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Abstract. This paper reports on experiments conducted as part of the DARPA SDR (Software
for Distributed Robotics) program. The core challenge for this program is to develop a system
capable of carrying out ‘locate-and-protect’ missions: the system must be able to deploy
a large number of robots into an unexplored building, map the building interior, locate a
valued object, detect and track intruders, and transmit all of the above information to a remote
observer/operator. To satisfy these requirements, we have developed a large heterogeneous
robot team consisting of approximately 80 robots. This paper sketches the key technical
elements of this system, and presents selected results from externally supervised experiments
conducted in a 600 m2 indoor environment.

1 Introduction

This paper describes a multi-robot system designed to meet a very strict set of
requirements: to explore and map a single story in a large indoor environment, to
detect a valued object, to deploy a sensor network and to use this network to track
intruders within the building. This system must also operate autonomously, and
employ as many robots as possible. These are the specific requirements imposed the
DARPA SDR (Software for Distributed Robotics) locate-and-protect mission.

To meet this challenge, we have constructed a large robot team consisting of
approximately 80 robots. Cost and power considerations dictate that the bulk of
these robots should be relatively simple (i.e., with minimal sensor and computation
capabilities). The robots must, however, retain the ability to make maps of the
environment, detect valued objects, and navigate safely – tasks that would normally
require the use of expensive ranging sensors such as scanning laser range-finders or
stereo vision. To solve this apparent conundrum, we have adopted a heterogeneous
approach, utilizing three distinct classes of robots with varying capabilities. The team
therefore consists of: a small number of highly capable mapping robots equipped
with scanning laser range-finders, cameras and unique fiducials; a small number of
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Fig. 1. (a) The heterogeneous robot team, with three classes of robots (mapper, leader and
sensor); the sensor robots are based on the ActivMedia AmigoBot. (b) The mapping sub-
team: note each of the four robots carries a unique laser-visual fiducial; these fiducials can be
detected and identified at ranges in excess of 8m, and the relative range and bearing of the
robots can be determined to within a few centimeters and a few degrees, respectively.

slightly less-capable leader robots equipped with scanning laser range-finders and
cameras; and a large number (approximately 70) of simple sensor robots equipped
with a microphone and a crude camera. All of the robots are have 802.11b WiFi, and
a modified ad-hoc routing package (AODV) is used to ensure network connectivity.

With this heterogeneous team, the locate-and-protect mission is divided into two
distinct phases: exploration and mapping, and deployment and detection. For the first
phase, the mapping sub-team explores the environment, acquires an occupancy grid
and locates the valued object. Exploration is coordinated, and mutual observations
are used to solve difficult correspondence problems (the mapping robots observe
one other, and thereby identify loops in the environment). In the second phase, the
acquired map is used to compute a set of deployment locations, and the simple sensor
robots are deployed to these locations using an assistive navigation technique. That
is, since the sensor robots are not capable of navigating by themselves, they are
guided into position by the more capable leader robots. Once deployed, the sensor
robots collaborate to form a distributed acoustic sensor network that tracks audible
targets moving through the environment.

In the sections that follow, we consider these two phases in greater detail. We
also describe selected experiments used to validate the system; these experiments
are distinguished by the fact that they were carried out under external supervision.
Specifically, an independent government team selected and prepared the experimen-
tal site and supervised the conduct of experiments (monitoring completion times,
user interventions, code modifications and so on). At no time during the experiments
were operators allowed to enter the site, and prior access was limited to certain pre-
scribed areas. Thus, at the outset, most of the environment was genuinely unknown
to the human operators.
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2 Exploration and Mapping

For exploration, we employ a fully decentralized frontier-based approach [1,10],
using local occupancy grids and minimal communication between the robots. This
exploration algorithm is fairly elementary, and will not be treated in detail here;
we note only that the algorithm scales linearly with team size, ensures minimal
interference between robots, and achieves asymptotic coverage of the environment.

Some results from the final experiments are plotted in Figure 2(a). This plot shows
the net area explored by a team of four robots as a function of total distance traveled
(i.e., the sum of the distances traveled by all four robots). Note the rapid initial
exploration, followed by slow convergence to full coverage; the latter is product of
the strictly local nature of the algorithm: robots are not using global knowledge,
and are not sharing information about previously explored areas. Faster convergence
may be possible with the addition of global knowledge and/or coordination, albeit
at the cost of increased system complexity.

In contrast with exploration, the mapping algorithm employs both centralized
and decentralized components. Each robot in the team uses an incremental SLAM
algorithm to maintain an independent local pose estimate; laser scan data is used
to correct most, but not all, of the odometric drift. These independent local pose
estimates (along with the raw laser scan data) are transmitted to a remote console,
where they are combined and corrected to form single map of the environment. We
will consider each of these two components in turn.

For estimating local pose, each robot employs an incremental maximum likeli-
hood filter [9] that is similar in spirit – if not in detail – to that described in [3]. The
state vector for this filter consists of two components: a local pose estimate and a lo-
cal map. Roughly speaking, the local map is simply a finite-length queue containing
recent laser scan data; each incoming scan is fitted against this local map (using a
dense scan-matcher), thereby inducing an updated pose estimate for the robot. This
estimate will, of course, drift over time (an unavoidable feature of every incremental
method); the drift rate, however, is one or two orders of magnitude slower than that
seen with odometry alone. See, for example, the results plotted in Figure 2(b): while
the odometry estimates quickly diverge, the error in the local pose estimate is less
than less 0.1 m after 100 m of travel.

There is no attempt by individual robots to close loops or merge data from other
robots; this is the role of the remote console, which aggregates local pose estimates
and range scans from each of the mapping robots into a central repository. The overall
map is assembled from this data using a global SLAM algorithm that is built around
three key technologies: maximum likelihood estimation, manifold representations
and loop closure using mutual observation.

Maximum likelihood estimation (MLE) is used to generate globally consistent
maps; put simply, MLE determines the set robot trajectories that minimizes the incon-
sistency between overlapping laser scans [5]. In practice, this is a high-dimensional
optimization problem that must be solved using sparse graph-based representations
and numerical optimization algorithms (modern algorithms allow simultaneous op-
timization over hundreds of variables and thousands of constraints). In this context,
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Fig. 2. (a) Coverage plot for four robots: the plot shows the area explored by the robots as
a function of the total distance traveled; coverage is determined by a post-hoc analysis of
the data, once a complete map is available. (b) Comparison of robot pose estimates using
odometry and incremental SLAM; the incremental pose error is less that 0.1 m after 100 m of
travel. Note that the ground-truth trajectory is determined post-hoc using a global localization
algorithm and a complete map of the environment.

it should be noted that the use of local pose estimates in the place raw odometry
greatly simplifies the optimization problem, as the local and global estimates diverge
comparatively slowly.

For this project, we have made one important extension to the basic MLE formal-
ism: instead of treating the map as a two-dimensional planar structure, we represent
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Fig. 3. A manifold map representation, before and after loop closure. The manifold is a self-
consistent – but redundant – representation, in which the same point in the world may appear
more than once on the manifold. (a) Robots at remote locations in the manifold observe that
they are proximal in the world (i.e., the robots detect one another using their sensors). (b) This
information is propagated through the manifold, allowing the loop to be closed.

it using a two-dimensional manifold [4]. Unlike planar representations, the man-
ifold representation is always self-consistent irrespective of whether or not loops
have been closed. To achieve this self-consistency, the manifold representation must
sacrifice uniqueness; i.e., a single location in the world may be represented more
than once in the manifold (see Figure 3). Thus, in this representation, loop closure
is reduced to the problem of identifying and bringing together those points on the
manifold that represent the same point in the world.

To recognize such points, we make use of mutual observations: if two robots
are far apart on the manifold, but are proximal in the world (i.e., they can see one
another), we can infer a new set of correspondence points and close the loop. It should
be noted that this active, multi-robot approach to loop closure entirely side-steps the
hard correspondence problems that bedevil global SLAM algorithms.

Exploration and Mapping Results

Five exploration and mapping trials were performed under government supervi-
sion, all of which resulted in successful map generation. The first three trials were
performed with identical software and initial conditions; the final two trials were
performed under ‘challenge’ conditions designed to test the system envelope.

The most difficult of the challenge conditions involved a team of four mapping
robots deployed from two different locations (i.e., two robots from each of two
entry points). Since the relative pose of the two entry points was unknown, each
pair of robots was required to explore and map independently, giving rise to two
unconnected maps or ‘islands’. After approximately 10 minutes, however, the two
teams encountered one another, and as a result of this mutual observation, the two
maps were merged into one. The combined robot team then proceeded to complete
the exploration task, yielding the final occupancy grid map shown in Figure 4.
It should be emphasized that this exploration and mapping process was entirely
autonomous, with the exception of a single user intervention to direct a robot into
the otherwise unexplored room at the bottom left of the map (this intervention was
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Fig. 4. Occupancy grid map produced during a multiple-robot, multiple-entry trial: two robots
entered from the door at the right top, another two robots entered from the door at the
right bottom (the relative pose of the two doorways was unknown). The environment is
approximately 45 by 25 meters in size, with an internal area of 600 m2.

not strictly necessary, was performed to achieve faster map completion). Maps were
generated in real time, for an environment approximately 600 m2 in size. Map
accuracy is comparable to or better than that achieved by a human survey team using
a tape-measure, pencil and paper.

3 Deployment and Detection

The intruder detection and tracking task requires the deployment of a large number
of simple sensor robots. These robots have low-fidelity microphones to serve as
a distributed acoustic sensor network, but no sensors for localization or obstacle
avoidance. Because they cannot navigate safely on their own, our approach provides
cooperative assistive navigation to the sensor robots through the use of more capable
leader robots. Using the map generated in the first phase, these leader robots are able
localize themselves and guide the sensor robots to their deployment positions. The
basic method is as follows: sensor robots are assembled into chains behind a leader
using simple color blob tracking (multi-robot follow-the-leader); once a deployment
destination is reached, a single robot in the chain is autonomously ‘tele-operated’
by the leader to the correct position, using the camera mounted on the leader; the
leader and the remaining chain then proceed to the next deployment position. Thus,
the leader visits a series of locations in turn, and deploys a single sensor robot at
each. Figure 5 shows a series of snapshots of our navigational assistance system in
operation. Details of this deployment strategy are reported in [7].

With this heterogeneous cooperative approach, it is important to develop a
thoughtful deployment strategy to ensure that the sensor robots will be positioned in
the desired distribution. An especially challenging problem is for the leader robots to
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follow paths that the simple robots can follow, to ensure that the sensor robots reach
their desired positions while moving in a follow-the-leader formation. Obviously,
the navigational challenges grow if the leader robots move to random sensor node
deployment positions without taking into account the formation of robots that is
following behind. Our approach begins with four planning steps. Step 1 generates
the planned sensor deployment positions to meet several criteria, including mini-
mizing pathway obstruction, achieving a minimum distance between sensor robots,
and maximizing visibility coverage. Step 2 then generates the waypoints of the path
that the leader robot must follow to guide the sensor robots to the vicinity of the
sensor deployment positions. Figure 6 shows a set of autonomously planned sensor
and leader waypoint positions for the earlier map. Since each leader robot can only
deploy a few sensor robots at a time, and since several leader robots are available
to operate in parallel, Step 3 divides the sensor deployment positions into groups to
facilitate the deployment operation. Each group of positions is assigned to a team
(consisting of one leader robot and several sensor robots) for deployment. The team
assignments are generated to achieve the objectives of: (1) minimizing travel by the
deployment teams, (2) minimizing interference between teams, and (3) minimizing
the amount of turning a team must perform as it travels to all of its assigned deploy-
ment positions. The traffic management of Step 4 incorporates deployment delays to
coordinate multiple deployment teams operating in parallel, similar to [2]. Details
of Steps 1-3 of the planning process are reported in [8].

Once the acoustic sensor robots have been deployed, they activate their dis-
tributed acoustic sensor net to detect targets that are moving through the environ-
ment. Figure 7 shows these robots deployed in the planned sensor net positions and
acting as this sensor network. Since our sensor robots are equipped with only a very
simple microphone, we assume that the target moving through the environment is
making some detectable noise, and that the target is the only source of sound. Our
approach involves each robot filtering its acoustic data and then communicating its
volume heard to its local neighbors. The robot that detects the highest volume in
its neighborhood (above a threshold) reports its own position as the current target
position estimate to the operator control unit. Details of this distributed acoustic
sensor network process are reported in [6].

Deployment and Detection Results

In three separate trials supervised by the government team, our distributed acoustic
sensor network achieved 100% detection of targets in the environment (all targets
we localized to the correct room or corridor) with no false positives; these trials
involved 3 leaders and up to 35 sensor robots. Clearly, these results show that the
planned sensor positions and the distributed acoustic sensor processing worked well
for the objectives of these experiments.

Another metric of evaluation is the percentage of sensor robots successfully
deployed (i.e., the ratio of successful deployments to attempted deployments). Our
experimental data shows an overall deployment success rate of 60% - 90%, de-
pending upon the environmental characteristics. In other words, for each attempt
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at deploying a simple robot, 60% - 90% of those robots successfully reached their
planned deployment position. The reason for the low end of this success rate is
the complexity of our heterogeneous robot system. Our system for simple robot
deployment is composed of several non-trivial modules, including localization, path
planning, navigation, leader following, visual marker detection, and inter-robot com-
munication. The successful completion of the entire deployment process depends
upon the successful completion of all of the system modules while the robots are
operating in cluttered environments along complex paths. Additionally, the indepen-
dent experimentation reported here was especially challenging because we forced
the robot team to deal with the consequences of prior deployment failures. Thus,
subsequent robot team deployments had to deal with situations such as partially
blocked doorways if a prior deployment resulted in a simple robot being caught on
the doorway. If all the test runs had been independent, the overall system success
rate would certainly have been higher.

Clearly, there are many potential failure modes in such a complex heterogeneous
system involving such a large number of robots. The most common failure modes
of the system were caused by variable lighting conditions (which could cause the
sensor node robots to lose the color blobs, or the leader robots to lose the visual
marker for autonomous tele-operation), cluttered environments (which could cause
the follower sensor node robots to lose the leader robot amidst many navigational
twists and turns), and communications failures (due to delays in multi-hops in the
wireless ad-hoc network). To account for these potential subsystem failures, we built
extensive fault tolerance into the behavior of the leader robot. Table 1 shows the set
of base failure states identified for this system and the implemented recovery action.
Using these methods of behavior fault tolerance, the success rate of the leader robots
making it back home autonomously in these rigorous experiments was 91% (over
45 trials).

Table 1. Failure states detected by the leader robot and implemented recovery actions.

Failure Type Fault Recovery Action
Can’t reach waypoint Re-plan path.

Lost simple robot Leave lost robot in wait state and move on to next robot in chain.
Leader robot Leave simple robot(s) in wait state, send camera failure

camera failure feedback to human operator and return home.
Simple robot Check if simple robot is close to goal; if so, change
motor failure simple robot state to sensor detection and proceed;

else, leave simple robot in wait state and proceed.
Localization drift Check if simple robot is close enough to goal; if so, change

simple robot state to sensor detection and proceed;
else, leave simple robot in wait state and proceed;

Lost marker Leave simple robot in wait state and move on to next robot in chain.
Communication failure Return back home.
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Fig. 5. Deployment of a sensor robot using assistive navigation: the lead robot first guides and
then directs the sensor robot into position.

Fig. 6. Autonomously planned sensor net positions (black squares) and planned leader way-
points associated with each sensor position (small dots).

Fig. 7. Physical robots deployed according to the results of the autonomous planning process
for the environment shown in Figure 6.

4 Conclusion

In our view, the SDR project has established two new benchmarks in the field of
multi-robot systems: this is by far the most complex task ever demonstrated by a
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large heterogeneous robot team, and by far the most rigorous set of experimental
conditions. It should also be noted that while much of our work on this project was
necessarily focused on robust engineering, we are confident that the products of this
engineering (such as algorithms for multi-robot mapping) will quickly find broader
application within the robotics community.
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