069 

TA08715 bacterial histone-like protein, 
putative 

1,803333333 1,08E-
14 

2,69 0,04559322 

TA16555 hypothetical protein 1,756666667 1,29E-
14 

2,86 0,047666667 
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TA11010 hypothetical protein, 
conserved 

1,796666667 1,30E-
14 

2,87 0,04704918 

TA09805 Theileria-specific sub-telomeric 
protein, SVSP family 

1,763333333 1,40E-
14 

2,97 0,047903226 

TA13390 hypothetical protein 1,74 1,55E-
14 

3,08 0,048888889 

TA16685 polymorphic antigen precursor-
like protein, putative 

1,806666667 1,56E-
14 

3,08 0,048125 

TA08705 elongation factor 1-gamma, 
putative 

1,75 1,70E-
14 

3,2 0,049230769 

TA08580 hypothetical protein 1,713333333 1,73E-
14 

3,21 0,048636364 

TA18145 hypothetical protein 1,8 1,92E-
14 

3,28 0,048955224 

 
 
2.4. Full list of genes down-regulated from sporozoite to macroschizont 
obtained by Rank Product  (n=30; FDR≤0.05) 
Gene ID Annotation FC RP score EE FDR 

TA14205 hypothetical protein -
5,756666667 

4,96E-31 0 0 

TA19275 hypothetical protein -
5,586666667 

1,34E-30 0 0 

TA03755 sporozoite surface antigen -4,87 7,63E-27 0 0 

TA07435 SfiI-subtelomeric fragment 
related protein family member, 
putative 

-4,63 1,60E-25 0 0 

TA17055 hypothetical protein -
4,113333333 

2,19E-23 0 0 

TA03805 hypothetical protein -
4,193333333 

1,24E-22 0,01 0,001666667 

TA05870 rhoptry-associated protein, 
putative 

-
4,116666667 

1,61E-22 0,01 0,001428571 

TA08520 hypothetical protein -3,93 6,67E-22 0,02 0,0025 

TA21080 Map2 kinase, putative -3,94 6,71E-22 0,02 0,002222222 

TA16420 hypothetical protein -3,81 7,55E-22 0,02 0,002 

TA03475 hypothetical protein -
3,763333333 

2,89E-21 0,03 0,002727273 

TA18005 hypothetical protein -
3,756666667 

3,21E-21 0,03 0,0025 

TA14210 hypothetical protein -
3,596666667 

7,35E-21 0,04 0,003076923 

TA21400 hypothetical protein -
3,603333333 

1,11E-20 0,04 0,002857143 

TA03290 hypothetical protein -3,72 1,71E-20 0,04 0,002666667 

TA21395 hypothetical protein -
3,573333333 

2,74E-20 0,05 0,003125 

TA07305 hypothetical protein -3,57 5,91E-20 0,06 0,003529412 

TA08360 hypothetical protein, conserved -3,48 6,39E-20 0,06 0,003333333 

TA04825 hypothetical protein, conserved -
3,543333333 

1,59E-19 0,1 0,005263158 

TA07630 hypothetical protein, conserved -
3,563333333 

1,90E-19 0,11 0,0055 

TA17595 SfiI-subtelomeric fragment 
related protein family member, 
putative 

-
3,506666667 

2,60E-19 0,11 0,005238095 

TA16155 hypothetical protein -
3,313333333 

3,58E-19 0,12 0,005454545 

TA19675 hypothetical protein -
3,406666667 

4,28E-19 0,12 0,005217391 

TA05340 hypothetical protein, conserved -3,49 4,62E-19 0,12 0,005 
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TA11285 hypothetical protein -3,35 5,02E-19 0,12 0,0048 

TA04820 hypothetical protein, conserved -
3,396666667 

5,26E-19 0,12 0,004615385 

TA11905 hypothetical protein -
3,353333333 

6,01E-19 0,13 0,004814815 

TA04795 hypothetical protein -
3,356666667 

9,29E-19 0,13 0,004642857 

TA16660 hypothetical protein, conserved -3,46 9,66E-19 0,13 0,004482759 

TA13045 hypothetical protein, conserved -
3,423333333 

1,09E-18 0,14 0,004666667 

 
 
2.5. Full list of genes up-regulated from merozoite to piroplasm obtained by 
Rank Product (n=24; FDR≤0.05). 
Gene ID Annotation FC RP 

score  
EE FDR 

TA03870 hypothetical protein 4,273333 6,20E-
33 

0 0 

TA09365 hypothetical protein 3,736667 3,21E-
29 

0 0 

TA13885 hypothetical protein 3,206667 3,80E-
27 

0 0 

TA09050 hypothetical protein 3,36 4,69E-
27 

0 0 

TA20315 Theileria-specific hypothetical 
protein 

3,226667 1,46E-
26 

0 0 

TA05015 hypothetical protein 2,896667 2,92E-
25 

0 0 

TA07130 hypothetical protein 2,576667 3,23E-
24 

0 0 

TA05025 hypothetical protein 2,5 6,93E-
24 

0 0 

TA05525 SfiI-subtelomeric fragment related 
protein family member, putative 

2,703333 1,23E-
23 

0 0 

TA03730 cysteine proteinase precursor, 
tacP 

1,986667 2,49E-
20 

0,03 0,003 

TA02715 hypothetical protein 2,043333 2,65E-
20 

0,03 0,002727 

TA13515 hypothetical protein, conserved 1,88 1,75E-
19 

0,06 0,005 

TA15095 Tpr-related protein family member, 
putative 

1,973333 3,84E-
19 

0,07 0,005385 

TA11810 hypothetical protein 1,803333 7,10E-
19 

0,11 0,007857 

TA17605 SfiI-subtelomeric fragment related 
protein family member, putative 

1,896667 1,10E-
18 

0,15 0,01 

TA08875 hypothetical protein 1,85 1,65E-
18 

0,15 0,009375 

TA17500 SfiI-subtelomeric fragment related 
protein family member, putative 

1,763333 8,41E-
18 

0,29 0,017059 

TA09675 hypothetical protein 1,713333 1,43E-
17 

0,33 0,018333 

TA07305 hypothetical protein 1,646667 3,20E-
17 

0,43 0,022632 

TA09205 leucine carboxyl 
methyltransferase, putative 

1,683333 6,56E-
17 

0,56 0,028 

TA03750 cysteine proteinase precursor, 
tacP 

1,61 1,11E-
16 

0,65 0,030952 

TA09450 SfiI-subtelomeric fragment related 
protein family member, putative 

1,723333 1,52E-
16 

0,7 0,031818 

TA08370 hypothetical protein, conserved 1,55 3,59E-
16 

0,9 0,03913 
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TA03115 Tash-like protein, putative 1,543333 5,48E-
16 

1,02 0,0425 

 
  
2.6. Full list of genes down-regulated from merozoite to piroplasm obtained 
by Rank Product  (n=20; FDR≤0.05). 

Gene ID Annotation FC 
RP 

score 
EE FDR 

TA20985 hypothetical protein -2,09333 9,02E-
25 

0 0 

TA14665 hypothetical protein -2,12667 4,33E-
24 

0 0 

TA14945 hypothetical protein -1,91 2,39E-
23 

0 0 

TA20590 phosphoenolpyruvate 
carboxykinase, putative 

-1,70667 7,06E-
22 

0,01 0,0025 

TA11915 hypothetical protein -2,22667 1,10E-
20 

0,02 0,004 

TA14680 hypothetical protein -1,57667 1,02E-
19 

0,05 0,008333 

TA02750 pepsinogen, putative -1,61333 1,14E-
19 

0,05 0,007143 

TA12045 membrane protein family member, 
putative 

-1,49667 3,55E-
18 

0,2 0,025 

TA17865 Theileria-specific integral 
membrane protein, putative 

-1,67 8,41E-
18 

0,29 0,032222 

TA05760 rhoptry-associated protein, 
putative 

-1,4 1,49E-
17 

0,34 0,034 

TA08220 hypothetical protein -1,3 1,52E-
17 

0,34 0,030909 

TA03860 pepsinogen, putative -1,38333 2,83E-
17 

0,41 0,034167 

TA04460 Tpr-related protein family member, 
putative 

-1,35333 3,90E-
17 

0,45 0,034615 

TA08345 hypothetical protein -1,42333 5,32E-
17 

0,53 0,037857 

TA11905 hypothetical protein -1,72333 1,15E-
16 

0,66 0,044 

TA05045 hypothetical protein -1,39667 1,18E-
16 

0,66 0,04125 

TA13535 hypothetical protein -1,37333 2,57E-
16 

0,8 0,047059 

TA17365 (subtelomeric) ABC-transporter 
protein family member, putative 

-1,37333 3,06E-
16 

0,83 0,046111 

TA20325 integral membrane protein, 
putative 

-1,29333 3,33E-
16 

0,86 0,045263 

TA03840 hypothetical protein -1,23 4,14E-
16 

0,93 0,0465 

 
 
 
2.7. Full list of genes up-regulated from piroplasm to sporozoite obtained by 
Rank Product  (n=57; FDR≤0.05). 

Gene ID Annotation FC 
RP 

score 
EE FDR 

TA17485  3,556666667 3,00E-27 0 0 

TA09505 SfiI-subtelomeric fragment 
related protein family 
member, putative 

3,316666667 5,31E-25 0 0 

TA10650 hypothetical protein 3,266666667 3,06E-24 0 0 

TA16700 SfiI-subtelomeric fragment 3,146666667 3,59E-24 0 0 
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related protein family 
member, putative 

TA17346  3,116666667 3,62E-24 0 0 

TA11400 SfiI-subtelomeric fragment 
related protein family 
member, putative 

3,286666667 4,06E-24 0 0 

TA11940 hypothetical protein 3,21 1,29E-23 0 0 

TA03290 hypothetical protein 2,96 1,30E-22 0,01 0,00125 

TA18750 Theileria-specific hypothetical 
protein 

3,13 1,48E-22 0,01 0,001111111 

TA11405 subtelomeric sfi-fragment-
related protein family 
member, putative 

3,116666667 4,59E-22 0,02 0,002 

TA12045 membrane protein family 
member, putative 

2,706666667 4,68E-22 0,02 0,001818182 

TA18540 hypothetical protein 2,83 1,48E-21 0,02 0,001666667 

TA17550 Theileria-specific sub-
telomeric protein, SVSP 
family 

2,806666667 9,16E-21 0,02 0,001538462 

TA16020 hypothetical protein 2,9 1,08E-20 0,02 0,001428571 

TA03755 sporozoite surface antigen 2,63 2,53E-20 0,04 0,002666667 

TA14995 hypothetical protein 2,493333333 6,97E-20 0,06 0,00375 

TA05540 Theileria-specific sub-
telomeric protein, SVSP 
family 

2,653333333 9,16E-20 0,06 0,003529412 

TA17375 polymorphic antigen 
precursor, putative 

2,67 9,56E-20 0,06 0,003333333 

TA12195 subtelomeric sfi-fragment-
related protein family 
member, putative 

2,68 6,10E-19 0,1 0,005263158 

TA15555 hypothetical protein, 
conserved 

2,626666667 6,15E-19 0,1 0,005 

TA09510 SfiI-subtelomeric fragment 
related protein family 
member, putative 

2,52 8,00E-19 0,11 0,005238095 

TA05580 Theileria-specific sub-
telomeric protein, SVSP 
family 

2,563333333 2,36E-18 0,14 0,006363636 

TA17555 Theileria-specific sub-
telomeric protein, SVSP 
family 

2,44 3,22E-18 0,17 0,007391304 

TA18535 hypothetical protein 2,416666667 1,17E-17 0,27 0,01125 

TA19275 hypothetical protein 2,283333333 1,67E-17 0,31 0,0124 

TA13350 hypothetical protein 2,466666667 2,03E-17 0,33 0,012692308 

TA11915 hypothetical protein 2,446666667 2,99E-17 0,38 0,014074074 

TA12250 hypothetical protein 2,123333333 4,13E-17 0,47 0,016785714 

TA02735 SfiI-subtelomeric fragment 
related protein family 
member, putative 

2,15 4,47E-17 0,5 0,017241379 

TA05555 Theileria-specific sub-
telomeric protein, SVSP 
family 

2,356666667 5,30E-17 0,52 0,017333333 

TA19800 hexokinase 1, putative 1,92 5,38E-17 0,52 0,016774194 

TA03150 Tash1-like protein, putative 2,37 1,12E-16 0,63 0,0196875 

TA12450 hypothetical protein 1,913333333 1,54E-16 0,68 0,020606061 

TA12370 hypothetical protein, 
conserved 

1,883333333 2,36E-16 0,76 0,022352941 

TA13595 hypothetical protein 1,993333333 2,84E-16 0,83 0,023714286 

TA09435 Theileria-specific sub-
telomeric protein, SVSP 
family, putative 

2,346666667 3,01E-16 0,84 0,023333333 

TA08520 hypothetical protein 2,1 3,14E-16 0,86 0,023243243 
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TA12945 hypothetical protein, 
conserved 

2,196666667 3,47E-16 0,88 0,023157895 

TA12840 hypothetical protein 2,176666667 5,47E-16 1,01 0,025897436 

TA03805 hypothetical protein 2,036666667 6,87E-16 1,1 0,0275 

TA06060 hypothetical protein, 
conserved 

1,723333333 7,64E-16 1,13 0,027560976 

TA12140 subtelomeric sfi-fragment-
related protein family 
member, putative 

2,28 8,55E-16 1,15 0,027380952 

TA11910 hypothetical protein 2,24 9,38E-16 1,22 0,028372093 

TA03615 hypothetical protein 1,923333333 9,70E-16 1,22 0,027727273 

TA03130 Tash(AT)-like protein, putative 2,253333333 1,13E-15 1,31 0,029111111 

TA10735 GATA-specific transcription 
factor, putative 

2,013333333 1,21E-15 1,32 0,028695652 

TA16040 Theileria-specific sub-
telomeric protein, SVSP 
family, putative 

2,14 1,29E-15 1,33 0,028297872 

TA09360 hypothetical protein, 
conserved 

2,096666667 1,32E-15 1,36 0,028333333 

TA12760 hypothetical protein 2,02 2,59E-15 1,72 0,035102041 

TA13965 hypothetical protein 1,94 5,89E-15 2,23 0,0446 

TA12275 SfiI-subtelomeric fragment 
related protein family 
member, putative 

1,973333333 6,69E-15 2,37 0,046470588 

TA17540 Theileria-specific sub-
telomeric protein, SVSP 
family 

2,1 6,73E-15 2,37 0,045576923 

TA04830 hypothetical protein, 
conserved 

1,633333333 6,85E-15 2,37 0,044716981 

TA14205 hypothetical protein 2,15 7,00E-15 2,37 0,043888889 

TA04895 hypothetical protein, 
conserved 

1,946666667 9,88E-15 2,68 0,048727273 

TA04470 hypothetical protein 1,696666667 9,92E-15 2,68 0,047857143 

TA05455 ABC transporter, putative 1,996666667 1,16E-14 2,84 0,049824561 

 
 
2.8. Full list of genes down-regulated from piroplasm to sporozoite obtained 
by Rank Product  (n=35; FDR≤0.05). 
Gene ID Annotation FC RP score  EE  FDR  

TA16900 Tpr-related protein family 
member, putative 

-
5,216666667 

1,61E-29 0 0 

TA08535 Tpr-related protein family 
member, putative 

-
5,166666667 

1,79E-29 0 0 

TA08540 Tpr-related protein family 
member, putative 

-
5,066666667 

2,01E-28 0 0 

TA16895 Tpr-related protein family 
member, putative 

-
4,836666667 

5,61E-27 0 0 

TA16870 Tpr-related protein family 
member, putative 

-
4,663333333 

2,73E-26 0 0 

TA13885 hypothetical protein -
4,453333333 

1,72E-25 0 0 

TA09365 hypothetical protein -3,72 2,79E-24 0 0 

TA16765 Tpr-related protein family 
member, putative 

-4,1 6,27E-24 0 0 

TA16875 Tpr-related protein family 
member, putative 

-3,99 1,45E-23 0,01 0,001111111 

TA06635 Tpr-related protein family 
member, putative 

-
3,993333333 

1,56E-23 0,01 0,001 

TA03870 hypothetical protein -3,59 2,98E-23 0,01 0,000909091 

TA16790 Tpr-related protein family 
member, putative 

-3,82 4,90E-23 0,01 0,000833333 
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TA06745 Tpr-related protein family 
member, putative 

-
3,403333333 

4,74E-22 0,02 0,001538462 

TA16795 Tpr-related protein family 
member, putative 

-
3,333333333 

6,72E-22 0,02 0,001428571 

TA05605 hypothetical protein, conserved -3,13 1,78E-21 0,02 0,001333333 

TA06740 Tpr-related protein family 
member, putative 

-3,24 2,13E-21 0,02 0,00125 

TA20315 Theileria-specific hypothetical 
protein 

-
3,186666667 

4,04E-21 0,02 0,001176471 

TA06895 Tpr-related protein family 
member, putative 

-3,16 4,89E-21 0,02 0,001111111 

TA06535 hypothetical protein -
3,173333333 

1,18E-20 0,02 0,001052632 

TA09675 hypothetical protein -
2,883333333 

3,31E-20 0,05 0,0025 

TA06900 Tpr-related protein family 
member, putative 

-
2,913333333 

3,68E-20 0,06 0,002857143 

TA16685 polymorphic antigen precursor-
like protein, putative 

-
2,943333333 

4,37E-20 0,06 0,002727273 

TA18875 SfiI-subtelomeric fragment 
related protein family member, 
putative 

-
2,773333333 

8,49E-20 0,06 0,002608696 

TA06580 Tpr-related protein family 
member, putative 

-
2,806666667 

1,01E-19 0,07 0,002916667 

TA06880 Tpr-related protein family 
member, putative 

-2,71 1,74E-19 0,07 0,0028 

TA08285 Tpr-related protein family 
member, putative 

-2,77 2,41E-19 0,08 0,003076923 

TA05015 hypothetical protein -2,64 3,38E-19 0,09 0,003333333 

TA14645 Tpr-related protein family 
member, putative 

-
2,653333333 

4,44E-19 0,09 0,003214286 

TA21045 hypothetical protein -
2,626666667 

4,49E-19 0,09 0,003103448 

TA06330 Tpr-related protein family 
member, putative 

-
2,566666667 

1,11E-18 0,11 0,003666667 

TA08370 hypothetical protein, conserved -
2,503333333 

1,17E-18 0,11 0,003548387 

TA02865 Tpr-related protein family 
member, putative 

-
2,476666667 

1,70E-18 0,13 0,0040625 

TA13515 hypothetical protein, conserved -2,55 2,11E-18 0,13 0,003939394 

TA09050 hypothetical protein -
2,453333333 

2,88E-18 0,17 0,005 

TA08360 hypothetical protein, conserved -
2,463333333 

2,97E-18 0,17 0,004857143 
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Appendix 3  - T. annulata DNA motifs identified in Chapter 3  
 
3.1.Top 3 motifs identified by MEME in the 5` intergenic  regions of the 100 
most up-regulated genes during macroschizont to merozoite stage 
differentiation in T. annulata. 

 
 

 

 

3.2. Top 3 motifs identified by MEME in 5’ intergenic regions of the 100 most 
down-regulated genes during differentiation of the macroschizont to 
merozoite stage in T. annulata. 
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3.3. Top 3 motifs identified by MEME in the 3` intergenic  regions of the 100 
most up-regulated genes during macroschizont to merozoite stage 
differentiation in T. annulata. 

 
 
 
 
3.4. Top 3 motifs identified by MEME in 3’ intergenic regions of the 100 most 
down-regulated genes during differentiation of the macroschizont to 
merozoite stage in T. annulata. 
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3.5. Top 3 motifs identified by MEME in 5’ intergenic regions of ApiAP2 genes 
of T. annulata in macroschizont to merozoite stage.  

 
 

 
 
3.6. Top 3 motifs identified by MEME in 5’ intergenic regions of other 
transcription factors  of T. annulata in macroschizont to merozoite stage. 
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3.7. Top 3 motifs identified by MEME in 5’ intergenic regions of T. annulata 
constitutive genes from macroschizont to merozoite stage 
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3.8. Full alignment of upstream sequences of T. annulata and T. parva 

orthologues of TA12015. Highlighted in red ApiAP2 motifs. Highlighted 

in red binding motifs predicted for up-regulated AP2 factors (TA11145 - 

(A)CACAC(A); TA12015 –G/C-box; TA13515 – GTAC; TA16485 – 

TCTA(C/T)A). 
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3.9. Full alignment of upstream sequences of T. annulata and T. parva 

orthologues of TA11145. Highlighted in red binding motifs predicted for 

up-regulated AP2 factors (TA11145 - (A)CACAC(A); TA12015 –G/C-box; 

TA13515 – GTAC; TA16485 – TCTA(C/T)A). 
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3.10.  Full alignment of upstream sequences of T. annulata and T. parva 

orthologues of TA13515. Highlighted in red AP2 motifs. 
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3.11. Full alignment of upstream sequences of T. annulata and T. parva 
orthologues of TA16485. Highlighted in red binding motifs predicted for 
up-regulated AP2 factors (TA11145 - (A)CACAC(A); TA12015 –G/C-box; 
TA13515 – GTAC; TA16485 – TCTA(C/T)A). 
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Appendix 4 – qRT-PCR results of (A)CACAC(A) binding 
TaApiAP2s from Chapter 4 
 
4.1. Comparison of relative expression levels of TA11145 vs TA07100 in D7 

and D7B12 cell lines. Expression of TA07100 is significantly higher than 

TA11145 in both cell lines, and expression of TA11145 relative to TA07100 

at Day 0 is significantly lower in the D7B12 cell line (9.5 log2 fold 

reduction) compared to D7 cell line (5 log2 reduction) – 16 fold change 

absolute. 

. 

 
 

 

 

 


