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Abstract

Game Semantics arguably stands for one of the most successful techniques in
denotational semantics, having provided not only proper denotational, accurate

models for a large variety of programming languages, but also new semantical

tools for program verification and validation. Most of all, over the last couple
of decades, game semantics has contributed a novel understanding of compu-

tations, namely as functions with inner structure, the latter being described as
interaction between two players— the Program and the Environment.

On the other hand, Nominal Computation is a key theme within the Theory of

Computation which has not been adressed semantically in a satisfactory man-

ner. The significance of nominal computation is clearly depicted in the ubiquity
of names in computational scenarios: names form the basis of many calculi of

mobile processes; appear in network protocols and secure transactions; and are
generally essential in programming for identifying variables, channels, threads,

objects, codes, and many other sorts of name in disguise.

This thesis examines nominal game semantics, that is, game semantics for nomi-
nal computation. Our starting point is the basic nominal language, the ν-calculus,

which we model in a basic category of nominal games. The construction of nom-

inal games is based on recent advances in game semantics, and also on the the-
ory of Nominal Sets, which serves as a general foundation for reasoning about

names.

Our main focus is on languages extending the basic nominal language by use of
names for general references and exceptions. These languages faithfully reflect

the practice and reach the expressivity of programming languages such as ML;
moreover, their full-abstraction problems had not been solved previously in a

fully satisfactory manner. Such solutions we provide herein. We first devise

abstract categorical models for these languages, and then construct fully abstract
models in nominal games.
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Chapter 1

Introduction

A focal point in Computer Science is the semantics of programs, i.e. What does a program re-
ally mean? Afirst answer to the question is given bymeans of the machine code produced by

a compiler. However, this description is problematic if we are interested in a semantics in-

dependent of hardware and compiler design, revealing of the essence of computation hidden
behind the implementation; a more abstract semantics is needed. In this direction, Opera-

tional Semantics considers programs as executing on an abstract, high-level computational
environment. The semantics of a program is then its observable behaviour in this environment.

Two programs are observationally equivalent if they have indistinguishable behaviours. This

procedural description of computation at a level of abstraction that is both useful and intu-
itive is by and large thought of as giving the intended semantics of a programming language.

On the other hand, programs are expressive enough to be given a syntax-free descrip-

tion in an abstract mathematical domain. This method, calledDenotational Semantics, was
pioneered by Strachey as a “mathematical semantics” of programming languages [Str66],

and was substantiated through the work of Scott on Domain Theory [Sco70]. With oper-
ational semantics giving the intended program behaviour, a denotational model needs to

capture both the programming language and its observational equivalence. The model is

fully abstract if observational equivalence and denotational equality coincide through se-
mantic translation.

The quest for fully abstract denotational semantics started with the purely functional
language PCF, introduced by Plotkin [Plo77] and embodying the logic LCF of Scott [Sco93].

With PCF it was understood that for full-abstraction it was necessary to work in a do-

main of ‘sequential’ functions: the parallel nature of argument evaluation inherent in or-
dinary functions is simply impossible to capture with PCF. The problem was finally solved

in the mid 90’s independently by three teams of researchers: Abramsky, Jagadeesan and
Malacaria [AJM00]; Hyland and Ong [HO00]; Nickau [Nic96]. Their models were based on

Game Semantics: computation was modelled by dynamic interaction between two partic-

ipants, one of them representing the program and the other the environment. It was soon
realised that the potential of game semantics was not confined to the semantics of PCF. The

flexibility in applying and removing conditions from the rules of the games, along with
the potentiality of altering the structure of the games themselves, allowed for the accurate

modelling of a wide range of programming languages exhibiting various computational ef-

fects. This series of full-abstraction results established gamemodels as a powerful paradigm
within denotational semantics.

At around the same time that game semantics appeared on the scene, Pitts and Stark
were focusing on a computational effect pervasive in computing, the use of names, and

examined a prototypical nominal language, the ν-calculus [PS93]. Names are syntactic atoms

used to distinguish objects which are otherwise indistinguishable yet have distinct roles
inside a computation; more importantly, names can be dynamically generated provoking a

local-state effect. This latter feature along with mobility of names rendered the operational

semantics of this seemingly simple language quite intricate.

9



10 CHAPTER 1. INTRODUCTION

The full-abstraction problem for the ν-calculus remained open for a decade. Meanwhile,
Gabbay and Pitts [GP02] had introduced Nominal Sets as a general mathematical foun-

dation for nominal structures, by revisiting the Fraenkel-Mostowski permutation models
of ZFA discovered in the 20’s and 30’s. In 2004, Abramsky, Ghica, Murawski, Ong and

Stark [AGM+04], and independently Laird [Lai04], introduced Nominal Games for the se-

mantical description of nominal computation; [AGM+04] in particular proposed a fully ab-
stract semantics for the ν-calculus. This thesis is a further investigation on nominal game

semantics. We rectify the discrepancies arising in the original presentation of [AGM+04]
and then examine fully abstract semantics for languages with nominal general references

and nominal exceptions.

1.1 Background Remarks

1.1.1 Nominal Languages

One of the most pervasive features in computation is the use of names to distinguish entities
that are otherwise indistinguishable yet have distinct roles inside a computation. The names

we focus on have no inner structure whatsoever: in Needham’s taxonomy they correspond

to ‘pure names’ [Nee93]. Moreover, following theWhat’s newmotto of Pitts and Stark [PS93],
names can be

created with local scope, compared for equality, and passed around via function applica-

tion.

The above describes the basic nominal specification, which we may refer to as the nomi-

nal effect. In programming languages, though, more specifications may be added so that

names be used for channels, threads, references, codes, exceptions, etc. We refer to such

languages generically as nominal languages. The prototypical nominal language is the ν-
calculus [PS93], which constitutes a call-by-value λ-calculus incorporating the basic nom-

inal specification. Of the more sophisticated and more ‘realistic’ nominal languages, one

that stands out is the π-calculus of Milner [SW01]. It is the paradigmatic language incorpo-
rating names-for-channels, providing a programming framework for concurrent processes

intercommunicating through named channels.
Although constructed as simple computationally as possible, the ν-calculus exhibits a

rather delicate behaviour, [Sta97]:

Functions may have local names that remain private and persist from one use of the

function to the next; alternatively, names may be passed out of their original scope and
can even outlive their creator. It is precisely this mobility of names that allows the nu-

calculus to model issues of locality, privacy and non-interference.

Hence, this seemingly plain language became of increasing importance to semanticists. Re-
search focused primarily on the notion of observational equivalence, which resisted all at-

tempts to be modelled accurately by use of ordinary (non-nominal) techniques, be they

denotational or operational [Sta94, Sta96, Sta97, ZN03].

1.1.2 Nominal Sets

Invented in the 20’s and 30’s by Fraenkel and Mostowski as a model of set theory with

atoms (ZFA), for showing its independence from the Axiom of Choice, nominal sets were
re-introduced in the late 90’s by Gabbay and Pitts [GP02, Pit03] as a general framework for

the formal treatment of names and name-binding. Themain objective was to exploit the rich

structure of nominal sets for defining abstract syntaxes with variable binding which would
incorporate ‘clean’ rules for structural recursion and induction. Nominal sets (and nominal

abstract syntax) have been used extensively for building languages with symbolic-binding
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constructors, for devising nominal theorem provers, and for studying programming lan-
guage semantics: see [Che05] for a survey, and [Gab00, Che04, Shi05a] for thorough inves-

tigations.

∅ A

Figure 1.1: The von Neumann cumulative hierarchy of sets is built (in ZF) starting from the

empty set and taking powersets, while for the Fraenkel-Mostowski hierarchy (the basic Fraenkel

model, in ZFA) we start from the set of atoms A and take powersets constrained to elements of

finite support (i.e. involving finitely many atoms).

Intuitively, nominal sets are sets whose elements involve a finite number of atoms, and
which can be acted upon by finite atom-permutations. The expressivity thus obtained is

remarkable: in the category of nominal sets, notions like atom-permutation, atom-freshness
and atom-binding are essentially built inside the underlying structure. It is therefore self-

suggesting to use nominal sets, with atoms playing the role of names, as a general founda-

tion for reasoning about names.

1.1.3 Game Semantics

The first success of games in the semantics of programming languages was the fully ab-

stract modelling of PCF (an idealised functional language with if-then-else, basic arithmetic
and recursion) [AJM00, HO00, Nic96]. What distinguishes game semantics from traditional

denotational semantics is its intensional character, which is expressed by the description of

computation as a dynamic interaction between two participants: a Player and an Opponent.
In particular, games are specified by plays, that is, sequences of moves played in alternation

by the two participants in relevant arenas of moves. Moves are in effect a representation of

computation steps, and hence programs are modelled by strategies, which are collections
of instructions for Player on how to play a game on a specific arena.

Due to the intensional character of games and the great flexibility in applying and re-
moving constraints from strategies, game semantics is able to capture accurately a wide

range of computational effects and provide fully abstract, proper denotational models for a

variety of languages. Some characteristic such constructions obtained from the models of
PCF are the following. The first, second and fourth constructions, along with the model of

PCF, produce what is known as the semantic cube [AM99].

1996. Removing the innocence condition from strategies, Abramsky and McCusker [AM97]

were able tomodel fully abstractly IdealizedAlgol (IA) [Rey81], an extension of PCFwith

ground-type references. Moreover, the model of IAwas shown to be effectively presentable,
something that wasn’t true for PCF— and for a good reason as shown by Loader [Loa01].

1997. Relaxing the well-bracketing condition, Laird [Lai97, Lai98] modelled fully abstractly

PCF with non-local control flow.

1998. Abandoning the visibility condition, Abramsky, Honda andMcCusker [AHM98]were
able to provide a fully abstract model for a functional language with general, higher-

order references.
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1999. Abandoning the determinacy condition, Harmer and McCusker [HM99, Har99] pro-
duced a fully abstract model for finite-nondeterminism.

In addition to alterations to the constraints on strategies, variations to the notion of game

itself proved also meaningful computationally.

1996. Departing from the PCF models, McCusker [McC96, McC98] introduced a game-

setting with rich structure which allowed for the modelling of coproducts and the solu-

tion of domain equations on games. The result was a fully abstract model for FPC, an
extension of PCF with coproducts and recursive types.

1997. Game models had thus far focused exclusively on call-by-name languages. At this

point, Honda and Yoshida [HY99] showed that the current framework of games could be

dualised appropriately, yielding the (equally primary) notion of call-by-value games. At
the same time, Abramsky and McCusker [AM98] introduced a general categorical con-

struction, the family construction, which built CBV models from CBN ones, and applied

it to CBN games. The two constructions, which are essentially equivalent, yielded fully
abstract semantics for the CBV version of PCF.

1997. The introduction by Hughes of the notion of second-order move, that is, a move intro-

ducing a new ‘game-board’, lead to the development of hypergames and to full-abstraction

for system F [Hug97, Hug00].

The above results, which are by no means proposed as a complete enumeration of the

achievements of games, built a significant momentum for game semantics and established

it as a powerful paradigm in denotational semantics.

1.2 Thesis Outline

The thesis is structured as follows.

Chapter 2. In this chapter we present some background material necessary for the devel-

opments in the sequel. We start by presenting the theory of nominal sets, following
the exposition of Pitts, and introducing the notion of strong support.

We continue by presenting the ν-calculus of Pitts and Stark, in a strongly supported

version, and give some of its basic properties.
In the last partwe give an exposition of the categorical notions ofmonad and comonad,

and briefly examine the properties of monadic-comonadic (bi-Kleisli) categorical frame-

works.

Chapter 3. In this chapter we present (AGMOS-style) nominal games. These are ordinary,
call-by-value, stateful games cast inside the universe of strong nominal sets. We in-

troduce the basic definitions of arenas, plays and strategies, and construct the basic

category of nominal games G. The rest of the chapter examines G and its subcategories
V and Vt of innocent and total strategies respectively.

Chapter 4. This chapter introduces the νρ-calculus, an extension of the ν-calculuswith nom-

inal general references, and models it fully abstractly in nominal games. The seman-

tical part starts by presenting abstract categorical models, νρ-models, which give cor-
rect interpretations of νρ. We then build a concrete such model in the category Vt,

and finally obtain full-abstraction by restricting to tidy strategies, that is, strategies

following a certain ‘discipline’ with regard to storage.

Chapter 5. In this chapter we examine fully abstract semantics for nominal exceptions in

nominal games. We introduce the calculi νε and νερ, which are extensions with nom-
inal exceptions of the ν-calculus and the νρ-calculus respectively. Categorical models

for the calculi are presented: these are based on the fact that exceptions and local state
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are separable effects, described abstractly by the notion of precompound monad. Fi-
nally, a specific fully abstract model for νερ is constructed in the subcategory of Vt

containing x-tidy strategies, that is, tidy strategies following some extra discipline for
exceptions.

1.2.1 Main Contributions

The contributions of this thesis, which have also appeared in [Tze07, Tze08], can be sum-

marised as follows.

• The identification of strong nominal sets, that is, nominal sets with ‘ordered involvement’
of names, as the appropriate setting for nominal languages and (mainly) their semantics.

• The abstract categorical description of the nominal effect of nominal languages. More-

over, the categorical presentation of fully abstract models of languages with nominal ref-
erences and exceptions, in the spirit of [Abr00].

• The formulation/rectification of nominal games and their use in constructing models of

nominal references and exceptions.

• The introduction of game-disciplines to capture computation with names-as-references

and names-as-exceptions, leading to definable and hence fully abstract game models.
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Chapter 2

Names, Nu and Monads

In this chapter we present background material necessary for this thesis. In section 2.1 we
present the theory of Nominal Sets of Gabbay and Pitts, which we use as a general foun-

dation for constructions with names. In section 2.2 we present the basic nominal calculus,

i.e. the ν-calculus of Pitts and Stark, and also a version of the latter with ordered local state,
the sν-calculus. In the final section we expose some results regarding the categorical notions

of monad and comonad.

2.1 Nominal Sets

The use of nominal sets in this thesis is limited, albeit essential. In particular, we express the

intuitive notion of names by use of atoms, either in the syntax of our languages or in their
denotational semantics. The features of nominal sets allowing this modelling are:

• all finitely supported constructions with atoms can be carried out in nominal sets,

• atom-equality is decidable,

• there is an infinite supply of (fresh) atoms.

Another appealing feature of nominal sets is the ‘transparent’ notion of atom-permutation,

which we see as a ‘clean’ version of atom-substitution.
Perhaps it is not clear to the reader why nominal sets should be used— couldn’t we sim-

ply model names by natural numbers? Indeed, numerals could be used for such semantical
purposes (see e.g. [Lai08]), but they would constitute an over-specification: numerals carry

a linear order and a bottom element which would need to be carefully nullified in the se-

mantical definitions. Nominal sets factor out this burden by providing the minimal solution
to specifying names; in this sense, nominal sets are the intended model for names.

Finally, note that nominal sets appear in the literature also as “FM-sets” (e.g. [GP02]),
since they descend from Fraenkel–Mostowski permutation models of set theory with atoms.

We will see more on that in section 2.1.3.

2.1.1 Definition

We are generally interested in languages having possibly infinitely many types of names,
and hence we construct nominal sets over an ω-indexed family of sets of atoms. Thus, we

generally follow the presentation of [Pit03], the only difference being that, since we are
not interested in supplying “a first order theory of atoms and binding” (Nominal Logic),

we base our presentation on finite permutations instead of swappings of atoms (following

e.g. [PG00, Appendix]).
Let us fix a countably infinite family (Ai)i∈ω of pairwise disjoint, countably infinite sets

of atoms, and let us denote by PERM(Ai) the group of finite permutations of Ai. Atoms

15
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are denoted by a, b, c and variants; permutations are denoted by π and variants; id is the
identity permutation and (a b) is the permutation swapping a and b (and fixing all others).

We write A for the union of all the Ai’s. We take

PERM(A) ,
⊕

i∈ω

PERM(Ai) (2.1)

to be the direct sum of the groups PERM(Ai), so PERM(A) is a group of finite permutations

of A which act separately on each constituent Ai. For each S ⊆ A we let

fix(S) , {π ∈ PERM(A) | ∀a∈S. π(a) = a} (2.2)

and say that a permutation π fixes S if π ∈ fix(S).

Recall that PERM(A) being a direct sum means that each π ∈ PERM(A) is an ω-indexed

list of permutations, π ∈
∏

i∈ω PERM(Ai), and that (π)i 6= idAi
holds for finitely many

indices i. If (π)i 6= idAi
holds for exactly one index i then we call π a basic permutation, and

(π)i the basic component of π.

Fact 2.1 If π ∈ PERM(A) then,

• there exist basic permutations π1, ..., πn such that π = id ◦ π1 ◦ · · · ◦ πn ,

• there exist basic permutations π1, ..., πn such that the basic component of each πi is a

swapping, and π = id ◦ π1 ◦ · · · ◦ πn ,

• for any S ⊆ A, if π ∈ fix(S) then there exist basic permutations π1, ..., πn such that the
basic component of each πi is a swapping of atoms outside S, and π = id◦π1 ◦ · · ·◦πn.

We will therefore abandon the list-representation of permutations and—with a slight abuse
of notation which identifies a basic permutation with its basic component—we will write

(non-uniquely) each permutation π as a finite composition π1 ◦ · · · ◦ πn such that each πi
belongs to some PERM(Aj).

We proceed to nominal sets. As seen in the following definition, the notion of finite sup-

port is central to our presentation. More general supports have been examined in [Gab02,
Che04]; in the latter work it is shown that the notion of support ideals completely corre-

sponds to the axioms of Nominal Logic. But these matters will not concern us here since all

our constructions entail finitely many atoms.

Definition 2.2 (Nominal Set on A) Anominal setX is a set |X | (usually denotedX) equipped

with an action of PERM(A), that is, a function [ : PERM(A)×X → X such that, for any

π, π′ ∈ PERM(A) and x ∈ X ,

π [(π′ [x) = (π ◦ π′) [x , id [x = x .

Moreover, for any x ∈ X there is a finite set S ⊆ A such that

fix(S) ⊆ {π ∈ PERM(A) | π [x = x} .

We say that S supports x. N

Concretely, a set S ⊆ A supports some x ∈ X if, for all permutations π,

(∀a∈S. π(a) = a) =⇒ π [x = x .

For example, A with the action of permutations being simply permutation-application is a
nominal set.

As shown below, finite support is closed under intersection. Hence, each element x of a

nominal set X has least finite support, called the support of x:

S(x) ,
⋂

{S ⊆fin A | S supports x} . (2.3)

For example, for each atom a ∈ A, S(a) = {a}. We say that a is fresh for x, written a# x, if

a /∈ S(x). x is called equivariant if it has empty support.
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Proposition 2.3 Let X be a nominal set and x ∈ X . For any finite S ⊆ A, S supports x iff

∀a, a′∈(A \ S). (a a′) [x = x .

Moreover, if finite S, S′ ⊆ A support x then S ∩ S′ also supports x. Finally,

S(x) = {a ∈ A | for infinitely many b. (a b) [x 6= x} .

Proof: For the first claim we need only show that S supports x if (a a′) [x = x for all atoms

a, a′ outside S. Assume the latter condition holds and take any π ∈ fix(S). By fact 2.1,
π = id◦π1 ◦ · · · ◦πn with each πi being a swapping of atoms outside S, and hence π [x = x.

Now, if finite S, S′ ⊆ A support x then take any distinct a, a′ /∈ (S ∩ S′). For any b /∈
S ∪ S′ ∪ {a, a′}, (a a′) [x = (a b) [(a′ b) [(a b) [x = x since (a b) [x = x = (a′ b) [x. Hence,

S ∩ S′ supports x.

Finally, let
A , {a ∈ A | for infinitely many b. (a b) [x 6= x} .

If a ∈ A \ S(x) then there are infinitely many b such that (a b) [x 6= x and, since S(x) is finite,
there is such a b /∈ S(x), 	as S(x) supports x. Hence, A ⊆ S(x). Conversely, it suffices to

show that (a a′) [x = x for all distinct a, a′ /∈ A. But a, a′ /∈ A implies that, for cofinitely

many b, (a b) [x = x = (a′ b) [x. Take some b 6= a, a′ of the cofinitely many; we have

(a a′) [x = (a b) [(a′ b) [(a b) [x = x .
�

From the last part of the proposition we have:

a# x ⇐⇒ for cofinitely many b. (a b) [x = x

by defn
⇐⇒ � b∈A. (a b) [x = x

(2.4)

The “fresh” quantifier � , introduced in [GP02], quantifies over cofinitely many atoms, i.e.�a∈A. φ(a)
△

⇐⇒ for cofinitely many a∈A. φ(a) . (�)
A subtlety here is that the holes in φ must all be of the same atom-type, say i, and that, in

fact, we mean “for cofinitely many a ∈ Ai”.

Example 2.4 There are several ways to obtain new nominal sets from given nominal sets X

and Y :

• The disjoint union X ⊎ Y with permutation-action inherited fromX and Y is a nominal

set. The construction easily extends to infinite disjoint union.

• The cartesian product X×Y with permutations acting componentwise is a nominal set;
if (x, y) ∈ X×Y then S(x, y) = S(x) ∪ S(y).

• The fs-powerset Pfs(X), that is, the set of subsets of X which have finite support, with

permutations acting elementwise.

• X ′ ⊆ X is a nominal subset of X if X ′ is closed under permutations, these acting as on
X .

• The fs-function spaceX→fsY , that is, the set of functions fromX to Y with finite support:

X →fs Y , {f ∈ Pfs(X×Y ) | f a function with domain X}.

Example 2.5 Apart from A, some standard nominal sets are the following.
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• Using products and infinite unions we obtain the nominal set:

A# ,
⋃

n∈ω

{ a1 . . . an | ∀i, j ∈ 1..n. ai ∈ A ∧ (i 6= j =⇒ ai 6= aj) } , (2.5)

that is, the set of finite lists of distinct atoms. Such lists we denote by~a,~b,~c and variants.
For notational economy, we write a ∈ ~a for a ∈ S(~a). Moreover, for each ~a ∈ A# we set:

A~a , { π [~a | π ∈ PERM(A) } . (2.6)

Finally, for ~a,~b ∈ A# we write:

• ~a ≤ ~b if ~a is a prefix of~b,

• ~a � ~b if ~a is a (not necessarily contiguous) sublist of~b,

• ~a ⊆ ~b if S(~a) ⊆ S(~b).

• The fs-powerset Pfs(A) is the set of finite and cofinite sets of atoms, and has Pfin(A) as a

nominal subset (the set of finite sets of atoms).

ForX and Y nominal sets, a relationR ⊆ X×Y is a nominal relation if it is a nominal subset
of X×Y . Concretely,R is a nominal relation iff, for any permutation π and (x, y) ∈ X×Y ,

xRy ⇐⇒ (π [x)R(π [ y) . (2.7)

For example, # ⊆ A×X is a nominal relation: for all relevant a, x, π,

a# x =⇒ � b∈A. (a b) [x = x =⇒ � b∈A. π [(a b) [x = π [x
=⇒ � b∈A. (π(a) π(b)) [π [x = π [x =⇒ � b′∈A. (π(a) b′) [π [x = π [x
=⇒ π(a) # π [x .

From nominal relations we proceed to nominal functions and the category of nominal sets.

Definition 2.6 (The category Nom) A function f : X → Y is a nominal function if, for any

π ∈ PERM(A) and x ∈ X ,
f(π [x) = π [ f(x) .

We let Nom be the category of nominal sets and nominal functions. N

Thus, nominal functions are fs-functions with empty support. For example, the support
function S( ) : XB Pfin(A) is a nominal function since S(π [x) = π [ S(x).

Nom inherits rich structure from Set and is in particular a topos. More importantly,

it contains atom-abstraction mechanisms. The mechanism which triggered the study of
nominal sets in programming is the following. For any nominal set X , any x ∈ X and any

a ∈ A, we can abstract a from x by forming

〈a〉x , {(b, y) ∈ A×X | (b = a ∨ b# x) ∧ y = (a b) [x} .
The abstraction takes the orbit of (a, x) under all swappings of a for fresh atoms. In λ-
calculus terminology, 〈a〉x is literally the α-equivalence class of (a, x) (that is, with regard

to the abstraction of a). Hence, it is not difficult to see that S(〈a〉x) = S(x) \ {a}. Moreover,
π [〈a〉x = 〈π [a〉(π [x) and therefore we can define the nominal set 〈A〉X ⊆ Pfs(A×X) of

abstracted elements as

〈A〉X , {〈a〉x | a ∈ A ∧ x ∈ X} ,

and atom-abstraction as an arrow 〈 〉 : A×XB 〈A〉X in Nom.
However, in this thesis we are not interested in treating name- and variable-abstractions

nominally, and therefore we will not use the above form of abstraction. The abstraction

mechanism which is useful to us, instead of abstracting specified atoms from x, abstracts all
atoms outside a specified subset of S(x). It is therefore similar to the abstaction mechanisms

used in [AGM+04, Tze07].
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Definition 2.7 (Support abstraction) Let X be a nominal set and x ∈ X . For any finite
S ⊆ A, we can abstract x to S, by forming

[x]S , {y ∈ X | ∃π∈fix(S ∩ S(x)). y = π [x} .
N

This form of abstraction restricts the support of x to S ∩ S(x) by appropriate orbiting of x
(and note that [x]S ∈ Pfs(X)). This is shown in the following lemma, along with the fact that

[ ] is itself nominal.

Lemma 2.8 For any x ∈ X , S ⊆fin A and π ∈ PERM(A),

• π [[x]S = [π [x]π [S ,
• S([x]S) = S(x) ∩ S .

Proof: For the first clause, we have:

y ∈ π [[x]S ∃π′

=⇒ y = π [π′ [x ∧ ∀a∈S ∩ S(x). π′ [a = a

=⇒ y = (π ◦ π′ ◦ π−1) [π [x ∧ ∀a∈S ∩ S(x). (π ◦ π′ ◦ π−1) [π [ a = π [a
=⇒ y = (π ◦ π′ ◦ π−1) [π [x ∧ ∀a′∈π [(S ∩ S(x)). (π ◦ π′ ◦ π−1) [ a′ = a′

=⇒ y ∈ [π [x]π [S (note π [(S ∩ S(x)) = (π [S) ∩ S(π [x) ) ,

z ∈ [π [x]π [S ∃π′

=⇒ z = π′ [π [x ∧ ∀a′∈π [(S ∩ S(x)). π′ [a′ = a′

=⇒ z = π′ [π [x ∧ ∀a∈S ∩ S(x). π′ [π [a = π [a
=⇒ z = π [(π−1 ◦ π′ ◦ π) [x ∧ ∀a∈S ∩ S(x). (π−1 ◦ π′ ◦ π) [ a = π−1 [π [ a = a

=⇒ z ∈ π [[x]S .
Note that ∀π. π [[x]S = [π [x]π [S implies S([x]S) ⊆ S(x) ∪ S.
For the second clause, assume a ∈ S ∩ S(x) and a# [x]S . Then, for any b#x, S, (a b) [[x]S =

[x]S , and hence x ∈ (a b) [[x]S . This means there exists π ∈ fix(S ∩ S(x)) such that x =

(a b) [π [x, and therefore a ∈ S(x) implies

b = (a b) [π [a ∈ S((a b) [π [x) = S(x) ,	to b# x. Hence, S ∩ S(x) ⊆ S([x]S).
For the converse, for any a, b /∈ S ∩ S(x), we have

(a b) [[x]S = {(a b) [π [x | π ∈ fix(S ∩ S(x))} = {π [x | π ∈ fix(S ∩ S(x))} = [x]S ,

and hence S([x]S) ⊆ S ∩ S(x). �

Two particular subcases of support abstraction are of interest. First, in case S ⊆ S(x), the
abstraction becomes

[x]S = {y ∈ X | ∃π∈fix(S). y = π [x} . (∗)

This is the mechanism used in [Tze07].1 Note that if S * S(x) ∧ S(x) * S then (∗) does not
yield S([x]S) = S ∩ S(x). Note also (proof left as exercise) that if S ⊆ S(x) ∩ S(y) then

[x]S = [y]S ⇐⇒ y ∈ [x]S . (2.8)

The other subcase is the simplest possible, that is, of S being empty; it turns out that this is

all we need from support abstractions in this thesis. We define:

[x] , {y ∈ X | ∃π. y = π [x} . (2.9)

1The mechanism used in [AGM+04] is [x]S , {(y, S) | ∃π∈fix(S). y = π [ x} , and is equivalent to the other
two in case S ⊆ S(x), but not in general.



20 CHAPTER 2. NAMES, NU ANDMONADS

2.1.2 Strong support

Nominal sets describe a framework of objects built around a finite (or cofinite) amount of
atoms. The framework does not specify how these atoms are present inside an object’s

structure, so atoms may appear in an ‘unordered’ fashion, as for example in the set {a, b}.
The distinction between ordered and unordered involvement of atoms can be formally seen

in the definition of support. In particular, we have seen that a set S supports x if

(∀a∈S. π(a) = a) =⇒ π [x = x .

Ordered involvement then means that the reverse implication is also true. This notion we

call strong support.

Definition 2.9 For any nominal set X , any x ∈ X and any S ⊆ A, S strongly supports x if

fix(S) = { π ∈ PERM(A) | π [x = x } .

We say thatX is a strong nominal set if all its elements have strong support. N

Thus, the set {a, b} does not support {a, b} strongly, since the permutation (a b) does not fix
{a, b},2 but still (a b) [{a, b} = {a, b}. On the other hand, {a, b} strongly supports the list ab.

In fact, all finite lists of (distinct) atoms have strong support, and therefore A# is a strong
nominal set.

The notion of strong support is stronger than that of support, as we saw in the example

of {a, b}. Nonetheless, strong support coincides with weak support when the former exists.

Proposition 2.10 IfX is a nominal set and x ∈ X has strong support S then S = S(x).

Proof: By definition, S supports x, so S(x) ⊆ S. Now suppose there exists a ∈ S \ S(x). For
any fresh b, (a b) fixes S(x) but not S, so it doesn’t fix x, 	. �

Hence, Pfin(A) is not a strong nominal set (but A# is). The main reason for using strong
nominal sets is the following result.

Lemma 2.11 (Strong support lemma) Let X be a strong nominal set and x1, x2, y1, y2, z1, z2 ∈
X . Suppose also that, for some S ⊆fin A,

S ⊆ S(zi) ∩ S(yi) ⊆ S(xi) ,

for i = 1, 2, and there exist πy, πz ∈ fix(S) such that

πy [x1 = πz [x1 = x2 , πy [ y1 = y2 , πz [ z1 = z2 .

Then, there exists some π ∈ fix(S) such that π [x1 = x2 , π [ y1 = y2 and π [ z1 = z2.

Proof: Note that S(zi) ∩ S(yi) ⊆ S(xi) iff (S(zi) \ S(xi)) ∩ S(yi) = ∅. Let ∆i , S(zi) \ S(xi) ,
i = 1, 2 , so ∆2 = πz [∆1, and let π′ , π−1

y ◦ πz . By assumption, π′ [x1 = x1, and therefore
π′ ∈ fix(S(x1)) by strong support. Take any b ∈ ∆1. Then, π′(b) # π′ [x1 = x1 and

πz(b) ∈ πz [∆1 = ∆2, ∴ πz(b) # y2, ∴ π′(b) # π−1
y [ y2 = y1. Hence,

b ∈ ∆1 =⇒ b, π′(b) # x1, y1 .

Now assume ∆1 = {b1, ..., bN} and define π0, π1, ..., πN by recursion:

π0 , id , πi+1 , (bi+1 (πi ◦ π
′)(bi+1)) ◦ πi .

We claim that, for each 0 ≤ i ≤ N and 1 ≤ j ≤ i, we have

πi [π′ [ bj = bj , πi [x1 = x1 , πi [ y1 = y1 .

2Recall that a permutation π fixes a set of atoms S if π(a) = a for all a ∈ S.
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We do induction on i; the case of i = 0 is trivial. For the inductive step, if πi [π′ [ bi+1 = bi+1

then πi+1 = πi, and πi+1 [π′ [ bi+1 = πi [π′ [ bi+1 = bi+1. Moreover, by IH, πi+1 [π′ [ bj =

bj for all 1 ≤ j ≤ i, and πi+1 [x1 = x1 and πi+1 [ y1 = y1. If πi [π′ [ bi+1 = b′i+1 6= bi+1 then,
by construction, πi+1 [π′ [ bi+1 = bi+1. Moreover, for each 1 ≤ j ≤ i, by IH, πi+1 [π′ [ bj =

(bi+1 b
′
i+1) [ bj , and the latter equals bj since bi+1 6= bj implies b′i+1 6= πi [π′ [ bj = bj . Finally,

for any a ∈ S(x1)∪S(y1), πi+1 [ a = (bi+1 b
′
i+1) [πi [a = (bi+1 b

′
i+1) [a, by IH, with a 6= bi+1.

But the latter equals a since π′(bi+1) 6= a implies that b′i+1 6= πi [a = a, as required.

Hence, for each 1 ≤ j ≤ N ,

πN [π′ [ bj = bj , πN [x1 = x1 , πN [ y1 = y1 .

Moreover, πN [π′ [ z1 = z1, as we also have

b ∈ S(z1) ∩ S(x1) =⇒ πN [π′ [ b = πN [ b = b

(again by strong support). Thus, taking π , πy ◦ π
−1
N we have:

πy [π−1
N [x1 = πy [x1 = x2 , πy [π−1

N [ y1 = πy [ y1 = y2 ,

πy [π−1
N [ z1 = πy [π−1

N [πN [π′ [ z1 = πy [π′ [ z1 = πy [π−1
y [πz [ z1 = z2 .

Finally, from πN ∈ fix(S(x1)) ⊆ fix(S) and πy ∈ fix(S) we obtain π ∈ fix(S). �

A more enlightening formulation of the lemma can be given in terms of abstractions.

Let X be a strong nominal set and x1, x2, y1, y2, z1, z2 ∈ X . Suppose also that, for

some S ⊆fin A,

S ⊆ S(zi) ∩ S(yi) ⊆ S(xi) ,

for i = 1, 2, and moreover that

[x1, y1]S = [x2, y2]S ∧ [x1, z1]S = [x2, z2]S .

Then [x1, y1, z1]S = [x2, y2, z2]S .

Figure 2.1: Strong Support Lemma

In the context of nominal games later on, wherewewill be dealingwith abstractions of plays
of this form (with S = ∅), the strong support lemma will guarantee us that composition of

abstractions of plays can be reduced to composition of plays.

2.1.3 A historical note

In this section we briefly describe the permutation models of Fraenkel and Mostowski,

which form the basis of what we call in this thesis “nominal sets”. Our main reference

here is the book by Jech [Jec73, Chapter 4]; for further references the reader is referred to the
references therein.

Fraenkel–Mostowski (FM) permutationmodels of set theorywere introduced by Fraenkel

in the early 20’s, and further developed by Mostowski in the late 30’s, in order to prove the
independence of the Axiom of Choice from the axioms of Zermelo–Fraenkel set theory with

Atoms (ZFA). ZFA is an axiomatisation of set theory which allows for a set A the elements of
which are not sets but atoms (urelemente). Atoms contain no elements, but are not the empty

set. The usual axioms of ZF are present in ZFA with the necessary restrictions for atoms.

The universe of sets is constructed following the construction of the Cumulative Hierar-
chy, only from a different starting point: the set A of atoms, instead of ∅. Put formally, the
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universe is now V ,
⋃

α∈On Vα, where:

V0 , A

Vα+1 , A ∪ P(Vα) (V)

Vδ ,
⋃

α<δ

Vα

Note here that by convention the notion of subset applies only to sets, that is,

x ⊆ y
△

⇐⇒ x /∈ A ∧ ∀z. z ∈ x =⇒ z ∈ y .

Powersets are defined accordingly.
A genre of models for ZFA is that of permutation models. Within V , consider a group G

of permutations of A. Permutations are expanded to act on all sets in V elementwise, with

π [∅ = ∅ for every π ∈ G. We fix a normal filter F on G, which is a set of subgroups of G
such that, for all subgroups H,K of G,

• G ∈ F ,

• ifH ∈ F and H ⊆ K thenK ∈ F ,

• ifH,K ∈ F thenH ∩K ∈ F ,

• if π ∈ G and H ∈ F then π ◦H ◦ π−1 ∈ F ,

• for each a ∈ A, sym(a) ∈ F ,

where sym(x) , {π ∈ G | π [x = x}, for any x. The permutation model is constructed by

taking the intersection of the setX of elements x such that sym(x) ∈ F , and of the transitive
closure ofX (atoms included). That is,

V , A ∪ { x | sym(x) ∈ F ∧ x ⊆ V } .

Analytically, V ,
⋃

α∈On Vα, where:

V0 , A

Vα+1 , A ∪ { x ⊆ Vα | sym(x) ∈ F }

Vδ ,
⋃

α≤δ

Vα

One can show that V is a transitive model of ZFA.
The basic Fraenkel model is a simple permutation model that refutes the AC; hence, the

AC is not provable from the axioms of ZFA. A is assumed to be countably infinite while the
group G consists of all permutations of A. Now, for each set xwe define

fix(x) , {π ∈ G | ∀y ∈ x. π [ y = y} .

We take the filter F to be the one generated by the subgroups fix(S), for finite S ⊆ A, that
is,

F , {H ⊆ G | ∃S ⊆fin A. fix(S) ⊆ H} .

F is a normal filter and consists of subgroups of G that fix some finite set of atoms. We take

V to be the resulting model. Concretely, we have that, for any x, sym(x) ∈ F iff there is a
finite S ⊆ A such that S supports x, that is,

fix(S) ⊆ sym(x) .

Hence, x ∈ V iff x has finite support and all its elements have finite support, and so on.
Moreover, since supports are closed under intersection, for each x ∈ V there exists a least

support S(x).
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To see that the Axiom of Choice fails for V , suppose that there is in V a choice function f
for A, i.e. an

f : PV(A) \ {∅}B A

such that, for any non-empty subset X of A in V , f(X) ∈ X . Note that A is an element of V ,
and its powerset in V contains all its finite and cofinite subsets. Then, we can define in V

f ′ : Pfin(A) B A , X 7→ f(A \X) .

f ′ is defined on the set of finite subsets of A, and is itself supported by some finite such set,

say S. Then, by definition, f ′(S) /∈ S. Since S is finite, there is some a ∈ A \ (S ∪ {f ′(S)}).
Let (a f ′(S)) be the permutation swapping a and f ′(S) and leaving all other atoms stable;

we then have that
(a f ′(S)) ∈ fix(S) , ∴ (a f ′(S)) [ f ′ = f ′,

and since (a f ′(S)) [(S, f ′(S)) = (S, a), we get (S, f ′(S)), (S, a) ∈ f ′, i.e. f ′(S) = a, a
contradiction.
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2.2 A paradigmatic nominal language

The ν-calculus of Pitts and Stark [PS93, Sta94] is a paradigmatic nominal language consist-
ing of a call-by-value simply-typed λ-calculus with names. Names are constant terms of

ground type which, according to the What’s new? motto [PS93],

“...are created with local scope, can be tested for equality and can be passed
around via function application, but that is all.”

The locality of creation and the possibility to communicate names add the feature of local

state in an otherwise purely functional calculus. In each step of a program evaluation the

local state is simply the set of available names, that is, the set of names created up to that
step.

A specification that is implied by the previousmotto is that an infinite supply of names is
needed, so that a program can always create new names. However, the crucial specification

that is hidden in the definition is that

creation of fresh names is important as a feature, yet which names are specifically

created is not important.

In other words, computation is impervious to name-permutation.
Pitts and Stark did not use the nominal framework for formulating their nominal lan-

guage; after all, the (re)introduction of nominal sets occurred several years after the intro-

duction of the ν-calculus. Nonetheless, such an approach is self-suggesting: the casting of
syntactic constructions inside nominal sets, with atoms playing the role of names, results

in a syntax which comes equipped with name-permutations, a name-freshness relation, etc.
We upgrade this reasoning to a general guideline for modelling nominal languages, which

we will strengthen in the next section and follow throughout this thesis:

Model names by atoms and cast all structure in nominal sets.

Note that we do not use the full force of nominal sets in our approach, that is, we do not

present binding constructors by nominal abstractions. In the languages we examine there
are two forms of binding: variable-binding and name-binding. Both of these are presented

in the usual way, using the Barendregt convention [Bar84]: terms are equal up to choice of
bound names and variables, but we may also assume that our particular choices are suf-

ficiently fresh. Although this approach introduces some amount of informality,3 it is pre-

ferred for its simplicity, which allows us to concentrate on more pressing issues. In fact, it
has been shown in [Pit06] (using nominal sets) that arguments in the style of the Barendregt

convention are correct once a certain hygiene is followed.

2.2.1 The ν-calculus

The ν-calculus we present below is that of [PS93], only equipped with natural numbers
instead of booleans. The calculus is cast inside Nom, by stipulating the existence of a set of

atoms
Aν ∈ (Ai)i∈ω

fromwhich names are drawn. We will briefly examine the syntax of the calculus and its op-
erational semantics, experimenting with nominal versions of results proven in [PS93, Sta94].

The types of the calculus are given as follows. We have types for names, naturals and

functions:
TY ∋ A,B ::= ν | N | A→ B

3In particular, the results obtained from these fresh choices are usually not shown to be independent of choice.
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Terms form a strong nominal set TE:

TE ∋M,N ::= x | λx.M |M N λ-calculus

| n | predM | succN arithmetic

| if0M thenN1 elseN2 if then else

| a name, a ∈ Aν

| [M = N ] name-equality test

| νa.M ν-abstraction

Of the terms above, the values are:

VA ∋ V,W ::= n | a | x | λx.M

Permutations act on TE componentwise, that is, for any π ∈ PERM(A),

π [ a = π(a) π [ νa.M = ν(π [a).(π [M) π [x = x π [λx.M = λx.(π [M) etc.

Note that there are two types of binding in the syntax, variable-binding and name-binding,

and each of these yields its own notion of α-equivalence (note also that variables are not
names). The set of free variables of a term is defined by:

fv(x) , {x} , fv(λx.M) , fv(M) \ {x} , fv(νa.M) , fv(M) , fv(n) = fv(a) , ∅ ,

plus standard rules for the other non-binding constructs. A term M is closed if fv(M) is

empty. Similarly, the set of free names of a term is defined by:

fn(a) , {a} , fn(νa.M) , fn(M) \ {a} , fn(λx.M) , fn(M) , fn(n) = fn(x) , ∅ ,

plus standard rules for the other non-binding constructs. α-equivalence for variable-binding,

henceforth called αV -equivalence and written =αV
, is defined as usually.4α-equivalence for

name-binding, henceforth called αN -equivalence and written =αN
, is defined by recursion

(on term size) as follows,

M = x, a, n
M =αN

M

� b∈Aν . (a b) [M =αN
(a′ b) [M ′

νa.M =αN
νa′.M ′

M =αN
M ′

λx.M =αN
λx.M ′

plus standard rules for the other non-binding constructs. The definition is adapted from [GP02]

and it captures the usual notion of α-equivalence, i.e. it equates terms up to choice of bound
names (v. [GP02, proposition 2.2]).

The casting of our calculus in nominal sets equips us with a well-behaved action of
name-permutation and a crisp notion of name-freshness. In the following proposition we

give a couple of examples of results that can be shown with elegance using these mecha-

nisms. Note that a consequence of the first result is that the second rule for =αN
reduces to

M =αN
M ′

νa.M =αN
νa.M ′

for a = a′.

Proposition 2.12 For all termsM,N and a, b ∈ Aν ,

• M =αN
N =⇒ (a b) [M =αN

(a b) [N ,

• a, b /∈ fn(M) =⇒ (a b) [M =αN
M .

Proof: The first claim is shown by induction on M , and the only non-trivial case is that

of ν-abstraction. So let M = νa′.M ′ and M =αN
N . By definition, N = νb′.N ′ and� c. (a′ c) [M ′ =αN

(b′ c) [N ′. For any such c#a, b, by IH, (a b) [(a′ c) [M ′ =αN
(a b) [(b′ c) [N ′.

Taking a′′ = (a b) [a′ and b′′ = (a b) [ b′ we have (a′′ c) [(a b) [M ′ =αN
(b′′ c) [(a b) [N ′,

4i.e. nominally! See [Kri90].
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and therefore νa′′.(a b) [M ′ =αN
νb′′.(a b) [N ′, as required.

For the second claim we do induction on M and assume a 6= b. Again, the only non-

trivial case is that of ν-abstraction, so let M = νa′.M ′. If a′ # a, b, then (a b) [M =

νa′.(a b) [M ′ and a, b /∈ fn(M ′) so, by IH, (a b) [M ′ =αN
M ′ and therefore, by use of first

claim, νa′.(a b) [M ′ =αN
νa′.M ′. If a′ ∈ {a, b}, say a′ = a, then (a b) [M = νb.(a b) [M ′

and b /∈ fn(M ′) so, by IH and for any fresh c, (b c) [M ′ =αN
M ′, hence, by first claim,

(b c) [(a b) [M ′ = (a c) [(b c) [M ′ =αN
(a c) [M ′, and therefore νb.(a b) [M ′ =αN

νa.M ′, as

required. �

We now take the usual step of equating terms up to α-equivalence. It is true that the nominal

setting allows us to work without αN -equivalence with relevant elegance, but such a choice
would undeservedly complicate our presentation.

We assume the set of terms is quotiented by α-equivalence for both binding mechanisms,

that is, we equate terms up to choice of bound variables and bound names.

We proceed to the typing system of the calculus. Terms are typed in environments s^Γ,
where s is a finite subset of Aν and Γ a finite set of variable-type pairs.

s ^ Γ_ n : N
a ∈ s

s ^ Γ_ a : ν

s ^ Γ_M : N

s ^ Γ_ predM : N

s ^ Γ_M : N

s ^ Γ_ succM : N

s ^ Γ, x :A_ x : A

s ^ Γ_M : N s ^ Γ_N1 : A s ^ Γ_N2 : A

s ^ Γ_ if0M thenN1 elseN2 : A

s ^ Γ, x :A_M : B

s ^ Γ_ λx.M : A→ B

s ^ Γ_M : A→ B s ^ Γ_N : A

s ^ Γ_M N : B

s, a ^ Γ_M : B
a /∈ s

s ^ Γ_ νa.M : B

s ^ Γ_M : ν s ^ Γ_N : ν

s ^ Γ_ [M = N ] : N

We can show the following equivariance and weakening properties.

Lemma 2.13 Let s ^ Γ_M : A have a derivation D. Then,

• (a b) [(s ^ Γ_M : A) has a derivation D′ with |D| = |D′|, for any a, b,

• s′ ^ Γ_M : A has a derivation D′ with |D| = |D′|, for any s ⊆ s′.

Proof: By (simultaneous) induction on |D|. The base cases are straightforward. Of the
cases in the inductive step, only ν-abstraction is non-standard. So let s ^ Γ_ νc.M : A have

derivation D, and let the penultimate sequent in D be s, c ^ Γ_M : A. For the first claim,

let χ′ be (a b) [χ, for χ = c, s,M . Then, by IH, s′, c′ ^ Γ_M ′ :A has a derivation D′ with
|D′| = |D| − 1, and by ν-abstracting we obtain a derivation of size |D| for s′ ^ Γ_ νc′.M ′ :A,

as required. For the second claim, take c′ fresh for s′. By IH, s, c′ ^ Γ_ (c c′) [M :A has a
derivation D′ with |D′| = |D| − 1. Now s, c′ ⊆ s′, c′, so, by IH, s′, c′ ^ Γ_ (c c′) [M :A has

a derivation D′′ with |D′′| = |D| − 1, and by ν-abstracting we obtain a derivation of size |D|
for s′ ^ Γ_ νc′.(c c′) [M :A = s′ ^ Γ_ νc.M :A, by α-equivalence. �

We proceedwith the operational semantics, which is defined via a small-step reduction rela-
tion. Reduction occurs in local state environment s. We write s`Γ,A M only if s ^ Γ_M :

A is derivable, and usually we write simply s`M . Reduction rules are as follows.
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LAM
s` (λx.M)V B s`M{V/x}

SUC
s` succn −−→ s` n+ 1

PRD
s` pred (n+ 1) −−→ s` n

PRD
s` pred 0 −−→ s` 0

IF0 N=N1 if n=0
N=N2 if n>0s` if0 n thenN1 else N2 −−→ s` N

EQ n=0 if a=b
n=1 if a6=bs` [a = b] −−→ s` n

NEW b/∈s

s` νa.M −−→ s, b` (a b) [M
CTX

s`M −−→ s′ `M ′

s` E[M ] −−→ s′ ` E[M ′]

We let −→→ denote the reflexive-transitive closure of reduction, and −→→
n

denote its n-step

restriction. Evaluation contexts E are of the forms:

[ = N ] , [a = ] , if0 thenN1 elseN2 , (λx.N) , N , pred , succ .

Note that, because of α-equivalence, the NEW rule can be also written as:

NEW a/∈s

s` νa.M −−→ s, a`M

We observe that whenever s ` M −−→ s′ ` M ′ then s ⊆ s′. Moreover, as the following

result shows, the reduction relation is nominal and yields a reduction calculus which is
deterministic up to choice of fresh names.

Proposition 2.14 Let s, s′, s′′ ⊆fin Aν andM,M ′,M ′′ ∈ TE. Then,

• if s`M −−→ s′ `M ′ then π [ s` π [M −−→ π [ s′ ` π [M ′,

• if s`M −−→ s′ `M ′ and s`M −−→ s′′ `M ′′ then (s′′,M ′′) = (a b) [(s′,M ′), for
some a, b /∈ s,

• if s ` M −→→
n

s′ ` M ′ and s ` M −→→
n

s′′ ` M ′′ then there exists π ∈ fix(s) such

that (s′′,M ′′) = π [(s′,M ′).

Proof: For the first claim we do induction on the size of the derivation of s`M −−→ s′ `
M ′. For the base case, the only non-trivial subcase is that of reducing by NEW, say s `
νa.N −−→ s, b ` (a b) [N . We have that π [ s ` π [ νa.N = π [ s ` ν(π [a).(π [N) −−→
π [ s, b′ ` ((π [a) b′) [π [N , any b′ # π [ s. Now, b # s implies that π [ b # π [ s, hence we

can take b′ to be π(b), and thus

π [ s` π [ νa.N −−→ π [ s, π(b)` (π(a) π(b)) [π [N = π [(s, b)` π [(a b) [N
as required. For the induction step, assume s ` E[N ] −−→ s′ ` E[N ′] is derived from

s ` N −−→ s′ ` N ′. By IH, we can derive π [ s ` π [N −−→ π [ s′ ` π [N ′, and by
applying CTX with context π [E we obtain what required.

For the second claim we again do induction. The base case is by observation. For the in-

ductive step, assume s ` E[N ] −−→ s′ ` E[N ′] is derived from s ` N −−→ s′ ` N ′.
Then it must be the case that s ` M −−→ s′′ ` M ′′ is s ` E[N ] −−→ s′′ ` E[N ′′], some

N ′′, derived from s ` N −−→ s′′ ` N ′′. By IH, s′′ = (a b) [ s′ and N ′′ = (a b) [N ′, some
a, b# s, and hence we nos that E[N ′′] = (a b) [E[N ′]. But E[N ] being typed in s implies that

a, b are not free in E, hence, by α-equivalence, (a b) [E[N ′′] = E[(a b) [N ′′] = E[N ′].

For the last claim we do induction on n. The base case is trivial. For the inductive step,
assume

s`M −−→ s′1 `M ′
1 −→→

n−1
s′ `M ′ ∧ s`M −−→ s′′1 `M ′′

1 −→→
n−1

s′′ `M ′′.
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By our previous claims we have that (s′′1 ,m
′′
1) = (a b) [(s′1,m′

1) and (a b) [ s′1 ` (a b) [M ′
1

−→→
n−1

(a b) [ s′ ` (a b) [M ′. By IH, (s′′,M ′′) = π [(a b) [(s′,M ′), for some π ∈ fix(s′′1). But

then π ◦ (a b) ∈ fix(s), so we are done. �

Note that the notion of determinism up to fresh names is succinctly captured by support

abstraction as follows. We observe that, for every typed term s ^ Γ_M :A and any values

s′ ^ Γ_ V ′ :A and s′′ ^ Γ_ V ′′ :A,

• if s`M −→→ s′ ` V ′ and s`M −→→ s′′ ` V ′′ then [s′, V ′]s = [s′′, V ′′]s,

• if s`M −→→ s′ ` V ′ and [s′, V ′]s = [s′′, V ′′]s then s`M −→→ s′′ ` V ′′.

This allows us to define an abstract evaluation relation between terms and abstracted values,
as follows.

s`M −−−→
eval

[s′ ` V ′]s′′
△

⇐⇒ s = s′′ ∧ s`M −→→ s′ ` V ′ (2.10)

The previous proposition implies that −−−→
eval

is a well-defined partial function. More than

that, it is a total function on closed terms, as the following theorem shows.

Theorem 2.15 (SN) For any s ^∅_M :A there exist s′, V ′ such that s`M −→→ s′ ` V ′.

Proof: Shown as [Sta94, theorem 2.4]. �

2.2.2 The sν-calculus

Modelling of local state in sets of names yields a notion of unordered state, which is inade-

quate for our intended denotational semantics. Nominal game semantics is based on plays

of moves containing information about the current state. Programs are then modelled by
strategies, that is, partial functions operating on plays. These strategies, however, are de-

terministic up to choice of fresh names, a feature which is in direct conflict to unordered
state.5

Ordered state is therefore more appropriate for our purposes. One possible approach

would be to use unordered state at the level of syntax and operational semantics of our
nominal languages, and ordered state at the level of denotational semantics. In fact, this al-

ready happens with contexts: a context Γ is a set of premises, but JΓK is an (ordered) product
of type-translations. Another approach would be to use ordered state both for syntactic and

semantic purposes. For the syntax this would mean to use lists of (distinct) names instead of

sets of names in local state. As lemma 2.17 suggests, one should not expect substantial dif-
ferences between the two approaches. In this thesis we choose to follow the latter: ordered

state does not add much complication while it saves us from some informality.

Once we shift to ordered state, the presentation of the ν-calculus is given entirely in-
side strong nominal sets. For this reason we call this version of the calculus sν-calculus,

i.e. strong ν-calculus. As mentioned above, all the nominal calculi we will examine in the
sequel will de facto be “strong”.

Definition 2.16 The sν-calculus shares the same syntax as the ν-calculus (page 24). Its typ-
ing system is given in environments ~a^Γ and its operational semantics in environments

~a, where ~a ∈ A#
ν . The rules for these are given in figure 2.2 (note we write “a ∈ ~a” for

“a ∈ S(~a)”); contexts E and the condition (∗) are as in page 27. N

The two calculi, ν and sν, are equivalent in the following sense.

Lemma 2.17 For anyM,N ∈ TE and any ~a,~a~c ∈ A#
ν ,

5The problematic behaviour of nominal games in weak support is discussed again in detail in remark 3.19.
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~a ^ Γ_ n : N
a ∈ ~a

~a ^ Γ_ a : ν

~a ^ Γ_M : N

~a ^ Γ_ predM : N

~a ^ Γ_M : N

~a ^ Γ_ succM : N

~a ^ Γ, x :A_ x : A

~a ^ Γ_M : N ~a ^ Γ_N1 , N2 : A

~a ^ Γ_ if0M thenN1 elseN2 : A

~a ^ Γ, x :A_M : B

~a ^ Γ_ λx.M : A→ B

~a ^ Γ_M : A→ B ~a ^ Γ_N : A

~a ^ Γ_M N : B

~aa ^ Γ_M : B
(a /∈ ~a)

~a ^ Γ_ νa.M : B

~a ^ Γ_M : ν ~a ^ Γ_N : ν

~a ^ Γ_ [M = N ] : N

NEW b/∈~a

~a` νa.M −−→ ~ab` (a b) [M EQ n=0 if a=b
n=1 if a6=b~a` [a = b] −−→ ~a` n

LAM
~a` (λx.M)V −−→ ~a`M{V/x}

SUC
~a` succn −−→ ~a` n+ 1

PRD
~a` pred (n+ 1) −−→ ~a` n

PRD
~a` pred0 −−→ ~a` 0

IF0 (∗)

~a` if0 n thenN1 elseN2 −−→ ~a` N CTX
~a`M −−→ ~a′ `M ′

~a` E[M ] −−→ ~a′ ` E[M ′]

Figure 2.2: The sν-calculus: typing and reduction rules.

• ~a ^ Γ_sνM : A iff S(~a) ^ Γ_νM : A ,

• S(~a)`M −→→
ν

S(~a~c) ` N implies ~a`M −→→
sν

~a~c ′ ` N , for [~c ′] = [~c],

• ~a`M −→→
sν

~a~c` N implies S(~a)`M −→→
ν

S(~a~c) ` N . �

From the lemma it follows that sν is strongly normalising. Moreover, we have that the

calculi are essentially equal, meaning that their notions of observational approximation co-
incide:

~a ^ Γ_sνM / N iff S(~a) ^ Γ_νM / N . (2.11)

We do not wish to elaborate on this (easy) result, as we have not yet formally defined ob-

servational approximation; the interested reader can check its validity by referring to the
definitions of observational approximation in the next chapters.
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2.3 Monads and Comonads

In this section we present some basic results on the categorical constructions we will be
using in the following chapters. Some basic category theory is assumed, covering notions

such as products, coproducts, adjoints, etc. (see e.g. [Mac98]).
Monads and comonads are standard categorical notions (v. [Mac98] and [BW99, “triples”])

which have been used extensively in denotational semantics of programming languages in

order to encapsulate computation. The success of these constructions is due to their con-
ceptual simplicity: definitions involve nothing more than ome natural transformations and

commuting diagrams. Combining monads is not always an easy (or even possible) task,
and this is their main defect. However, the monads we use in this thesis combine relatively

well.

2.3.1 Monads

Monads were introduced in denotational semantics through the work of Moggi [Mog89,
Mog91], who proposed them as a generic tool for encapsulating computational effects.

Wadler [Wad92, Wad95] popularised monads in programming as a means of simulating
effects in functional programs, and nowadays monads form part and parcel of the Haskell

programming language [Jon03].

Definition 2.18 A strongmonad on a category C with finite products is a quadruple (T, η, µ, τ),

where:

• (T, η, µ) is a monad, i.e. T is an endofunctor in C and η : IdC B T , µ : T 2 B T are

natural transformations such that the following diagrams commute.

T 3A
µT A //

TµA

��

T 2A

µA

��
T 2A µA

// TA

TA
ηT A //

idT A &&MMMMMMMMMMM T 2A

µA

��

TA
TηAoo

idT Axxrrrrrrrrrrr

TA

• τ : × T B T ( × ) is a natural transformation such that the following diagrams
commute.

(A×B) × TC
τA×B,C //

∼=

��

T ((A× B) × C)

T∼=

))SSSSSSSSSSSSSSS

A× (B × TC)
idA×τB,C

// A× T (B × C) τA,B×C

// T (A× (B × C))

1 × TA
τ1,A //

∼=
''OOOOOOOOOOOO

T (1 ×A)

T∼=

��
TA

A× T 2B
idA×µB //

τA,TB

��

A× TB
τA,B

((QQQQQQQQQQQQQ

T (A× TB)
TτA,B

// T 2(A×B) µA×B

// T (A×B)

A×B
idA×ηB //

ηA×B ((PPPPPPPPPPPP
A× TB

τA,B

��
T (A×B)

We say that C has T -exponentials if, for every pair B,C of objects in C, there exists an object

TC B such that, for any object A, there exists a bijection

ΛTA,B,C : C(A×B, TC)
∼=PA C(A, TC B)

natural in A. N
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Given a strong monad (T, η, µ, τ), we define τ ′ : T ( ) × B T ( × ) as follows.

τ ′A,B : TA×B
∼=PA B × TA

τB,APPPPA T (B ×A)
∼=PA T (A×B) (2.12)

τ ′ satisfies the corresponding strength equations. Wemay refer to τ as right strength and to τ ′

as left strength. Combining strengths and multiplications we obtain natural transformations:

ψA,B : TA× TB
τ ′

A,T BPPPPPA T (A× TB)
TτA,BPPPPPA T 2(A×B)

µA×BPPPPA T (A×B) ,

ψ′
A,B : TA× TB

τTA,BPPPPPA T (TA×B)
Tτ ′

A,BPPPPPA T 2(A×B)
µA×BPPPPA T (A×B) .

(2.13)

T -exponentials supply us with of T -evaluation arrows, that is,

evTB,C : TC B ×BB TC , ΛT
−1

(idTCB ) (2.14)

so that, for each f : A×BB TC, the following diagram commutes.

(TC)B ×B
ev

T

// TC

A×B

ΛT (f)×id

OO

f

99tttttttttttt

T -exponentiation is in fact a functor (T )− : C op × C B C which takes each f : A′ B A

and g : B′ B B to

Tg f : TB′A B TBA′

, ΛT (TB′A ×A′ id × fPPPPPA TB′A ×A
ev

TPPPA TB′ TgPPA TB) . (2.15)

Finally, monads on a given category form a category of their own by use of the following

notion.

Definition 2.19 Let (T, η, µ, τ) and (Ṫ , η̇, µ̇, τ̇ ) be strong monads on a category C. A monad

morphism a : (T, η, µ, τ) B (Ṫ , η̇, µ̇, τ̇ ) is a natural transformation a : T B Ṫ making the
following diagrams commute.

A
ηA //

η̇A

!!D
DD

DD
DD

DD
DD

TA

aA

��
ṪA

T 2A

aT A ; Ṫ aA

��

µA // TA

aA

��
Ṫ 2A µ̇A

// ṪA

A× TB
τA,B //

idA×aB

��

T (A×B)

aA×B

��
A× ṪB τ̇A,B

// Ṫ (A×B)
N

2.3.2 The Kleisli construction and the intrinsic preorder

Given a monad (T, η, µ) on a category C one may want to construct a category CT including

all objects of C but constraining its collection of arrows to those of types

AB TB.

This construction is called the Kleisli construction. The reasons for applying it can be

category-theoretical: the Kleisli construction provides a means for factorising the monad

T into a pair of adjoint functors between C and CT . Most importantly for us, though, the
category CT represents the category of T -computations and is therefore the universe which

holds our denotational translations.
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Definition 2.20 Let C be a category and (T, η, µ) be a monad on C. The Kleisli category CT

contains the same objects as C and, for all objects A,B,

CT (A,B) , C(A, TB) .

Moreover, the identity arrow on A is ηA , and composition of arrows f : A B TB and
g : BB TC is given by:

A
fPA TB

TgPPA T 2C
µPA TC .

N

If C has finite products then T being a strong monad corresponds to CT having a symmetric
premonoidal tensor, that is, a non-bifunctorial tensor product (see [PR97]), which allows us

to model computation products in CT . Furthermore, the requirement for T -exponentials
makes the premonoidal structure of CT closed (and corresponds to closure of the related

Freyd category, see [Pow00]).

Intrinsic preorder The notion of equating programs modulo their observable behaviour
can be modelled categorically by means of quotienting by the intrinsic preorder. So let us

assume that T is a strong monad with exponentials on C and that there is a distinguished
object o of C corresponding to a type of observables. We fix a collection

O ⊆ C(1, T o)

of arrows of specific observable behaviour and build the intrinsic preorder on arrows as
follows.6

Definition 2.21 Let C, T, o, O be as above. We define the intrinsic preorder, . , to be the
union, over all objects A,B, of relations .A,B⊆ C(A, TB)2 defined by:

f .A,B g ⇐⇒ ∀ρ ∈ C(TBA, T o). ΛT (f); ρ ∈ O =⇒ ΛT (g); ρ ∈ O .
N

Note that our definition of the intrinsic preorder relates only arrows which correspond to
computations, that is, arrows of CT . Clearly, on those arrows . is a preorder. To make use

of the intrinsic preorder in the semantical translation of programs, it is necessary that .
be coherent with the structure of CT , that is, it should preserve composition, premonoidal

tensors and tensor exponentials.7 In C, these conditions are translated as follows.

Proposition 2.22 Let C, T, o, O and . be as above. For any f, g : AB TB and any arrow h, if

f . g then:

if h : BB TB′ then f ;Th ;µ . g ;Th ;µ ,

if h : A′ B TA then h ;Tf ;µ . h ;Tg ;µ ,

if h : AB TC then 〈f, h〉 ;ψ . 〈g, h〉 ;ψ and 〈h, f〉 ;ψ . 〈h, g〉 ;ψ ,

if A = A1 ×A2 then ΛTA1,A2,B
(f) ; η . ΛTA1,A2,B

(g) ; η .

Proof: The claims follow from the following equations,

• ΛT (f ;Th ;µ) = ΛT (f) ; ΛT (TB A ×A
ev

TPPPA TB ThPPA T 2B′ µPA TB′)

• ΛT (h ;Tf ;µ) = ΛT (f) ; ΛT (TB A ×A′ id × hPPPPPA TBA × TA τPA T (TBA ×A)
T ev

T ; µPPPPPA TB)

• ΛT (〈f, h〉 ;ψ) = ΛT (f) ; ΛT (TB A ×A
〈evT , π2 ;h〉PPPPPPPPA TB × TC

ψPA T (B × C))

6Note that, for an arrow f : A B TB, we may write (abusively) ΛT (f) : 1 B TBA for the arrow

ΛT (1 × A
∼=PPA A

fPA TB).
7In few words, . should enrich CT .
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• ΛT (ΛT (f) ; η) = ΛT (f) ; ΛT (TB A1×A2 ×A1
ΛT (evT )PPPPPPA TB A2

ηPA T (TBA2))

which are true due to naturality of ΛT . �

Let us remark here that we will not be making actual use of the Kleisli construction in the
semantical models of the following chapters. Rather, we will remain at the base semantical

categories andmake use of properties coming from the categories’ Kleisli counterparts, such
as the intrinsic preorder properties of the previous proposition.

2.3.3 Defining side-effects

Given a strong monad with exponentials and any object ξ of C, we can form a ξ-side-effect

monad on C as follows (cf. [Mog88]).

Proposition and Definition 2.23 Let (T, η, µ, τ) be a strong monad with exponentials on C and
let ξ be an object of C. Form the quadruple (T̈ , η̈, µ̈, τ̈ ) by taking:

• T̈ : C B C , T ( × ξ) ξ ,

• η̈A : AB T̈A , ΛT (η̃A) ,

• µ̈A : T̈ 2AB T̈A , ΛT (µ̃A) ,

• τ̈A,B : A× T̈BB T̈ (A×B) , ΛT (τ̃A,B) ;

• η̃A , A× ξ
ηPA T (A× ξ) ,

• µ̃A , T̈ 2A× ξ
ev

TPPA T (T̈A× ξ)
T ev

TPPPPA T 2(A× ξ)
µPA T (A× ξ) ,

• τ̃A,B , A× T̈B × ξ
id × ev

TPPPPPPA A× T (B × ξ) τPA T (A×B × ξ) .

Then (T̈ , η̈, µ̈, τ̈) is a strong monad on C. Moreover, we obtain T̈ -exponentials by taking, for each

A,B,C and any f : A×BB T̈C, g : AB T̈C B ,

T̈AB , TAB×ξ

ΛT̈ (f) , ΛTA,B×ξ,C×ξ(Λ
T
A×B,ξ,C×ξ

−1
(f))

ΛT̈
−1

(g) , ΛTA×B,ξ,C×ξ(Λ
T
A,B×ξ,C×ξ

−1
(g)) .

Proof: Standard result [Mog88]. �

We can now define a natural transformation β : T T̈ B T̈ which embeds T inside T̈ , by
setting, for each object A, βA , ΛT (β̃A) and

β̃A , T T̈A× ξ τ ′PA T (T̈A× ξ)
T ev

TPPPPA T 2(A× ξ)
µPA T (A× ξ) . (2.16)

Lemma 2.24 For (T, η, µ, τ), (T̈ , η̈, µ̈, τ̈ ) and β defined as above, the following diagrams commute.

T̈A
η

T̈ A //

id

!!B
BB

BB
BB

BB
BB

B T T̈A

βA

��
T̈A

T 2T̈A
µ

T̈ A //

TβA

��

T T̈A

βA

��

T T̈ 2A
Tµ̈Aoo

β
T̈ A

��
T T̈A

βA

//
T̈A T̈ 2A

µ̈A

oo

A × T T̈B
τ

A,T̈ B
;Tτ̈A,B//

id×βB

��

T T̈ (A × B)

βA×B

��
A × T̈B

τ̈A,B

// T̈ (A × B)

�

Interestingly, a natural transformation β : T T̈ B T satisfying the first two diagrams above
corresponds to a layering of T̈ over T , in Filinski’s terminology [Fil99]. We can show that β

yields a monad morphism α : T B T̈ .
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Proposition 2.25 Let (T, η, µ, τ), (T̈ , η̈, µ̈, τ̈) and β be as above, and let α : T B T̈ be defined by:

αA , TA
T η̈APPPA T T̈A

βAPPA T̈A .

Then, α is a monad morphism.

Proof: That α is a morphism between (possibly non-strong) monads is a corollary of the pre-

vious lemma, shown in [BW02, Section 3.6]. Regarding strengths, we have that the diagram

A
τA,B //

idA×T η̈B

��

T (A×B)

T (idA×η̈B)

��

T η̈A×B

&&LLLLLLLLLLLLLLL

A× T T̈B
τA,T̈ B //

idA×βB

��

T (A× T̈B)
T τ̈A,B // T T̈ (A×B)

βA×B

��
A× T̈B

τ̈A,B

// T̈ (A×B)

commutes, which completes the proof. �

Moreover, α can be reduced as follows.

α = T η̈ ;β = T η̈ ; ΛT (τ ′ ;T evT ;µ) = ΛT (T η̈ × id ; τ ′ ;T evT ;µ)

= ΛT (τ ′ ;T (η̈ × id) ;T evT ;µ) = ΛT (τ ′ ;Tη ;µ) = Λ(τ ′)
(2.17)

2.3.4 Monad composition

Simple computational effects may be composed in a serial fashion, yielding more complex

effects. In the monadic reading this corresponds to monad composition, that is, to monads Ṫ

and T̈ being composed to the compound monad T̈ Ṫ . Although this construction yields a
compound functor, it does not necessarily yield a monad: the resulting structure may fail

to satisfy the monad axioms. Nevertheless, when Ṫ distributes over T̈ such a composition is
successful.

Definition 2.26 Let (T̈ , η̈, µ̈, τ̈ ) and (Ṫ , η̇, µ̇, τ̇ ) be strong monads on a category C. A dis-

tributive law of Ṫ over T̈ is a natural transformation ℓ : Ṫ T̈ B T̈ Ṫ such that, for all objects

A,B, the following diagrams commute.

ṪA

Ṫ η̈A

��

η̈Ṫ A

""E
EEEEEE

EEEEE

Ṫ T̈A
ℓA // T̈ ṪA

T̈A

η̇T̈ A

OO

T̈ η̇A

<<yyyyyyyyyyyy

Ṫ T̈ 2A

Ṫ µ̈A

��

ℓT̈ A ; T̈ ℓA // T̈ 2ṪA

µ̈Ṫ A

��
Ṫ T̈A

ℓA // T̈ ṪA

Ṫ 2T̈A
Ṫ ℓA ; ℓṪA

//

µ̇T̈ A

OO

T̈ Ṫ 2A

T̈ µ̇A

OO

A× Ṫ T̈B
idA×ℓB //

τ̇A,T̈B

��

A× T̈ ṪB

τ̈A,ṪB

��
Ṫ (A× T̈B)

Ṫ τ̈A,B

��

T̈ (A× ṪB)

T̈ τ̇A,B

��
Ṫ T̈ (A×B)

ℓA×B

// T̈ Ṫ (A×B)
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If such an ℓ is given, define the compound monad (T, η, µ, τ) by:

T , T̈ Ṫ

ηA , A
η̈APPA T̈A

T̈ η̇APPPA TA

µA , T 2A
T̈ ℓṪAPPPPA T̈ 2Ṫ 2A

µ̈Ṫ2APPPPA T̈ Ṫ 2A
T̈ µ̇APPPA TA

τA,B , A× TB
τ̈A,ṪBPPPPA T̈ (A× ṪB)

T̈ τ̇A,BPPPPPA T (A×B) .
N

The notion of monad-distributivity was introduced by Beck [Bec69], who showed that it is a

sufficient requirement for composing monads. The last diagram above allows the extension
of Beck’s result to strong monads. In the previous definition note that compound monads

are by-products of distributivity laws, and hence the use of different laws can give distinct

compound monads for the same pair of monads.

Proposition 2.27 Let Ṫ , T̈ and ℓ be as above. Then, T is a strong monad and the natural transfor-

mations
η̈ : Ṫ B T , T̈ η̇ : T̈ B T

are monad morphisms. �

2.3.5 Defining exceptions

Let C be a category with binary products and coproducts, and let us use the following nota-

tion for coproducts.
A

ι1PA A+B
ι2QP B

Moreover, suppose C is distributive, i.e. the canonical arrow

dstA,B,C : A× B +A× CB A× (B + C)

is an isomorphism, for all objectsA,B,C. For any objectE of C, we can form theE-exception

monad as follows.

Proposition and Definition 2.28 For C and E as above, define the quadruple (Ṫ , η̇, µ̇, τ̇ ) as fol-

lows.

Ṫ : C B C , + E

η̇A : AB ṪA , ι1

µ̇A : Ṫ 2AB ṪA , [idṪA, ι2]

τ̇A,B : A× ṪBB Ṫ (A×B) , dst−1
A,B,E ;(idA×B + π2)

Then, (Ṫ , η̇, µ̇, τ̇ ) is a strong monad and, for any other monad (T̈ , η̈, µ̈, τ̈) on C, Ṫ distributes over T̈

via ℓA , Ṫ T̈A
[T̈ ι1, ι2; η̈]PPPPPPPA T̈ ṪA .

Proof: This is a standard result [Mog88]. �

2.3.6 Comonads

Comonads, the dual of monads, were proposed in denotational semantics by Brookes and

Geva [BG92] for modelling programs intensionally: instead of abstracting away from com-
putations and seeing programs as functions, one models programs as mechanisms which

receive external computation data and decide on an output. The comonadic approach was

further pursued by Brookes and van Stone [BvS93], who examined monadic-comonadic ap-
proaches, and others [Kie99, LSLM00, UV05, PW02], yet it never reached the popularity of

monads due to its seemingly limited applicability.
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Definition 2.29 A comonad on a category C is a triple (Q, ε, δ), where Q is an endofunctor
in C and ε : Q B IdC , δ : Q B Q2 are natural transformations such that the following

diagrams commute.

QA

δA

��

δA // Q2A

QδA

��
Q2A

δQA

// Q3A

QA

δA

��

idQA

yyrrrrrrrrrrr
idQA

%%LLLLLLLLLLL

QA Q2AεQA

oo
QεA

// QA
N

In case C has products, we define a transformation ζ̄ : Q( × )B ×Q( ),

ζ̄A,B : Q(A×B)
〈Qπ1, Qπ2〉PPPPPPPPA QA×QB

εA × idQBPPPPPPPPA A×QB (2.18)

which makes the (comonadic) strength-diagrams commute.

Lemma 2.30 Let (Q, ε, δ) be a comonad on a category C with finite products. Then, ζ̄ makes the
following diagrams commute.

(A×B) ×QC Q((A×B) × C)
z̄ A×B,Coo

A× (B ×QC)

∼=

OO

A×Q(B × C)
idA× z̄ B,C

oo Q(A× (B × C))z̄ A,B×C

oo

Q∼=
iiTTTTTTTTTTTTTTT

1 ×QA Q(1 ×A)
z̄ 1,Aoo

QA

∼=

ggOOOOOOOOOOOOO

Q∼=

OO

A×Q2B A×QB
idA×δBoo

Q(A×QB)

z̄ A,QB

OO

Q2(A×B)
Q z̄ A,B

oo Q(A×B)
δA×B

oo

z̄ A,B

hhPPPPPPPPPPPPP

A×B A×QB
idA×εBoo

Q(A×B)

z̄ A,B

OO

εA×B

ggOOOOOOOOOOO

Proof: This follows easily from the comonadic properties; we show the last two cases.

ζ̄A,B ; idA × εB = 〈Qπ1, Qπ2〉 ; εA × idQB ; idA × εB = 〈Qπ1 ; εA, Qπ2 ; εB〉

= 〈εA×B ;π1, εA×B ;π2〉 = εA×B

δA×B ;Q ζ̄A,B ; ζ̄A,QB = δA×B ;Q〈Qπ1, Qπ2〉 ;Q(εA × idQB) ;〈Qπ1, Qπ2〉 ; εA × idQ2B

= δA×B ;Q〈Qπ1, Qπ2〉 ;〈Qπ1 ;QεA, Qπ2〉 ; εA × idQ2B

= δA×B ;Q〈Qπ1, Qπ2〉 ;〈Qπ1, Qπ2〉 ;(QεA ; εA) × idQ2B

= δA×B ;〈Q2π1, Q
2π2〉 ;(QεA ; εA) × idQ2B

= 〈Qπ1 ; δA, Qπ2 ; δB〉 ;(QεA ; εA) × idQ2B

= 〈Qπ1 ; εA, Qπ2 ; δB〉 = ζ̄A×B ; idA × δB
�

Stronger comonads are obtained by stipulating a transformation ζ in the other direction, as
in the case of strong comonads of [BvS93]. In our case, we stipulate even stronger conditions.

Definition 2.31 A comonad (Q, ε, δ) with transformation ζ̄ defined as above is called a
product comonad if ζ̄ is a natural isomorphism. N

We write ζ : × Q( ) B Q( × ) for the inverse of ζ̄ . Moreover, and as in the case
of monadic strengths, we let ζ ′, ζ̄ ′ be their symmetric counterparts. Note that a product

comonad Q can be written as
Q ∼= Q1 × (2.19)

hence the name.8 We say that Q1 is the basis of the comonad.

8Note this is an isomorphism between comonads, not merely between functors.
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Comonad morphisms Now let (Q, ε, δ), (Q̂, ε̂, δ̂) be comonads on a category C. A comonad
morphism a : (Q, ε, δ) B (Q̂, ε̂, δ̂) is a natural transformation a : Q B Q̂ making the

diagrams on the left below commute.

QA
εA //

aA

��

A

Q̂A

ε̂A

??~~~~~~~~~~~

QA
δA //

aA

��

Q2A

aQA ; Q̂aA

��
Q̂A

δ̂A

// Q̂2A

A×QB
zA,B //

idA×aB

��

Q(A×B)

aA×B

��
A× Q̂B ẑA,B

// Q̂(A×B)

If Q, Q̂ are product comonads then a necessarily respects coherence conditions for ζ , ζ̂ (de-

picted on the right above). This follows from ζ̄A,B ; idA × aB = aA×B ;
¯̂
ζA,B , which is

shown below.

A×QB

idA×aB

��

QA×QB

aA×aB

��

εA×idQBoo Q(A×B)
〈Qπ1,Qπ2〉oo

aA×B

��
A× Q̂B Q̂A× Q̂B

ε̂A×idQ̂Boo Q̂(A×B)
〈Q̂π1,Q̂π2〉oo

2.3.7 Monadic-comonadic setting

In the presence of both a strong monad (T, η, µ, τ) and a product comonad (Q, ε, δ, ζ ) in a
cartesian category C, one may want to consider solely arrows of types

QAB TB,

that is, arrows from some initial computation data (e.g. some initial state) of type A to some
computation of type B. This amounts to applying the biKleisli construction on C, i.e. to
defining the category CTQ with the same objects as C, and arrows

CTQ(A,B) , C(QA, TB) .

For arrow composition to work in the biKleisli category, we stipulate a distributive law
between Q and T , that is, a natural transformation ℓ : QT B TQ making the following

diagrams commute.

QA
QηA //

ηQA

!!D
DD

DD
DD

DD
DD

DD
D

QTA

ℓA

��

εT A // TA

TQA

TεA

==zzzzzzzzzzzzzz

QT 2A
QµA //

ℓTA ;TℓA

��

QTA

ℓA

��

δT A // Q2TA

QℓA ; ℓQA

��
T 2QA µQA

// TQA
TδA

// TQ2A

In this case, composition of f : QAB TB and g : QBB TC is performed as:

QA
δAPPA Q2A

QfPPA QTB
ℓBPPA TQB

TgPPA T 2C
µCPPA TC . (2.20)

Identities in the category are given by arrows of the form:

QA
εAPPA A

ηAPPA TA . (2.21)

Recall we are examining a monadic-comonadic setting for strong monad T and product

comonad Q, which means that a distributive law amounts to a natural transformation

ℓ : Q1 × T B T (Q1 × )

and which is therefore given for free: take ℓ , τQ1, . The distributivity equations follow

straightforwardly from the strength equations.
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Exponentials and the intrinsic preorder The notion of T -exponentials can be generalised
to the monadic-comonadic setting as follows.

Definition 2.32 Let C be a category with finite products and let (T, η, µ, τ), (Q, ε, δ) be a
strong monad and a comonad respectively on C. We say that C has (Q, T )-exponentials if,

for each pairB,C of objects in C there exists an object (Q, T )C B such that, for each object A,
there exists a bijection

φA,B,C : C(Q(A×B), TC)
∼=PA C(QA, (Q, T )C B)

natural in A. N

In the particular case of Q being a product comonad and T having exponentials, (Q, T )-
exponentials come for free.

Proposition 2.33 In the setting of the previous definition, if C has T -exponentials andQ is a product
comonad then C has (Q, T )-exponentials defined by:

(Q, T )C B , TC B

φ(f : Q(A×B)A TC) , ΛT (QA×B
z ′PPA Q(A×B)

fPA TC) ,

in which case φ is a bijection with its inverse sending each g : QAB TC B to

Q(A×B)
z̄ ′PPA QA×B

g × idPPPPA TC B ×B
ev

TPPA TC .
�

In this same setting, we can also define an extended notion of intrinsic preorder. So, assum-
ing an observable object o and a collectionO ⊆ C(Q1, T o) of observable arrows, we can have

the following.

Definition 2.34 Let C, Q, T, o,O be as above. We define . to be the union, over all objects
A,B, of relations .A,B⊆ C(QA, TB)2 defined by

f .A,B g ⇐⇒ ∀ρ ∈ C(Q(TBA), T o). ΛQ,T (f); ρ ∈ O =⇒ ΛQ,T (g); ρ ∈ O ,

where

ΛQ,T (f) , Q1 δPA Q21
QΛT (z ′ ; f)PPPPPPPPA Q(TB A) . N

As in the monadic setting, we have the following enrichment properties.

Proposition 2.35 Let C, Q, T, o,O and . be as above. For any f, g : QAB TB and any arrow
h, if f . g then:

if h : QBB TB′ then δ ;Qf ; ℓ ;Th ;µ . δ ;Qg ; ℓ ;Th ;µ

if h : QA′ B TA then δ ;Qh ; ℓ ;Tf ;µ . δ ;Qh ; ℓ ;Tg ;µ

if h : QAB TC then 〈f, h〉 ;ψ . 〈g, h〉 ;ψ and 〈h, f〉 ;ψ . 〈h, g〉 ;ψ

if A = A1 ×A2 then ΛTQA1,A2,B
(ζ ′ ; f) ; η . ΛTQA1,A2,B

(ζ ′ ; g) ; η .

Proof: The claims follow from the following equations,

• δ ;QΛT (ζ ′ ; δ ;Qf ; ℓ ;Th ;µ) = δ ;QΛT (ζ ′ ; f) ; δ ;QΛT (ζ ′ ;QevT ; ℓ ;Th ;µ)

• δ ;QΛT (ζ ′ ; δ ;Qh ; ℓ ;Tf ;µ) = δ ;QΛT (ζ ′ ; f) ; δ ;QΛT (ζ ′ ; ζ̄ ; id× h ; τ ;T evT ;µ)

• δ ;QΛT (ζ ′ ;〈f, h〉 ;ψ) = δ ;QΛT (ζ ′ ; f) ; δ ;QΛT (ζ ′ ;Q〈evT , π2〉 ; ζ̄ ;id× h ;ψ)

• δ ;QΛT (ζ ′ ; ΛT (ζ ′ ; f) ; η) = δ ;QΛT (ζ ′ ; f) ;QΛT (ΛT (evT ) ; η)

which are true due to naturality of ΛT . �



Chapter 3

Nominal Games

Nominal games were introduced in [AGM+04, Lai04] as a basis for the fully abstract mod-
elling of nominal computation. They constitute a reformulation of ordinary games in nomi-

nal sets,1 thus allowing for names (atoms) to appear in plays as atomic moves and therefore

for strategies to involve (equivariant) name-reasoning.
In this thesis we follow the presentation of [AGM+04] (the AGMOS approach), rectifying

also discrepancies arising in [AGM+04] from the incompatibility of unordered state with
determinacy of strategies. Two further guidelines for (our) nominal games are the following.

• Use of moves with local state attached, a notion that had been used before by Ong for

the semantics of Idealized Algol [Ong02].

• Use of call-by-value discipline, as advanced by Honda and Yoshida [HY99] for the
semantics of call-by-value PCF.

These stem from the fact that the languageswe examine are stateful subsets ofML [MTM97].

With regard to local state, our approach coincides with the AGMOS approach in that moves
inside a play are attached with the full list of names available at the computation step they

represent. This is advantageous in that it is simple and allows for better control over plays

and strategies, witnessed e.g. by the concise proof of adequacy in the next chapter. More-
over, the approach is easily customisable to nominal languages with a variety of effects:

once the denotational framework for names has been set, further nominal effects can be
modelled by use of monads. Here this is exemplified through general references (chapter 4)

and exceptions (chapter 5).

On the other hand, full access to local names and the use of monads for effects allow
strategies to make too many distinctions at the intentional level and therefore our full-

abstraction results rely on quotienting. Stricter approaches to local state followed in [Lai08,

MT09], for languages with ground store, factor out such distinctions and lead to fully ab-
stract models without quotienting. Those models make use of a local state that includes only

those names that have been used and are still available, for appropriate notions of name-use
and name-availability. Naturally, the added strictness comes with a cost of added com-

plicacy in the manipulation of strategies and, in fact, the methods are no longer generic:

different languages have different notions of name-use, name-availability and local state. In
particular, the approach is not applicable to general references— at least not directly. See

section 3.5 for further discussion.
The chapter is structured as follows. In section 3.1we introduce the basic notions of nom-

inal games, that is, nominal arenas, plays and strategies. We work on play- and strategy-

composition and obtain the category G of nominal arenas and nominal strategies. In sec-
tion 3.2 we focus on innocence, and produce the subcategory V of innocent strategies. In

section 3.3 we further restrict ourselves to total strategies and obtain the category Vt, which

1Although nominal sets are not explicitly mentioned in [Lai04], they are in the journal version of the pa-
per [Lai08].

39
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we show to have products, distributive coproducts and partial exponentials. In section 3.4
we construct a monad for fresh-name creation and a family of comonads for initial state on

Vt. In the final section we discuss Laird’s presentation of nominal games [Lai04, Lai08].

3.1 The basic category G of nominal games

We start from the basic category of nominal games G, containing nominal arenas and nomi-

nal strategies. G will be further refined in the next sections so as to incorporate the notions
of innocence and totality.

3.1.1 Nominal arenas and strategies

The basis for all constructions to follow is the category Nom of nominal sets. We proceed

to arenas.

Definition 3.1 A nominal arena A , (MA, IA,⊢A, λA) is given by:

• a strong nominal setMA of moves,

• a nominal subset IA ⊆MA of initial moves,

• a nominal justification relation ⊢A⊆MA × (MA \ IA),

• a nominal labelling function λA : MA → {O,P} × {A,Q},
which labels moves as Opponent or Player moves, and as Answers or Questions.

An arena A is subject to the following conditions.

(f) For eachm ∈MA, there exists unique k ≥ 0 such that IA ∋ m1 ⊢A · · · ⊢A mk ⊢A m , for
someml’s inMA. k is called the level ofm.

(l1) Initial moves are P-Answers.

(l2) If m1,m2 ∈ MA are at consecutive levels then λA assigns them complementary OP-

labels.

(l3) Answers may only justify Questions. N

Note that, although the nominal arenas of [AGM+04] are defined by use of a set of weaker
conditions than those above, the actual arenas used there fall within the above definition.

Note that initial moves have level 0. We let level-1 moves form the set JA ; since ⊢A is

a nominal relation, JA is a nominal subset of MA (and so are ĪA, J̄A below). Moves inMA

are denoted bymA and variants, initial moves by iA and variants, and level-1 moves by jA
and variants. By ĪA we denoteMA \ IA, and by J̄A the setMA \ JA. We also write λ̄A for the
OP-complement of λA.

We move on to prearenas, which are the ‘boards’ on which nominal games are played.

Definition 3.2 A prearena is defined exactly as an arena, with the only exception of condi-

tion (l1): in a prearena initial moves are O-Questions.

Given arenas A and B, construct the prearenaA→ B by:

MA→B , MA +MB

IA→B , IA

λA→B , [(iA 7→ OQ , mA 7→ λ̄A(mA)) , λB]

⊢A→B , {(iA, iB)} ∪ {(m,n) |m ⊢A,B n}
N
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It is useful to think of the (pre)arena A as a vertex-labelled directed graph with vertex-
set MA and edge-set ⊢A with the labels on vertices given by λA (and satisfying (l1-3)). It

follows from (f) that the graph so defined is levelled: its vertices can be partitioned into
disjoint sets L0, L1, L2,. . . such that the edges may only travel from level i to level i+ 1 and

only level-0 vertices have no incoming edges (and therefore (pre)arenas are directed acyclic).

Accordingly, we will be depicting arenas by levelled graphs or triangles (e.g. figure 3.1).
The simplest arena is 0 , (∅,∅,∅,∅). Other flat arenas are 1 (unit arena), N (arena of

naturals), and A~a (arena of ~a-names), for any ~a ∈ A#, which we define by:

M1 = I1 , {∗} , MN = IN , N , MA~a = IA~a , A~a . (3.1)

Note that for ~a empty we get Aǫ = 1, and that we write Ai for Aa with a ∈ Ai.
More involved are the following constructions.

Definition 3.3 For nominal arenas A,B, define the arenas A ⊗ B, A⊥, A −−⊗ B, A⇒ B and

A+B as follows.

MA⊗B , IA×IB + ĪA + ĪB (A⊗B)

IA⊗B , IA×IB

λA⊗B , [((iA, iB) 7→ PA) , λA ↾ ĪA , λB ↾ ĪB ]

⊢A⊗B , {((iA, iB),m) | iA ⊢A m ∨ iB ⊢B m} ∪ (⊢A↾ ĪA2) ∪ (⊢B↾ ĪB2)

MA⊥
, {∗1} + {∗2} +MA (A⊥)

IA⊥
, {∗1}

λA⊥
, [(∗1 7→ PA) , (∗2 7→ OQ) , λA]

⊢A⊥
, {(∗1, ∗2), (∗2, iA)} ∪ (⊢A↾ MA

2)

MA−−⊗B , IB + IA×JB + ĪA + ĪB ∩ J̄B (A −−⊗ B)

IA−−⊗B , IB

λA−−⊗B , [(iB 7→ PA) , ((iA, jB) 7→ OQ) , λ̄A ↾ ĪA , λB ↾ (ĪB ∩ J̄B)]

⊢A−−⊗B , {(iB, (iA, jB)) | iB ⊢B jB} ∪ {((iA, jB),m) | (iA ⊢A m ∨ jB ⊢B m)}

∪ (⊢A↾ ĪA2) ∪ (⊢B↾ (ĪB ∩ J̄B)2)

A⇒ B , A −−⊗ B⊥ (A⇒B)

MA+B , MA +MB (A+B)

IA+B , IA + IB

λA+B , [λA , λB ]

⊢A+B , ⊢A ∪ ⊢B

The constructions are sketched in figure 3.1. N

In the constructions above it is assumed that all moves which are not hereditarily justified

by initial moves are discarded— and therefore the resulting arenas satisfy the (f) condition.
Hence, for example, for any A,B,

JB = ∅ =⇒ A −−⊗ B = B .

Moreover, we usually identify arenas with graph-isomorphic structures; for example, for
any A,B,

0 +A = A+ 0 = A , 1 −−⊗ A = A .
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A B

A⊗B

A

∗
∗

A⊥

A B

A −−⊗ B

A B

A⇒B

∗

A B

A+B

A⊗B

(iA, iB) PA

A− B−

A −−⊗ B

iB PA

(iA, jB) OQ

A− B=

A⇒B

∗ PA

iA OQ

A− B

Another depiction ofA⊗ B,
A −−⊗ B and A ⇒ B. Note
that byA− we denoteA\IA ,
and byB= the structureB \
(IB ∪ JB).

Figure 3.1: Basic arena constructions.

Using the latter convention,A⇒B of the previous definition corresponds toA⇒B of [HY99,

AGM+04]; concretely, it is given by:

MA⇒B , {∗} + IA + ĪA +MB (A⇒B)

IA⇒B , {∗}

λA⇒B , [(∗ 7→ PA) , (iA 7→ OQ) , λ̄A ↾ ĪA , λB]

⊢A⇒B , {(∗, iA)} ∪ {(iA,m) | iA ⊢A m ∨m ∈ IB} ∪ (⊢A↾ ĪA2) ∪ (⊢B↾ MB
2) .

Of the above constructors all look familiar apart from −−⊗. The latter can be seen as a
function-space constructor merging the contravariant part of its RHS with its LHS. For ex-

ample, for any A,B,C, we have

A −−⊗ N = N and A −−⊗ (B⇒ C) = (A⊗B) ⇒ C .

In the first equality we see that N, which appears on the RHS of −−⊗, has no contravariant

part and hence A is redundant. In the second equality B, which is the contravariant part of

B⇒C, is mergedwithA. This construction will be of great use when considering a monadic
semantics for store.

Before proceeding to plays and the essence of nominal games, let us introduce some
useful notation for sequences (and lists).

Notation 3.4 (Sequences) A sequence swill be usually denoted by xy . . . , where x, y, ... are
the elements of s. For sequences s, t,

• s ≤ t denotes that s is a prefix of t, and then t = s (t \ s) ,

• s− denotes s with its last element removed,

• if s = s1 . . . sn then s1 is the first element of s and sn the last. Also,

◦ n is the length of s, and is denoted by |s|,

◦ s.i denotes si and s.−i denotes sn+1−i , that is, the i-th element from the tail of s (for

example, s.−1 is sn),

◦ s≤si
denotes s1 . . . si , and so does s<si+1 . N
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We move on to describe how nominal games are played. Given a prearena A, plays of a
game consist of sequences of moves from A. These moves are augmented with name-lists

(elements of A#) to the effect of capturing name-environments.

Definition 3.5 Amove-with-names of a prearenaA is a pair, writtenm~a, wherem is a move

of A and ~a is a finite list of distinct names (name-list). N

If x is a move-with-names then its name-list is denoted by nlist(x) and its underlying move
by x ; therefore,

x = xnlist(x) . (3.2)

The above notation is extended to sequences of moves-with-names, so that for such a se-

quence s we write s = snlist(s), where nlist(s) is a list, of length |s|, of lists of names.
A justified sequence over a prearena A is a finite sequence s of OP-alternating moves

such that, except for s.1 which is initial, every move s.i has a justification pointer to some

s.j such that j < i and s.j ⊢A s.i ; we say that s.j (explicitly) justifies s.i . A move in s is an
open question if it is a question and there is no answer inside s justified by it.

There are two standard technical conditions that one may want to apply to justified se-
quences: well-bracketing and visibility. We say that a justified sequence s iswell-bracketed if

each answer s.i appearing in s is explicitly justified by the last open question in s<s.i , called

the pending question. Seeing questions as opening brackets and answers as closing ones
this condition indeed corresponds to well-bracketing. For visibility, we need to introduce

the notions of Player- andOpponent-view. For a justified sequence s, its P-view psq and its

O-view xsy are defined as follows.

pǫq , ǫ

psxq , psq x if x a P-move

pxq , x if x is initial

psxs′yq , psq xy if y an O-move

expl. justified by x

xǫy , ǫ

xsxy , xsyx if x an O-move

xsxs
′yy , xsyxy if y a P-move

expl. justified by x

The visibility condition states that any O-move x in s is justified by a P-move in xs<xy , and
any P-move y in s is justified by an O-move in ps<yq. We can now define plays.

Definition 3.6 Let A be a prearena. A legal sequence on A is a sequence of moves-with-

names s such that s is a justified sequence satisfying Visibility and Well-Bracketing.

A legal sequence s is a play if s.1 has empty name-list and s also satisfies the following
Name Change Conditions.

(NC1) The name-list of a P-move x in s contains as a prefix the name-list of the move pre-

ceding it. It possibly contains some other names, all of which are fresh for s<x.

(NC2) Any name in the support of a P-move x in s that is fresh for s<x is contained in the

name-list of x.

(NC3) The name-list of a non-initial O-move in s is that of the move explicitly justifying it.

The set of plays on a prearenaA is denoted by PA. N

It is important to observe that plays have strong support, due to the tagging of moves with
lists of names (instead of sets of names [AGM+04]). Note also that plays are the ǫ-plays

of [Tze07]. Now, some further notation.

Notation 3.7 (Name-introduction) A name a is introduced (by Player) in a play s, written

a ∈ L(s), whenever there exist consecutive moves yx in s such that x is a P-move and
a ∈ nlist(x) \ nlist(y). N
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From plays we move on to strategies. Recall the notion of name-abstraction we introduced
in definition 2.7; for any nominal set X and any x ∈ X ,

[x] = {π [x | π ∈ PERM(A)} .

Definition 3.8 Let A be a prearena. A strategy σ on A is a non-empty set of equivalence
classes [s] of plays in A, satisfying:

• Prefix closure: If [su] ∈ σ then [s] ∈ σ.

• Contingency completeness: If even-length [s] ∈ σ and sx is a play then [sx] ∈ σ.

• Determinacy: If even-length [s1x1], [s2x2] ∈ σ and [s1] = [s2] then [s1x1] = [s2x2].

We write σ : Awhenever σ is a strategy on A. N

By convention, the empty sequence ǫ is a play and hence, by prefix closure and contingency

completeness, all strategies contain [ǫ] and [iA]’s. Note that strategies always have empty
support because their elements are equivariant support abstractions.

Some basic strategies are the following— note that we give definitions modulo prefix clo-

sure (and recall that ~a′ ⊆ ~a if S(~a′) ⊆ S(~a)).

Definition 3.9 For any ~a′ ⊆ ~a ∈ A#, i, n ∈ N and any arena B, define the following strate-
gies.

•
b
n : 1 B N , { [∗n] } ,

• !B : BB 1 , { [iB ∗] } ,

• ~a
~a′ : A~a B A~a′ , { [~a~a′] } ,

• eqi : Ai ⊗ AiB N , { [(a, a) 0] } ∪ { [(a, b) 1] | a# b } ,

• idB : BB B , { [s xx] | |s| even ∧ [s] ∈ idB ∧ s x ∈ PB→B } . N

Note that in general we do not include justification pointers in definitions/expressions of
strategies (or plays), unless they cannot be easily determined.

3.1.2 Composition

We proceed to composition of plays and strategies. In ordinary games, plays are composed
by “parallel composition plus hiding” (v. [AJ94]); in nominal games we need to take some

extra care for fresh names.

Definition 3.10 Let s ∈ PA→B and t ∈ PB→C . We say that:

• s and t are almost composable, s ` t, if s ↾ B = t ↾ B.

• s and t are composable, s ≍ t, if s ` t and, for any s′ ≤ s, t′ ≤ t with s′ ` t′:

(C1) If s′ ends in a (Player) move in A introducing some name a then a# t′ ;
dually, if t′ ends in a move in C introducing some name a then a# s′.

(C2) If both s′, t′ end in B and s′ ends in a move introducing some name a then a# t′− ;

dually, if t′ ends in a move introducing some name a then a# s′−. N

The following lemma is taken verbatim from [HY99], adapted from [BDE97].

Lemma 3.11 (Zipper lemma) If s ∈ PA→B and t ∈ PB→C with s ` t then either s ↾ B = t = ǫ,

or s ends in A and t in B, or s ends in B and t in C, or both s and t end in B. �
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Note that in the sequel wewill use some standard switching condition results (see e.g. [AJM00,
HY99]) without further mention. Composable plays are composed as below. Note that jus-

tification pointers inside s ‖ t follow precisely those in s, t. Moreover, we may tag a movem
asm(O) (orm(P )) to specify it is an O-move (a P-move).

Definition 3.12 (Play composition) Let s ∈ PA→B and t ∈ PB→C with s ≍ t . Their parallel
interaction s ‖ t and their mix s • t, which returns the final name-list in s ‖ t, are defined by

mutual recursion as below,

ǫ ‖ ǫ , ǫ ǫ • ǫ , ǫ

sm
~b
A ‖ t , (s ‖ t)m

sm
~b
A • t

A sm
~b
A(P ) • t , (s • t), (~b \ nlist(s.−1))

sm
~b
A(O) • t , ~b′

sm
~b
B ‖ tm~c

B , (s ‖ t)m
sm

~b
B • tm~c

B

B sm
~b
B(P ) • tm

~c
B(O) , (s • t), (~b \ nlist(s.−1))

sm
~b
B(O) • tm

~c
B(P ) , (s • t), (~c \ nlist(t.−1))

s ‖ tm~c
C , (s ‖ t)m

s • tm~c
C

C s • tm~c
C(P ) , (s • t), (~c \ nlist(t.−1))

s • tm~c
C(O) , ~c ′

where~b′ is the name-list ofmA(O)’s justifier inside s ‖ t, and similarly for ~c ′.
The composite of s and t is

s ; t , (s ‖ t) ↾ AC .

The set of interaction sequences of A,B,C is defined by:

ISeq(A,B,C) , {s ‖ t | s ∈ PA→B ∧ t ∈ PB→C ∧ s ≍ t} .
N

Our aim now is to show that the composite of plays is still a play. The following lemma
examines the behaviour of name-lists in interactions of plays. In particular, it shows that

condition (NC1) is preserved and that there is no loss of names by composition: although

certain moves may be hidden in composition, their fresh names are propagated inside the
name-lists. Note below that a generalised P-move in an interaction sequence of A,B,C is

either a P-move in AC or a move in B.

Lemma 3.13 Let s ≍ t with s ∈ PA→B and t ∈ PB→C .

(a) If s ‖ t ends in a generalised P-movem
~b then~b contains as a prefix the name-list of (s ‖ t).−2 . It

possibly contains some other names, all of which are fresh for (s ‖ t)−.

(b) If s ; t ends in a P-move m
~b then ~b contains as a prefix the name-list of (s ; t).−2 . It possibly

contains some other names, all of which are fresh for (s ; t)−.

(c) If s ‖ t ends in a movem
~b then~b contains as a prefix the name-list of the move explicitly justifying

m
~b.

(d) If s = s′m
~b ends in A and t in B then~b � s • t,

if s = s′m
~b and t = t′m~c end in B then~b � s • t and ~c � s • t,

if s ends in B and t = t′m~c in C then ~c � s • t.

(e) S(s) ∪ S(t) = S(s ‖ t) = S(s ; t) ∪ S(s • t) .

Proof: Part (a) follows from definitions of s ‖ t and s ≍ t, and then part (b) easily follows.
For (c) we do induction on |s ‖ t| ; the base case is trivial. Moreover, if s ‖ t ends in an O-move

in AC then the claim trivially holds, by definition of play-composition. So assume that s ‖ t
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ends in a P-move in AB, consider p(s ‖ t) ↾ ABq and take two consecutive moves xy in it. If y
is a P-move in AB then xy are consecutive in (s ‖ t) ↾ AB and, by switching condition, they

are also consecutive in s ‖ t ; hence, by part (b) we have that nlist(x) ≤ nlist(y). If y is an O-
move inAB and particularly inA then nlist(x) = nlist(y), as x justifies y. Otherwise, y is inB

and justified by x, and, since s ‖ t ends in a P-move in AB, we can apply the IH on s≤y ‖ t≤y
and obtain nlist(x) ≤ nlist(y). Therefore, in any subsequence of moves in p(s ‖ t) ↾ ABq the
name-list of the last move contains that of the initial move as a prefix. By visibility of s,

the move z justifying (s ‖ t).−1 appears in p(s ‖ t) ↾ ABq, hence nlist(z) ≤ nlist((s ‖ t).−1), as
required. The case of s ‖ t ending in a P-move in BC is entirely symmetrical.

For (d) we do induction on |s ‖ t|. The base case is encompassed in t being empty, which is

trivial. Now assume s = s′m
~b ends in A and t ends in B. If m is an O-move then the claim

follows from the IH applied to s≤x , where x is the justifier ofm
~b in s, and the corresponding

subsequence of t, and part (c). Ifm is a P-move then

~b = nlist(s′.−1), (~b \ nlist(s′.−1))
IH
� s′ • t, (~b \ nlist(s′.−1)) = s • t .

The case of t = t′m~c ending in C is proved similarly. Now, if s = s′m
~b and t = t′m~c both

end in B andm a P-move in AB then, reasoning exactly as above, we have that ~b � s • t. If

m is non-initial in B then ms • t is justified by some n
~d in s ‖ t , and then, by IH, ~c � ~d , and,

by (c), ~d ≤ s • t , which imply ~c � s • t. The case ofm being a P-move in t is proved similarly.

Now, for (e) we note that the following straightforwardly hold

S(s ‖ t) ⊆ S(s) ∪ S(t) , S(s ; t) ∪ S(s • t) ⊆ S(s ‖ t) .

Moreover, by (d) we obtain S(s) ∪ S(t) ⊆ S(s ‖ t). Finally, we show that S(s ‖ t) ⊆ S(s ; t) ∪
S(s • t) by induction on |s ‖ t| . The base case is encompassed in t being empty, which is

trivial. Otherwise, if s = s′m
~b ends in A and t ends in B then

S(s ‖ t) = S(s′ ‖ t)∪S(ms • t)
IH
⊆ S(s′ ; t)∪S(s′ • t)∪S(ms • t)

(∗)

⊆ S(s′ ; t)∪S(s • t)∪S(ms • t) = S(s ; t)

where (∗) holds because if m is a P-move then, by (a), s′ • t ≤ s • t, while if m is an O-move

then S(s′ • t) ⊆ S(s′ ; t). Similarly for the case of t ending in C. For the case of both s = s′m
~b

and t = t′m~c ending in B assume wlog thatm
~b is a P-move in s. Then

S(m) ⊆ S(m
~b) ⊆ S(s′) ∪ S(~b) ⊆ S(s′ ‖ t′) ∪ S(s • t)

and hence

S(s ‖ t) = S(s′ ‖ t′) ∪ S(m) ∪ S(s • t) ⊆ S(s′ ‖ t′) ∪ S(s • t)
IH
⊆ S(s′ ; t′) ∪ S(s′ • t′) ∪ S(s • t)

(a)

⊆ S(s′ ; t′) ∪ S(s • t) = S(s ; t) ∪ S(s • t)

as required. �

We can now prove the following.

Proposition 3.14 (Plays compose) If s ∈ PA→B and t ∈ PB→C with s ≍ t, then s ; t ∈ PA→C .

Proof: We skip visibility andwell-bracketing, as these follow from ordinary CBV game anal-
ysis. It remains to show that the name change conditions hold for s ; t. (NC3) clearly does

by definition, while (NC1) is part (b) of previous lemma.

For (NC2), let s ; t end in some P-movems • t and suppose a ∈ S(ms • t) and a#(s ; t)−. Sup-

pose wlog that s = s′m
~b, and so (s ; t)− = s′ ; t. Now, if a# s′ • t then, by part (e) of previous

lemma, a # s′, t and therefore a ∈ ~b , by (NC2) of s. By part (d) then, a ∈ s • t. Otherwise,

a ∈ s′ • t and hence, by part (a), a ∈ s • t. �

We now proceed to composition of strategies. Note that we write σ : A B B if σ is a

strategy on the prearenaA→ B.
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Definition 3.15 (Strategy composition) For strategies σ : A → B and τ : B → C, their
composition is defined as

σ ; τ , { [s ; t] | [s] ∈ σ ∧ [t] ∈ τ ∧ s ≍ t } .
N

Note that, for any sequence u, if [u] ∈ σ ; τ then u = π [(s ; t) = (π [ s) ;(π [ t) for some

[s] ∈ σ, [t] ∈ τ, s ≍ t and π. Therefore, we can always assume u = s ; t with [s] ∈ σ, [t] ∈ τ

and s ≍ t.

Our next aim is to show that composites of strategies are strategies themselves. We
proceed by first giving two technical lemmata.

Lemma 3.16 For plays s1 ≍ t1 and s2 ≍ t2 , if s1 ‖ t1 = s2 ‖ t2 then s1 = s2 and t1 = t2 . Hence,

if s1 ‖ t1 ≤ s2 ‖ t2 then s1 ≤ s2 and t1 ≤ t2 .

Proof: The first part by easy induction on |s1 ‖ t1| = |s2 ‖ t2|. The second part follows. �

Lemma 3.17 Let σ : A → B and τ : B → C be strategies with [s1], [s2] ∈ σ and [t1], [t2] ∈ τ . If

|s1 ‖ t1| ≤ |s2 ‖ t2| and [s1 ; t1] = [s2 ; t2] then there exists some π such that π [(s1 ‖ t1) ≤ s2 ‖ t2.

Proof: By induction on |s1 ‖ t1|. The base case is encompassed in t1 being empty. In this case,

by switching condition and determinacy of σ, [s1] = [s1 ; t1] = [s2 ; t2] implies that s2 = s′2s
′′
2

with [s1] = [s′2]. Hence, π [ s1 = s′2 ≤ s2 ‖ t2, for some permutation π, as required.

Now assume that s1, t1 both end in B, say s1 = s′1m
~b1
1 and t1 = t′1m

~c1
1 . Then, [s1 ; t1] =

[s′1 ; t′1] = [s2 ; t2] so, by IH, there exists some π such that π [ s′1 = s′2 and π [ t′1 = t′2 , with

s2 = s′2s
′′
2 and t2 = t′2t

′′
2 . Moreover, s′′2 , t

′′
2 are in B and non-empty; let s′′2 .1 = m

~b2
2 and

t′′2 .1 = m~c2
2 and assume wlog thatm2 is a P-move inB → C, so the same holds form1. Then,

by prefix closure, [t′2m
~c2
2 ] ∈ τ , and, as [t′1] = [t′2], we have [t′1m

~c1
1 ] = [t′2m

~c2
2 ], so π′ [ t′1m~c1

1 =

t′2m
~c2
2 for some π′. Now, by (C2) we have that (S(m~ci

i ) \ S(t′i)) ∩ S(s′i) = ∅, therefore, by

Strong Support Lemma, there exists some π′′ such that π′′ [m~c1
1 = m~c2

2 , π′′ [ t′1 = t′2 and

π′′ [ s′1 = s′2 . Moreover, π′′ [ s′1 = s′2 and π′′ [m1 = m2 imply that π′′ [(s′1m~b11 ) = s′2m
~b2
2 .

Hence, π′′ [(s1 ‖ t1) ≤ s2 ‖ t2 , as required.

Now assume s1 ends in A and t1 in B, say s1 = s′1m
~b1
1 . Then, [s1 ; t1] = [s2 ; t2] implies

that s2 = s′2m
~b2
2 s

′′
2 and t2 = t′2t

′′
2 with [s1 ; t1] = [s′2m

~b2
2 ; t′2] , m2 in A and s′′2 , t

′′
2 in B. Then,

[s′1 ; t1] = [s′2 ; t′2], and, by IH, there exists a π such that π [ s′1 = s′21 , π [ t1 = t′21 , s
′
2 = s′21s

′
22 ,

t′2 = t′21t
′
22 and s′22, t

′
22 in B.

If m1 is an O-move then, by switching condition, s′1 ends in A, and so does s′2 . Hence,

s′22 = t′22 = ǫ and thus π [ s′1 = s′2 , π [ t1 = t′2 . Now, from [s1 ; t1] = [s′2m
~b2
2 ; t′2] we have

π′ [(s1 ; t1) = s′2m
~b2
2 ; t′2 , some π′. Taking π′′ = π−1 ◦ π′ we have that π′′ [(s′1 ; t1) = s′1 ; t1

and therefore, by strong support, π′′ fixes all elements in S(s′1 ; t1)
lm 3.13

= S(s′1) ∪ S(t1), thus
π′′ [ s′1 = s′1, ∴ π′ [ s′1 = π [ s′1 = s′2 , and similarly π′ [ t1 = t′2 . Hence, π′ [(s1 ‖ t1) =

π′ [ s1 ‖ π′ [ t1 = s′2m
~b2
2 ‖ t′2 ≤ s2 ‖ t2 .

If m1 is a P-move then, by prefix-closure, [s′1m
~b1
1 ], [s′21(s

′
22m

~b2
2 ).1] ∈ σ and [s′1] = [s′21], thus,

by determinacy of σ, [s′1m
~b1
1 ] = [s′21(s

′
22m

~b2
2 ).1] so s′22 = t′22 = ǫ and π′ [(s′1m~b11 ) = s′2m

~b2
2 ,

some π′. Because of (C1), we can now apply the Strong Support Lemma and obtain a π′′

such that π′′ [(s1 ‖ t1) = s′2m
~b2
2 ‖ t′2 ≤ s2 ‖ t2 .

The case of s1 ending in B and t1 in C is entirely symmetrical. �

Proposition 3.18 (Strategies compose) If σ : A → B and τ : B → C are strategies then so is

σ ; τ .

Proof: By definition and proposition 3.14, σ ; τ contains equivalence classes of plays. We

need also check the following.

• Prefix-closure: Assume [um
~b] ∈ σ ; τ . Then, by prefix closure of σ, τ , there exist s, t not
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both ending in B and such that s ; t = um
~b, [s] ∈ σ, [t] ∈ τ . Now, assume wlog that m is in

C, so t = t′m
~b′ and s ; t = (s ; t′)m

~b. By prefix-closure of τ , [t′] ∈ τ , ∴ [s ; t′] ∈ σ ; τ .

• Contingency completeness: Assume [u] ∈ σ ; τ is even-length and um
~b a play. Then

u = s ; t, some [s] ∈ σ, [t] ∈ τ . Suppose wlog that m is in A. As it is an O-move, u is either

empty or it ends in a P-move in A. The former case is trivial. In the latter case, taking ~b′ to

be the name-list ofm’s justifier inside s, sm
~b′ is a play: visibility and well-bracketing follow

from ordinary CBV-game analysis,2while name change conditions clearly hold. Moreover,

[sm
~b′ ; t] = [um

~b] ∈ σ ; τ , as required.

• Determinacy: Assume even-length [u1x1], [u2x2] ∈ σ ; τ with [u1] = [u2], say uixi = si ; ti,
[si] ∈ σ and [ti] ∈ τ , i = 1, 2 . By prefix-closure of σ, τ we may assume that si, ti don’t both

end in B, for i = 1, 2.

If si end in A then si = s′in
~bi

i and si ; ti = (s′i ; ti)n
~b′i
i , i = 1, 2 . Now, [s′1 ; t1] = [u1] =

[u2] = [s′2 ; t2], so, by lemma 3.17 and assuming wlog that |s′1 ‖ t1| ≤ |s′2 ‖ t2|, we have

π [(s′1 ‖ t1) ≤ (s′2 ‖ t2), ∴ π [ s′1 ≤ s′2 , say s
′
2 = s′′2s

′′′
2 with s′′2 = π [ s′1 and s′′′2 in B. Then

[s′′2 ] = [s′1], ∴ [s′′2(s′′′2 n
~b2
2 ).1] = [s′1n

~b1
1 ], by determinacy of σ, and hence |s′′′2 | = 0, s′2 = π [ s′1

and t2 = π [ t1 . Moreover, π′ [ s′1n~b11 = s′2n
~b2
2 , some permutation π′. Now we can apply the

Strong Support Lemma, as (C1) implies (S(n
~bi

i ) \ S(s′i)) ∩ S(ti) = ∅. Hence, there exists a

permutation π′′ such that π′′ [ s1 = s2 and π′′ [ t1 = t2, ∴ [s1 ; t1] = [s2 ; t2] , as required.
If si end in B and ti in C, then work similarly as above. These are, in fact, the only cases we

need to check. Because if, say, s2, t1 end in B, s1 in A and t2 in C then t1, s2 end in P-moves
and [s−1 ; t1] = [s2 ; t−2 ] implies that s−1 , t

−
2 end in O-moves in B. If, say, |s−1 ‖ t1| ≤ |s2 ‖ t

−
2 |

then we have, by lemma 3.17, π [ s−1 ≤ s2 , some permutation π. So if π [ s−1 = s′2 and

s2 = s′2s
′′
2 , determinacy of σ dictates that s′′2 .1 be in A, 	to |s1 ; t1| = |s2 ; t2| and s2 ; t2 end-

ing in C. �

In the following remark we examine the previous proof closer in order to identify where

exactly strong support is needed. This analysis provides a view on the reasons for which

the nominal games model of [AGM+04] is flawed. In fact, we provide specific counterex-
amples for needed properties which fail in that model.

Remark 3.19 (The need for strong support) The nominal games presented here differ from
those of [AGM+04] crucially in one aspect: the requirement for strong support. In [AGM+04]

plays are weakly supported since local state is modelled by finite sets of names, so a move-
with-names is a move attached with a finite set of names (hence, no strong support), and

other definitions differ accordingly. The problem is that thus determinacy is not preserved

by strategy composition: information separating freshly created names may be hidden by
composition and hence a composite strategy may break determinacy by distinguishing be-

tween composite plays that are equivalent.
In particular, in the proof of determinacy above we first derived from [s′1 ; t1] = [s′2 ; t2]

that there exists some π so that π [ s′1 = s2 and π [ t1 = t2, by appealing to lemma 3.17; in

the proof of that lemma, the Strong Support Lemma needs to be used several times. In fact,
the statement

|s′1 ‖ t1| = |s′2 ‖ t2| ∧ [s′1 ; t1] = [s′2 ; t2] =⇒ ∃π. π [ s′1 = s′2 ∧ π [ t1 = t2

does not hold in a weak support setting such as that of [AGM+04]. For take some i ∈ ω and

2Visibility holds because xsy = xuy. For well-bracketing, if m is an Answer then its justifier, say n, is in A, and n

is the pending Question of u. Now, because u ↾ A = s ↾ A, if the pending-Q of s is in A then it is n. Otherwise, the
pending-Q of s is some n′ in B, and s = s1ns2n′s3. Since s satisfies well-bracketing all Answers in s3 are justified
by Q’s within s3, and since n′ is the pending-Q all Q’s in s3 are answered. Hence, s3 is even-length and n′ is a
P-move. Moreover, all A’s in s3 ↾ A are justified within s3 ↾ A, so s3 ↾ A is also even-length,	to the switching
condition
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consider the following AGMOS-strategies.

σ : 1B Ai , { [∗ a{a,b}] | a 6= b ∈ Ai } ,

τ : AiB Ai ⇒ Ai , { [a ∗ c a] | a, c ∈ Ai } .
(3.19:A)

Then

[∗ a{a,b} ; a ∗ b] = [∗ ∗{a,b} b{a,b}] = [∗ ∗{a,b} a{a,b}] = [∗ a{a,b} ;a ∗ a] ,

yet for no π dowe have π [(∗ a{a,b}) = ∗ a{a,b} and π [(a∗ b) = a∗ a . As a result, determinacy

fails for σ ; τ since both [∗ ∗{a,b} b{a,b}a{a,b}], [∗ ∗{a,b} a{a,b}a{a,b}] ∈ σ ; τ .
Another point where we used the Strong Support Lemma in the proof of determinacy

was in showing (the dual of):

∃π, π′. π [(s1, t′1) = (s2, t
′
2) ∧ π′ [ t′1n~b11 = t′2n

~b2
2 =⇒ ∃π′′. π′′ [(s1, t′1n~b11 ) = (s2, t

′
2n
~b2
2 )

i.e. [s1, t
′
1] = [s2, t

′
2] ∧ [t′1n

~b1
1 ] = [t′2n

~b2
2 ] =⇒ [s1, t

′
1n
~b1
1 ] = [s2, t

′
2n
~b2
2 ] .

The above statement does not hold for AGMOS-games. To show this, we need to introduce3

the flat arena Ai⊙Ai withMA
i
⊙A

i
, P2(Ai) (the set of 2-element subsets of Ai). This is not a

legal arena in our setting, since its moves are not strongly supported, but it is in the AGMOS

setting. Consider the following strategies.

σ : Ai ⊗ AiB Ai⊙Ai , { [(a, b) {a, b}] | a 6= b ∈ Ai }

τ : Ai⊙AiB Ai , { [{a, b} a] | a 6= b ∈ Ai }
(3.19:B)

We have that [(a, b) {a, b}, {a, b}] = [(a, b) {a, b}, {a, b}] and [{a, b} a] = [{a, b} b] , yet

[(a, b) {a, b}, {a, b} a] 6= [(a, b) {a, b}, {a, b} b] .

In fact, determinacy is broken since [(a, b) a], [(a, b) b] ∈ σ ; τ .

Our final task in this section is to show that composition of strategies is associative. Note

first that by lemma 3.13, part (a), if s ≍ t then the name-list of (s ‖ t).−1 contains as a prefix
that of (s ; t).−1. This allows for the following definition.

Definition 3.20 Let s ∈ PA→B, t ∈ PB→C with s ≍ t . If s ; t ends in a movem
~b, define

s ◦ t , s • t \~b ,

that is, s • t = ~b, s ◦ t. N

Note in particular that if s ; t and s ‖ t end in the same move then s ◦ t = ǫ. Now we extend

parallel interaction to triples of plays.

Definition 3.21 Let s ∈ PA→B , t ∈ PB→C and u ∈ PC→D with (s ; t) ≍ u and s ≍ (t ;u).

3In the AGMOS setting, plays with non-empty initial local state are allowed. Hence, we could have used to the
same effect the {a, b}-strategies:

σ : Ai ⊗ AiB 1 , { [(a, b){a,b}∗{a,b}]{a,b} } , τ : 1B Ai , { [∗{a,b}a
{a,b}

]{a,b} } .
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Define s ‖ t ‖ u and s • t •u as follows,

ǫ ‖ ǫ ‖ ǫ , ǫ ǫ • ǫ • ǫ , ǫ

sm
~b
A ‖ t ‖ u , (s ‖ t ‖u)m

sm
~b
A • t • u

A sm
~b
A(P ) • t • u , (s • t •u), (~b \ nlist(s.−1))

sm
~b
A(O) • t • u , ~b′

sm
~b
B ‖ tm~c

B ‖ u , (s ‖ t ‖u)m
sm

~b
B • tm~c

B • u
B sm

~b
B(P ) • tm

~c
B(O) • u , (s • t •u), (~b \ nlist(s.−1))

sm
~b
B(O) • tm

~c
B(P ) • u , (s • t •u), (~c \ nlist(t.−1))

s ‖ tm~c
C ‖ um

~d
C , (s ‖ t ‖u)m

s • tm~c
C • um

~d
C

C s • tm~c
C(P ) • um

~d
C(O) , (s • t •u), (~c \ nlist(t.−1))

s • tm~c
C(O) • um

~d
C(P ) , (s • t •u), (~d \ nlist(u.−1))

s ‖ t ‖um
~d
D , (s ‖ t ‖u)m

s • t •um
~d
D

D s • t •um
~d
D(P ) , (s • t •u), (~d \ nlist(u.−1))

s • t •um~c
D(O) , ~d ′

where~b′ is the name-list ofmA(O)’s justifier inside s ‖ t ‖u, and similarly for ~d ′. N

Note that the conditions s ≍ t, t ≍ u, (s ; t) ≍ u and s ≍ (t ;u) in the above definition indeed
imply that exactly one of the following is the case: s ends in A, or s, t end in B, or t, u end in

C, or u ends in D. We can now show the following.

Lemma 3.22 If s1 ∈ PA1→A2 , s2 ∈ PA2→A3 and s3 ∈ PA3→A4 with (s1 ; s2) ≍ s3 and s1 ≍
(s2 ; s3) then

(s1; s2); s3 = (s1 ‖ s2 ‖ s3) ↾ A1A4 = s1 ;(s2 ; s3) ,

(s1; s2) • s3, s1 ◦ s2 = s1 • s2 • s3 = s1 •(s2 ; s3), s2 ◦ s3 .

Proof: By induction on k = |s1 ‖ s2 ‖ s3|. The case of k = 0 is trivial; otherwise:

# (s1m
~b
A1

; s2) ; s3 = ((s1 ; s2) ; s3)m
~b′

A1

IH
= ((s1 ‖ s2 ‖ s3)m

~b′

A1
) ↾ A1A4 , where~b′ = (s1m

~b
A1

; s2) • s3.

Thus, it suffices to show that (s1m
~b
A1

; s2) • s3 = s1m
~b
A1

• s2 • s3 . Since s1m
~b
A1

◦ s2 = ǫ, that

would also imply s1m
~b
A1

• s2 • s3 = (s1m
~b
A1

; s2) • s3 , s1m
~b
A1

◦ s2 . Now, if mA1 an O-move

then the assertion holds by definition. On the other hand, if mA1 a P-move then ~b′ =

(s1 ; s2) • s3 ,(~b′′ \ nlist((s1 ; s2).−1)) and~b′′ = s1 • s2 ,(~b \ nlist(s1.−1)) , while s1m
~b
A1

• s2 • s3 =

(s1 • s2 • s3) ,(~b \ nlist(s1.−1)) . By IH, s1 • s2 • s3 = (s1 ; s2) • s3 , s1 ◦ s2 , thus

~b′ = (s1 ; s2) • s3 ,(~b
′ \ nlist((s1 ; s2).−1))

= (s1 ; s2) • s3 ,((s1 • s2 ,(~b \ nlist(s1.−1))) \ nlist((s1 ; s2).−1))

= (s1 ; s2) • s3 ,(s1 • s2 \ nlist((s1 ; s2).−1)) ,(~b \ nlist(s1.−1))

= (s1 ; s2) • s3 , s1 ◦ s2 ,(~b \ nlist(s1.−1)) = s1m
~b
A1

• s2 • s3 .

Also, s1m
~b
A1

;(s2 ; s3) = (s1 ;(s2 ; s3))m
~b′

A1

IH
= ((s1 ‖ s2 ‖ s3)m

~b′

A1
) ↾ A1A4 , with~b′ = s1m

~b
A1

•(s2 ; s3) .

Note that s2 ‖ s3 necessarily ends in a P-move in A2 and therefore s2 ◦ s3 = ǫ. Now, it suf-

fices to show that s1m
~b
A1

•(s2 ; s3) = s1m
~b
A1

• s2 • s3 ; that would also imply s1m
~b
A1

• s2 • s3 =

s1m
~b
A1

•(s2 ; s3) , s2 ◦ s3 . If mA1 an O-move then the assertion holds by definition. If a P-

move then~b′ = s1 •(s2 ; s3) ,(~b \ nlist(s1.−1)), which is what required, because of the IH.

# (s1m
~b
A2

; s2m
~c
A2

) ; s3 = ((s1 ; s2) ; s3)
IH
= (s1 ‖ s2 ‖ s3) ↾ A1A4

IH
= (s1 ;(s2 ; s3)) = (s1m

~b
A2

;(s2m
~c
A2

; s3)).
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IfmA2 is a P-move in A1 → A2 then s2 ‖ s3 ends in a P-move in A2 , so s2 ◦ s3 = ǫ, and

s1m
~b
A2

◦ s2m
~c
A2

= s1m
~b
A2

• s2m
~c
A2

\ nlist((s1m
~b
A2

; s2m
~c
A2

).−1)

= (s1 • s2 ,(~b \ nlist(s1.−1))) \ nlist((s1 ; s2).−1)

= (s1 • s2 \ nlist((s1 ; s2).−1)) ,(~b \ nlist(s1.−1))

= s1 ◦ s2 ,(~b \ nlist((s1 ; s2).−1)) ,

(s1m
~b
A2

; s2m
~c
A2

) • s3 ,(s1m
~b
A2

◦ s2m
~c
A2

) = (s1 ; s2) • s3 , s1 ◦ s2 ,(~b \ nlist(s1.−1))

IH
= s1 • s2 • s3 ,(~b \ nlist(s1.−1)) = s1m

~b
A2

• s2m
~c
A2

• s3

s1m
~b
A2

•(s2m
~c
A2

; s3) , s2m
~c
A2

◦ s3 = s1m
~b
A2

•(s2 ; s3)m
~c′

A2
= s1 •(s2 ; s3) ,(~b \ nlist(s1.−1))

IH
=

s2 ◦ s3=ǫ
s1 • s2 • s3 ,(~b \ nlist(s1.−1)) = s1m

~b
A2

• s2m
~c
A2

• s3 .

The case ofmA2 being a P-move in A2 → A3 is entirely symmetrical.

# The other cases are shown similarly. �

The two conditions in the previous lemma are sometimes equivalent.

Lemma 3.23 If s1 ∈ PA1→A2 , s2 ∈ PA2→A3 , s3 ∈ PA3→A4 and either s1 ends in A1 or s3 in A4

then

(s1 ; s2) ≍ s3 ⇐⇒ s1 ≍ (s2 ; s3)

Proof: We show only the left-to-right implication; the other is shown similarly. Note that
we may use lemma 3.13 without further mention.

Assume (s1 ; s2) ≍ s3 . It is easy to see that s1 ≍ s2 ` s3 , so, using the assumption for

A1A4, not both s1, s2 end in A2 nor both s2, s3 end in A3 . Now let s′2 ≤ s2 and s′3 ≤ s3 with
s′2 ` s′3 . If s

′
2.−1 introduces a (and s′3 ends in A3) then, if this introduction occurs in A3 then

(s′1 ; s′2).−1 introduces a, for relevant s′1 ≤ s1 , so a # s′−3 . If the introduction occurs in A2

then there exist least prefixes s′′1 ≤ s1 and s′2 ≤ s′′2 ≤ s2 such that |s′′1 ; s′′2 | = |s′1 ; s′2| + 1 and

(s′′1 ; s′′2).−1 introduces a. Hence, a# s′3 . On the other hand, if s′3.−1 introduces a and s′2 ends

in A3 then, taking relevant s′1 ≤ s1 , either a# s′1 ; s′2 or a# (s′1 ; s′2)
−, according to whether

a being introduced in A4 or in A3 , which implies a# s′2 or a# s′−2 . Hence, s2 ≍ s3 .

It is not difficult to see that s1 ` (s2 ; s3) . Now let s′i ≤ si , i = 1, 2, 3 , with s′1 ` (s′2 ; s′3) and

s′2, s
′
3 not both ending in A3 , so (s′1 ; s′2) ` s′3 and thus (s′1 ; s′2) ≍ s′3 . Assume s′1.−1 intro-

duces a name a and s′2 ; s′3 ends in A2 . If the introduction occurs in A1 then (s′1 ; s′2).−1 also

introduces a, so a# s′2, s
′
3, ∴ a# (s′2 ; s′3) . If it occurs in A2 then there exist least prefixes

s′1 ≤ s′′1 ≤ s1 and s′2 ≤ s′′2 ≤ s2 such that |s′′1 ; s′′2 | = |s′1 ; s′2| + 1 and (s′′1 ; s′′2).−1 introduces

a. Hence, a# s′3 and, as a# s′−2 , a# (s′2 ; s′3)
−. Now assume (s′2 ; s′3)−1 introduces a and s′1

ends in A2 . If the introduction occurs in A2 then a is introduced by s′′2 .−1, some relevant
s′′2 ≤ s′2 , or by s

′′
3 .−1, some relevant s′′3 ≤ s′3 . In the former case, s′1 ≍ s′2 implies a# s′−1 . In

the latter, a is introduced in A3 by s′′3 .−1 and, taking s′′2 ≤ s′2 with s′′2 ≍ s′′3 , we have s′−1 ≍ s′′2
and a # (s′−1 ; s′′2)−, so a # s′−1 . If the introduction occurs in A4 then we follow a similar

reasoning. �

With the results we have gathered we obtain a category of nominal games.

Proposition 3.24 For any σ : AB B, idA ;σ = σ = σ ;idB .

Moreover, for any σ1 : A′ B A and σ3 : BB B′, (σ1 ;σ) ;σ3 = σ1 ;(σ ;σ3) .

Proof: The first part is straightforward. For the second part, take some [u] ∈ (σ1 ;σ) ;σ3. By

prefix-closure we may assume that u = s ; s3 with s and s3 not both ending in B, and that



52 CHAPTER 3. NOMINAL GAMES

s = s1 ; s2 with s1 and s2 not both ending in A, so

u = (s1 ; s2) ; s3 ∧ [s1] ∈ σ1 ∧ [s2] ∈ σ ∧ [s3] ∈ σ3 ∧ (s1 ; s2) ≍ s3

∴ u = s1 ;(s2 ; s3) ∧ [s1] ∈ σ1 ∧ [s2] ∈ σ ∧ [s3] ∈ σ3 ∧ s1 ≍ (s2 ; s3)

∴ [u] ∈ σ1 ;(σ ;σ3)

Thus (σ1 ;σ2) ;σ3 ⊆ σ1 ;(σ2 ;σ3) and similarly the other inclusion. �

Definition 3.25 (Category of nominal games) G is the category having nominal arenas as
objects and nominal strategies as arrows. N

3.1.3 Arena and strategy orders in G

G is the raw material from which several subcategories of nominal games will emerge. Still

though there is structure in G which will be inherited to the refined subcategories we will

consider later on. In particular, we will consider orderings for arenas and strategies, the
latter enriching G over Cpo.4

Strategies are (nominal) sets and hence ordered by the subset relation.

Definition 3.26 (Strategy order) For any arenas A,B and each σ, τ ∈ G(A,B) define:

σ ⊑ τ
△

⇐⇒ σ ⊆ τ .

For each ⊑-increasing sequence (σi)i∈ω take
⊔

i σi ,
⋃

i σi. N

It is easy to see that each such a
⊔

i σi is indeed a strategy: prefix closure, contingency
completeness and determinacy easily follow from the fact that the sequences we consider

are⊑-increasing. Hence, each G(A,B) is a cpo with least element the empty strategy (i.e. the
strategy containing only [ǫ] and [iA]’s). More than that, these cpo’s enrich G.

Proposition 3.27 G is Cpo-enriched wrt ⊑.

Proof: Enrichment amounts to showing the following straightforward assertions.

σ ⊑ σ′ ∧ τ ⊑ τ ′ =⇒ σ ; τ ⊑ σ′ ; τ ′

(σi)i∈ω an ω-chain =⇒ (
⊔

i∈ω

σi) ; τ ⊑
⊔

i∈ω

(σi ; τ)

(τi)i∈ω an ω-chain =⇒ σ ;(
⊔

i∈ω

τi) ⊑
⊔

i∈ω

(σ ; τi)
�

On the other hand, arenas are tuples and hence also ordered by a ‘subset relation’.

Definition 3.28 (Arena order) For any A,B ∈ Ob(G) define

A E B ⇐⇒ MA ⊆MB ∧ IA ⊆ IB ∧ λA ⊆ λB ∧ ⊢A ⊆ ⊢B ,

and for any E-increasing sequence (Ai)i∈ω define
⊔

i∈ω

Ai ,
⋃

i∈ω

Ai .

If A E B then we can define an embedding-projection pair of arrows by setting

inclA,B : AB B , {[s] | s ∈ PA→B ∧ ([s] ∈ idA ∨ (odd(|s|) ∧ [s−] ∈ idA))} ,

projB,A : BB A , {[s] | s ∈ PB→A ∧ ([s] ∈ idA ∨ (odd(|s|) ∧ [s−] ∈ idA))} .

N
4By cpo we mean a partially ordered set with least element and least upper bounds for increasing ω-sequences.

Cpo is the category of cpos and continuous functions.
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It is straightforward to see that
⊔

i∈ω Ai is well-defined, and that E forms a cpo on Ob(G)

with least element the empty arena 0. By inclA,B and projB,A being an embedding-

projection pair we mean that

inclA,B ; projB,A = idA ∧ projB,A ; inclA,B ⊑ idB .

Note that in essence both inclA,B and projB,A are equal to idA, the latter seen as a partially

defined strategy on prearenasA→ B and B → A. Finally, it is easy to show the following.

A E B E C =⇒ inclA,B ; inclB,C = inclA,C (TRN)

3.2 Innocence

In game semantics for pure functional languages, the absence of computational effects cor-
responds to innocence in the strategies. Here, although our aim is to model languages with

effects, our models will be constructed by use of innocent strategies: the effects will still be
achieved, by using monads.

Innocence is the condition stipulating that strategies be completely determined by their

behaviour on P-views. In our current setting the manipulation of P-views presents some
difficulties since P-views of plays need not be plays themselves. For example, the P-view

of the following play (where curved lines stand for justification pointers) is ∗ (∗, ∗) ∗ a and
violates (NC2).

1 // 1⊥ ⊗ (Ai)⊥
∗ OQ

(∗, ∗) PA

∗ OQ

∗a PA

∗ OQ

a PA

We rectify these problems by explicitly imposing innocence on plays too.

3.2.1 The subcategory V

Definition 3.29 A play s is innocent if, for any t ≤ s, ptq is a play. The set of innocent plays
of A is denoted by P i

A. N

The explicit condition of the above definition can be replaced by a more familiar-looking

Name-Condition.

Proposition 3.30 A legal sequence s is an innocent play iff s.1 has empty name-list and s satisfies

(NC1), (NC3) and the following condition.

(NC2’) Any name in the support of a P-move x in s that is fresh for ps<xq is contained in the
name-list of x.

Proof: If s is an innocent play then it satisfies (NC1,3). Moreover, if a ∈ S(x) and a#ps<xq =

ps≤xq<x for some P-move x in s, then ps≤xq being a play implies that a ∈ nlist(x).

Conversely, if s satisfies (NC1,3) and (NC2’) then it clearly is a play. Take now some t ≤
s ; we need to show that ptq is a play. By ordinary game-semantics analysis, ptq is a legal

sequence. Moreover, (NC3) is inherited from t. For (NC1), let x be a P-move in ptq and let y

be the move preceding it. yx are consecutive in t and hence nlist(y) ≤ nlist(x). Moreover, if
a ∈ nlist(x) and a# nlist(y) then a# t<x and thus a# ptq<x . Finally, (NC2) for ptq is derived
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from (NC2’) for t. �

Summarising:

A legal sequence s is an innocent play if s.1 has empty name-list and s also satisfies
the following Name Change Conditions:

(NC1) The name-list of a P-move x in s contains as a prefix the name-list of the

move preceding it. It possibly contains some other names, all of which are
fresh for s<x.

(NC2’) Any name in the support of a P-move x in s that is fresh for ps<xq is con-

tained in the name-list of x.

(NC3) The name-list of a non-initial O-move in s is that of the P-move explicitly

justifying it.

Figure 3.2: Definition of innocent play.

We can obtain the following characterisation of name-introduction in innocent plays.

Proposition 3.31 (Name-introduction) Let s be an innocent play. A name a is introduced by
Player in s iff there exists a P-move x in s such that a ∈ S(x) and a# ps<xq.

Proof: If a is introduced by a P-move x in s then a ∈ nlist(x) and a# nlist(s<x.−1), hence, by

(NC1), a# s<x so a# ps<xq.
Conversely, if a ∈ S(x) and a # ps<xq then by (NC2’) we get a ∈ nlist(x), while a # ps<xq
implies a# nlist(s<x.−1). �

We proceed to show that innocent plays are closed under composition. First, we define
P-views of interaction sequences. Recall that in an interaction sequence of A,B,C a move

is a generalised P-move if it is either a P-move in AC or a move in B. The component of a

generalised P-move x is AB if x represents a P-move in component AB, otherwise it is BC.
Similar things apply for generalised O-moves.

Definition 3.32 Let w ∈ ISeq(A,B,C) . Define its P-view pwq by recursion as follows.

pǫq , ǫ

pxq , x if x an initial move in A,

pwxq , pwqx if x a generalised P-move,

pwxw′yq , pwqxy if y an O-move in AC justified by x.
N

We will need the following results, which are taken verbatim from [McC00].

Lemma 3.33

(a) Let s be a legal sequence and y be a P-move. If psq y is legal then sy is.

(b) Let w ∈ ISeq(A,B,C) and let x be a generalised O-move of w with component X . If x is not

initial in X , write y for its justifier and y′ for the move immediately before y. Then,

(1) If x is not initial in X then y′ is a generalised O-move with componentX .

(2) If x is not initial in X and appears in pwq then both y and y′ appear in pwq.

(3) If x appears in pwq then ppwq≤x ↾ Xq = pw≤x ↾ Xq. �
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Wewill also need the following lemmata. Note that if x is amove in s and s ‖ t = (s<x ‖ t
′)x̃w

then we say that x appears in s ‖ t as x̃.

Lemma 3.34 If s1, s2 ∈ PA→B , t1, t2 ∈ PB→C and si ‖ ti end in a generalised O-move x,

(a) if x has component AB then p(s1 ‖ t1) ↾ ABq = p(s2 ‖ t2) ↾ ABq =⇒ ps1q = ps2q ,

(b) if x has component BC then p(s1 ‖ t1) ↾ BCq = p(s2 ‖ t2) ↾ BCq =⇒ pt1q = pt2q .

Proof: We show (a) by induction on |s1| ≥ 1, and (b) is proved similarly. If |s1| = 1 then

|s2| = 1 and, clearly, s1 = s2. If s1 = s′1n
~b1s′′1m

~b1 , with m an O-move in A justified by

n, then s2 = s′2n
~b2s′′2m

~b2 . Moreover, ti = t′it
′′
i , i = 1, 2, and si ‖ ti = (s′i ‖ t

′
i)n

~b′iuim
~b′i ,

with ~b′i = (s′i • t
′
i)(
~bi \ nlist(s′i.−1)), and hence p(s1 ‖ t1) ↾ ABq = p(s2 ‖ t2) ↾ ABq implies that

p(s′1 ‖ t
′
1) ↾ ABq = p(s′2 ‖ t

′
2) ↾ ABq, s′1 • t

′
1 = s′2 • t

′
2 and

~b′1 = ~b′2. By IH, ps′1q = ps′2q and~b1 = ~b2 ,

as~bi = nlist(s′i.−1)(~b′i \ nlist(s′1 • t
′
i)) . Thus, ps1q = ps2q.

If s1 = s′1n
~b1s′′1m

~b1 , with m an O-move in B justified by n, then s2 = s′2n
~b2s′′2m

~b2 , and we

work similarly to the previous case. �

Lemma 3.35 Let s ∈ PA→B , t ∈ PB→C be innocent and s ≍ t . Then,

(a) there exist innocent s′ ∈ PA→B , t′ ∈ PB→C with s′ ≍ t′ such that ps ‖ tq = s′ ‖ t′ ,

(b) S(ps ‖ tq) = S(ps ; tq) ∪ S(s • t) ,

(c) if s ‖ t ends in a generalised O-move inAB and x appears in psq then x appears in ps ‖ tq as some
x̃; similarly for BC and t.

Proof: For (a), we do induction on |s ‖ t| ≥ 1. The base case is trivial. Otherwise, let s ‖ t be
ending in an O-move in AC, say wlog in a move x in A. Then s = s1s2x and t = t1t2 , with

x justified by s1.−1, so ps ‖ tq = ps1 ‖ t1qx′. By IH, there exist s′, t′ such that ps1 ‖ t1q = s′ ‖ t′.
Now, it is easy to see that s′x is a play and that ps ‖ tq = s′x ‖ t′.
If s ‖ t ends in a P-move inAC, say wlog in a move x inA, then s = s−x and s ‖ t = (s− ‖ t)x′.
By IH, ps− ‖ tq = s′ ‖ t′, some s′, t′. Since s− ‖ t ends in a generalised O-move, we have

that p(s− ‖ t) ↾ ABq = pps− ‖ tq ↾ ABq = p(s′ ‖ t′) ↾ ABq, so ps−q = ps′q. Hence, ps′q x is a

play. We have that s′x is a legal sequence and also that it satisfies (NC2’-3). For (NC1), if
b ∈ (nlist(x)\nlist(s′.−1)) then b ∈ (nlist(x)\nlist(s−.−1)), so b# s−, t, ∴ b#ps− ‖ tq = s′ ‖ t′,
∴ b# s′. Hence, ps ‖ tq = s′x ‖ t.
If s ‖ t ends in a B-move then we combine the treatments of the two cases above.

For (b), we have that S(ps ‖ tq) = S(s′ ‖ t′) = S(s′ ; t′) ∪ S(s′ • t′) = S(ps ; tq) ∪ S(s • t) .
For (c), we have that ps ‖ tq = s′ ‖ t′ and x appears in s′, as p(s ‖ t) ↾ ABq = pps ‖ tq ↾ ABq =

p(s′ ‖ t′) ↾ ABq, ∴ psq = ps′q. �

Now we can show the following.

Proposition 3.36 If s ∈ PA→B , t ∈ PB→C are innocent and s ≍ t then s ; t is innocent.

Proof: Suppose s ; t is not innocent and let u be its least prefix manifesting this, so puq is not

a play. Then puq doesn’t satisfy (NC2). By leastness, u = u′m
~b ,m a P-move and there exists

some a such that a ∈ S(m), a ∈ S(u′) but a#~b, pu′q.
Supposem is in A, so s = s′m

~b′s′′, t = t′t′′ and u′ = s′ ; t′ . ~b′ is contained in~b , so a#~b′ and

hence a ∈ S(ps′q), since s is innocent. Now, s′ ‖ t′ O-ends in AB and~b contains s′ • t′, so

S(ps′q) ⊆ S(p(s′ ‖ t′) ↾ ABq) = S(pps′ ‖ t′q ↾ ABq) ⊆ S(ps′ ‖ t′q ↾ AB) ⊆ S(ps′ ‖ t′q)

= S(ps′ ; t′q) ∪ S(s′ • t′) ⊆ S(ps′ ; t′q) ∪ S(~b) .

Thus, a ∈ S(ps′ ; t′q) or a ∈ ~b, 	. Similarly ifm is in C. �

We move on to innocent strategies.
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Definition 3.37 A strategy σ is innocent if [s] ∈ σ implies that s is innocent, and if even-
length [s1x1] ∈ σ and odd-length [s2] ∈ σ have [ps1q] = [ps2q] then there exists x2 such that

[s2x2] ∈ σ and [ps1x1q] = [ps2x2q] . N

Some nice properties of innocent strategies are the following.

Lemma 3.38 Let σ be an innocent strategy.

(1) If [s] ∈ σ then [psq] ∈ σ.

(2) If sy is an even-length innocent play and [s], [psyq] ∈ σ then [sy] ∈ σ.

(3) If psyq is even-length with nlist(y) = nlist(s.−1) and [s], [psyq] ∈ σ then [sy] ∈ σ.

(4) If s is an even-length innocent play and, for any even-length prefix s′ of s, [ps′q] ∈ σ then [s] ∈ σ.

Proof: For (1) we do induction on |s|. The base case is trivial. Now, if s = s′y with y a

P-move then psq = ps′q y and [ps′q] ∈ σ by prefix closure and IH. By innocence, there exists
y′ such that [ps′q y′] ∈ σ and [ps′q y′] = [psyq], so done. If s = s1ys2x and x an O-move

justified by y then [ps1yq] ∈ σ by prefix closure and IH, hence [ps1yqx] ∈ σ by contingency

completeness.
For (2) note that by innocence we have [sy′] ∈ σ for some y′ such that [psyq] = [psy′q]. Then,

[psq, y] = [psq, y′] ∧ [psq, s] = [psq, s] ∧ (S(y) \ S(psq)) ∩ S(s) = (S(y′) \ S(psq)) ∩ S(s) = ∅

Thus we can apply the strong support lemma and get [sy] = [sy′], as required.

For (3) it suffices to show that sy is an innocent play. As s, psq y are plays, it suffices to show

that sy satisfies the name conditions at y. (NC3) and (NC2’) hold because psyq a play. (NC1)
also holds, as y is non-introducing.

For (4) we do induction on |s|. The base case is encompassed in psq = s, which is trivial. For
the inductive step, let s = s−x with psq 6= s. By IH and contingency completeness we have

[s−] ∈ σ, and since [psq] ∈ σ, by (2), [s] ∈ σ. �

We now want to show that innocent strategies are closed with respect to composition. We

will need the following technical lemmata.

Lemma 3.39 Let σ : A→ B, τ : B → C be innocent strategies and let [si] ∈ σ, [ti] ∈ τ , si = s′is
′′
i ,

ti = t′it
′′
i , si ≍ ti, s

′′
i = t′′i in B, i = 1, 2 , and also |s′′1 | = |s′′2 | . Then

(a) [ps′1 ‖ t
′
1q] = [ps′2 ‖ t

′
2q] =⇒ [ps1 ‖ t1q] = [ps2 ‖ t2q] ,

(b) (ps′1 ‖ t
′
1q = ps′2 ‖ t

′
2q ∧ s1 • t1 = s2 • t2) =⇒ ps1 ‖ t1q = ps2 ‖ t2q .

Proof: (a) is proved by induction on k = |s′′i | = |t′′i | , using also lemma 3.34.
For (b), if ps′1 ‖ t

′
1q = ps′2 ‖ t

′
2q then π [ ps1 ‖ t1q = ps2 ‖ t2q for some π [~a = ~a , by (a). Then,

π must be fixing ps′1 ‖ t
′
1q , and if s1 • t1 = s2 • t2 then π fixes also s1 • t1 . Now, using

lemma 3.35,

S(ps1 ‖ t1q) = S(ps1 ; t1q) ∪ S(s1 • t1) = S(ps′1 ; t′1q) ∪ S(s1 • t1) ⊆ S(ps′1 ‖ t
′
1q) ∪ S(s1 • t1) .

Hence, S(ps1 ‖ t1q) = S(ps′1 ‖ t
′
1q) ∪ S(s1 • t1) . Therefore, π fixes ps1 ‖ t1q , as required. �

Lemma 3.40 Let σ : A→ B, τ : B → C be innocent strategies and let [si] ∈ σ, [ti] ∈ τ and si ; ti
be O-ending plays, i = 1, 2 . Then

ps1 ; t1q = ps2 ; t2q =⇒ ps1 ‖ t1q = ps2 ‖ t2q .
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Proof: By induction on k = |s1 ‖ t1| ≥ 1 . Let si ; ti be (s′i ; t
′
i)m

~b . If k = 1 then ok.

Otherwise,m is not initial, so let n
~b be the (common) move justifyingm

~b inside si ; ti , and x

be the move immediately preceding n
~b . Then, (s′i ‖ t

′
i)m

~b = (si ‖ ti)≤xwin
~bw′

im
~b with wi in

B, and, by IH and assumption, p(s1 ‖ t1)≤xq = p(s2 ‖ t2)≤xq .
So, we need only show p(s1 ‖ t1)≤xw1q = p(s2 ‖ t2)≤xw2q . Let’s say (si ‖ ti)≤xwi = uiu

′
i ‖ viv

′
i

with (si ‖ ti)≤x = ui ‖ vi and u′i = v′i , i = 1, 2.

If |u′1| ≤ |u′2| , let u
′
2 = u′21u

′
22 and v

′
2 = v′21v

′
22 with |u′1| = |u′21| = |v′21| = |v′1| . As [pu1 ‖ v1q] =

[pu2 ‖ v2q] , by previous lemma we get [pu1u
′
1 ‖ v1v

′
1q] = [pu2u

′
21 ‖ v2v

′
21q] . If, say, these O-end

in AB then [pu1u
′
1q] = [pu2u

′
21q] , by lemma 3.34, so, because of innocence and prefix-closure

of σ, u′22.1 is in the same arena as n, which is not B (and similarly if they O-end in BC).

Hence, u′22 = v′22 = ǫ and [pu1u
′
1 ‖ v1v

′
1q] = [pu2u

′
2 ‖ v2v

′
2q] , as required. �

Lemma 3.41 Let s ∈ PA→B , t ∈ PB→C with s ≍ t. If s is O-ending and sx ∈ PA→B , for some x

in B, then there exists x′ in B such that tx′ ∈ PB→C and sx ⌣ tx′. Moreover, if S(x) ⊆ S(s) then

sx ≍ tx′.
Similarly if t is O-ending and tx ∈ PB→C .

Proof: We only show the sx case; the other one is shown similarly. Let y = m
~b be x’s justifier

inside sx. Then y appears in t as some y′ = m
~b′ . If x = n~c then we claim that tn

~b′ ∈ PB→C .

Since tn~c clearly satisfies the name-conditions (NC1-3), it suffices to show that tn~c is legal,
that is, it suffices to show that tn is legal. Now, tn is a justified sequence of moves, so we

need only show it satisfies Visibility and Well-Bracketing.
As sx is legal, sn is legal and therefore, by results for ordinary game semantics (e.g. [HO00,

prop. 4.4] or [HY99, prop. A.9]), (s.1)(sn ↾ B) is legal. Therefore, y appears in ps ↾ Bq = xty,
and thus y′ appears in xty showing visibility. For well-bracketing, we need only consider
the case of n being an answer. In this case, y is the pending question of s ↾ B = t ↾ B, and

therefore t has a pending question. In fact, its pending question is y′: had some question z
in t ↾ C been left unanswered, the last switch-move w from C to B would have necessarily

been a P-question. But t≥w is odd-length, so there must either be a pending-Q in it— can’t

happen as z is the pending-Q—or an externally justified answer—which would violate
well-bracketing. Thus, tn is legal, and hence tx′ is a play.

Finally, if S(x) ⊆ S(s) then C1 and C2 are also satisfied. �

The main lemma is the following, from which we prove that innocent strategies are closed

under composition.

Lemma 3.42 Let σ : A→ B, τ : B → C be innocent strategies and [si] ∈ σ, [ti] ∈ τ with si ≍ ti ,

i = 1, 2 , and [ps1 ‖ t1q] = [ps2 ‖ t2q] .

(a) If [s1s
′
1] ∈ σ, [t1t

′
1] ∈ τ for sequences s′1, t

′
1 in B such that s1s

′
1 ≍ t1t

′
1 , then there exist

sequences s′2, t
′
2 in B such that s2s

′
2 ≍ t2t

′
2 , [s2s

′
2] ∈ σ, [t2t

′
2] ∈ τ and [ps1s′1 ‖ t1t

′
1q] =

[ps2s′2 ‖ t2t
′
2q] .

(b) If [s1m
~b1
1 ] ∈ σ for some P-movem in A such that s1m

~b1
1 ≍ t1 then there exists m

~b2
2 such that

s2m
~b2
2 ≍ t2 , [s2m

~b2
2 ] ∈ σ and [ps1m

~b1
1 ‖ t1q] = [ps2m

~b2
2 ‖ t2q] .

(c) If [t1n
~b1
1 ] ∈ τ for some P-move n in C such that t1n

~b1
1 ≍ s1 then there exists n

~b2
2 such that

t2n
~b2
2 ≍ s2 , [t2n

~b2
2 ] ∈ τ and [ps1 ‖ t1n

~b1
1 q] = [ps2 ‖ t2n

~b2
2 q] .

Proof: We only show (a), by induction on k = |s′1| = |t′1|; (b) and (c) are shown as the

induction step in (a). For k = 0 ok.

Now let s′1 = s′′1m
~b1
1 and t′1 = t′′1m

~c1
1 and assume, wlog, thatm1 a P-move in AB, so

[ps1s′1 ‖ t1t
′
1q] = [ps1s′′1 ‖ t1t

′′
1qm

~d1
1 ] with ~d1 = s1s

′′
1 • t1t

′′
1 , (
~b1 \ nlist(s1s

′′
1 .−1)) .
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Then, by IH, there exist s′′2 , t
′′
2 in B such that [s2s

′′
2 ] ∈ σ, [t2t

′′
2 ] ∈ τ and [ps1s′′1 ‖ t1t

′′
1q] =

[ps2s′′2 ‖ t2t
′′
2q] .

Let’s say π [ ps1s′′1 ‖ t1t
′′
1q = ps2s′′2 ‖ t2t

′′
2q , some π, so, by lemma 3.34, π [ ps1s′′1q = ps2s′′2q and

hence [ps1s′′1q] = [ps2s′′2q] . Since [s1s
′′
1m

~b1
1 ] ∈ σ and σ innocent, there exists m

~b2
2 such that

[s2s
′′
2m

~b2
2 ] ∈ σ and [ps1s′′1m

~b1
1 q] = [ps2s′′2m

~b2
2 q] .

In fact, we can choose m
~b2
2 so that all its names that are fresh for s2s

′′
2 are also fresh for t2t

′′
2 .

Thus if ~c2 is the name-list of the justifier ofm2 in t2t
′′
2 , determined bym

~b2
2 ’s justifier in s2s

′′
2 ,

then, by first part of lemma 3.41, t2t
′′
2m

~c2
2 ∈ PB→C and s2s

′′
2m

~b2
2 ≍ t2t

′′
2m

~c2
2 . As m~c2

2 is an

O-move, t2t
′′
2m

~c2
2 is innocent, so [t2t

′′
2m

~c2
2 ] ∈ τ .

We also have that (S(m
~b1
1 ) \ S(ps1s′′1q)) ∩ S(ps1s′′1 ‖ t1t

′′
1q) = ∅ , by NC1 and C2. Moreover, by

choice of~b2 we have (S(m
~b2
2 ) \ S(ps2s′′2q)) ∩ S(ps2s′′2 ‖ t2t

′′
2q) = ∅ .

Hence, we can apply lemma 2.11, so there exists π′ such that π′ [m~b11 = m
~b2
2 , π′ [ ps1s′′1q =

ps2s′′2q and π′ [ ps1s′′1 ‖ t1t
′′
1q = ps2s′′2 ‖ t2t

′′
2q . Thus,

ps2s′′2m
~b2
2 ‖ t2t

′′
2m

~c2
2 q = ps2s′′2 ‖ t2t

′′
2qm

s2s
′′
2 • t2t

′′
2 ,(
~b2\nlist(s2s

′′
2 .−1))

2

= (π′ [ ps1s′′1 ‖ t1t
′′
1q)(π

′ [m1)
π′ [(s1s′′1 • t1t

′′
1 ),π′ [(~b1\nlist(s1s

′′
1 .−1))

= π′ [ ps1s′′1 ‖ t1t
′′
1qm

s1s
′′
1 • t1t

′′
1 ,(
~b1\nlist(s1s

′′
1 .−1))

1 = π′ [ ps1s′′1m
~b1
1 ‖ t1t

′′
1m

~c1
1 q

as required. �

Proposition 3.43 If σ : A→ B, τ : B → C are innocent strategies then so is σ ; τ .

Proof: σ ; τ is a strategy. Moreover, if [s ; t] ∈ σ ; τ for some [s] ∈ σ, [t] ∈ τ , then, by
proposition 3.36, s ; t is innocent. Now let [u1n

~c1
1 ], [u2] ∈ σ ; τ be even- and odd-length re-

spectively, with [pu1q] = [pu2q] . By definition and prefix closure, u2 = s2 ; t2 and u1n
~c1
1 =

(s1s
′
1 ; t1t

′
1)n

~c1
1 = (s1 ; t1)n

~c1
1 with [s1s

′
1], [s2] ∈ σ, [t1t

′
1], [t2] ∈ τ and si ‖ ti O-ending in AC.

Hence, by lemma 3.40, [ps1 ‖ t1q] = [ps2 ‖ t2q] .

By previous lemma then, there exist s′2, t
′
2 inB such that [s2s

′
2] ∈ σ, [t2t

′
2] ∈ τ and [ps′1s1 ‖ t1t

′′
1q] =

[ps′2s2 ‖ t2t
′′
2q] .

Suppose now n1 is in A and u1n
~c1
1 = s′1s1n

~c′1
1 ‖ t1t′′1 . By previous lemma, there exists n

~c′2
2

such that [s2s
′
2n
~c′2
2 ] ∈ σ and [ps1s′1n

~c′1
1 ‖ t1t′1q] = [ps2s′2n

~c′2
2 ‖ t2t′2q] = [p(s2s′2 ‖ t2t

′
2)n

~c2
2 q] , ∴

[p(s1 ; t1)n
~c1
1 q] = [p(s2 ; t2)n

~c2
2 q] and [(s2 ; t2)n

~c2
2 ] ∈ σ ; τ , as required. Similarly if n1 is in C. �

Hence, and since identities are innocent, we obtain a subcategory of innocent strategies.

Definition 3.44 V is the lluf subcategory of G of innocent (nominal) strategies. N

Henceforth, we will assume plays and strategies as being innocent unless stated otherwise.
It is easy to see that V inherits Cpo-enrichment from G by the subset ordering ⊑ of defini-

tion 3.26.

Proposition 3.45 V is Cpo-enriched by ⊑. �

3.2.2 Viewfunctions

We argued previously that innocent strategies are specified by their behaviour on P-views.
We formalise this argument by representing innocent strategies by viewfunctions.

Definition 3.46 Let A be a prearena. A viewfunction f on A is a set of equivalence classes
of innocent plays of Awhich are even-length P-views, satisfying:

• Even-prefix closure: If [s] ∈ f and t is an even-length prefix of s then [t] ∈ f .

• Single-valuedness: If [s1x1], [s2x2] ∈ f and [s1] = [s2] then [s1x1] = [s2x2].
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Let σ be an innocent strategy. Its viewfunction is given by:

viewf(σ) , {[s] ∈ σ | |s| even ∧ psq = s} .

Conversely, if f is a viewfunction on a prearenaA then its strategy is given by:

strat(f) ,
⋃

n
stratn(f) ,

where strat0(f) , {[ǫ]} and

strat2n+1(f) , {[sx] | sx ∈ P i
A ∧ [s] ∈ strat2n(f)} ,

strat2n+2(f) , {[sy] | sy ∈ P i
A ∧ [s] ∈ strat2n+1(f) ∧ [psyq] ∈ f} .

N

Note in the above definition that, for any even-length s, [s] ∈ strat(f) implies [psq] ∈ f .

We first show that the conversion functions above are well-defined, and then that they are
inverses.

Lemma 3.47 For any innocent strategy σ, viewf(σ) is a viewfunction.

Proof: Since σ is innocent, elements in viewf(σ) are by definition equivalence classes of

innocent plays that are even-length P-views. Moreover, if [s] ∈ viewf(σ) and t ≤ s is even-
length then [t] ∈ σ. But s being a P-view implies t is a P-view, so [t] ∈ viewf(σ). Finally, let

[s1x1], [s2x2] ∈ viewf(σ) and [s1] = [s2]. By determinacy of σ, [s1x1] = [s2x2], as required. �

Lemma 3.48 For any viewfunction f , strat(f) is an innocent strategy.

Proof: By definition, strat(f) contains innocent plays and satisfies prefix-closure. For con-
tingency completeness note that if [s] ∈ strat2n(f) and sx ∈ PA then necessarily sx ∈ P i

A,

as x an O-move, so [sx] ∈ strat2n+1(f).

Now, for determinacy suppose that even-length [sxy], [s′x′y′] ∈ strat(f) and [sx] = [s′x′].
Then, [psxq y], [ps′x′q y′] ∈ f and [psxq] = [ps′x′q] , so by single-valuedness of f , [psxq y] =

[ps′x′q y′] . But now the three previous equalities suffice for applying the strong support
lemma and obtain [sxy] = [s′x′y′].

For innocence, let [s1x1y1], [s2x2] ∈ strat(f) with [ps1x1q] = [ps2x2q] being odd-length, say

π [ ps1x1q = ps2x2q . Let y2 , π [π′ [ y1 , where π′ simply swaps names introduced by y1
in s1x1y1 with completely fresh ones, i.e. fresh for s1x1, s2x2, y1, π. Since s1x1y1 is a le-

gal sequence, so is s2x2y2: visibility is obvious and well-bracketing follows from the fact

that the (possible) pending question of s2x2 is the same as that of ps2x2q (see e.g. [McC00,
lemma 2.1]). Moreover, s2x2y2 obviously satisfies NC3, and ps2x2y2q = π [(ps1x1q π′ [ y1) =

π [π′ [ ps1x1y1q implies NC2’. For NC1, if a ∈ S(y2) and a#nlist(x2) then π
−1(a) ∈ S(π′ [ y1)

and π−1(a) # nlist(x1). But then π
−1(a) is one of the completely fresh names, so π−1(a) = a

and a # s2x2 . Hence, s2x2y2 an innocent play. Since [s2x2] ∈ strat(f) and [ps2x2y2q] =

[ps1x1y1q] ∈ f , [s2x2y2] ∈ strat(f). �

Proposition 3.49 For any viewfunction f and innocent strategy σ,

f = viewf(strat(f)) ∧ σ = strat(viewf(σ)) .

Proof: For the first part, we show first [s] ∈ f =⇒ [s] ∈ strat(f). We do induction on

even |s|. The base case is obvious. For the inductive step, if [sxy] ∈ f then, by IH and prefix
closure of f , we have that [s] ∈ strat(f), and thus [sxy] ∈ strat(f) as [psxyq] = [sxy] ∈ f .

Clearly then f ⊆ viewf(strat(f)).

Conversely, we show that [s] ∈ viewf(strat(f)) =⇒ [s] ∈ f . Now, [s] ∈ viewf(strat(f))

implies that [s] ∈ strat(f) and psq = s, so [s] = [psq] ∈ f .

For the second part, we show that, for each n, Sn , stratn(viewf(σ)) ⊆ σ , by induction
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on n. The base case is obvious. Now, for odd n+ 1, if [sx] ∈ Sn+1 then [s] ∈ Sn, so [s] ∈ σ by
IH, and [sx] ∈ σ by contingency completeness. For even n + 1, if [sy] ∈ Sn+1 then [s] ∈ Sn
and [psyq] ∈ viewf(σ) ⊆ σ, so by IH and lemma 3.38 we have [sy] ∈ σ.
Conversely, let S , strat(viewf(σ)). We show by induction on the length of plays in σ

that σ ⊆ S. The base case is trivial. Now, if odd-length [sx] ∈ σ then [s] ∈ S, because of

prefix closure of σ and IH, and thus, clearly, [sx] ∈ S. If even-length [sy] ∈ σ then, again,
[s] ∈ S, and [sy] ∈ S because [psyq] ∈ viewf(σ) by lemma 3.38. �

A direct consequence is the following.

Corollary 3.50 For any viewfunctions f, g and innocent strategies σ, τ ,

1. f ⊆ strat(f) ,

2. σ ⊆ τ ⇐⇒ viewf(σ) ⊆ viewf(τ) and f ⊆ g ⇐⇒ strat(f) ⊆ strat(g) ,

3. viewf(σ) ⊆ τ ∧ viewf(τ) ⊆ σ =⇒ σ = τ .

Moreover, ⊑ yields a cpo on viewfunctions, and viewf, strat are continuous wrt ⊑.

Proof: For 1 we have: f = viewf(strat(f)) ⊆ strat(f) .
For 2, because of previous proposition, it suffices to show only the “ =⇒ ” directions. For

the first conjunct we simply use the definition of viewf. For the latter we can show that, for

each n ∈ ω, f ⊆ g =⇒ stratn(f) ⊆ stratn(g), by straightforward induction on n.
For 3 note that [s] ∈ viewf(σ) ∩ τ =⇒ [s] ∈ viewf(τ) , so viewf(σ) ⊆ τ ∧ viewf(τ) ⊆ σ

implies that viewf(σ) = viewf(τ), and hence σ = τ .
The fact that viewfunctions form a cpo is straightforward. For continuity of strat and

viewf, because of 2, we need only show that unions of ω-chains are preserved. So let (σi)i∈ω
be an increasing sequence of strategies and let [s] ∈ viewf(

⋃

i∈ω σi). Then [s] ∈ σi , some
i, and hence [s] ∈

⋃

i∈ω viewf(σi). Therefore, viewf(
⋃

i∈ω σi) ⊆
⋃

i∈ω viewf(σi) and, by

monotonicity, viewf(
⋃

i∈ω σi) =
⋃

i∈ω viewf(σi).
On the other hand, viewf being continuous and strat being its inverse imply that strat is

also continuous. �

3.2.3 Diagrams of viewfunctions

We saw in the previous section that innocent strategies can be represented by their view-
functions. A viewfunction is a set of (equivalence classes of) plays, so the formal way to

express such a construction is explicitly as a set. For example, we have that

viewf(idA) = { [smm] | [s] ∈ viewf(idA) ∧ sm ∈ PA→A ∧ (m ∈ IA ∨ s.−1 ⊢A m) } ,

where the last m is justified by s.−2 and the penultimate one by s.−1 (in case m /∈ IA). The

above behaviour is called copycat (v. [AJ94]) and is perhaps the most focal notion in game
semantics.

Amore convenient way to express viewfunctions is by means of diagrams. For example,

for idA we can have the following depiction.

AidA : // A
iA OQ

iA PA

The polygonal line in the above depiction stands for a copycat link, meaning that the strat-

egy copycats between the two iA’s. Amore advanced example of this notation is the strategy
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on the left below.

(A⇒B) ⊗AhA,B : // B⊥

(∗, iA) OQ

∗ PA

∗ OQ

iA PQ

A⇒B

∗ PA

iA OQ

A− B

Note first that curved lines (and also the line connecting the two ∗’s) stand for justification

pointers. Moreover, recall that the arena A⇒ B has the form given on the right above, so

the leftmost iA (l-iA) in the diagram of hA,B has two child components, A− and B. Then,
the copycat links starting from the l-iA have the following meaning. hA,B copycats between

the A−-component of l-iA and the other iA, and copycats also between the B-component of
l-iA and the lower ∗. That is (modulo prefix-closure),

hA,B , strat{ [(∗, iA) ∗ ∗ iA s] | [iA iA s] ∈ viewf(idA) ∨ [s] ∈ viewf(idB) } .

Another way to depict hA,B is by cases, with regard to Opponent’s next move after l-iA, as
follows.

(A⇒B) ⊗AhA,B : // B⊥

(∗, iA) OQ

∗ PA

∗ OQ

iA PQ

jA OQ

jA PQ

iB OA

iB PA

Finally, we will sometimes label copycat links by strategies (e.g. in the proof of proposi-
tion 3.61). Labelling a copycat link by a strategy σ means that the specified strategy plays

like σ between the linked moves, instead of doing copycat. In this sense, ordinary copycat

links can be seen as links labelled with identities.

3.3 Totality

A basic problem with the category V , for our denotational purposes, is its lack of products.

In order to obtain products we restrict ourselves to total strategies.

3.3.1 The subcategory Vt

We introduce the notion of total strategies, specifying those strategies which immediately

answer initial questions without introducing fresh names. We extend this type of reasoning
to level-1 moves, yielding several subclasses of innocent strategies. Note that an arena A is

pointed if IA is singleton.
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Definition 3.51 (Vt, Vtt, Vt∗, Vtt∗) An innocent strategy σ : AB B is total if for any [iA] ∈
σ there exists [iA iB] ∈ σ. A total strategy σ : AB B is:

• l4 if whenever [s] ∈ σ and s.−1 ∈ JA then | psq | = 4,

• t4 if for any [iA iB jB ] ∈ σ there exists [iA iB jB j
~b
A] ∈ σ,

• tl4 if it is both t4 and l4,

• ttotal if it is tl4 and for any [iA iB jB ] ∈ σ there exists [iA iB jB jA] ∈ σ.

A total strategy τ : C ⊗AB B is:

• l4* if whenever [s] ∈ τ and s.−1 ∈ JA then | psq | = 4,

• t4* if for any [(iC , iA)iB jB ] ∈ τ there exists [(iC , iA)iB jB j
~b
A] ∈ τ ,

• tl4* if it is both t4* and l4*,

• ttotal* if it is tl4* and for any [(iC , iA) iB jB ] ∈ σ there exists [(iC , iA) iB jB jA] ∈ σ.

We let Vt be the lluf subcategory of V of total strategies, and Vtt its lluf subcategory of
ttotal strategies. Vt∗ and Vtt∗ are the full subcategories of Vt and Vtt respectively containing

pointed arenas. N

These subclasses of strategies will be demystified in the sequel. For now, note that l4 stands

for “linear in the 4th move”, and t4 for “total in the 4th move”.
We now proceed to examine properties of Vt. Eventually, we will see that it contains fi-

nite products and distributive coproducts, that it contains some exponentials, and that lifting
promotes to a functor. Note that in the definitions to follow we will usually define strategies

by means of their viewfunctions modulo even-prefix closure.

3.3.2 Lifting and product

We first upgrade the lifting and tensor arena-constructions of definition 3.3 to functors.
Eventually, tensor will give us products. In the following definition recall L from nota-

tion 3.7 and note that we write L(m) #m′ for L(m) ∩ S(m′) = ∅.

Definition 3.52 Let f : A → A′, g : B → B′ be arrows in Vt. Define the strategies f ⊗ g :

A⊗B → A′ ⊗B′ and f⊥ : A⊥ → A′
⊥ as follows.

f ⊗ g , strat{ [(iA, iB) (iA′ , iB′) s] | ([iA iA′ s] ∈ viewf(f) ∧ [iB iB′ ] ∈ g ∧ L(iA iA′ s) # iB)

∨ ([iB iB′ s] ∈ viewf(g) ∧ [iA iA′ ] ∈ f ∧ L(iB iB′ s) # iA) }

f⊥ , strat{ [∗ ∗′ ∗′ ∗ s] | [s] ∈ viewf(f) } .
N

Note that f⊥ is always ttotal. Let us we give an informal description of the above construc-
tions:

• f⊥ : A⊥ → A′
⊥ initially plays a sequence of asterisks [∗ ∗′ ∗′∗] and then continues

playing like f .

• f ⊗ g : A⊗B → A′⊗B′ answers initial moves [(iA, iB)] with f ’s answer to [iA] and g’s
answer to [iB]. Then, according to whether Opponent plays in JA′ or in JB′ , Player

plays like f or like g respectively.

We proceed to show that the above yield functors. The following lemma is straightforward

but arises quite often when we are dealing with definitions like that of f ⊗ g.
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Lemma 3.53 Let s1s and s2s be legal sequences of moves-with-names on a prearena A which both
satisfy NC3, and s1, s2 be P-ending plays such that S(s2) ⊆ S(s1), L(s2s) # s1 and s1 appears in

ps1s′q, for any s′ ≤ s. Then, s1s is a play iff s2s is a play.

Proof: The claim is trivial if |s| = 0, so assume |s| > 0. For the “if”-part, we need to show
NC1-2’. So let s′ ≤ s be P-ending sequence. If a ∈ nlist(s′.−1) and a # nlist(s′.−2) then

a # s2s
′− and a ∈ L(s2s), so a # s1, s2s

′−, hence a # s1s
′−. If a ∈ S(s′.−1) and a # ps1s′−q

then, since s1 appears in ps1s′q, a# ps2s′−q and hence a ∈ nlist(s′.−1).

For the “only if”-part, we again need to show NC1-2’. So let s′ ≤ s be P-ending sequence. If

a ∈ nlist(s′.−1) and a#nlist(s′.−2) then a# s1s
′−, so a# s2s

′−. If a ∈ S(s′.−1) and a# ps2s′−q
then a ∈ L(s2s) so a# ps2s′−q, s1 , hence a# ps1s′−q and a ∈ nlist(s′.−1). �

Lemma 3.54 For f, f ′, g and g′ as above, the following are arrows in Vt.

f ⊗ g : A⊗B → A′ ⊗B′ , f⊥ : A⊥ → B⊥ .

Proof: For f ⊗ g, it suffices to show that φ is a viewfunction:

φ , { [(iA, iB) (iA′ , iB′) s] | ([iA iA′ s] ∈ viewf(f) ∧ [iB iB′ ] ∈ g ∧ L(iA iA′ s) # iB)

∨ ([iB iB′ s] ∈ viewf(g) ∧ [iA iA′ ] ∈ f ∧ L(iB iB′ s) # iA) } .

Elements in φ are plays: let [t] ∈ φ and suppose wlog that t = (iA, iB) (iA′ , iB′) s with

[iA iA′ s] ∈ viewf(f), [iB iB′ ] ∈ g and L(iA iA′ s) # iB. Then t is legal because iA iA′ s is.

Moreover, NC3 trivially holds and therefore, by previous lemma, t is a play.
For even-prefix closure, let t = (iA, iB) (iA′ , iB′) sxy, [t] ∈ φ, and suppose, wlog, that

[iA iA′ sxy] ∈ viewf(f), [iB iB′ ] ∈ g and L(iA iA′ s) # iB. Then, [iA iA′ s] ∈ viewf(f) and
thus [t−−] ∈ φ.

For single-valuedness, let [t1], [t2] ∈ φ and [t−1 ] = [t−2 ], say modulo π0 (i.e. t−1 = π0 [ t−2 ).
If tκ = (iA(κ), iB(κ)) (iA′(κ), iB′(κ)) , for κ = 1, 2, then, by single-valuedness of viewf(f),
[iA(1)] = [iA(2)] implies [iA(1) iA′(1)] = [iA(2) iA′(2)], and similarly [iB(1) iB′(1)] = [iB(2) iB′(2)].

Let’s say the former equality is modulo π1 and the latter is modulo π2. We now have iA(1) =

π0 [ iA(2) = π0 [π−1
1 [ iA(1) , ∴ iA′(1) = π0 [π−1

1 [ iA′(1) because S(iA′(1) ) ⊆ S(iA(1) ) ,

∴ iA(1) iA′(1) = π0 [ iA(2) iA′(2) , and similarly for the B-counterpart. Hence, t1 = π0 [ t2
as required. If tκ = [(iA(κ), iB(κ)) (i′A′(κ), i

′
B′(κ)) sκxκ], for κ = 1, 2, then suppose wlog that

[iB(κ) iB′(κ)] ∈ g and [iA(κ) iA′(κ) sκxκ] ∈ viewf(f), and L(iA(κ) iA′(κ) sκxκ) # iB(κ) . Then

[iA(1) iA′(1) s1] = [iA(2) iA′(2) s2], so [iA(1) iA′(1) s1x1] = [iA(2) iA′(2) s2x2]. Now using the
strong support lemma we get [t1] = [t2]. This completes the proof of “φ is a viewfunction”.

The case of f⊥ is similar (and simpler). �

Lemma 3.55 LetA,A′, B,B′ be arenas and iA,A′,B,B′ ∈ IA,A′,B,B′ respectively, and let sA and sB
be justified sequences of moves-with-names from ĪA ∪ ĪA′ and ĪB ∪ ĪB′ respectively. If f : AB A′

and g : BB B′ in Vt , then:

1. [(iA, iB) (iA′ , iB′) sA] ∈ f ⊗ g ⇐⇒ [iA iA′ sA] ∈ f ∧ [iB iB′ ] ∈ g ∧ L(iA iA′ sA) # iB ,

2. [(iA, iB) (iA′ , iB′) sB] ∈ f ⊗ g ⇐⇒ [iA iA′ ] ∈ f ∧ [iB iB′ sB] ∈ g ∧ L(iB iB′ sB) # iA ,

3. [∗ ∗ ∗ ∗ sA] ∈ f⊥ ⇐⇒ [sA] ∈ f .

Proof: For 1, let s = (iA, iB) (iA′ , iB′) sA, sf = iA iA′ sA and sg = iB iB′ . For “ =⇒ ”, we
do induction on |sA| ≥ 0 ; the base case is by definition. If |sA| is odd then, because of the

IH and contingency completeness of f , it suffices to show that sf is a play. But this follows
easily from s and s−f being plays. If |sA| > 0 is even then, by IH and lemma 3.38, it suffices

to show that sf a play and that [psfq] ∈ f . Note that [psq] ∈ f ⊗ g implies psfq ∈ f and

L(psfq) # iB , and therefore, using also the IH, L(sf ) # iB . Moreover, sf is legal and satisfies
NC3 so we can use lemma 3.53.

For “⇐=”, we do again induction on |sA| ≥ 0 , and the base case is by definition. The case
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of |sA| odd is shown using the IH and contingency completeness. If |sA| > 0 is even then,
by IH and lemma 3.38, it suffices to show that psq ∈ f ⊗ g and s a play. The former is

straightforward and the latter follows from lemma 3.53.
This completes the proof of 1. 2 and 3 are proved similarly. �

Proposition 3.56 The following are functors.

⊗ : Vt × Vt → Vt ( )⊥ : Vt → Vtt∗

Proof: The above constructions have been shown to be well-defined on objects and arrows,

so we need only show functoriality. For the tensor⊗, it is not difficult to see that idA⊗idB =

idA⊗B . We also need to show that, for any A
fPA A′ f ′PPA A′′ and B

gPA B′ g′PA B′′,
(f ; f ′) ⊗ (g; g′) = (f ⊗ g); (f ′ ⊗ g′).

Let u = [(iA, iB) (iA′′ , iB′′) s] ∈ viewf((f ; f ′) ⊗ (g; g′)) and assume wlog that [iA iA′′ s] ∈
f ; f ′ , [iB iB′′ ] ∈ g; g′ and L(iA iA′′ s) # iB . Let then iA iA′′ s = iA iA′ s′ ; iA′ iA′′ s′′ and

iB iB′′ = iB iB′ ; iB′ iB′′ , with not both s′, s′′ ending inA′ and [iA iA′ s′] ∈ f , [iA′ iA′′ s′′] ∈ f ′,

[iB iB′ ] ∈ g and [iB′ iB′′ ] ∈ g′. Note that L(iA iA′′ s) # iB implies L(iA iA′ s′) # iB and
L(iA′ iA′′ s′′) # iB , and from the latter L(iA′ iA′′ s′′) # iB′ . By the previous lemma we

have that [(iA, iB) (iA′ , iB′) s′] ∈ f ⊗ g and [(iA′ , iB′) (iA′′ , iB′′) s′′] ∈ f ′ ⊗ g′, and hence
u = [(iA, iB) (iA′ , iB′) s′ ;(iA′ , iB′) (iA′′ , iB′′) s′′] ∈ f ⊗ g ; f ′ ⊗ g′.

Conversely, if u ∈ viewf(f⊗g ; f ′⊗g′) then u = [(iA, iB) (iA′′ , iB′′) s], where s is (exclusively)

in A → A′′ or in B → B′′, since only O can switch components and u is a P-view. Suppose
wlog that theA→ A′′ case holds. We then have that u = [(iA, iB) (iA′ , iB′) s′ ;(iA′ , iB′) (iA′′ , iB′′) s′′],

with not both s′, s′′ ending in A′. Then, by previous lemma, [iA iA′ s′] ∈ f , [iB iB′ ] ∈ g and
L(iA iA′ s′′) # iB , and [iA′ iA′′ s′′] ∈ f ′, [iB′ iB′′ ] ∈ g′ and L(iA′ iA′′ s′) # iB′ . But now

[iA iA′ s′ ; iA′ iA′′ s′′] = [iA iA′′ s] ∈ f ; f ′ and [iB iB′′ ] ∈ g; g′. Now, (iA, iB) (iA′ , iB′) s′ ≍
(iA′ , iB′) (iA′′ , iB′′) s′′ implies that L((iA′ , iB′) (iA′′ , iB′′) s′′) # iB , i.e. L(iA′ iA′′ s′′) # iB .
Hence, L(iA iA′′ s) = (L(iA iA′ s′) ∪ L(iA′ iA′′ s′′)) # iB , and thus, by previous lemma, u ∈
(f ; f ′) ⊗ (g; g′).
Finally, the case of lifting ( )⊥ is much simpler, and is proved along the same lines. �

Thus, we have shown in full formality that tensor and lifting are functors. Note that in
the sequel we will generally avoid to give proofs of simple facts about strategies at this level

of detail.

We now show that ⊗ yields products, and hence that Vt is cartesian.

Proposition 3.57 Vt is cartesian: 1 is a terminal object and ⊗ is a product constructor.

Proof: Terminality of 1 is clear. Moreover, it is straightforward to see that ⊗ yields a sym-
metric monoidal structure on Vt , with its unit being 1 and its associativity, left-unit, right-

unit and symmetry isomorphisms being the canonical ones. Hence, it suffices to show that

there exists a natural coherent diagonal, that is, a natural transformation ∆ : IdVt
B

⊗ ◦ 〈IdVt
, IdVt

〉 (where 〈IdVt
, IdVt

〉 is the diagonal functor on Vt) such that the following

diagrams commute for any A,B in Vt.

A⊗B

∆A⊗B **TTTTTTTTTTTTTTTTT

∆A⊗∆B // (A⊗A) ⊗ (B ⊗B)

(A⊗B) ⊗ (A⊗B)
��
∼=

A
∼=

xxpppppppppppp

∆A

��

∼=

&&NNNNNNNNNNNN

1 ⊗A A⊗ A
!A⊗idA

oo
idA⊗!A

// A⊗ 1

But it is easy to see there is a canonical choice for ∆,

∆A : AB A⊗A , strat{ [iA (iA, iA) s] | [iA iA s] ∈ viewf(idA) } ,

which makes the above diagrams commute. Naturality follows from the single-threaded

nature of strategies (v. [Har99]). �
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Now that we have defined the diagonal ∆ we can show the following (cf. [AJM00]). Re-

call tl4* strategies from definition 3.51.

Lemma 3.58 (Separation of Head Occurrence) Let A be a pointed arena and f : AB B be a
t4 strategy. Then there exists a tl4* strategy f̃ : A⊗AB B such that f = ∆ ; f̃ .

Proof: Let us tag the two copies of A in A⊗A as A(1) and A(2), and take

f̃ , strat{[(iA, iA)iB jB j
~b
A(2)

s] | [iA iB jB j
~b
A(2)

s] ∈̃ viewf(f) ∧ ∀i. s.i /∈ JA(2)
} ,

where ∈̃ is the composition of de-indexing fromMA(1)
andMA(2)

toMA with ∈. Intuitively,

f̃ plays the first JA-move of f in A(2), and then mimics f until the next JA-move of f , which

is played in A(1). All subsequent JA-moves are also played in A(1). Clearly, f̃ is tl4* and

f = ∆ ; f̃ . �

Products in Vt are given concretely by triples A
π1QPP A⊗B

π2PPA B, where

π1 = strat{ [(iA, iB) iA s] | [iA iA s] ∈ viewf(idA) } ,

and π2 similarly, while for each A
fQP C gPA B we have

〈f, g〉 : CB A⊗B = strat{ [iC (iA, iB) s] | ([iC iA s] ∈ viewf(f) ∧ [iC iB] ∈ viewf(g))

∨ ([iC iA] ∈ viewf(f) ∧ [iC iB s] ∈ viewf(g)) } .

Finally, we need to generalise the tensor product to a version applicable to countably many
arguments. In arenas, the construction comprises of gluing countably many arenas together

at their initial moves. The problem that arises then is that the product of infinitely many

(initial) moves need not have finite support, breaking the arena specifications. Nevertheless,
in case we are interested only in pointed arenas, this is easily bypassed: a pointed arena has

a unique initial move, which is therefore equivariant, and the product of equivariant moves

is of course also equivariant.

Proposition and Definition 3.59 (Big tensor) For pointed arenas {Ai}i∈ω define
⊗

iAi by:

MN

iAi
, {∗} +

⊎

i
ĪAi

(
⊗

iAi)

IN

iAi
, {∗}

λN

iAi
, [(∗ 7→ PA), [λAi

↾ ĪAi

i∈ω]]

⊢N

iAi
, {(∗, jAi

) | i ∈ ω} ∪
⋃

i
(⊢Ai

↾ ĪAi

2) .

For {fi : Ai → Bi}i∈ω with Ai’s and Bi’s pointed define:

⊗

i
fi , strat{[∗ ∗ s] | ∃k. [iAk

iBk
s] ∈ viewf(fk)} .

Then
⊗

:
∏

Vt∗ B Vt∗ is a functor. �

The proof is similar to that of the binary tensor. Note that we could proceed and show that

the aforedefined tensor yields general products of pointed objects, but this will not be of use
here and is therefore left to the reader as an exercise.

3.3.3 Partial exponentials

We have seen that the tensor constructor equips Vt with products. We now show that the

arrow constructor yields appropriate partial exponentials, which will be sufficient for our
denotational tasks.

Let us introduce the following transformations on strategies.
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Definition 3.60 For all arenas A,B,C with C pointed, define a bijection

ΛBA,C : Vt(A⊗B,C)
∼=PA Vt(A,B −−⊗ C)

by taking, for each h : A⊗BB C and g : AB B −−⊗ C ,5

ΛBA,C(h) : AB B −−⊗ C , strat{ [iA iC (iB, jC) s] | [(iA, iB) iC jC s] ∈ viewf(h) } ,

ΛB −1
A,C (g) : A⊗BB C , strat{ [(iA, iB) iC jC s] | [iA iC (iB, jC) s] ∈ viewf(g) } .

Moreover, take evA,B : (A −−⊗ B) ⊗AB B , ΛA −1
A−−⊗B,B(idA−−⊗B) .

Finally, for each (f, g) : (A,B) B (A′, B′), take

f −−⊗ g : A′
−−⊗ BB A −−⊗ B′ , ΛA

′

A−−⊗B,A′−−⊗B′(id⊗ f ; ev ; g) .
N

It is not difficult to see that Λ and Λ−1 are well-defined and mutual inverses. What is more,
they supply us with exponentials.

Proposition 3.61 Vt has partial exponentials wrt to ⊗, in the following sense. For any object B,
the functor ⊗B : Vt B Vt has a partial right adjoint B −−⊗ : Vt∗ B Vt, that is, for any object

A and any pointed object C the bijection

ΛBA,C : Vt(A⊗B,C)
∼=PA Vt(A,B −−⊗ C)

is natural in A.

Proof: It suffices to show that, for any f : A⊗BB C and g : AB B −−⊗ C,

Λ(f) ⊗ id ; ev = f , g ⊗ id ; ev = Λ−1(g) .

The above equalities are straightforward. For example, the viewfunction of Λ(f) ⊗ id ; ev is
given by the following diagram,

A⊗B
Λ(f)⊗id // (B −−⊗ C) ⊗B

ev // C

(iA, iB)

(iC , iB)

iC

jC

(iB, jC)

f

which gives also the viewfunction of f . �

A consequence of partial exponentiation is that −−⊗ naturally upgrades to a functor:

−−⊗ : (Vt)
op × Vt∗ B Vt∗ .

Now, in case g is ttotal, the strategy f −−⊗ g : A′
−−⊗ B B A −−⊗ B′ is given concretely by

strat(φ), where

φ = {[iB iB′ (iA, jB′) (iA′ , jB) s] | ([iA iA′ s] ∈ viewf(f) ∧ [iB iB′ jB′ jB] ∈ g ∧ L(iA iA′ s)#iB , jB′)

∨ ([iB iB′ jB′ jB s] ∈ viewf(g) ∧ [iA iA′ ] ∈ f ∧ L(iB iB′ jB′ jB s)#iA)}.

5Note the reassignment of pointers that takes place implicitly in the definitions of Λ,Λ−1, in order e.g. for
(iA, iB) iC jC s to be a play of viewf(h).
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That is, f −−⊗ g answers initial moves [iB] like g and then responds to [iB iB′ (iA, jB′)] with
f ’s answer to [iA] and g’s response to [iB iB′ jB′ ] (recall g ttotal). It then plays like f or like

g, according to Opponent’s next move. Note that φ is a viewfunction even if B,B′ are not
pointed.

A special case of ttotality in the second argument arises in the defined functor:

⇒ : (Vt)
op × Vt B Vtt∗ , −−⊗ ( )⊥ . (3.3)

Remark 3.62 In the work on CBV games of Honda & Yoshida [HY99] the following version
of partial exponentiation is shown.

V(A⊗B,C) ∼= Vt(A,B⇒ C) (3.4)

Interestingly, that version can be derived from ours (using also another bijection shown
in [HY99]),

V(A⊗B,C) ∼= Vt(A⊗B,C⊥) ∼= Vt(A,B −−⊗ C⊥) = Vt(A,B⇒ C) .

But also vice versa, if C is pointed then C ∼= C2 ⇒ C1, for some arenas C1, C2,
6 and

Vt(A⊗B,C2⇒C1)
(3.4)
∼= V(A⊗B⊗C2, C1)

(3.4)
∼= Vt(A, (B⊗C2)⇒C1) = Vt(A,B −−⊗(C2⇒C1)) .

3.3.4 Coproducts

We show very briefly that Vt has distributive coproducts. In fact, Vt is an extensive category
(which subsumes distributivity, v. [CLW93]), but this will not be of real use here.

Definition 3.63 For any arenas A,B, define the arrows:

ι1 : AB A+ B , {[iA iA s] | [iA iA s] ∈ idA} ,

ι2 : BB A+B , {[iB iB s] | [iB iB s] ∈ idB} .

Moreover, for any A
fPA C

gQP B take

[f, g] : A+BB C , {[iA iC s] | [iA iC s] ∈ f} ∪ {[iB iC s] | [iB iC s] ∈ g} .

Finally, for each arena A, define the arrow !A : 0B A , {[ǫ]} . N

Note that we use the same symbol, !A, both for terminal and initial arrows; this usually does

not cause confusion.

Proposition 3.64 The structure defined above equips Vt with finite coproducts. Moreover, for all
arenas A,B,C, the following arrow is an iso.

dst , A⊗B +A⊗ C
[idA ⊗ ι1, idA ⊗ ι2]PPPPPPPPPPPPPPA A⊗ (B + C)

6 In fact, for C to be expressed as C2 ⇒ C1 we need a stronger version of condition (f), definition 3.1, namely:

(f’) For each m ∈ MA, there exists unique k ≥ 0 and a unique sequence x1 . . . xn ∈ {Q, A}∗ such that IA ∋

m1 ⊢A · · · ⊢A mk ⊢A m , for some ml’s in MA with λ
QA
C (ml) = xl .

In such a case, C1 and C2 are given by taking KA
C , {m ∈ MC | ∃jC . jC ⊢C m ∧ λC(m) = PA} and

MC1
, KA

C + {m ∈ MC | ∃k ∈ KA
C . k ⊢C · · · ⊢C m} MC2

, ĪC \ MC1

IC1
, KA

C IC2
, JC

⊢C1
, ⊢C↾ (MC1

× ĪC1
) ⊢C2

, ⊢C↾ (MC2
× ĪC2

)

λC1
, λC ↾ MC1

λC2
, [iC2

7→ PA, m 7→ λ̄C(m)] .
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Proof: It is not difficult to see that the above yield finite coproducts. For distributivity, the
following strategy is an inverse to dst.

A⊗ (B + C) // A⊗B +A⊗ C

(iA, iB) OQ

(iA, iB) PA

(iA, iC) OQ

(iA, iC) PA

�

3.3.5 Strategy and arena orders

Recall the orders defined for strategies (.) and arenas (E) in section 3.1.3. These being

subset orderings are automatically inherited by Vt. Moreover, they are very well-behaved

in the following sense.

Proposition 3.65 Vt and Vtt are PreCpo-enriched wrt ⊑.7 Moreover, the following are locally

continuous functors.

( )⊥ : Vt B Vtt∗ , ( ⊗ ) : Vt × Vt B Vt , (
⊗

) :
∏

Vt∗ B Vt∗ ,

( −−⊗ ) : Vop
t × Vtt∗ B Vtt∗ , ( ⇒ ) : Vop

t × Vt B Vtt∗ , ( + ) : Vt × Vt B Vt .

Proof: Enrichment follows from enrichment of G; only the least element is lost, since it is
not necessarily total. To show that the defined functors are locally continuous we make use

of corollary 3.50. For example, given σ ⊑ σ′ and τ ⊑ τ ′, in order to show that σ⊗ τ ⊑ σ′⊗ τ ′

it suffices to show that viewf(σ ⊗ τ) ⊆ viewf(σ′ ⊗ τ ′), which is straightforward from the

definition of tensor. On the other hand, if (σi)i∈ω is an ω-chain then, in order to show that

(
⊔

i σi) ⊗ τ ⊑
⊔

i(σi ⊗ τ), it suffices to show that viewf((
⊔

i σi) ⊗ τ) ⊑
⊔

i viewf(σi ⊗ τ),
which is straightforward. �

The order on arenas in Vt is the same as in G, and therefore Ob(Vt) is a cpo with least
element 0. Note though that a requirement needs to be added for projections to be total

strategies.

Definition 3.66 For any A,B ∈ Ob(Vt) and k ∈ ω define

A Ek B ⇐⇒ A E B ∧ (B ↾ {m ∈MB | level(m) < k}) E A

If A E1 B then we can define a (total) projection arrow

projB,A : BB A , strat{[s] | [s] ∈ viewf(idA)}
N

This indexed version of the ordering relation allows us to stipulate totality and ttotality on

projections and inclusions:

A E1 B =⇒ projB,A ∈ Vtt(B,A) ,

A E2 B =⇒ inclA,B ∈ Vtt(A,B) .

Moreover, we have the following.

7By precpo we mean a cpo which may not have a least element. PreCpo is the category of precpos and continu-
ous functions.
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Proposition 3.67 All of the functors of proposition 3.65 are continuous wrt E . Moreover,

A E A′ ∧B E B′ =⇒ inclA,A′⊗inclB,B′ = inclA⊗B,A′⊗B′

A E1 A
′ ∧B E1 B

′ =⇒ projA′,A⊗projB′,B = projA′⊗B′,A⊗B

∀i ∈ ω.Ai E A′
i =⇒

⊗

i
inclAi,A′

i
= inclN

iAi,
N

iA
′
i

∀i ∈ ω.Ai E A′
i =⇒

⊗

i
projA′

i,Ai
= projN

iA
′
i,

N

iAi

A E1 A
′ ∧B E B′ =⇒ projA′,A ⇒ inclB,B′ = inclA⇒B,A′⇒B′

A E A′ ∧B E1 B
′ =⇒ inclA,A′ ⇒ projB′,B = projA′⇒B′,A⇒B

A E1 A
′ ∧B E2 B

′ =⇒ projA′,A
−−⊗ inclB,B′ = inclA−−⊗B,A′−−⊗B′

A E A′ ∧B E1 B
′ =⇒ inclA,A′ −−⊗ projB′,B = projA′−−⊗B′,A−−⊗B

A E A′ ∧B E B′ =⇒ inclA,A′ + inclB,B′ = inclA+B,A′+B′

A E1 A
′ ∧B E1 B

′ =⇒ projA′,A + projB′,B = projA′+B′,A+B

Proof: It is not difficult to show E-continuity. Now, all the above clauses are in effect spe-
cial cases of functoriality statements, since the underlying sets of inclusions and projections

correspond to identity strategies. �

3.4 A monad, and some comonads

We now proceed to construct a monad and a family of comonads on Vt that will be of use

in later chapters. Specifically, we will upgrade lifting to a monad and introduce a family of

product comonads for initial state.

3.4.1 Lifting monad

It is a more-or-less standard result that the lifting functor induces a monad.

Definition 3.68 (Lifting monad) Define the natural transformations up, dn, st as follows.

upA : AB A⊥ = strat{ [iA ∗1 ∗2 iA s] | [iA iA s] ∈ viewf(idA) }

dnA : A⊥⊥ B A⊥ , strat{ [∗1 ∗
′
1 ∗

′
2 ∗2 ∗3 ∗4 s] | [s] ∈ viewf(idA) }

stA,B : A⊗B⊥ B (A⊗B)⊥ , strat{ [(iA, ∗1) ∗
′
1 ∗

′
2 ∗2 iB (iA, iB) s]

| [(iA, iB) (iA, iB) s] ∈ viewf(idA⊗B) }

(primed asterisks are used for arenas on the RHS, where necessary). N

Proposition 3.69 The quadruple (( )⊥, up, dn, st) is a strong monad on Vt. Moreover, it yields

monadic exponentials by taking (C⊥)B to be B⇒ C, for each B,C.

Proof: It is not difficult to see that (( )⊥, up, dn, st) is a strong monad. Moreover, for each

B,C we have that B⇒C = B −−⊗C⊥ is a ( )⊥-exponential, because of exponentiation prop-

erties of −−⊗. �

Although finding a canonical arrow from A to A⊥ is elementary (upA), finding a canoni-
cal arrow in the inverse direction is not always possible. In some cases, e.g. A = Ai , there is
no such arrow at all, let alone canonical. An exception occurs when A is pointed.

Definition 3.70 For any pointed arena A define:

puA : A⊥ B A , strat{ [∗ iA jA ∗ iA jA s] | [iA iA jA jA s] ∈ viewf(idA) } .
N
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Lemma 3.71 puA yields a natural transformation pu : ( )⊥(Vtt∗) B IdVtt∗
. Moreover, for any

arenas A,B with B pointed,

• upA ; puA = idA ,

• puA⊥
= dnA ,

• puA−−⊗B = Λ
(

(A −−⊗ B)⊥ ⊗A
st

′PPA ((A −−⊗ B) ⊗A)⊥
ev⊥PPA B⊥

puBPPPA B
)

. �

3.4.2 Initial-state comonads

Our way of modelling terms-in-local-state will be by using initial state comonads, in the
spirit of intensional programmodelling of Brookes & Geva [BG92]. In our setting, the initial

state can be any list ~a of distinct names; we define a comonad for each one of those lists.

Definition 3.72 (Initial-state comonads) For each ~a ∈ A# define the triple (Q~a, ε, δ) as fol-

lows.

Q~a : Vt B Vt , A~a ⊗ ,

ε : Q~aB IdVt
, {εA : A~a ⊗A

π2PPA A} ,

δ : Q~aB (Q~a)2 , {δA : A~a ⊗A
∆ ⊗ idPPPPPA A~a ⊗ A~a ⊗A} .

For each ~a′ ⊆ ~a define the natural transformation ~a
~a′ : Q~aB Q~a

′

by taking,

( ~a~a′ )A : A~a ⊗ AB A~a′ ⊗A , ( ~a~a′ )1 ⊗ idA ,

( ~a~a′ )1 : A~a ⊗ 1B A~a′ ⊗ 1 , {[(~a, ∗) (~a′, ∗)]} . N

Note that Qǫ, the comonad for empty initial state, is the identity comonad. Note also that
we have suppressed indices ~a from transformations ε, δ for notational economy.

From the results in the previous chapter, we know that each triple (Q~a, ε, δ) forms a
product comonad on Vt. Moreover, it is straightforward to show the following.

Proposition 3.73 (Chain rule) For each ~a′ ⊆ ~a ∈ A#, the transformation ~a
~a′ is a comonad mor-

phism. Moreover, ~aǫ = ε : Q~aB IdVt
, ~a~a = id : Q~aB Q~a and, for each ~a′ ⊆ ~a′′ ⊆ ~a,

~a

~a′′
;
~a′′

~a′
=
~a

~a′
.

�

Finally, for each name-type i, we have a name-test arrow:

eqi : Ai ⊗ AiB N , { [(a, a) 0] } ∪ { [(a, b) 1] | a# b }

which clearly makes the following diagram commute.

Qa1
∆ //

!

��

Ai ⊗ Ai
eqi

��

Qab1
〈
ab
a ,

ab
b 〉

oo

!

��
1 b

0

// N 1b
1

oo

(N1)

Remark 3.74 (Why use comonads) We briefly discuss about our use of initial-state comon-

ads for modelling local state, instead of following the more standard method of a local-state

monad. We focus on the sν-calculus. An appropriate local-state monad for this calculus
would be a monad T of the form

TX = A# ⇒ A# ⊗X
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and would entail that each typed term ~a ^ Γ_M : A be translated to a morphism JMK :

JΓK B A# ⇒ (A# ⊗ JAK), or, equivalently,

JMK : A# ⊗ JΓK B (A# ⊗ JAK)⊥ .

However, the generic treatment of initial state in the above description is inadequate for our

purposes. A# contains all possible initial states, and JMK would have to be specified for

each single one of these— even for irrelevant ones.
What seemsmore fitting to our nominal framework is a translation to specific initial states,

up to permutation, which concretely means

JMK : A~a ⊗ JΓK B (A# ⊗ JAK)⊥

in our running example. But since in nominal games all information pertaining fresh names

is embedded in moves (cf. [AGM+04, Ong02]), the appearance of A# in the RHS above is
redundant. Hence, the desired interpretation boils down to

JMK : A~a ⊗ JΓK B JAK⊥

which is precisely the (underlying) interpretation pursued in the next chapters.

3.4.3 Fresh-name constructors

Combining the monad and comonads of the previous sections we can obtain a monadic-

comonadic setting (Vt, ( )⊥, Q), where by Q we denote the family (Q~a)~a∈A# . This setting,
which in fact yields a sound model of the sν-calculus, will be used as the basis of our se-

mantics of nominal computation in the sequel. As discussed in remark 3.74, nominal com-

putation of type A, in name-environment ~a and variable-environment Γ, will be translated
in the set of strategies

{ σ : Q~aJΓK B JAK⊥ } .

The lifting functor, representing the monadic part of our semantical setting, will therefore

incorporate the computational effect of fresh-name creation.
We describe in this section the game-semantical expression of fresh-name creation. Fresh

names are created by means of natural transformations which transform a comonadQ~a, say,

to a monad-comonad composite (Q~aa )⊥.

Definition 3.75 Consider the setting (Vt, ( )⊥, Q). We define, for each ~aa ∈ A#, natural
transformations

new~aa : Q~aB (Q~aa )⊥

by:

new~aaA , A~a ⊗A
new

~aa
1 ⊗ idAPPPPPPPPPA (A~aa)⊥ ⊗A

st
′PPA (A~aa ⊗A)⊥ ,

new~aa1 : A~a ⊗ 1 B (A~aa ⊗ 1)⊥ , strat{[(~a, ∗) ∗ ∗ (~aa, ∗)a]} .
N

We will usually omit superscripts in new, for economy. That new is a natural transformation

is straightforward: for any f : AB B we can form the following commutative diagram.A~a ⊗A

id⊗f

��

new1⊗id // (A~aa)⊥ ⊗ A

id⊗f

��

st
′

// (A~aa ⊗A)⊥

(id⊗f)⊥

��A~a ⊗B
new1⊗id

// (A~aa)⊥ ⊗B
st

′
// (A~aa ⊗B)⊥
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Moreover, new is strength-coherent, in the following sense. For any arenas A,B it is easy to
see that the following diagram commutes.

A⊗Q~aB

id⊗newB

��

z // Q~a(A⊗B)

newA⊗B

��
A⊗ (Q~aaB)⊥

st ; z⊥ // (Q~aa(A⊗B))⊥

(3.5)

Finally, we can show the following.

Proposition 3.76 For all ~a,~a′a ∈ A# with ~a ⊆ ~a′ and any arena A, the following diagrams com-

mute.

Q~aA

newA

��

〈id,newA〉 // Q~aA⊗ (Q~aaA)⊥

st

��
(Q~aaA)⊥

〈
~aa
~a A,id〉⊥

// (Q~aA⊗Q~aaA)⊥

Q~a
′

A
new

~a′a
//

~a′

~a

��

(Q~a
′aA)⊥

(
~a′a
~aa )⊥

��
Q~aA

new
~aa

// (Q~aaA)⊥

(N2)

Proof: It is easy to see that commutativity of the LHS diagram reduces to commutativity ofA~a
new1

��

〈id,new1〉 // A~a ⊗ (A~aa)⊥
st

��
(A~aa)⊥

〈
~aa
~a 1,id〉⊥

// (A~a ⊗ A~aa)⊥
which is straightforward. The RHS diagram is shown similarly. �

The fresh-name constructor allows us to define name-abstraction for strategies.

Definition 3.77 (Name-abstraction, \ ℄) For any σ : Q~aaBB C, whereC is pointed, define:\a℄σ , Q~aB
new

~aa
BPPPPA (Q~aaB)⊥

σ⊥PPA C⊥
puCPPPA C .

N

Name-abstraction can be given an explicit description as follows. For any sequence of
moves-with-names s and any name a # nlist(s), let sa be s with a added in the head of

all of its name-lists. Then, for σ as above, we can show that:

viewf(\a℄σ) = { [(~a, iB) iC jC m
a~b sa] | [(~aa, iB) iC jC m

~b s] ∈ viewf(σ) ∧ a# iB, jC } (3.6)

Thus, for example, for any f, g : Q~aa1B B⊥ we have:

f = g ⇐⇒ \a℄ f = \a℄ g . (3.7)

We end our discussion on fresh-name constructors with a technical lemma stating that

name-abstraction and currying commute.

Lemma 3.78 Let f : Q~aa(A⊗B) B C, with C a pointed arena. Then\a℄Λ(ζ ′ ; f) = Λ(ζ ′ ; \a℄ f) : Q~aAB B −−⊗ C .
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Proof: As follows.\a℄Λ(ζ ′ ; f) = new~aaA ;(Λ(ζ ′ ; f))⊥ ; puB−−⊗C = new~aaA ;(Λ(ζ ′ ; f))⊥ ; Λ(st′ ; ev⊥ ; puC)

= Λ(new~aaA ⊗ idB ;(Λ(ζ ′ ; f))⊥ ⊗ idB ; st′ ; ev⊥ ; puC)

= Λ(new~aaA ⊗ idB ; st′ ;(Λ(ζ ′ ; f) ⊗ idB)⊥ ; ev⊥ ; puC)

= Λ(new~aaA ⊗ idB ; st′ ;(ζ ′ ; f)⊥ ; puC)

(N2)
= Λ(ζ ′ ; new~aaA⊗B ; f⊥ ; puC) = Λ(ζ ′ ; \a℄ f)

�

Note that the above result does not imply that ν- and λ-abstractions commute in our se-
mantics of nominal languages, i.e. that we obtain identifications of the form Jνa.λx.MK =

Jλx.νa.MK. As we will see in the next chapters, λ-abstraction is not simply currying: be-

cause of monads, it corresponds to currying and composing with the monadic unit.

Generalised constructors The previous construction can be generalised as follows. For
any ~a ⊆ ~a′ define

(
~a

~a′

)

: Q~aB (Q~a
′

)⊥ (3.8)

from (
~a

~a′

)

1 : Q~a1B (Q~a
′

1)⊥ , { [(~a, ∗) ∗ ∗ (~a′, ∗)~a
′
r~a] } , (3.9)

where ~a′ \~a is ~a′ with all names from ~a removed. Clearly, this too is strength-preserving and

moreover makes the following diagram commute, for any A.

Q~aA

(
~a
~a′

)

A

��

〈id,
(
~a
~a′

)

A〉
// Q~aA⊗ (Q~a

′

A)⊥

st

��
(Q~a

′

A)⊥
〈
~a′

~a A,id〉⊥

// (Q~aA⊗Q~a
′

A)⊥

(N2’)

We can now define a generalised name-abstraction constructor for strategies. For any σ :

Q~a
′

BB C with C pointed,\~a^~a′℄σ , Q~aB

` ~a
~a′

´

BPPPPA (Q~a
′

B)⊥
σ⊥PPA C⊥

puCPPPA C . (3.10)

The above can be given an explicit description as follows.

viewf( \~a^~a′℄σ) = (3.11)

{ [(~a, iB) iC jC m
(~a′\~a)~b s(~a

′\~a)] | [(~a′, iB) iC jC m
~b s] ∈ viewf(σ) ∧ (~a′ \ ~a) # iB, jC }

This shows that the constructor \ ^ ℄ indeed generalises \ ℄ : taking \~a′℄ , \a1℄ · · · \an℄
we have \~a′℄ = \~a^~a~a′℄ . Finally, similarly to lemma 3.78 we can show that, for any f :

Q~a
′

(A⊗B) B C with C pointed,\~a^~a′℄Λ(ζ ′ ; f) = Λ(ζ ′ ; \~a^~a′℄ f) : Q~aAB B −−⊗ C . (3.12)

3.5 Nominal games à la Laird

As aforementioned, there have been two independent original presentations of nominal

games, one due to Abramsky, Ghica, Murawski, Ong and Stark [AGM+04] and another one
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due to Laird [Lai04, Lai08]. Although Laird’s constructions are not explicitly based on nom-
inal sets (natural numbers are used instead of atoms), they constitute nominal constructions

nonetheless. In this section we highlight the main differences between our nominal games,
which follow [AGM+04], and those of [Lai04, Lai08].

Laird’s presentation concerns the ν-calculus with pointers, i.e. with references to names.

The main difference in his presentation is in the treatment of name-introduction. In particu-
lar, a name does not appear in a play at the point of evaluation of its ν-constructor, but rather

at the point of its first use; let us refer to this condition as name-frugality (cf. [MT09]). An im-
mediate result is that strategies are no longer innocent, as otherwise e.g. νa.λx.a and λx.νa.a

would have the same denotation.8 More importantly, name-frugality implies that strategies

capture the examined nominal language more accurately: Opponent is not expected to guess
names he is not supposed to know and thus, for example, the denotations of νa.skip and

skip are identical. In our setting, Player is not frugal with his names and therefore the two
terms above are identified only at the extensional level (i.e. after quotienting).9

The major difference between [Lai04] and [Lai08] lies in the modelling of (ground-type,

name-storing) store. In [Lai04] the store is modelled by attaching to strategies a global, top-
level (non-monadic), store-arena. Then, a good-store-discipline is imposed on strategies via

extra conditions on strategy composition which enforce that hidden store-moves follow the
standard read/write pattern. As a result (and in contrast to our model), the model relies

heavily on quotienting by the intrinsic preorder in order for the store to work properly.

The added accuracy obtained by using frugality conditions is fully exploited in [Lai08],
where a carefully formulated setting of moves-with-store10 allows for an explicit character-

isation result, that is, a semantic characterisation of operational equality at the intensional
level. The contribution of using moves-with-store in that result is that thus the seman-

tics is relieved from the (too revealing) internal workings of store: for example, terms like

(a := b) ;λx. ! a ; 0 and (a := b) ;λx.0 are equated semantically at the intensional level, in
contrast to what happens in our model.11 Note, though, that in a setting with higher-order

store such that of νρ, moves-with-store would not be as simple since stores would need to

store higher-order values, that is, strategies.
Laird’s approach is therefore advantageous in its use of name-frugality conditions, which

allow for more accurate models. At the same time, though, frugality conditions are an ex-
tra burden in constructing a model: apart from the fact that they need to be dynamically

preserved in play-composition by garbage collection, they presuppose an appropriately de-

fined notion of name-use. In [Lai04, Lai08], a name is considered as used in a play if it is
accessible through the store (in a reflexive transitive manner) from a name that has been ex-

plicitly played. This definition, however, does not directly apply to languages with different
nominal effects (e.g. higher-order store). Moreover, frugality alone is not enough for lan-

guages like ReducedML [Sta94] or the ν-calculus: a namemay have been used in a play but

may still be inaccessible to some participant (e.g. if it is outside his view [MT09]). On the
other hand, our approach is advantageous in its simplicity and its applicability on a wide

rage of nominal effects, but suffers from the accuracy issues discussed above.

8Non-innocence can be seen as beneficial in terms of simplicity of the model, since strategies then have one
condition less. On the other hand, though, innocent strategies are specified by means of their viewfunctions,
which makes their presentation simpler. Moreover, non-innocence diminishes the power of definability results, as
finitary behaviours are less expressive in the absence of innocence.

9Note here, though, that the semantics being too explicit about the created names can prove beneficial: here
we are able to give a particularly concise proof adequacy for νρ (see section 4.3.4 and compare e.g. with respective
proof in [AHM98]) by exploiting precisely this extra information!

10Inter alia, frugality of names implies that sequences of moves-with-store have strong support even if stores are
represented by sets!

11In our model they correspond to the strategies (see also section 4.3):

σ1 , {[(a, b) ∗ ⊛(∗, ⊛)(n, ⊛) a c 0]} , σ2 , {[(a, b) ∗ ⊛(∗, ⊛)(n, ⊛) 0]} .

Thus, the inner-workings of the store revealed by σ1 (i.e. the moves a c) differentiate it from σ2. In fact, in our
attempts to obtain an explicit characterisation result from our model, we found store-related inaccuracies to be the
most stubborn ones.



Chapter 4

Nominal References

In this chapter we construct in nominal games a fully abstract semantics for a language
with nominal general references called the νρ-calculus. General references are references

which can store not only values of ground type (integers, booleans, etc.) but also of higher-

order type (procedures, higher-order functions) or references themselves. They constitute
a very powerful and useful programming construct, allowing for the encoding of a wide

range of computational effects and programming paradigms (e.g. object-oriented program-
ming [AHM98, section 2.3] or aspect-oriented programming [SO07]). The denotational

modelling of higher-order references is quite demanding since, on top of phenomena of dy-

namic update and interference, one has to cope with the inherent cyclicity of higher-order
storage.

The νρ-calculus is a functional language with dynamically allocated general references,

reference-equality tests and “good variables”, which faithfully reflects the practice of real
programming languages such as ML [MTM97]. In particular, it extends the sν-calculus by

using names for general references. In terms of the What’s new? motto (cf. [PS93]), names
can be

created with local scope, updated and dereferenced, tested for equality and passed around

via function application, but that is all.

The fully abstract model of νρ is the first such for a language with general references and
good variables.

Fully abstract models for general references were given via game semantics in [AHM98]
and via abstract categorical semantics (and games) in [Lai02]. Neither approach used names.

The model of [AHM98] is based on the idea of relaxing strategy conditions in order to model

computational effects. In particular, it models references as variables of a read/write prod-
uct type and it uses strategies which violate visibility in order to use values assigned to ref-

erences previously in a play. The synchronisation of references is managed by cell strategies
which model fresh-reference creation. Because references are modelled by products, and

in order to produce a fully abstract semantics, the examined language needs to include bad

variables, which in turn yield unwanted behaviours affecting severely the expressivity of the
language, and prohibit the use of equality tests for references.1 On the other hand, the ap-

proach in [Lai02] bypasses the bad-variables problem by not including types for references
(variables and references of the same type coincide). This contributes new intuitions on se-

quential categorical behaviour (sequoidal category), but we think that is somehow distanced

from the common notion of reference in functional programming.
The full-abstraction problem has also been tackled via trace semantics in [Lai07]. The

language examined is a version of that in [AHM98] without bad variables. The latter are not

needed since the modelling of references is achieved by names pointing to a store (which

1By “bad variables” we mean read/write constructs of reference type which are not references. They are nec-
essary for obtaining full-abstraction in [AHM98] since read/write-product semantical objects may not necessarily
denote references.

75
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is analogous to our approach). Of relevance is also the fully abstract trace model for a
language with nominal threads and nominal objects presented in [JR02]. An important dif-

ference between trace models and game models is that the former are defined operationally
(i.e. traces are computed by using the operational semantics), whereas game models are de-

fined in a purely compositional manner. Nonetheless, trace models and game models have

many similarities, deriving mainly from their sequential-interactive representation of com-
putation, and in particular there are connections between [Lai07] and the work herein that

should be further examined.
The chapter is structured as follows. In section 4.1 we introduce the νρ-calculus and

define its notion of observational equivalence, which yields the equational theory of the

language. We then proceed to its denotational semantics by first formulating a fully ab-
stract categorical semantics in section 4.2. The semantics is built in νρ-models: these are

categories equipped with a collection of comonads for initial state, and a monad for fresh-
name creation and storage (cf. section 2.3.7). Finally, in section 4.3 we construct a concrete

such model in nominal games. Working in the category Vt (definition 3.51), we first ob-

tain a νρ-model by using the monadic-comonadic setting of section 3.4 and attaching to it
a store monad (cf. section 2.3.3). For the latter we use a store arena ξ, which is obtained as

the solution of a recursive Store Equation (SE). The model in Vt is sound but not complete,
because game strategies are allowed a ‘liberal’ use of the store. This is resolved by introduc-

ing tidiness conditions for strategies, by which we obtain a subcategory T of nominal games

for which we show definability and full abstraction. Note that the whole approach can be
straightforwardly adapted to ground-type references, thus giving e.g. a fully abstract model

for Reduced ML [Sta94].

4.1 The νρ-calculus

The syntax of the language which we now introduce is built inside the category Nom of

nominal sets. Names are used for general references, so we assume that there is a set of
names (atoms) AA ∈ (Ai)i∈ω, for each type A in the language. Types include types for

commands, naturals and references, product types and arrow types.

Definition 4.1 The νρ-calculus is a functional calculus of nominal general references. Its

types, terms and values are given as follows.

TY ∋ A,B ::= 1 | N | [A] | A→ B | A×B

TE ∋M,N ::= x | λx.M |M N | 〈M,N〉 | fstM | sndN λ-calculus

| skip | n | predM | succN return/arithmetic

| if0M thenN1 elseN2 if then else

| a reference to type A (a ∈ AA)

| [M = N ] name-equality test

| νa.M ν-abstraction

|M := N update

| !M dereferencing

VA ∋ V,W ::= n | skip | a | x | λx.M | 〈V,W 〉

The typing system involves terms in environments ~a^Γ, where ~a a list of (distinct) names
and Γ a finite set of variable-type pairs. Typing rules are given in figure 4.1. N

As in the case of the strong ν-calculus previously, we note that TE and VA are strong nominal

sets, and that terms are equated up to α-equivalence. The operational semantics of the

calculus naturally involves computation in some store environment where created names
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~a ^ Γ_ n : N ~a ^ Γ, x :A_ x : A ~a ^ Γ_ skip : 1
~a ^ Γ_M : A×B

~a ^ Γ_ fstM : A

~a ^ Γ_M : A×B

~a ^ Γ_ sndM : B

~a ^ Γ_M : A ~a ^ Γ_N : B

~a ^ Γ_ 〈M,N〉 : A×B

~a ^ Γ_M : N

~a ^ Γ_ predM : N

~a ^ Γ_M : N

~a ^ Γ_ succM : N

~a ^ Γ_M : N ~a ^ Γ_N1, N2 : A

~a ^ Γ_ if0M thenN1 elseN2 : A

~a ^ Γ, x :A_M : B

~a ^ Γ_ λx.M : A→ B

~a ^ Γ_M : A→ B ~a ^ Γ_N : A

~a ^ Γ_M N : B

a∈ AA

∧a∈~a
~a ^ Γ_ a : [A]

~aa ^ Γ_M : B

~a ^ Γ_ νa.M : B

~a ^ Γ_M : [A] ~a ^ Γ_N : [A]

~a ^ Γ_ [M = N ] : N

~a ^ Γ_M : [A]

~a ^ Γ_ !M : A

~a ^ Γ_M : [A] ~a ^ Γ_N : A

~a ^ Γ_M := N : 1
Figure 4.1: The νρ-calculus: typing rules.

have their values stored. Formally, we define store environments S to be lists of the form:

S ::= ǫ | a, S | a :: V, S . (4.1)

Observe that the store may include names that have been created but remain as yet unas-
signed a value. For each store environment S we define its domain to be the name-list given

by:

dom(ǫ) , ǫ , dom(a, S) , a, dom(S) , dom(a :: V, S) , a, dom(S) . (4.2)

We only consider environments whose domains are lists of distinct names. Wewrite S `Γ,A

M , or simply S `M , only if dom(S) ^ Γ_M : A is valid (i.e. derivable).

Definition 4.2 The operational semantics is given in terms of a small-step reduction rela-
tion, the rules of which are given in figure 4.2. Evaluation contexts E are of the forms:

(λx.N) , N , fst , snd , 〈 , N〉 , 〈V, 〉 , if0 thenN1 elseN2 ,

pred , succ , [ = N ] , [a = ] , ! , := N , a := .
N

We can see that νρ is not strongly normalising with the following example. Recall the stan-

dard CBV encoding of sequencing:

M ;N , (λz.N)M (4.3)

with z /∈ fv(N).

Example 4.3 For each type A, take

stopA , νb.(b := λx.(! b)skip) ;(! b)skip

with b ∈ A1→A. We can see that stopA diverges, since:` stopA −→→ b :: λx.(! b)skip` (! b)skip

−−→ b :: λx.(! b)skip` (λx.(! b)skip)skip

−−→ b :: λx.(! b)skip` (! b)skip .
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NEW a#S

S ` νa.M −−→ S, a`M
SUC

S ` succn −−→ S ` n+1

EQ n=0 if a=b
n=1 if a6=bS ` [a = b] −−→ S ` n

PRD
S ` pred0 −−→ S ` 0

IF0
j=1 if n=0
j=2 if n>0S ` if0 n thenN1 elseN2 −−→ S ` Nj

PRD
S ` pred (n+1) −−→ S ` n

UPD
S, a(:: W ), S′ ` a := V −−→ S, a :: V, S′ ` skip

FST
S ` fst 〈V,W 〉 −−→ S ` V

DRF
S, a :: V, S′ ` ! a −−→ S, a :: V, S′ ` V

SND
S ` snd 〈V,W 〉 −−→ S `W

LAM
S ` (λx.M)V −−→ S `M{V/x} CTX

S `M −−→ S′ `M ′

S ` E[M ] −−→ S′ ` E[M ′]

Figure 4.2: The νρ-calculus: reduction rules.

Moreover, taking a ∈ AA we have ` νa. ! a −−→ a` !a

and no further reductions are possible. In section 4.3.8 we will show that νa. ! a and stopA
are observationally equivalent (definition 4.7). Note, though, that the two terms correspond

to different kinds of divergence, which are indistinguishable in νρ: while νa. ! a stands for
deadlock, stopA stands for livelock. �

The great expressive power of general references is seen in the fact that we can encode the
Y combinator. The following example is adapted from [AHM98].

Example 4.4 Taking a ∈ AA→A, define:

YA , λf.νa.(a := λx.f(! a)x) ; ! a .

YA has type ((A → A) → A → A) → A → A and, for any relevant termM and value V , we

have: ` (λy.My)(YA(λy.My))V −→→ a :: λx.(λy.My)(! a)x` (λy.My)(! a)V ,` (YA(λy.My))V −→→ a :: λx.(λy.My)(! a)x` (! a)V

−−→ a :: λx.(λy.My)(! a)x` (λx.(λy.My)(! a)x)V

−−→ a :: λx.(λy.My)(! a)x` (λy.My)(! a)V .
�

Contexts in νρ are generally more complicated than the evaluation contexts in the previous

definition. Intuitively, contexts are “terms with a (single) hole”, yet this clause leaves many
details implicit. In particular, contexts transform not only the syntax of the term, but also its

typing environment. We formalise this by use of typed contexts.

Definition 4.5 (Contexts) νρ-contexts are defined as follows.

CT ∋ C ::=  | λx.C | CN |M C | [C = N ] | [M = C] | C := N |M := C | ! C

| if0 C thenN1 elseN2 | if0M then C else N2 | if0M thenN1 else C

| 〈C, N〉 | 〈M,C〉 | fstC | sndC | predC | succC | νa.C
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A basic context is a context which does not contain a subcontext of the form νa.C.
Context types are of the form (~a,Γ, A) 7→ (~a′,Γ′, A′) , where ~a^Γ,~a′^Γ′ are typing environ-

ments and A,A′ ∈ TY. Typing rules for contexts follow those for terms:

~a⊆~a′

∧Γ⊆Γ′ : (~a,Γ, A) 7→ (~a′,Γ′, A)

C : (~a,Γ, A) 7→ (~a′,Γ′,N) ~a′ ^ Γ′_N1, N2 : B

if0 C thenN1 elseN2 : (~a,Γ, A) 7→ (~a′,Γ′, B)

~a′ ^ Γ′_M : N C : (~a,Γ, A) 7→ (~a′,Γ′, B) ~a′ ^ Γ′_N2 : B

if0M then C elseN2 : (~a,Γ, A) 7→ (~a′,Γ′, B)

C : (~a,Γ, A) 7→ (~a′,Γ′, B × C)

fstC : (~a,Γ, A) 7→ (~a′,Γ′, B)

C : (~a,Γ, A) 7→ (~a′,Γ′, B) ~a′ ^ Γ′_N : C

〈C, N〉 : (~a,Γ, A) 7→ (~a′,Γ′, B × C)

C : (~a,Γ, A) 7→ (~a′,Γ′,N)

predC : (~a,Γ, A) 7→ (~a′,Γ′,N)

C : (~a,Γ, A) 7→ (~a′,Γ′, B → C) ~a′ ^ Γ′_N : B

CN : (~a,Γ, A) 7→ (~a′,Γ′, C)

C : (~a,Γ, A) 7→ (~a′,Γ′ ⊎ {x :B}, C)

λx.C : (~a,Γ, A) 7→ (~a′,Γ′, B → C)

~a′ ^ Γ′_M : B → C C : (~a,Γ, A) 7→ (~a′,Γ′, B)

M C : (~a,Γ, A) 7→ (~a′,Γ′, C)

C : (~a,Γ, A) 7→ (~a′a,Γ′, B)

νa.C : (~a,Γ, A) 7→ (~a′,Γ′, B)

C : (~a,Γ, A) 7→ (~a′,Γ′, [B]) ~a′ ^ Γ′_N : [B]

[C = N ] : (~a,Γ, A) 7→ (~a′,Γ′,N)

C : (~a,Γ, A) 7→ (~a′,Γ′, [B])

! C : (~a,Γ, A) 7→ (~a′,Γ′, B)

C : (~a,Γ, A) 7→ (~a′,Γ′, [B]) ~a′ ^ Γ′_N : B

C := N : (~a,Γ, A) 7→ (~a′,Γ′, 1)
(plus omitted counterparts). N

Holes in contexts are denoted by “” (elsewhere, they are usually denoted by “[ ]”). In a
context of type (~a,Γ, A) 7→ (~a′,Γ′, A′) the type of its hole is (~a,Γ, A), and (~a′,Γ′, A′) is the

resulting type. The first typing rule above states that if  has type (~a,Γ, A) then the type
of the context may have more names or more variables. This allows us to consider typed

terms ~a ^ Γ_M : A in all compatible contexts. Finally, note that contexts are not equated

up to α-equivalence.
We now proceed to context-instantiations. Note below that by M+(~a′\~a) we mean the

typed term ~a′ ^ Γ_M :A.

Definition 4.6 If ~a ^ Γ_M : A a typed term and C : (~a,Γ, A) 7→ (~a′,Γ′, A′) then we define
the instantiation C[M ] by induction as follows.[M ] , M+(~a′\~a)

(νa.C)[M ] , νa.C[M ]

(CN)[M ] , C[M ]N

(λx.C)[M ] , λx.C[M ] ...
N

The type of observables can be any base type; here we take it to be N, as the latter is present

in all the languages we examine. Around observable terms we build the notion of obser-
vational equivalence: two terms are equivalent if, whenever they are put inside a variable-

and name-closing context of resulting type N, usually called a program context, they reduce
to the same observable term.

Definition 4.7 For typed terms ~a ^ Γ_M : A and ~a ^ Γ_N : A , define

~a ^ Γ_M / N ⇐⇒ ∀C. (∃S′. ` C[M ] −→→ S′ ` 0) =⇒ (∃S′′. ` C[N ] −→→ S′′ ` 0)

where C : (~a,Γ, A) 7→ (ǫ,∅,N) . Moreover, ≅ , / ∩ ' . N
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Usually we omit ~a and Γ and write simplyM / N .
Let us examine some examples in observational equivalence which are suggestive of the

expressivity of the νρ-calculus. Let us introduce the following abbreviation which compares
two terms of type N as booleans. For any pair of termsM,N : N take

[M ⇔ N ] , if0M thenN else (if0N then 1 else 0) .

Then, taking

M1 , λf. 0 : ([1] → N) → N

M2 , λf. νa.νb.[fa⇔ fb] : ([1] → N) → N

M3 , λf. νa.[fa⇔ fa] : ([1] → N) → N

M4 , λf. stop : (1 → 1) → 1
M5 , λf. f skip ; stop : (1→ 1) → 1 (4.4)

we have the following equivalences and inequivalences.

M1 6≅ M2 (4.5)

M2 6≅ M3 (4.6)

M4 ≅ M5 (4.7)

(4.7) will be established by semantical means is section 4.3.8. For (4.5) we can use a con-
text that is sensitive to the fact that f has been applied to an argument. This can be easily

achieved by supplying an f that updates the store, as e.g. in

C , νc.c := 2 ;(λx.c := pred ! c ; ! c) .

However, the intention behind the comparison of the two terms was to establish whether f

could distinguish between the two fresh names, or it would return the same result in both
cases; in this sense, the choice ofM1 is not adequate in a calculus with side-effects. More to

the point is the comparison betweenM2 anM3. It turns out that νρ can distinguish between

them, e.g. by taking

C , νc.νd.c := d ;(λx.if0 [x = ! c] then 0 else c := x ; 1)

where c ∈ A[1] and d ∈ A1. We can see that the context can remember the fresh name a after

the first time it encounters it, so in particular it can distinguish it from the fresh b.
Regarding the comparison to the sν-calculus, we note that both (4.5) and (4.6) are equiv-

alences in sν (and (4.7) is irrelevant because of termination). The former can be shown

using logical relations [Sta94, Chapter 4]2 while the latter is established for the νε-calculus
in section 5.2.6.

4.2 Semantics

We now examine sufficient conditions for a fully abstract semantics of νρ in an abstract cat-

egorical setting. Our aim is to construct fully abstract models in an appropriate categorical
setting, pinpointing the parts of structure needed for such a task. In section 4.3 we will

apply this knowledge in constructing a concrete such model in nominal games.

Translating each termM into an object JMK and assuming a preorder “.” in the seman-
tics, full-abstraction amounts to the assertion:

M / N ⇐⇒ JMK . JNK . (FA)

Notice that this formulation does not coincide with the full-abstraction specification given
previously in the introduction, i.e. with

M ≅ N ⇐⇒ JMK = JNK . (4.8)

2Note that M1 ≅ M2 is not the “hard” equivalence proven in [Sta94, BK08]: λf. 0 ≅ νa.νb.λf. [fa ⇔ fb] .
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Nevertheless, once we achieve (FA) we can construct an extensional model, via a quotient-
ing construction, for which (4.8) holds. Being a quotiented structure, the extensional model

does not have an explicit, simple description, and for this reason we prefer working with
the intensional model (i.e. the unquotiented one). Of course, an intensional model satisfy-

ing (4.8) would be preferred but this cannot be achieved in our nominal games. Therefore,

our categorical models will be guided by the (FA) formulation.

4.2.1 Soundness

We proceed to present categorical models for the νρ-calculus. The approach we take is

monadic and comonadic, over a computational monad T and a family of local-state comon-
ads Q = (Q~a)~a∈A# , so that the morphism related to each ~a ^ Γ_M : A is of the form

JMK : Q~aJΓK B T JAK. Computation in νρ is store-update and fresh-name creation, so T is

a store monad, while (initial) local state is given by product comonads.

Definition 4.8 A νρ-model M is a structure (M, T,Q) such that:

I. M is a category with finite products, with 1 being the terminal object and A × B the
product of A and B.

II. T is a strong monad (T, η, µ, τ) with exponentials.

III. M contains a natural numbers object N equipped with successor/predecessor arrows
and

b
n : 1 B N, each n ∈ N. Moreover, for each object A, there is an appropriate arrow

for zero-equality tests cndA : N× TA× TAB TA.

IV. Q is a family of product comonads (Q~a, ε, δ, ζ )~a∈A# on M such that:

(a) the basis of Qǫ is 1, and Q~a = Q~a
′

whenever [~a] = [~a′],

(b) if ~a′ ⊆ ~a then there exists a comonad morphism ~a
~a′ : Q~a B Q~a

′

such that ~a
ǫ = ε ,

~a
~a = id and, whenever ~a′ ⊆ ~a′′ ⊆ ~a,

~a

~a′′
;
~a′′

~a′
=
~a

~a′

(c) for each ~aa ∈ A# there exists a natural transformation nu~aa : Q~aB TQ~aawhich is
strength-coherent and, for each A ∈ Ob(M) and ~aa ⊆ ~a′a, the following diagrams

commute.

Q~aA

nuA

��

〈id,nuA〉 // Q~aA× TQ~aaA

τ

��
TQ~aaA

T 〈
~aa
~a ,id〉

// T (Q~aA×Q~aaA)

Q~a
′

A
nu

~a′a
A //

~a′

~a
��

TQ~a
′aA

T
~a′a
~aa

��
Q~aA

nu
~aa
A

// TQ~aaA

(N2)

V. Setting AA , Qa1, for each a ∈ AA, there is a name-equality arrow eqA : AA×AA B N
inM such that, for any distinct a, b ∈ AA, the following diagram commutes.

Qa1
∆ //

!

��

AA × AA
eqA

��

Qab1
〈
ab
a ,

ab
b 〉

oo

!

��
1 b

0

// N 1b
1

oo

(N1)
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VI. Setting J1K , 1, JNK , N, J[A]K , AA, JA→ BK , T JBK JAK , JA ×BK , JAK×JBK,
M contains, for each A ∈ TY, arrows

drfA : AA B T JAK and updA : AA × JAK B T 1

such that the following diagrams commute,AA × JAK
〈id,updA〉 ; τ ;∼= // T (AA × JAK)

T (π1 ; drfA) ;µ
--

Tπ2

11 T JAKAA × JAK × JAK
〈id×π1;updA,id×π2;updA〉 // T 1 × T 1

ψ ;∼=
++

π2

33 T 1

Qab1 × JAK × JBK
〈
ab
a ×π1;updA,

ab
b ×π2;updB〉

// T 1 × T 1

ψ ;∼=
++

ψ′ ;∼=

33 T 1

(NR)

and, moreover,
(nu~aaA × updB) ;ψ = (nu~aaA × updB) ;ψ′ . (SNR)

i.e. updates and fresh names are independent effects. N

Strength-coherence for nu means that, for any pair of objects A,B, the following diagram

commutes (note that we systematically avoid writing superscripts of nu).

A×Q~aB

id×nuB

��

z // Q~a(A×B)

nuA×B

��
A× TQ~aaB

τ ;Tz // TQ~aa(A×B)

The above essentially states that, for each object A, nuA can be expressed as:

Q~aA
∼=PA Q~a1 ×A

nu1 × idPPPPPPA TQ~aa1 ×A τ ′PA T (Q~aa1 ×A)
∼=PA TQ~aaA

It is evident that the role reserved for nu in our semantics is fresh-name creation. Accordingly,

nu gives rise to a categorical name-abstraction operation: for any arrow f : Q~aaAB TB in

M, we define \a℄ f , Q~aA
nuAPPPA TQ~aaA

TfPPA T 2B
µPA TB . (4.9)

The (NR) diagrams give the basic equations for dereferencings and updates (cf. condi-

tions on categorical models of Reduced ML [Sta94, section 5.8] and commutative diagrams
of [PP02, definition 1]). The first diagram stipulates that by dereferencing an updated refer-

ence we get the value of the update. The second diagram ensures that the value of a refer-

ence is that of the last update: doing two consecutive updates to the same reference is the
same as doing only the last one. The last diagram states that updates of distinct references

are independent effects.
Let us now proceed with the semantics of νρ in νρ-models.

Definition 4.9 Let (M, T,Q) be a νρ-model. Recall the type translation:

J1K , 1 , JNK , N , J[A]K , AA , JA→ BK , T JBK JAK , JA×BK , JAK × JBK .

A typed term is ~a ^ Γ_M : A translated to an arrow

JMK~a^Γ : Q~aJΓK B T JAK

inM, which we write simply as JMK : Q~aΓ B TA , as in figure 4.3. N
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JnK : Q~aΓ
Q~a!PPPA Q~a1

~a
ǫPA 1

b
nPA N ηPA TN

JxK : Q~aΓ
Q~aπPPPA Q~aA

~a
ǫPA A

ηPA TA

JaK : Q~aΓ
Q~a!PPPA Q~a1

~a
aPA AA ηPA TAA

JMK : Q~a(Γ ×A)A TB

Q~aΓ

Jλx.MK ))TTTTTTTT

ΛT (z ′ ; JMK) // TB A

η

��
T (TBA)

JMK : Q~aΓ A T (TBA)

JNK : Q~aΓ A TA

Q~aΓ

JM NK

!!C
C

C
C

C
C

C
C

C
C

C
C

C
C

〈JMK,JNK〉 // T (TBA) × TA

ψ
��

T ((TBA) ×A)

T ev
T

��
T 2B

µ

��
TB

JMK : Q~aΓ A TAA
Q~aΓ

J!MK

$$H
H

H
H

H
H

H
H

H
H

JMK // TAA
TdrfA

��
T 2A

µ

��
TA

JMK : Q~aΓ A T (A×B)

Q~aΓ

JfstMK
**UUUUUUUUU

JMK // T (A×B)

Tπ1

��
TA

JMK : Q~aΓ A TA

JNK : Q~aΓ A TB

Q~aΓ

J〈M,N〉K **TTTTTTTT
〈JMK,JNK〉 // TA× TB

ψ
��

T (A×B)

JMK : Q~aΓ A TN
Q~aΓ

JsuccMK ))SSSSSSSS

JMK // TN
Tsucc
��

TN
JMK : Q~aaΓ A TA

Jνa.MK : Q~aΓ
\a℄ JMKPPPPPA TA

JMK : Q~aΓ A TAA
JNK : Q~aΓ A TAA

Q~aΓ

J[M=N ]K

%%K
K

K
K

K
K

K
K

K
K

K

〈JMK,JNK〉 // TAA × TAA
ψ
��

T (AA × AA)

Teq

��
TN

JMK : Q~aΓ A TAA
JNK : Q~aΓ A TA

Q~aΓ

JM :=NK

  A
A

A
A

A
A

A
A

A
A

A
A

A

〈JMK,JNK〉 // TAA × TA

ψ
��

T (AA ×A)

TupdA

��
T 21

µ

��
T 1

JMK : Q~aΓ A TN
JNiK : Q~aΓ A TA

Q~aΓ

Jif0 M then N1 else N2K

  A
A

A
A

A
A

A
A

A
A

A
A

A
A

〈JMK,JN1K,JN2K〉 // TN× TA2

τ ′

��
T (N× TA2)

TcndA

��
T 2A

µ

��
TA

Figure 4.3: The semantic translation of νρ.
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Note that the translation of values follows a common pattern: for any ~a ^ Γ_ V : Awe have
JV K = |V | ; η , where

|x| , Q~aΓ
Q~aπPPPA Q~aA

~a
ǫPA A |n| , Q~aΓ

Q~a!PPPA Q~a1
~a
ǫPA 1

b
nPA N

|a| , Q~aΓ
Q~a!PPPA Q~a1

~a
aPA AA |skip| , Q~aΓ

Q~a!PPPA Q~a1
~a
ǫPA 1

|λx.M | , Q~aΓ
ΛT (z ′ ; JMK)PPPPPPPPPA TB A |〈V,W 〉| , Q~aΓ

〈|V |, |W |〉PPPPPPPA A×B .

(4.10)

Some first lemmas we can show are the following. The proofs are not difficult, and are

deferred to the appendix.

Lemma 4.10 For any ~a ^ Γ_M : A and ~a ⊆ ~a′,

JMK~a′|Γ = Q~a
′

Γ
~a′

~aPPA Q~aΓ
JMK~a|ΓPPPPPA TA .

Moreover, if Γ = x1 :B1, ..., xn :Bn and ~a ^ Γ_M : A and ~a ^ Γ_ Vi : Bi are derivable, then

JM{~V /~x}K = Q~aΓ
〈id, |V1|, ..., |Vn|〉PPPPPPPPPPPPA Q~aΓ × Γ

z ′ ;Q~aπ2PPPPPPA Q~aΓ
JMKPPPA TA .

�

Lemma 4.11 For any relevant f, g,\a℄(Q~aaA 〈f, ~aa
~a

; g〉PPPPPPPA TB × TC
ψPA T (B × C)

)

= Q~aA
〈\a℄ f, g〉PPPPPPA TB × TC

ψPA T (B × C) ,\a℄(Q~aaA fPA TB
TgPPA T 2C

µPA TC
)

= Q~aA
\a℄ fPPPA TB

TgPPA T 2C
µPA TC .

�

Lemma 4.12 Let ~a ^ Γ_M : A and ~a ^ Γ_E[M ] : B be derivable, with E being an evaluation
context. Then JE[M ]K is equal to:

Q~aΓ
〈id, JMK〉PPPPPPPA Q~aΓ × TA τPA T (Q~aΓ ×A)

Tz ′PPPA TQ~a(Γ ×A)
T JE[x]KPPPPPA T 2B

µPA TB .
�

We write S ` M rPA S′ ` M ′ with r ∈ {LAM,NEW,IF0,...,PRD,UPD,DRF} if the last non-
CTX rule in the related derivation is r. Also, to any store S, we relate a term S̄ of type 1 by

setting:
ǭ , skip , a, S , S̄ , a :: V, S , (a := V ; S̄) .

We can show the following.

Proposition 4.13 (Correctness) For any typed term ~a ^ Γ_M : A, and S with dom(S) = ~a, and
r as above,

1. if r /∈ {NEW,UPD,DRF} then S `M
r

−−→ S `M ′ =⇒ JMK = JM ′K ,

2. if r ∈ {UPD,DRF} then S `M
r

−−→ S′ `M ′ =⇒ JS̄ ;MK = JS̄′ ;M ′K ,

3. S `M
NEW

−−−−−→ S, a`M ′ =⇒ JS̄ ;MK = \a℄ JS̄ ;M ′K .

Therefore, S `M −→→ S′ `M ′ =⇒ JS̄ ;MK = \~a′℄ JS̄′ ;M ′K , with dom(S′) = ~a~a′.

Proof: The last assertion follows easily from 1-3. For 1-3 we do induction on the size of the

reduction’s derivation. The base case follows from the specifications of definition 4.8 and
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the penultimate lemma. For the inductive step we have that, for any S,M,E, the following
diagram commutes.

Q~aΓ

〈id,JS̄ ;MK〉
++WWWWWWWWWWWWWWWWWWWWWWWWWWWW

〈ΛT (z ′ ; JE[x]K) ; η,JS̄ ;MK〉 ;ψ′

//

〈id,JS̄K〉 // Q~aΓ × T 1
τ ; Tz ′

// TQ~aΓ
T 〈id,JMK〉 ;Tτ // T 2(Q~aΓ ×A)

T 2(z ′ ; JE[x]K)//

µ

��

T 3B

Tµ

��
µ

��
Q~aΓ × TA

τ //

ΛT (z ′ ; JE[x]K)×id ; τ
))RRRRRRRRRRRRRR
T (Q~aΓ ×A)

T (ΛT (z ′ ; JE[x]K)×id)

��

T (z ′ ; JE[x]K) // T 2B

µ

��
T ((TBA) ×A)

T ev
T ;µ

// TB

By the previous lemma, the upper path is equal to 〈id, JS̄K〉 ; τ ;T ζ̄ ′ ;T JE[M ]K ;µ and there-

fore to JS̄ ; E[M ]K. Hence, we can immediately show the inductive steps of 1-2. For 3, as-
suming S ` E[M ] NEWPPPPA S, a ` E[M ′] and JS̄ ;MK = \a℄ JS̄ ;M ′K , we have, using also

lemmas 4.10 and 4.11,\a℄ JS̄ ; E[M ′]K = \a℄(〈ΛT (ζ ′ ; JE[x]K) ; η, JS̄ ;M ′K〉 ;ψ′ ;T evT ;µ)

= \a℄(〈ΛT (ζ ′ ; JE[x]K) ; η, JS̄ ;M ′K〉 ;ψ′) ;T evT ;µ

= 〈ΛT (ζ ′ ; JE[x]K) ; η, \a℄ JS̄ ;M ′K〉 ;ψ′ ;T evT ;µ

= 〈ΛT (ζ ′ ; JE[x]K) ; η, JS̄ ;MK〉 ;ψ′ ;T evT ;µ = JS̄ ; E[M ]K .

�

Our next target is to show soundness of the translation. Having proved correctness we only

need computational adequacy, which we add explicitly as a specification to our models.

Definition 4.14 Let M be a νρ-model and J K the respective translation of νρ. M is ade-

quate if, for any typed term ~a ^∅_M :N,

∃S,~b. JMK = \~b℄ JS̄ ; 0K =⇒ ∃S′. ~a`M −→→ S′ ` 0 .
N

Assume now our running M is an adequate νρ-model.

Proposition 4.15 (Equational Soundness) For terms ~a ^ Γ_M,N : A,

JMK = JNK =⇒ M / N .

Proof: Assume JMK = JNK and ` C[M ] −→→ S′ ` 0 . Then, by correctness, JC[M ]K =\~a′℄ JS̄′ ; 0K , where ~a′ = dom(S′). But JMK = JNK implies JC[M ]K = JC[N ]K. Hence, by

adequacy, there exists S′′ such that` C[N ] −→→ S′′ ` 0 . �

4.2.2 Completeness

The semantics needs to be equipped with a preorder to match the observational approxi-

mation preorder as in (FA). The chosen preorder is the intrinsic preorder with regard to
some collection of observable arrows in the biKleisli monadic-comonadic setting (cf. defini-

tion 2.34). In particular, since we have a collection of monad-comonad pairs, we also need

a collection of sets of observable arrows. Note that the observability conditions stipulated
below are quite syntactic.

Definition 4.16 An adequate νρ-model M = (M, T,Q) is observational if, for all ~a:

• there exists O~a ⊆ M(Q~a1, TN) such that, for all ~a ^∅_M :N,

JMK∈O~a ⇐⇒ ∃S,~b. JMK = \~b℄ JS̄ ; 0K ,
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• the induced intrinsic preorder . , (.~a)~a∈A# , defined on arrows in M(Q~aA, TB) by

f .~a g
△

⇐⇒ ∀ρ : Q~a(TB A)B TN. (Λ~a(f) ; ρ ∈ O~a =⇒ Λ~a(g) ; ρ ∈ O~a) ,

with Λ~a(f) , ΛQ
~a,T (f), satisfies, for all relevant a,~a′, f, f ′,

f .~aa f ′ =⇒ \a℄ f .~a \a℄ f ′ ∧ f .~a f ′ =⇒ ~a′

~a ; f .~a′ ~a′

~a ; f ′ .

We write M as (M, T,Q,O). N

Recurring to our definition of ΛQ
~a,T from chapter 2, we have that Λ~a(f) is the arrow:

Q~a1 δPA Q~aQ~a1
Q~aΛT (z ′ ; f)PPPPPPPPPA Q~a(TB A) . (4.11)

Hence, O~a contains those arrows that have a specific observable behaviour in the model, and

the semantic preorder is built around this notion. In particular, terms that yield 0 have
observable behaviour.

In order to make good use of the semantic preorder we need it to be a congruence with

regard to the semantic translation. This is formalised as follows.

Definition 4.17 Let M be a νρ-model and let J K be its semantic translation. For any ~a, a

preorder

R~a ⊆
⋃

A,B∈Ob(M)

M(Q~aA, TB)2

is called a congruence if, for all basic contexts C : (~a,Γ, A) 7→ (~a,Γ′, A′) and all terms

~a ^ Γ_M,N : A,
JMK R~a JNK =⇒ JC[M ]K R~a JC[N ]K .

A familyR = (R~a)~a∈A# of congruences is itself a congruence if, for all terms~a ^ Γ_M,N : A

and all contexts C : (~a,Γ, A) 7→ (~a′,Γ′, A′),

JMK R~a JNK =⇒ JC[M ]K R~a
′

JC[N ]K .
N

Observing how the semantic interpretation is constructed, we can derive a set of sufficient

conditions for congruences.

Lemma 4.18 Let M be a νρ-model and let R~a⊆
⋃

A,BM(Q~aA, TB)2 be a preorder, for some ~a. If,

for all relevant f, f ′ and h, whenever f R~a f ′ holds then the following diagrams hold,

Q~a(A× 1)
Q~aπ1 //

Q~aπ1

��

Q~aA

f ′

��
R~a

Q~aA
f

// TB

Q~aA
ΛT (z ′ ; f ′) //

ΛT (z ′ ; f)

��

TBC

η

��
R~a

TB C
η

// T (TBC)

Q~aA
f ′

//

f

��

TB

Th ;µ

��
R~a

TB
Th ;µ

// TC

Q~aA
∆ //

∆
��

Q~aA×Q~aA

f ′×id ; τ ′

��
R~a

Q~aA×Q~aA
f×id ; τ ′

// T (B ×Q~aA)

then R~a is a congruence.

Moreover, a family R = (R~a)~a∈A# of congruences is a congruence if, for all relevant f, f ′,~a, a,~a′,

f R~aa f ′ =⇒ \a℄ f R~a \a℄ f ′ ∧ f R~a f ′ =⇒ ~a′

~a ; f R~a
′ ~a′

~a ; f ′ .

Proof: We first note that the diagrams imply that if f R~a f ′ and g R~a g′ then:
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• f ; η = ( ∆ ;(ΛT (ζ ′ ;Q~aπ1 ; f) ; η) × id ; τ ′ ;T (id×! ; evT ; η) ;µ ) R~a (f ′ ; η).

• f ;h = (f ; η ;Th ;µ) R~a (f ′ ;h).

• 〈f, g〉 ;ψ = (∆ ; f × id ; τ ′ ;T (id× g ; τ) ;µ) R~a (〈f ′, g〉 ;ψ).

• 〈f ′, g〉 ;ψ = (∆ ; g × id ; τ ′ ;T (id× f ′) ;Tτ ;T 2〈π2, π1〉 ;µ) R~a (〈f ′, g′〉 ;ψ).

• 〈f, g〉 ; τ = (〈f ; η, g〉 ;ψ) R~a (〈f ′, g′〉 ; τ).

• 〈f, g〉 ; τ ′ = (〈f, g ; η〉 ;ψ) R~a (〈f ′, g′〉 ; τ ′).

It then follows that R~a is a congruence, by induction on contexts. Finally, in order to show
that R is a congruence it suffices to show that for all ~a ^ Γ_M,N : A, JMK R~a JNK implies:

• JMK~a′|Γ R
~a′ JNK~a′|Γ, for any ~a ⊆ ~a′,

• Jνa.MK R~a
′

Jνa.NK, whenever ~a = ~a′a.

But, using also lemma 4.10, we see that these conditions precisely correspond to the condi-
tions for congruences. �

It is now straightforward to show that the semantic preorder is a congruence.

Corollary 4.19 Let (M, T,Q~a, O) be an observational νρ-model. Then, (.~a)~a∈A# is a congruence.

Proof: We need only show the four diagrams of the previous lemma, and these are easily ob-

tained from the enrichment properties of the semantic preorder, proven in proposition 2.35.
For example, for the first diagram and for general h : A′ B A, we have:

Q~ah ; f = δ ;Q~aε ;Q~ah ;Q~aη ; ℓ ;Tf ;µ

which falls within the first claim of that proposition. �

Assume now that we translate νρ in an observational νρ-model. Then, one direction of (FA)
follows immediately form the definition.

Lemma 4.20 (Inequational Soundness) For terms ~a ^ Γ_M,N : A,

JMK . JNK =⇒ M / N .

Proof: Assume JMK .~a JNK and ` C[M ] −→→ S′ ` 0 , so JC[M ]K = \~a′℄ JS̄′ ; 0K with
~a′ = dom(S′). JMK .~a JNK implies JC[M ]K . JC[N ]K , and hence JC[N ]K ∈ Oǫ. Thus, by

observationality and adequacy, there exists S′′ such that` C[N ] −→→ S′′ ` 0 . �

In order to achieve completeness, and hence full-abstraction, we need our semantic transla-

tion to satisfy some definability requirement with regard to the intrinsic preorder.

Definition 4.21 Let (M, T,Q,O) be an observational νρ-model and let J K be the semantic

translation of νρ to M. M satisfies ip-definability if, for all ~a,A,B, there exists D~aA,B ⊆

M(Q~aJAK, T JBK) such that:

• for each f ∈ D~aA,B there exists termM such that JMK = f ,

• for each f, g ∈ M(Q~aJAK, T JBK),

f .~a g ⇐⇒ ∀ρ ∈ D~aA→B,N . (Λ
~a(f) ; ρ ∈ O~a =⇒ Λ~a(g) ; ρ ∈ O~a) .

We write M as (M, T,Q,O,D). N



88 CHAPTER 4. NOMINAL REFERENCES

For such a model Mwe achieve full abstraction.

Proposition 4.22 (FA) For terms ~a ^ Γ_M,N : A,

JMK . JNK ⇐⇒ M / N .

Proof: Soundness is by previous lemma. For completeness (⇐=), we do induction on the
size of Γ.

For the base case suppose~a ^∅_M / N and take any ρ ∈ D 1→A,N such thatΛ~a(JMK) ; ρ ∈
O~a . Let ρ = J~a ^ y : 1→ A_ L : NK , some L, so Λ~a(JMK) ; ρ is

Λ~a(JMK) ; JLK = δ ;Q~a|λz.M | ; JLK = J(λy.L)(λz.M)K

for some z :1. The latter being in O~a implies that it equals \~b℄ JS̄ ; 0K, some S. Now,M / N

implies (λy.L)(λz.M) / (λy.L)(λz.N) , hence ν~b.(S̄ ; 0) / (λy.L)(λz.N) , by soundness. But

this implies that ~a ` (λy.L)(λz.N) AA S′ ` 0 , so J(λy.L)(λz.N)K ∈ O~a, by correctness.
Hence, Λ~a(JNK) ; ρ ∈ O~a, so JMK .~a JNK, by ip-definability.

For the inductive step, if Γ = x :B,Γ′ then

~a ^ Γ_M / N =⇒ ~a ^ Γ′_ λx.M / λx.N
IH
=⇒ Jλx.MK .~a Jλx.NK

=⇒ JMK = J(λx.M)xK
(∗)

.~a J(λx.N)xK = JNK

where (∗) follows from corollary 4.19. �

4.3 The nominal games model

We embark on the adventure of modelling νρ in a category of nominal arenas and strategies.

Our starting point is the category Vt of nominal arenas and total strategies (definition 3.51).
Recall that Vt is constructed within the category Nom of nominal sets so, for each type A,

we have an arena AA for references to typeA. Explicitly, AA is the flat arena Aa, with a ∈ AA,
defined in (3.1).

The semantics is monadic in a store monad built around a store arena ξ, and comonadic

in an initial state comonad. The store monad is defined on top of the lifting monad (see
definition 3.68) by use of the side-effect constructor described in section 2.3.3, that is,

TA , ξ −−⊗ (A⊗ ξ)⊥ (i.e. TA = ξ⇒A⊗ ξ).

Now, ξ contains the values assigned to each name (reference), and thus it is of the form

⊗

A∈TY
(AA ⇒ JAK)

where JAK is the translation of each typeA. Thus, a recursive definition of the type-translation
is not possible because of the following cyclicity.

JA→ BK = JAK −−⊗ (ξ⇒ JBK ⊗ ξ)

ξ =
⊗

A
(AA ⇒ JAK)

(SE)

Rather, both ξ and the type-translation have to be computed as the least solution to the above

domain equation. By the way, observe that JA→ BK = JAK ⊗ ξ⇒ JBK ⊗ ξ .

4.3.1 Solving the Store Equation

The full form of the store equation (SE) is the following.

J1K = 1 , JNK = N , J[A]K = AA , JA×BK = JAK ⊗ JBK ,

JA→ BK = JAK −−⊗ (ξ⇒ JBK ⊗ ξ) , ξ =
⊗

A(AA ⇒ JAK) .
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This can be solved either as a fixpoint equation in the cpo of nominal arenas or as a domain
equation in the PreCpo-enriched category Vt. We follow the latter approach, which provides

themost general notion of canonical solution (andwhich incorporates the solution in the cpo
of nominal arenas, analogously to [McC00]). It uses the categorical constructions of [SP82,

Fre90] for solving recursive domain equations, as adapted to games in [McC00].

Definition 4.23 Define the category

C , Vt ×
∏

A∈TY

Vt

with objects D of the form (Dξ, DA
A∈TY) and arrows f of the form (fξ, fA

A∈TY).
Now take F : Cop × C → C to be defined on objects by:

F (D,E) , (ξD,E , JAKD,E
A∈TY) ,

where

J1KD,E , 1 JA×BKD,E , JAKD,E ⊗ JBKD,E J[A]KD,E , AA
JNKD,E , N JA→ BKD,E , DA −−⊗ (ξE,D ⇒EB ⊗ ξD,E) ξD,E ,

⊗

A∈TY(AA ⇒EA)

and similarly for arrows, with F (f, g) , (ξf,g, JAKf,g
A∈TY) . N

Now (SE) has been reduced to:
D = F (D,D) (SE∗)

where F is a locally continuous functor wrt the strategy ordering (proposition 3.65), and
continuous wrt the arena ordering (proposition 3.67). The solution to (SE∗) is given via a

local bilimit construction to the following ω-chain in C.3

Definition 4.24 In C form the sequence (Di)i∈ω takingD0 as below and Di+1 , F (Di, Di).

D0,1 , 1 D0,N , N D0,[A] , AA
D0,A→B , 1 D0,A×B , D0,A ⊗D0,B D0,ξ ,

⊗

A
(AA ⇒ 0)

Moreover, define arrows ei : DiB Di+1 and eRi : Di+1 B Di by:

e0 , inclD0,D1 , eR0 , projD1,D0
, ei+1 , F (eRi , ei) , eRi+1 , F (ei, e

R
i ) .

N

The above inclusion and projection arrows are defined componentwise. In fact, there is a

hidden lemma in the definition which allows us to define the projection arrow, namely that

D0 E1 D1 (which means D0,ξ E1 D1,ξ andD0,A E1 D1,A for all A).
Thus, we have formed the ω-chain ∆:

D0
e0 // D1

e1 // D2
e2 // D3

e3 // · · · (∆)

We now show that ∆ is a E-increasing sequence of objects and embeddings, and proceed to
the main result.

3Recall that we call an arrow e : AB B an embedding if there exists eR : B B A such that

e ; eR = idA ∧ eR ; e ⊑ idB .

Given an ω-chain ∆ = (Di, ei)i∈ω of objects and embeddings, a cone for ∆ is an object D together with a family
(ηi : Di B D)i∈ω of embeddings such that, for all i ∈ ω, ηi = ei ; ηi+1. Such a cone is a local bilimit for ∆ if,
for all i ∈ ω,

ηRi ; ηi ⊑ ηRi+1 ; ηi+1 ∧
G

i∈ω
(ηRi ; ηi) = idD .



90 CHAPTER 4. NOMINAL REFERENCES

Lemma 4.25 For (ei, e
R
i )i∈ω as above and any i ∈ ω,

ei = inclDi,Di+1 ∧ eRi = projDi+1,Di
.

Proof: Doing induction on i we can show that Di E1 Di+1, all i ∈ ω, and that the above
equalities hold. The base case is true by definition; the inductive step follows from proposi-

tion 3.67. �

Theorem 4.26 We obtain a local bilimit (D∗, ηi
i∈ω) for ∆ by taking:

D∗ ,
⊔

i
Di , ηi , inclDi,D∗ (each i ∈ ω).

Hence, idD∗ : F (D∗, D∗)B D∗ is a minimal invariant for F .

Proof: First, note that D0 E1 Di, for all i ∈ ω, implies that all Di’s share the same initial

moves, and hence Di E1 D
∗. Thus, for each i ∈ ω, we can define ηRi , projD∗,Di

, and
hence each ηi is an embedding. We now need to show the following.

1. (D∗, ηi
i∈ω) is a cone for ∆,

2. for all i ∈ ω, ηRi ; ηi ⊑ ηRi+1 ; ηi+1 ,

3.
⊔

i∈ω(ηRi ; ηi) = idD∗ .

For 1, we nts that, for any i, inclD1,D∗ = inclDi,Di+1 ; inclDi+1,D∗ , which follows from

(TRN). For 2 we essentially nts that idDi
⊆ idDi+1 , and for 3 that

⋃

i idDi
= idD∗ ; these are

both straightforward.
From the local bilimit (D∗, ηi

i∈ω) we obtain a minimal invariant α : F (D∗, D∗) B D∗ by

taking (see e.g. [Abr07]):

α ,
⊔

i
αi , αi , F (ηi, η

R
i ) ; ηi+1

prop. 3.67
= projF (D∗,D∗),Di+1

; inclDi+1,D∗ .

Moreover, D∗ = F (D∗, D∗) by the Tarski-Knaster theorem, and therefore αi = ηRi+1 ; ηi+1 ,
which implies α = idD∗ . �

Thus, D∗ is the canonical solution to D = F (D,D), and in particular it solves:

DA→B = DA −−⊗ (Dξ ⇒DB ⊗Dξ)

Dξ =
⊗

A
(AA ⇒DA) .

Definition 4.27 (ξ, ⊛ and JAK) LetD∗ be as in the previous theorem. Define the store arena
ξ and, for each type A, the translation JAK of A by:

ξ , D∗
ξ , JAK , D∗

A .
N

The arena ξ and the translation of compound types are given explicitly in the following

figure. ξ is depicted by means of unfolding it to
⊗

A(AA ⇒ JAK) : it consists of an initial
move ⊛ which justifies each name-question a ∈ AA, all types A, with the answer to the

latter being the denotation of A (and modelling the stored value of a). Note that we reserve

the symbol “⊛” for the initial move of ξ. ⊛-moves in type-translations can be seen as opening
a new store.
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ξ

⊛ PA

a OQ
(a ∈ AA)

JAK

JA×BK

(iJAK , iJBK) PA

JAK− JBK−

JA→ BK

∗ PA

(iJAK ,⊛) OQ

JAK
−

ξ−

(iJBK ,⊛) PA

JBK
−

ξ−

Figure 4.4: The store arena ξ and the translation of νρ-types.

4.3.2 The store monad T

In section 2.3.3 we described the general construction of a monad of ξ′-side-effects starting
from a given monad T ′. Applying the construction to the lifting monad and the store arena

ξ, as below, we obtain a store monad (T, η, µ, τ) on Vt.

T : C B C , ξ⇒ ( ⊗ ξ)

ηA : AB TA , Λ
(

A⊗ ξ
upPPA (A⊗ ξ)⊥

)

µA : T 2AB TA , Λ
(

T 2A⊗ ξ evPA (TA⊗D)⊥
ev⊥PPPA (A⊗ ξ)⊥⊥

dnPPA (A⊗ ξ)⊥

)

τA,B : A⊗ TBB T (A⊗B) , Λ
(

A⊗ TB ⊗ ξ
id ⊗ evPPPPPA A⊗ (B ⊗ ξ)⊥

stPPA (A⊗B ⊗ ξ)⊥

)

(4.12)

A concrete description of the store monad is given in figure 4.5. The diagram of TA gives a

depiction of the arena as a levelled tree. On the other hand, the diagrams of strategies depict
their viewfunctions, as described in section 3.2.3. For the particular case of ⊛-moves which

appear as second moves in TA’s, let us recall the convention we are following. Looking

at the diagram for TA (figure 4.5), we see that ⊛ justifies a copy of ξ− (left) and a copy of
A ⊗ ξ (right). Thus, a copycat link connecting to the lower-left of a ⊛ expresses a copycat

concerning the ξ− justified by ⊛ (e.g. the link between the first two ⊛-moves in the diagram
for µA), and similarly for copycat links connecting to the lower-right of a ⊛. Thus, for

example, µA is given by:

µA = strat( { [∗ ∗ ⊛ ⊛ s] | [⊛ ⊛ s] ∈ viewf(idξ) }

∪ { [∗ ∗ ⊛ ⊛ (∗,⊛′) ⊛′ s] | [⊛′ ⊛′ s] ∈ viewf(idξ) ∨ [s] ∈ viewf(idA⊗ξ) } ) .

By proposition 2.23, and because lifting is a strong monad with exponentials (proposi-

tion 3.69), T is a strong monad with exponentials. Moreover, for each arenaAwe can define
an arrow

αA , A⊥
(ηA)⊥PPPPPA (TA)⊥

puT APPPPA TA . (4.13)

The transformation pu was introduced in section 3.4. From that section, recall also the fact

that, for any pointed B, puA−−⊗B is Λ(st′ ; ev⊥ ; puB), and thus, taking also into account that
puC⊥

= dnC ,

puTA = Λ
(

(TA)⊥ ⊗ ξ
st

′PPA (TA⊗ ξ)⊥
ev⊥PPA (A⊗ ξ)⊥⊥

dnPPA (A⊗ ξ)⊥

)

. (4.14)

By proposition 2.25 we then have that α : ( )⊥ B T is a monad morphism, and that

αA = Λ(st′A,ξ) . (4.15)
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TA

∗ PA

⊛ OQ

ξ−

(iA,⊛) PA

A−
ξ−

TATf : // TB
∗ OQ

∗ PA

⊛ OQ

⊛ PQ

(iA,⊛) OA

(iB,⊛) PA
f

AηA : // TA
iA OQ

∗ PA

⊛ OQ

(iA,⊛) PA

T 2AµA : // TA
∗ OQ

∗ PA

⊛ OQ

⊛ PQ

(∗,⊛) OA

⊛ PQ

A⊗ TBτA,B : // T (A⊗B)

(iA, ∗) OQ

∗ PA

⊛ OQ

⊛ PQ

(iB,⊛) OA

(iA, iB,⊛) PA

Figure 4.5: The store monad (T, η, µ, τ ) for νρ.

4.3.3 Obtaining the νρ-model

Let us recapitulate the structure we have constructed thus far to the effect of obtaining a
νρ-model in Vt. Our numbering below follows that of definition 4.8.

I. Vt is a category with finite products (proposition 3.57).

II. The store monad T is a strong monad with exponentials.

III. Vt contains adequate structure for numerals.

IV. There is a family (Q~a, ε, δ, ζ )~a∈A# of product comonads, with each Q~a having basis A~a
(see section 3.4.2), which fulfills specifications (a,b). There are also fresh-name construc-

tors,
new~aa : Q~aB (Q~aa)⊥ ,

given in section 3.4.3, which satisfy (N2).

V. There are name-equality arrows, eqA for each type A, making the (N1) diagram com-

mute (section 3.4.2).

From newwe can obtain a fresh-name transformation for the store monad.

Definition 4.28 For each ~aa ∈ A#, define a natural transformation nu~aa : Q~aB TQ~aa by:

nu~aaA , Q~aA
newAPPPA (Q~aaA)⊥

α
Q~aaAPPPPPA TQ~aaA .
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Moreover, for each f : Q~aaAB TB take\a℄ f , Q~aA
nuAPPPA TQ~aaA

TfPPA T 2B
µBPPA TB .

N

Note that, for each f : Q~aaAB TB,\a℄ f = nuA ;Tf ;µB = newA ;αQ~aaA ;Tf ;µB = newA ; f⊥ ;αTB ;µB
(∗)
= newA ; f⊥ ; puTB

where (∗) is a consequence of (4.14, 4.15) and the definition of µ. Hence, our definition of

name-abstraction here coincides with that of section 3.4.3 (definition 3.77).

Moreover, noting that for each sequence of moves s and each a# nlist(s) we write sa for
s with a added in the head of all of its name lists, each arrow nu~aaA is explicitly given by:

nu~aaA = strat{[(~a, iA) ∗⊛ (~aa, iA,⊛)asa] | a#iA∧([iAiAs] ∈ viewf(idA)∨[⊛⊛s] ∈ viewf(idξ))}

and diagrammatically as follows.

Q~aAnu~aaA : // TQ~aaA

(~a, iA) OQ

∗ PA

⊛ OQ

(~aa, iA,⊛)
a

PA

Figure 4.6: The fresh-name natural transformation for νρ.

Using the fact that α is a monad morphism it is straightforward to obtain the following.

Proposition 4.29 The nu transformation satisfies the (N2) diagrams of definition 4.8. �

What we are only missing for a νρ-model is update and dereferencing maps. These are

specified as follows.

Definition 4.30 For any type Awe define the following arrows in Vt,

drfA , strat{[a ∗ ⊛ a iJAK (iJAK ,⊛) s] | [⊛ ⊛ s] ∈ viewf(idξ) ∨ [iJAK iJAK s] ∈ viewf(idJAK)} ,

updA , strat({[(a, iJAK) ∗ ⊛ (∗,⊛) b b s] | [⊛ ⊛ b b s] ∈ viewf(idξ) ∧ b# a}

∪ {[(a, iJAK) ∗ ⊛ (∗,⊛) a iJAK s] | [iJAK iJAK s] ∈ viewf(idJAK)}) ,

depicted also in figure 4.7. N

These strategies work as follows. updA responds with the answer (∗,⊛) to the initial se-

quence (a, iJAK) ∗ ⊛ and then:

• for any name b# a that is asked by O to (∗,⊛) (which is a store-opening move), it copies

b under the store ⊛ (opened by O) and establishes a copycat link between the two b’s;

• if O asks a to (∗,⊛), it answers iJAK and establishes a copycat link between the two iJAK ’s.

On the other hand, drfA does not immediately answer to the initial sequence a ∗ ⊛ but
rather asks (the value of) a to ⊛. Upon receiving O’s answer iJAK , it answers (iJAK ,⊛) and

establishes two copycat links.

We can show by direct computation that updates and dereferencings work as required,
i.e. make the (NR) diagrams commute. Moreover, these effects are independent from fresh-

name creation, i.e. the (SNR) equation holds.
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(a, iJAK) OQ

∗ PA

⊛ OQ

(∗,⊛) PA

b OQ

b PQ

a OQ

iJAK PA

AAdrfA : // T JAK

a OQ

∗ PA

⊛ OQ

a PQ

iJAK OA

(iJAK ,⊛) PA

Figure 4.7: Update and dereferencing arrows in Vt.

Proposition 4.31 The (NR) and (SNR) diagrams of definition 4.8 commute. Appendix�

We have therefore established the following.

Theorem 4.32 (Vt, T,Q) is a νρ-model. �

We close this section with some examples of translations of νρ-terms in Vt and a discussion

on how the store-effect is achieved in our innocent setting.

Example 4.33 Consider the typed terms:

ǫ ^∅_ νa.a := 〈fst ! a, snd ! a〉 , b ^∅_ b := λx.(! b)skip , b ^∅_ (! b)skip

with a ∈ AN×N and b ∈ A1→B . Their translations in Vt are as follows.

1 // T 1

∗ OQ

∗ PA

⊛ OQ

aa PQ

(n, n′)
a

OA

aa PQ

(l, l′)
a

OA

(∗,⊛)a PA

ba OQ

ba PQ

aa OQ

(n, l′)
a

PA

A1→B
// T 1

b OQ

∗ PA

⊛ OQ

(∗,⊛) PA

c OQ

c PQ

b OQ

∗ PA

(∗,⊛) OQ

b PQ

∗ OA

(∗,⊛) PQ

A1→B
// T JBK

b OQ

∗ PA

⊛ OQ

b PQ

∗ OA

(∗,⊛) PQ

(iB,⊛) OA

(iB,⊛) PA

From the latter two we can compute

Jb := λx.(! b)skip ;(! b)skipK = 〈id, Jb := λx.(! b)skipK〉 ; τ ;∼= ;T J(! b)skipK ;µ

as follows.
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... // TA1→B

T J(! b)skipK // T 2JBK
µ // T JBK

b

∗

∗

∗

⊛

⊛

⊛

(b,⊛)

(∗,⊛)

⊛

b

b

b

∗

∗

∗

(∗,⊛)

(∗,⊛)

(∗,⊛)

b

b

b

b

b

b

...
...

...
...

We observe that the P-view of the interaction that each of the three component strategies

sees after the three b’s of the second dotted line is exactly the same as that seen after the
three b’s of the first dotted line. Hence, the part of the interaction between the two dotted

lines is repeated ad infinitum (infinite chattering). Thus,

Jb ^∅_ b := λx.(! b)skip ;(! b)skipK = { [b ∗ ⊛] }

and therefore

JstopBK : 1 B T JBK = { [∗ ∗ ⊛] } .

On the other hand, for a ∈ AB , Jνa. ! aK : 1B T JBK is given as follows.

Jνa. ! aK = \a℄ Ja ^∅_ ! aK = \a℄ drfB
= \a℄(strat{ [a ∗ ⊛ a iB (iB,⊛) s] | [(⊛, iB) (⊛, iB) s] ∈ viewf(idξ⊗JBK) })

= strat{ [∗ ∗ ⊛ aaiaB(iB,⊛)asa] | [(⊛, iB) (⊛, iB) s] ∈ viewf(idξ⊗JBK) }
�
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Remark 4.34 (Innocent store) The approach to the modelling of store which we have pre-
sented differs fundamentally from previous such approaches in game semantics. Those

approaches, be they for basic or higher-order store [AM97, AHM98], are based on the fol-
lowing methodology. References are modelled by read/write product types, and fresh-

reference creation is modelled by a “cell” strategy which creates the fresh reference and im-

poses a good read/write discipline on it. In order for a cell to be able to return the last stored
value, innocence has to be broken since each read-request hides previous write-requests

from the P-view. Higher-order cells have to also break visibility in order to establish copy-
cat links between read- and write-requests.

Here instead we have only used innocent strategies and a monad on a store ξ. Because

of the monad, an arena JAK contains several copies of ξ, and therefore several stores are
opened inside a play. The read/write discipline is then kept in an interactive way: when

a participant asks (the value of) a name a at the last (relevant) store,4 the other participant
either answers with a value or asks himself a at the penultimate store, and so on until one of

the participants answers or the first store in the play is reached (e.g. see figure 4.8). At each

step, a participant answers the question a only if he updated the value of a before opening
the current store (of that step, i.e. the last store in the participant’s view)— note that this

behaviour does not break innocence. If no such update was made by the participant then
he simply passes a to the previous store and establishes a copycat link between the two a’s.

These links ensure that when an answer is eventually obtained then it will be copycatted

all the way to answer the original question a. Thus, we innocently obtain a read/write
discipline: at each question a, the last update of a is returned.

P – What’s the value of a?
O – I don’t know, you tell me: what’s the value of a?

P – I don’t know, you tell me: what’s the value of a?
...

O – I don’t know, you tell me: what’s the value of a?

P – I know it, it is v.
...

O – I know it, it is v.

P – I know it, it is v.

O – I know it, it is v.

Figure 4.8: A dialogue in innocent store.

4.3.4 Adequacy

We proceed to show that Vt is adequate (v. definition 4.14). First we characterise non-
reducing terms as follows.

Lemma 4.35 Let ~a ^∅_M :A be a typed term. M is a value iff there exists a store S such that

S `M has no reducts and [(~a, ∗) ∗ ⊛ (iA,⊛)
~b] ∈ JS̄ ;MK , for some iA,~b.

Proof: The “only if”-part is straightforward. For the “if”-part assume thatM is a non-value
and take any S such that S ` M has no reducts. We show by induction on M that there

exist no iA,~b such that [(~a, ∗) ∗ ⊛ (iA,⊛)
~b] ∈ JS̄ ;MK. The base case follows trivially from

M not being a value. Now, for the inductive step, the specifications of S ` M (and M )

imply that eitherM ≡ ! awith a not having a value in S, orM ≡ E[K] with E an evaluation
context and K a non-value typed as ~a ^∅_K :B and such that S ` K non-reducing.

In case ofM ≡ ! a, we have that [(~a, ∗) ∗ ⊛ a] ∈ JS̄ ;MK, which proves the claim because of

4i.e. at the last store-opening move played by the other participant.
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determinacy. On the other hand, ifM ≡ E[K] then, as in proof of proposition 4.13, we have
that

JS̄ ;MK = 〈Λ(ζ ′ ; JE[x]K), JS̄ ;KK〉 ; τ ;T ev ;µ = 〈id, JS̄ ;KK〉 ; τ ;T (ζ ′ ; JE[x]K) ;µ

By IH, there are no iB,~c such that [(~a, ∗) ∗ ⊛ (iB,⊛)~c] ∈ JS̄ ;KK, which implies that there are

no iA,~b such that [(~a, ∗) ∗ ⊛ (iA,⊛)
~b] ∈ JS̄ ;MK. �

Because of the previous result, in order to show adequacy it will suffice to show that, when-

ever JMK = \~b℄ JS̄ ; 0K, there is no infinite reduction sequence starting from ~a`M . We will

carry out the following reasoning.

• Firstly, since the calculus without DRF reductions is strongly normalising— this is in-

herited from strong normalisation of the sν-calculus— it suffices to show there is no
reduction sequence starting from ~a ` M and containing infinitely many DRF reduc-

tion steps.

• In fact, the problem can be further reduced to showing that, whenever [(~a, ∗)∗⊛ (0,⊛)
~b] ∈

JMK, there is no reduction sequence starting from ~a ` M and containing infinitely

many NEW reduction steps. But the latter clearly holds, since M cannot create more

than |~b| fresh names in that case, because of correctness.

The reduction to this simpler problem is achieved as follows. For each term M , we

construct a term M ′ by adding immediately before each dereferencing in M a fresh-
name construction. The result is that, whenever there is a sequence with infinitely

many DRF’s starting from S ` M , there is a sequence with infinitely many NEW’s
starting from S `M ′. The reduction is completed by finally showing that, whenever

we have [(~a, ∗) ∗ ⊛ (0,⊛)
~b] ∈ JMK, we also have [(~a, ∗) ∗ ⊛ (0,⊛)

~b′] ∈ JM ′K.

The crucial step in the proof is the reduction to “the simpler problem”, and particularly

showing the connection between JMK and JM ′K described above. The latter can be carried

out by using the intrinsic preorder on strategies and showing O-adequacy (lemma 4.62):
adequacy can then be derived fromO-adequacy. Nevertheless, a direct proof is always useful

(and more fun). We present such a proof in the remainder of this section.

In the following discussion we will be using κ for a νρ-type. We start with a definition.

Definition 4.36 Let κ ∈ TY. For any termM , we define:

κ#M ⇐⇒ ∀a ∈ Aκ. a#M .

For κ#M , we define (M) κ© inductively by:

(x) κ© , x , (a) κ© , a , ... (λx.N) κ© , λx.(N) κ© , (M N) κ© , (M) κ©(N) κ© , ...

and (!N) κ© , νc. !(N) κ©, with c ∈ Aκ. N

Note that a#M means that a does not appear, neither free nor bound, insideM . Our next

target is to show that if κ#M then J(M) κ©K does not use names of type κ. What we mean by

“non-usage” of names is defined formally below (recall the �-quantifier from page 17 and
the notation s = snlist(s) from page 43).

Definition 4.37 Let σ be a strategy. We say that the type κ is essentially fresh for σ, κ
ess

# σ if,

for any a ∈ Aκ,
∀s. [s] ∈ σ =⇒ � b. [s(a b) [ nlist(s)] ∈ σ

N

For economy, we let

(a b)[s , s(a b) [ nlist(s) .
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What the previous definition is essentially saying is that κ
ess

#σ iff σ does not really use names

of type κ, even though it may be introducing them.
There is an alternative definition of essential freshness for strategies, which involves only

viewfunctions.

Proposition 4.38 For any strategy σ, κ
ess

# σ iff, for any a ∈ Aκ,

∀s. [s] ∈ viewf(σ) =⇒ � b. [(a b)[s] ∈ σ .

Proof: Suppose the condition holds and let us pick such an a and some [s] ∈ σ ; we need to

show that � b. [(a b)[s] ∈ σ. We do induction on |s|, taking as base case |s| = 0which is trivial.

For the inductive step, let s = s−x. If x an O-move then � b. [(a b)[s] ∈ σ by contingency
completeness and the IH. On the other hand, if x a P-move and psq 6= s then, for any fresh b,

[(a b)[(s−)], [p(a b)[sq] ∈ σ by IH and the hypothesis. By lemma 3.38, it suffices to show that
(a b)[s is a play. For the latter, we need only check the Name Conditions. (NC3) and (NC2’)

clearly hold, since (a b)[s−, p(a b)[sq are plays. For (NC1), if nlist((a b)[x) contains some new

name c and c 6= b, then c# s− since s is a play, so c# (a b)[s−. If c = b then a# s− since s a
play, ∴ c# (a b)[s− as bwas chosen fresh. �

We can now show the following enrichment properties for essential freshness.

Lemma 4.39 For any relevant σ, τ , if κ
ess

# σ, τ then:

• κ
ess

# σ ; τ ,

• κ
ess

# σ⊥,

• κ
ess

# Λ(σ),

• κ
ess

# 〈σ, τ〉.

Proof: For the first claim we have that [s ; t] ∈ σ ; τ implies that, for any fresh b, [(a b)[s] ∈ σ

and [(a b)[t] ∈ τ . Clearly, (a b)[s ` (a b)[t. Moreover, the fresh-name conditions (C1-2)

still hold: the only thing that could go wrong would be b being introduced at some point

in (a b)[s, say, without being fresh at the respective point in t, which can’t happen as b is
chosen fresh.

The other claims follow easily from the previous proposition, and the definitions of these

constructions on viewfunctions. �

Corollary 4.40 For any termM ,

• κ#M =⇒ κ
ess

# JMK,

• κ#M =⇒ κ
ess

# J(M) κ©K.

Proof: Both claims are proven by induction onM . For the first claim, we simply use the fact

that κ
ess

# σ for any strategy σ that does not introduce any names of type κ.

For the second claim, we also use the previous lemma, yet the case ofM ≡ !N needs some

extra attention. By IH we have that κ
ess

# J(N) κ©K, while we know that

J(M) κ©K = nuΓ ;T ~ac~a ;T J!(N) κ©K ;µ

with c ∈ Aκ and M typed in environment ~a^Γ. By previous lemma we have that κ
ess

#

T J!(N) κ©K ;µ, and hence it suffices to show that κ
ess

# nu ;T ~ac~a . We have that:

viewf(nu ;T ~ac~a ) = {[(~a, iΓ) ∗ ⊛ (~a, iΓ,⊛)c sc] | [iΓ iΓ s] ∈ viewf(idJΓK)∨[⊛ ⊛ s] ∈ viewf(idξ)}
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From the above we observe that, for any a ∈ Aκ, any [s] ∈ viewf(nu ;T ~ac~a ) and any fresh b,
[(a b)[s] ∈ nu ;T ~ac~a , as required. �

A consequence of essential freshness is that if κ
ess

# σ then we can delete all κ-name introduc-

tions from σ and still have a strategy.

Definition 4.41 For any play s, define srκ to be swith all names of type κ removed from its

name lists. Take then, for each strategy σ,

σrκ , {[srκ] | [s] ∈ σ} .
N

Lemma 4.42 For any strategy σ, if κ
ess

# σ then:

1. if [s] ∈ σ then srκ is a play,

2. if [s1], [s2] ∈ σ, (S(si) \ S(sirκ)) ∩ S(si) = ∅ and [s1
rκ] = [s2

rκ] then [s1] = [s2],

3. σrκ is a strategy.

Proof: For 1, we only need to check the Name Conditions still hold, and in particular only
(NC2’), as the other two trivially do. So let x be a P-move in srκ and let a ∈ S(x) such that

a # psrκ

<xq. If a /∈ Aκ then a ∈ nlist(x); the case a ∈ Aκ is not possible since then we would

have [(a b)[s] ∈ σ breaking (NC2’), any fresh b.
For 2, we do induction on |s1| = |s2|; the base case is trivial. For the inductive step, if |s1|
is even then, by IH, [s−1 ] = [s−2 ] and hence, by determinacy, [s1] = [s2]. Finally, if si = s−i xi
with xi an O-move then, by IH, [s−1 ] = [s−2 ]. Now using the condition on supports and the

strong support lemma we obtain [s−1 x1] = [s−2 x2] and thus, by (NC3), [s1] = [s2].

We now show σrκ is a strategy. Prefix closure and contingency completeness are obvious.
For determinacy, take even-length [s1x1], [s2x2] ∈ σrκ with sixi = (s′ix

′
i)

rκ and [s′ix
′
i] ∈

σ, and assume [s1] = [s2]. As κ#σ, we can choose s′ix
′
i in such a way that the names in

S(s′ix
′
i) \ S(sixi) are fresh for s′ix

′
i, and hence, by 2, [s′1] = [s′2]. Then, by determinacy of σ,

[s′1x
′
1] = [s′2x

′
2], which implies [s1x1] = [s2x2]. Finally, for innocence, let [s1x1], [s2] ∈ σrκ

with s1x1 = (s′1x
′
1)

rκ, s2 = s′2
rκ and [s′1x

′
1], [s

′
2] ∈ σ, and assume [ps1q] = [ps2q]. Then, as

before, we may assume [ps′1q] = [ps′2q] and therefore [s′2x
′
2] ∈ σ, for some [ps′2x

′
2q] = [ps′1x

′
1q].

We then have [s2x
′
2

rκ] ∈ σrκ and [ps1x1q] = [ps2x′2
rκq]. �

We need a last lemma before proving adequacy.

Lemma 4.43 For any termM , if κ
ess

#M then JMK ⊆ J(M) κ©Krκ.

Proof: We do induction onM . The base case is encompassed in the case ofM ≡ (M) κ©, in

which case srκ = s for any [s] ∈ JMK and the claim trivially holds. For the inductive step, as
J(M) κ©Krκ is a strategy by previous lemma, it suffices to show that

viewf(JMK) ⊆ {[srκ] | [s] ∈ J(M) κ©K}

We show some characteristic cases:

• M ≡ λx.N . Let [s1 ; s2] ∈ viewf(JMK), where JMK = Λ(ζ ′ ; JNK) ; η, and [s1] ∈ Λ(ζ ′ ; JNK),
[s2] ∈ η. Since s2

rκ = s2, it suffices to show that [s1] ∈ Λ(ζ ′ ; J(N) κ©K)rκ, and because

the latter is a strategy it suffices to consider the case of s1 being an even-length P-view
(lemma 3.38). Then, by definition of Λ, s1 is obtained from some [s′1] ∈ viewf(JNK) after

a reordering of moves. By IH, s′1 = t′1
rκ for some [t′1] ∈ J(N) κ©K and hence s1 = t1

rκ, with

t1 being the play in Λ(ζ ′ ; J(N) κ©K) obtained by t′1.
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• M ≡ N1N2. Let [s1 ; s2] ∈ JMK = 〈JN1K, JN2K〉 ;ψ ;T ev ;µ, and [s1] ∈ 〈JN1K, JN2K〉, [s2] ∈
ψ ;T ev ;µ. As before, it suffices to show that [s1] ∈ 〈JN1K, JN2K〉rκ, in the particular case

of s1 being an even-length P-view. We have that, wlog, s1 is obtained from some [s′1] ∈
viewf(JN1K) with the addition of JN2K’s initial answer (which is non-introducing). By

IH, s′1 = t′1
rκ for [t′1] ∈ J(N1)

κ©K and hence we obtain a [t1] ∈ J〈(N1)
κ©, (N2)

κ©〉K such that

s1 = t1
rκ.

• M ≡ !N . In this case, assumingM is typed as ~a ^ Γ_M : A,

JMK = JNK ;Tdrf ;µ and J(M) κ©K = nu ;T ~aa~a ;T J!(N) κ©K ;µ

with a ∈ Aκ. Let now [s] ∈ viewf(JMK), so s = s1 ; s2 with [s1] ∈ JNK and [s2] ∈ Tdrf ;µ.

By IH, s1 = u1
rκ for [u1] ∈ J(N) κ©K with u1 ≍ s2. Hence, s = trκ with [t] = [u1 ; s2] ∈

J!(N) κ©K.

Now, J!(N) κ©K = η ;T J!(N) κ©K ;µ, hence t = t1 ; t2 with [t1] ∈ η and [t2] ∈ T J!(N) κ©K ;µ. t
being a P-view implies that

t1 = (~a, iΓ) ∗ ⊛ (~a, iΓ,⊛) v1

with v1 not containing any O-moves justified by the initial (~a, iΓ) ∗ ⊛. Hence, we can see
that

t′1 , (~a, iΓ) ∗ ⊛ (~a, iΓ,⊛)a va1

is a play in nu ;T ~aa~a , for any fresh a ∈ Aκ. Therefore, [t′1 ; t2] ∈ nu ;T ~aa~a ;T J!(N) κ©K ;µ, and
hence [s] ∈ J(M) κ©Krκ. �

We have now gathered all the ingredients for proving the following.

Proposition 4.44 (Adequacy) (Vt, T,Q) is adequate: for any typed term ~a ^∅_M : N, if there

exists some S such that JMK = \~b℄ JS̄ ; 0K then there exists S′ such that ~a`M −→→ S′ ` 0.

Proof: By lemma 4.35 it suffices to show that, for any such M , there is a non-reducing se-
quent S′ ` N such that ~a ` M AA S′ ` N , as then N would be a closed value of type

N such that JS̄′ ;NK ∈ O—and therefore N ≡ 0. But then it suffices to show that there is

no infinite reduction sequence starting from ~a`M and containing infinitely many DRF re-
duction steps: leaving DRF’s aside we are left with a sν-calculus with a non-recursive effect,

which is strongly normalising for closed terms (cf. theorem 2.15).

So let ~a ^∅_M : N be a typed term such that JMK = \~b℄ JS̄ ; 0K, for some S, and assume
that ~a`M diverges using infinitely many DRF reduction steps. Then, ~a` (M) κ© diverges

using infinitely many NEW reduction steps. Now, we have that [(~a, ∗)∗⊛ (0,⊛)
~b] ∈ JMK and

hence, by previous lemma, there exists some ~b′ � ~b such that [(~a, ∗) ∗ ⊛ (0,⊛)
~b′ ] ∈ J(M) κ©K.

However, ~a ` (M) κ© can reduce to some S′ ` M ′ using |~b′| + 1 NEW reduction steps, so

J(M) κ©K = \~c℄ JS̄′ ;M ′K with |~c| = |~b′| + 1, 	. �

Hence, (Vt, T,Q) is a sound model for νρ and thus, for all termsM,N ,

JMK = JNK =⇒ M / N .

4.3.5 Tidy strategies

Leaving adequacy behind, the route for obtaining a fully abstract model of νρ proceeds to

definability. That is, we aim for a model in which elements with finite descriptions correspond

to translations of νρ-terms.
However, Vt does not satisfy such a requirement: it includes (finitary) store-related be-

haviours that are disallowed in the operational semantics of νρ. In fact, our strategies treat
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the store ξ like any other arena, while in νρ the treatment of store follows some basic guide-
lines. For example, if a store S is updated to S′ then the original store S is not accessible

any more (irreversibility). In strategies we do not have such a condition: in a play there may
be several ξ’s opened, yet there is no discipline on which of these are accessible to Player

whenever he makes a move. Another condition involves the fact that a store either ‘knows’

the value of a name or it doesn’t know it. Hence, when a name is asked, the store either re-
turns its value or it deadlocks: there is no third option. In a play, however, when Opponent

asks the value of some name, Player is free to evade answering and play somewhere else!
To disallow such behaviours we will constrain total strategies with further conditions,

defining thus what we call tidy strategies. But first, let us specify store-related moves inside

type-translating nominal arenas.

Definition 4.45 Consider Vνρ , the full subcategory of Vt with objects given by:

Ob(Vνρ) ∋ A,B ::= 1 | N | A~a | A⊗B | A −−⊗ TB .

For each such arena Awe define its set of store-Handles,HA, as follows.

H1 = HN = HA~a , ∅ ,

HA⊗B , HA ∪HB ,

HA−−⊗TB , {(iA,⊛A), (iB,⊛B)} ∪HA ∪HB ∪HξA
∪HξB

, withHξ ,
⋃

C
HJCK ;

where we write A −−⊗ TB as A −−⊗ (ξA ⇒ B ⊗ ξB), and ξ as
⊗

C(AC ⇒ JCK).
In an arena A ∈ Ob(Vνρ), a store-Handle justifies (all) questions of the form a, which we call

store-Questions. Answers to store-Questions are called store-Answers. N

Note in particular that, for each type A, we have JAK, Q~aJAK, T JAK ∈ Ob(Vνρ), assuming

that T JAK is equated with 1 −−⊗ T JAK. Note also there is a circularity inHA−−⊗TB in the above
definition. In fact, it suggests a definition by induction: we take HA ,

⋃

i∈ωH
i
A and,

Hi
1 = HiN = HiA~a = H0

A , ∅ ,

Hi
A⊗B , Hi

A ∪Hi
B ,

Hi+1
A−−⊗TB , {(iA,⊛A), (iB,⊛B)} ∪Hi

A ∪Hi
B ∪Hi+1

ξA
∪Hi+1

ξB
, withHi+1

ξ ,
⋃

C
Hi

JCK .

Intuitively, store-H’s are store-opening moves, while store-Q’s and store-A’s are obtained

from unfolding the store structure. Below we give examples of store-related moves in a

simple arena.

T 1 = ξ⇒ 1 ⊗ ξ

∗

⊛ store-H’s

store-Q’s a (∗,⊛)

iA b

store-A’s iB

Figure 4.9: Store-H’s -Q’s -A’s in arena T1.

From now on we work in Vνρ , unless stated otherwise. A first property we can show is that

a move is exclusively either initial or a store-H -Q -A.

Proposition 4.46 For any A ∈ Ob(Vνρ),

MA = IA ⊎HA ⊎ {m ∈MA |m a store-Q} ⊎ {m ∈MA |m a store-A} .
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Proof: We show that anym ∈MA belongs to exactly one of the above sets. We do induction
on the level of m, l(m), inside A and on the size of A, |A|, specified by the inductive defi-

nition of Ob(Vνρ). If m is initial then, by definition, it can’t be a store-H. Neither can it be a
store-Q or store-A, as these moves presuppose non-initiality.

Assume l(m) > 0. IfA is base then trivial, while ifA = A1⊗A2 then use the IH on (l(m), |A|).
Now, if A = A1 −−⊗ TA2 then let us write A as A1 −−⊗ (ξ1 ⇒ A2 ⊗ ξ2); we have the following
cases.

• Ifm = (iA1 ,⊛1) ∈ HA thenm a question and not a store-Q, as store-Q’s are simply names.

• Ifm = (iA2 ,⊛2) ∈ HA thenm an answer and not a store-A as its justifier is (iA1 ,⊛1).

• Ifm is in A1 or in A2 then use the IH.

• Ifm is in ξ1 then it is either some store-Q a to (iA1 ,⊛1) (and hence not a store-H or store-

A), or it is in some JCK. In the latter case, if m initial in JCK then a store-A in JAK and
therefore not a store-H, as m not a store-H in JCK by IH (on l(m)). If m is non-initial in

JCK then use the IH and the fact that store-H’s -Q’s -A’s of JCK are the same in JAK.

• Similarly ifm is in ξ2. �

The notion of store-Handles can be straightforwardly extended to prearenas.

Definition 4.47 Let A,B ∈ Ob(Vνρ). The set HA→B of store-Handles in prearena A → B is

HA ∪HB . Store-Q’s and store-A’s are defined accordingly. N

Using the previous proposition, we can see that, for any A and B, the set MA→B can be

decomposed as:

IA ⊎ IB ⊎HA→B ⊎ {m ∈MA→B |m a store-Q} ⊎ {m ∈MA→B |m a store-A} .

We proceed to define tidy strategies. We endorse the following notational convention. Since
stores ξ may occur in several places inside a (pre)arenawe may use parenthesised indices to

distinguish identical moves from different stores. For example, the same store-Question q

may be occasionally denoted q(O) or q(P ) , the particular notation denoting the OP-polarity
of the move. Moreover, by O-store-H’s we mean store-H’s played by Opponent, etc.

Definition 4.48 A total strategy σ is tidy if whenever odd-length [s] ∈ σ then:

(TD1) If s ends in a store-Q q then [sx] ∈ σ , with x being either a store-A to q introducing
no new names, or a copy of q. In particular, if q = a~a with a # psq− then the latter

case holds.

(TD2) If [sq(P )] ∈ σ with q a store-Q then q(P ) is justified by last O-store-H in psq.

(TD3) If psq = s′q(O)q(P )t y(O) with q a store-Q then [sy(P )] ∈ σ with y(P ) justified by psq .−3 .
N

(TD1) states that, whenever Opponent asks the value of a name, Player either immediately

answers with its value or it copycats the question to the previous store-H. The former case
corresponds to Player having updated the given name lastly (i.e. between the previous O-

store-H and the last one). The latter case corresponds to Player not having done so and

hence asking its value to the previous store configuration, starting thus a copycat between
the last and the previous store-H. Hence, the store is, in fact, composed by layers of stores

— one on top of the other— and only when a name has not been updated in the top layer

is Player allowed to search for it in layers underneath. We can say that this is the nominal
games equivalent of a memory cell (cf. remark 4.34). (TD3) further guarantees the above-

described behaviour. It states that when Player starts a store-copycat then he must copycat
the store-A and all following moves he receives, unless Opponent chooses to play elsewhere.
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(TD2) guarantees themulti-layer discipline in the store: Player can see one store at each time,
namely the last played by Opponent in the P-view.

The following straightforward result shows that (TD3), as stated, provides the intended
copycat behaviour.

Proposition 4.49 Let σ be a tidy strategy. If [s′q(O)q(P )t] ∈ σ is an even-length P-view and q is a

store-Q then q(O)q(P )t is a copycat.

Proof: We do induction on |t|. The base case is straightforward. For the inductive step, let

t = t′xz. Then, by prefix closure, [s′q(O)q(P )t
′x] ∈ σ, this latter a P-view. By IH, q(O)q(P )t

′ is
a copycat. Moreover, by (TD3), [s′q(O)q(P )t

′xx] ∈ σ with last x justified by (q(O)q(P )t
′x).−3,

thus s′q(O)q(P )t
′xx a copycat. Now, by determinacy, [s′q(O)q(P )t

′xx] = [s′q(O)q(P )t
′xz], so there

exists π such that π [x = x ∧ π [x = z, ∴ x = z, as required. �

A good store discipline would guarantee that store-Handles OP-alternate in a play. This in-
deed happens in P-views played by tidy strategies. In fact, such P-views have canonical

decompositions, as we show below.

Proposition 4.50 (Tidy Discipline) Let σ : AB B be a tidy strategy and [s] ∈ σ with psq = s.
Then, s is decomposed as in the following diagram.

GFED@ABCiA // GFED@ABCiB //WVUTPQRSS-H
OQ

�� ##
**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

WVUTPQRSS-H
PA

��

LL

WVUTPQRSS-H
PQ

��
yyrrrrrrrrrrrrrrr

cc

WVUTPQRSS-Q
P

��WVUTPQRSS-Q
O

��
&&LLLLLLLLLLLLLLL
WVUTPQRSS-H
OA

LL
eeLLLLLLLLLLLLLLL

99rrrrrrrrrrrrrrr WVUTPQRSS-A
O

jjUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

LL
eeLLLLLLLLLLLLLLL

WVUTPQRSS-A
P

>>

WVUTPQRSONMLHIJKCC

(by CC we mean the state that, when reached by a sequence s = psq, the rest of s is copycat.)

Proof: The first two transitions are clear. After them neither P nor O can play initial moves,

so all remaining moves in s are store-H -Q -A’s. Assume now O has just played a question
x0 which is a store-H and the play continues with moves x1x2x3... .

x1 cannot be a store-A, as this would not be justified by x0, breaching well-bracketing. If x1

is a store-Q then x2 must be a store-A, by P-view. If x1 is an answer-store-H then x2 is an
OQ, while if x1 a question-store-H then x2 is either a store-Q or a store-H.

If x2 is a store-Q then, by (TD1), x3 either a store-A or a store-Q, the latter case meaning

transition to the CC state. If x2 is not a store-Q then x3 can’t be a store-A: if x3 were a store-
A justified by q 6= x2 then, as q wouldn’t have been immediately answered, s≥q would be a

copycat and therefore we would be in the CC state right after playing q.
Finally, if x3 is a store-A then x4 must be justified by it, so it must be a Q-store-H. �

Corollary 4.51 (Good Store Discipline) Let [s] ∈ σ with σ tidy and psq = s. Then:

• The subsequence of s containing its store-H’s is OP-alternating and O-starting.

• If s.−1 = q is a P-store-Q then either q is justified by last store-H in s, or s is in copycat mode at

q. �
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Our next aim is to show that νρ is modelled inside the subcategory of Vνρ with tidy strate-

gies. We first need to show that tidy strategies indeed form a subcategory of Vνρ , and then
that all the structure necessary for the νρ-model is available in tidy strategies. The following

proposition gives equivalent definitions of tidy strategies, which will be of use in the sequel.

Proposition 4.52 Let σ be a strategy.

1. σ is tidy iff whenever odd-length [s] ∈ σ then (TD1,2,3′) hold, where:

(TD3′) If psq = s′q(O)q(P )t y(O) with q a store-Q and q(O)q(P )t a copycat then [sy(P )] ∈ σ

with y(P) justified by psq .−3.

2. (a) σ is tidy iff whenever odd-length [s] ∈ σ with psq = s then (TD1,2,3) hold,

(b) σ is tidy iff whenever odd-length [s] ∈ σ with psq = s then (TD1,2,3′) hold.

Proof: For 1, it suffices to show that whenever σ satisfies (TD1,2,3′) and [s′q(O)q(P )t y] ∈ σ is

a P-view and q a store-Q, then q(O)q(P )t is a copycat. But this is shown exactly as proposi-

tion 4.49, replacing “by (TD3)” by “by (TD3′)”.
For 2, we show only the first part, the other part is shown similarly. We need only show the

“if” direction. So assume the RHS hypothesis and let odd-length [s] ∈ σ, so [psq] ∈ σ.
If s ends in a store-Q q, then so does psq, so [psqx] ∈ σ, with x being a store-A not introducing

new names or a copy of q. But x non-introducing and [s], [psq x] ∈ σ implies [sx] ∈ σ, by

lemma 3.38. If, in particular, q = a with a# psq− then x is a copy of q.
If [sq] ∈ σ with q a store-Q then [psq q] ∈ σ so q justified by last O-store-H in psq.
If psq = s′q(O)q(P )ty with q a store-Q then [psq y] ∈ σ with last y justified by psq .−3. By
lemma 3.38, [sy] ∈ σ, as required. �

We can now show that strategies which ‘mostly do copycats’ are tidy.

Corollary 4.53 A strategy σ is tidy if, for any odd-length [s] ∈ σ with psq = s and |s| ≥ 5:

1. If ∀x. [sx] /∈ σ then s.−1 is not a store-Q and there are no consecutive store-Q’s q(O)q(P ) inside s.

2. If [sx] ∈ σ and x 6= s.−1 then s doesn’t contain any q(O)q(P ) and also:

(a) if s.−1 a store-Q then x is an answer to s.−1 not introducing new names and s.−1 = a~a with

a ∈ S(s−),

(b) if x a store-Q then it is justified by last O-store-H in s.

3. If [sx] ∈ σ and x = s.−1 then one of the following is the case:

(a) s doesn’t contain any q(O)q(P ), and if x a store-Q then justified by last O-store-H in s;

(b) x is justified by s.−3.

Proof: By proposition 4.52, it suffices to show that such an s satisfies (TD1,2,3). For (TD1),

if s.−1 a store-Q then |s| ≥ 5 and, by 1, [sx] ∈ σ, for some x. If x is not a copy of s.−1 then,
by 2a, s.−1 is not a fresh name and x is a non-intro answer to s.−1, as required. For (TD3), if

s = s′q(O)q(P )t y(O) then |s| ≥ 7 and, by 1,2, [sy] ∈ σ and, by 3, y is justified by s.−3. Finally,

for (TD2), if [sx] ∈ σ with x a store-Q then |s| ≥ 3. If |s| = 3 then x necessarily justified
by s.−1 and that is the last O-store-H in s, as s.1, s.2 are initial moves. If |s| ≥ 5 then either

cases 2b,3a apply, or x = s.−1 and x justified by s.−3. In the latter case, s.−1 is an O-store-Q

justified by s.−2, hence s.−3 is the last O-store-H in s, as required. �

Thus, for example, identity arrows are tidy as they fall under case 3b. In fact, as we will
show later, all important structure is tidy. Let us now proceed to closure of tidy strategies

under composition.
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Lemma 4.54 Let σ : AB B and τ : BB C be tidy strategies, and let [s ; t] ∈ σ ; τ , [s] ∈ σ and
[t] ∈ τ , with ps ‖ tq = s ‖ t ending in a generalised O-move in AB and x, an O-move, being the last

store-H in psq. Let x appear in s ‖ t as x̃. Then, x̃ is the last store-H in s ‖ t and if x is in A then all
moves after x̃ in s ‖ t are in A. Similarly for BC and t.

Proof: We show the (AB, s) case, the other case being entirely dual. Let s = s1xs2 and let

x appear in s ‖ t as some x̃. If x is in A then we claim that s2 is in A. Suppose otherwise,

so s = s1xs21ys22 with s21 in A and y a P-move in B. Since x appears in psq, the whole
of s21y appears in it, as it is in P-view mode already. Since x is last store-H in psq, s21y is

store-H-less. If y a store-Q then it should be justified by last O-store-H in ps<yq, that is x,
which is not possible as x is in A. Thus, y must be a store-A, say to some O-store-Q q in B.

Now, since q wasn’t immediately answered by P, tidiness dictates that psq be a copycat from

move q and on. But then the move following x in s must be a copy of x in B, 	. Hence, s2
is in A and therefore it appears in psq, which implies that it is store-H-less. Thus, x̃ is last

store-H in s ‖ t.
If x is in B then we do induction on |s ‖ t|. The base case is encompassed in the case of s2
being empty, which is trivial. So let s2 = s21ys22z with y justifying z (since x appears in psq,
z has to be justified in s2). z is not a store-H and neither is it a store-Q, as then y would be a
store-H after x in psq. Thus z a store-A and y a store-Q, the latter justified by last O-store-H in

ps<yq = psq<y , that is x, so y, z in B. Now, s = s1xs21ys22z and t = t1x
′t21y

′t22z
′ ; we claim

that s21 and t21 are store-H-less. Indeed, s<y ‖ t<y′ ends in a generalised O-move in AB and

x is still the last store-H in ps<yq , from which we have, by IH, that x̃ is the last store-H in

s<y ‖ t<y′ .
Thus, s ‖ t = (s1 ‖ t1)x̃vỹuz̃ with v store-H-less. It suffices to show that u is also store-H-

less. In fact, u = ỹ . . . ỹ
︸ ︷︷ ︸

n

z̃ . . . z̃
︸ ︷︷ ︸

n

for some n ≥ 0. Indeed, by tidiness of τ , (t22z
′).1 is either

an answer to y′, whence t22 = u = ǫ, or a copy of it under the last O-store-H in pt≤y′q. If
the latter is in B then σ reacts analogously, and so on, so there is initially a sequence ỹ . . . ỹ

in u, played in B. As u finite, at some point σ (or τ ) either answers y (y′) or copycats it in
A (in C). In the latter case, O immediately answers, as s (t) is in P-view mode in A (in C).

Hence, in either cases there is an answer that is copycatted to all open ỹ in u, yielding thus

the required pattern. Therefore, u is store-H-less. �

Lemma 4.55 Let σ : A B B and τ : B B C be tidy strategies, and let [s ; t] ∈ σ ; τ , [s] ∈ σ

and [t] ∈ τ , with ps ‖ tq = s ‖ t ending in a generalised O-move. If there exists i ≥ 1 and store-Q’s
q̃1, ..., q̃i with q̃ = q̃j , all 1 ≤ j ≤ i, and q̃1, ..., q̃i−1 in B and q̃i in AC and [(s ‖ t)q̃1...q̃i] ∈ σ ‖ τ ,
then q̃i is justified by the last O-store-H in s ; t.

Proof: By induction on |s ‖ t|. The base case is encompassed in the case of s ; t containing
at most one O-store-H, which is trivial. Now let wlog (s ‖ t)q̃1...q̃i = (sq1...qi) ‖(tq′1...q

′
i−1)

with [sq1...qi] ∈ σ and [tq′1...q
′
i−1] ∈ τ , and let each qj be justified by xj and each q′j by x

′
j .

Moreover, by hypothesis, xj = x′j , for 1 ≤ j ≤ i − 1, and therefore each such pair xj , x
′
j

appears in s ‖ t as some x̃j , the latter justifying q̃j in s ‖ t.
Now, assume wlog that s ‖ t ends in AB. Then, by tidiness of σ and τ we have that, for each

j ≥ 1,

q2j+1 = q2j , q′2j = q′2j−1 , qj = q′j

For each j ≥ 1, q2j+1 is a P-move of σ justified by some store-H, say x2j+1. By tidiness of
σ, x2j+1 is the last O-store-H in ps<q2j+1q = ps≤q2j

q, and therefore x2j+1 is the last store-H

in ps<x2j
q. Then, by previous lemma, x̃2j+1 is the last store-H in s<x2j

‖ t<x′
2j

= (s ‖ t)<x̃2j
.

Similarly, x̃2j is the last store-H in (s ‖ t)<x̃2j−1 . Hence, the store-H subsequence of (s ‖ t)≤x̃1

ends in x̃i...x̃1.

Now, by tidiness of σ, x1 is the last O-store-H in psq. If x1 is also the last store-H in psq then, by
previous lemma, x̃1 is the last store-H in s ‖ t, hence x̃i is the last store-H in s ; t. Otherwise,

by corollary 4.51, q1 is a copy of s.−1 = q0 . If q0 is in A then its justifier is s.−2 = x0 and,
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because of CC-mode, the store-H subsequence of s ‖ t ends in x̃i...x̃1x̃0 , so x̃i is the last O-
store-H in s ; t. If q0 is in B then we can use the IH on s− ‖ t− and q̃0, q̃1, ..., q̃i, and obtain

that x̃i is the last O-store-H in s− ; t− = s ; t. �

Proposition 4.56 If σ : AB B and τ : BB C are tidy strategies then so is σ ; τ .

Proof: Take odd-length [s ; t] ∈ σ ; τ with not both s and t ending in B, ps ‖ tq = s ‖ t and
|s ; t| odd. We need to show that s ; t satisfies (TD1-3). As (TD2) is a direct consequence of
the previous lemma, we nos the other two conditions. Assume wlog that s ; t ends in A.

For (TD1), assume s ; t ends in a store-Q q̃. Then s ends in some q, which is justified by the

P-store-H s.−2 = x (also in A). q is either answered or copied by σ ; in particular, if q̃ = a~a

with a # ps ; tq− = s− ; t then a # s−, t , so σ copies q. If σ answers q with z then z doesn’t

introduce new names, so [(s ; t)z̃] ∈ σ ; τ with nlist(z̃) = nlist(q̃) and z̃ = z , as required.
Otherwise, let σ copy q as q1 , say, under last O-store-H in psq, say x1. If x1 is in B then, by

lemma 3.41, sq1 ≍ tq′1, with q1, q
′
1 in B and q′1 being q1 with name-list that of its justifier, say

x′1, where x1 = x′1 . Now [tq′1] ∈ τ and it ends in a store-Q, so τ either answers it or copies

it under last O-store-H in ptq′1q. In particular, if q = a~a with a # ps ; tq then, as above, a # t

and τ copies q′1. This same reasoning can be applied consecutively, with copycats attaching
store-Q’s to store-H’s appearing each time earlier in s and t. As the latter are finite and

initial store-H’s are third moves in s and t, at some point either σ plays qi in A or answers it

in B, or τ plays q′i in C or answers it in B. If an answer occurs then it doesn’t introduce new
names (by tidiness), so it is copycatted back to q closing all open qj ’s and q

′
j ’s. Otherwise,

we need only show that, for each j, q̃j = q̃, which we do by induction on j: q̃1 = qs • t,ǫ and

q̃j+1 = q
(s≤qj

) •(t≤q′
j
),ǫ

= q̃j
IH
= q̃. This proves (TD1).

For (TD3), assume s ; t = uq̃(O)q̃(P )vỹ with q̃(O)q̃(P )v a copycat. Then, either both q̃(O), q̃(P )

are in A, or one is in A and the other in C. Let’s assume q̃(O) in A and q̃(P ) in C— the

other cases are shown similarly. Then, q̃(O) her(editarily)-justifies ỹ, and let s.−1 = y be

justified by some x in s. Now, as above, q̃(O)q̃(P ) is witnessed by some q̃(O) q̃1 . . . q̃iq̃(P ) in
s ‖ t, with odd i ≥ 1 and all q̃j ’s in B. We show by induction on 1 ≤ k ≤ i that there exist

x1, ..., xk, x
′
1, ..., x

′
k, y1, ..., yk, y

′
1, ..., y

′
k in B such that (sy1 . . . yk ‖ ty′1 . . . y

′
k) ∈ σ ‖ τ and, for

each relevant j ≥ 1,

yj = y′j = y , y1 = y , y2j = y2j+1 , y′2j−1 = y′2j , xj = x′j

with qj her-justifying xj in s and xj justifying yj (and q
′
j her-justifying x

′
j in t and x

′
j justify-

ing y′j), and x̃j+1, x̃j consecutive in s ‖ t, and x̃1, x̃ also consecutive.

For k = 1, let s = s1q(O)q1s2y. Now, q̃(O) her-justifying ỹ implies that q(O) her-justifies

y, hence it appears in psq. Thus psq = s′1q(O)q1s
′
2y, so, by (original definition of) tidiness,

[sy1] ∈ σ with y1 = y justified by x1 = psq .−3 = s.−3. By lemma 3.41, [ty′1] ∈ τ with y′1 = y1.

By proposition 4.49, q(O)q1s
′
2 is a copycat, so q1 her-justifies x1 and therefore x1, y1 in B. Fi-

nally, x = psq .−2 = s.−2 is a P-move so x̃1, x̃ are consecutive in s ‖ t.
For even k > 1 we have, by IH, that (sy1 . . . yk−1 ‖ ty′1 . . . y

′
k−1) ∈ σ ‖ τ with y′k−1 an O-

move her-justified by q′k−1, an O-move. Then, q′k−1 appears in pty′1...y
′
k−1q, so pty′1...y

′
k−1q =

t1q
′
k−1q

′
kt2y

′
k−1, thus (by tidiness) [ty

′
1...y

′
k−1y

′
k] ∈ τ with y′k = y′k−1 justified by x′k = pty′1...y

′
k−1q .−3.

Now, q′k−1q
′
kt2 is a copycat so q′k her-justifies x′k. Moreover, x′k, x

′
k−1 are consecutive in ptq,

so, as x′k−1 a P-move, they are consecutive in t, and therefore x̃k, x̃k−1 consecutive in s ‖ t.
Finally, by lemma 3.41, [sy1 . . . yk−1yk] ∈ σ with yk = y′k. The case of k odd is entirely dual.

Now, working as above, we can show that there exist x′i+1, y
′
i+1 inC such that [ty′1...y

′
iy

′
i+1] ∈

τ and y′i+1 justified by x′i+1, x
′
i+1 her. justified by q(P ), etc. Then [(s ; t)ỹi+1] ∈ σ ; τ with

x̃i+1, x̃i, ..., x̃1, x̃ consecutive in s ‖ t, so x̃i+1 = (s ; t).−3. Finally, as above, ỹi+1 = ỹj = ỹ, all

j, as required. �

Hence, we can define our category of nominal arenas and tidy strategies.

Definition 4.57 T is the lluf subcategory of Vνρ of tidy strategies. N
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We now check that all structure required for a sound νρ-model pass from Vt to T .

Proposition 4.58 (T an adequate model) T forms an adequate νρ-model by inheriting the nec-
essary structure from Vt:

I. Projections and terminal arrows are tidy, and arrow pairing preserves tidiness.

II. ηA, τA, µA are tidy, and if h is tidy then so is Th. Moreover, ΛT preserves and reflects tidiness.

III. Successor, predecessor, numeral and conditional arrows are tidy.

IV. εA, δA, ζA are tidy, and if h is tidy then so is Q~ah, for any ~a. Moreover,
(
~a
~a′

)

A
and nuA are

tidy.

V. Name-equality arrows are tidy.

VI. updA, drfA are tidy.

Proof: Items III and V involve strategies with plays of length less than 3, hence tidy. The

same holds for terminal arrows in I and
(
~a
~a′

)

1
in IV. From corollary 4.53 we have that pro-

jections in I; ηA, τA, µA in III; nuA in IV; and updA, drfA in VI are all tidy.

Now let f : A→ B, g : A→ C be tidy strategies. Then,

viewf(〈f, g〉) = { [iA (iB, iC) s] | ([iA iB s] ∈ viewf(f) ∧ [iA iC ] ∈ g)

∨ ([iA iC s] ∈ viewf(g) ∧ [iA iB ] ∈ f) }

So let odd-length [s] ∈ 〈f, g〉 with psq = s and |s| ≥ 5, say wlog s = iA (iB, iC) s′ x with
[iA iB s

′] ∈ viewf(f) and [iA iC ] ∈ g. It is not difficult to see then that [sf ] ∈ f , for sf =

iA iB s
′ x. If x is a store-Q then [sf y] ∈ viewf(f) for a relevant y, and so [s y] ∈ viewf(〈f, g〉).

We need only check the case of x = a~a with a # s−, which implies a # s−f and hence y a
copy of x, as required. Now, if [s y] ∈ viewf(〈f, g〉) with y a store-Q then [sf y] ∈ viewf(f),

so y is justified by last O-store-H in sf , and hence y justified by last O-store-H in s. Fi-
nally, if s = iA (iB, iC) s′′q(O) q(P ) t x(O) then sf = s = iA iB s

′′q(O) q(P ) t x(P ), and therefore

[sf x] ∈ viewf(f) with x(P ) justified by sf .−3 and [s x(P )] ∈ viewf(〈f, g〉), as required. Hence,

〈f, g〉 tidy.
In along the same lines we can prove that T preserves tidiness, and that ΛT preserves and

reflects tidiness. Moreover, tidiness of product-related constructs implies tidiness of struc-
tural arrows in the comonads.

Finally, adequacy is clearly inherited from Vt. �

Henceforth, by strategies we shall mean tidy strategies, unless stated otherwise.

4.3.6 Observationality

Strategy equality is too fine grained to capture contextual equivalence in a complete manner.
For example, even simple contextual equivalences like

skip ≅ νa.skip

are not preserved by the semantical translation, since strategies include in their name-lists
all introduced names, even useless ones. For similar reasons, equivalences like

νa.νb.M ≅ νb.νa.M

are not valid semantically. It is not only because of the treatment of name-creation that
the semantics is not complete. The ‘explicit’ way in which the store works distinguishes

equivalences like
a := 1 ;λx. ! a ; 2 ≅ a := 1 ;λx.2 .
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Thus, there are many ways in which our semantics is too expressive for our language. We
therefore proceed to apply a quotienting by the intrinsic preorder and prove full-abstraction

in the extensional model.
Following the steps described in section 4.2.2, in this section we introduce the intrinsic

preorder on T and show that the resulting model is observational. Full-abstraction is then

shown in the following section.

Definition 4.59 Expand T to (T , T,Q,O) by setting, for each ~a ∈ A#,

O~a , {f ∈ T (Q~a1, TN) | ∃~b. [(~a, ∗) ∗ ⊛ (0,⊛)
~b] ∈ f} .

Then, for each f, g ∈ T (Q~aA, TB), f .~a g if

∀ρ : Q~a(A −−⊗ TB)B TN. (Λ~a(f) ; ρ ∈ O~a =⇒ Λ~a(g) ; ρ ∈ O~a) .
N

Thus, the observability predicate O is a family (O~a)~a∈A# , and the intrinsic preorder . is a

family (.~a)~a∈A# . Recall that by Λ~a(f) we mean ΛQ
~a,T (f), that is,

Λ~a(f) = Q~a1 δPA Q~aQ~a1
Q~aΛ(z ′ ; f)PPPPPPPPA Q~a(A −−⊗ TB) .

In particular, if f ⊑ g then Λ~a(f) ⊑ Λ~a(g) and therefore Λ~a(f) ; ρ ⊑ Λ~a(g) ; ρ, which implies:

f ⊑ g =⇒ f .~a g (4.16)

The intrinsic preorder is defined by use of test arrows ρ, which stand for possible program
contexts. As the following result shows, not all such tests are necessary.

Lemma 4.60 (tl4 tests suffice) Let f, g ∈ T (Q~a1, B) with B pointed. The following are equiva-

lent.5

I. ∀ρ : Q~aBB TN. δ ;Q~af ; ρ ∈ O~a =⇒ δ ;Q~ag ; ρ ∈ O~a .

II. ∀ρ : Q~aBB TN. ρ is tl4 =⇒ (δ ;Q~af ; ρ ∈ O~a =⇒ δ ;Q~ag ; ρ ∈ O~a) .

Hence, for each ~a and f, g ∈ T (Q~aA, TB), f .~a g iff

∀ρ : Q~a(A −−⊗ TB)B TN. ρ is tl4 =⇒ (Λ~a(f) ; ρ ∈ O~a =⇒ Λ~a(g) ; ρ ∈ O~a) .

Proof: I ⇒ II is trivial. Now assume II holds and let ρ : Q~aB B TN be any strategy

such that δ ;Q~af ; ρ ∈ O~a. Then, there exist [s] ∈ δ ;Q~af and [t] ∈ ρ such that [s ; t] =

[(~a, ∗) ∗ ⊛ (0,⊛)
~b] ∈ (δ ;Q~af) ; ρ. We show by induction on the number of JB-moves ap-

pearing in s ‖ t that δ ;Q~ag ; ρ ∈ O~a.

If no suchmoves appear then t = (~a, iB) ∗⊛ (0,⊛)
~b, so done. If n+1 suchmoves appear then

ρ is necessarily t4, asB is pointed, so by lemma 3.58 there exists tl4* strategy ρ̃ such that ρ =

∆ ; ρ̃. It is not difficult to see that ρ being tidy implies that ρ̃ is tidy. Moreover, δ ;Q~af ; ρ =

δ ;Q~af ; ∆ ; ρ̃ = δ ;Q~af ;〈id, Q~a! ; δ ;Q~af〉 ; ρ̃ = δ ;Q~af ; ρ′ , with ρ′ being 〈id, Q~a! ; δ ;Q~af〉 ; ρ̃.

Now, by definition of ρ̃, [(~a, ∗) ∗ ⊛ (0,⊛)
~b] = [s′ ; t′] ∈ δ ;Q~af ; ρ′ with s′ ‖ t′ containing

n JB-moves so, by IH, δ ;Q~ag ; ρ′ ∈ O~a. But δ ;Q~ag ; ρ′ = δ ;Q~ag ;〈id, Q~a! ; δ ;Q~af〉 ; ρ̃ =

δ ;Q~af ;〈Q~a! ; δ ;Q~ag, id〉 ; ρ̃ = δ ;Q~af ; ρ′′ , with ρ′′ being 〈Q~a! ; δ ;Q~ag, id〉 ; ρ̃. But ρ′′ is tl4,
thus, by hypothesis, O~a ∋ δ ;Q~ag ; ρ′′ = δ ;Q~ag ; ρ , as required. �

We can now prove the second half of observationality.

5Recall, from definition 3.51, that a total strategy σ : A −→ B is:

• l4 if whenever [s] ∈ σ and s.−1 ∈ JA then |psq | = 4,

• t4 if for any [iA iB jB ] ∈ σ there exists [iA iB jB j
~b
A] ∈ σ,

• tl4 if it is both t4 and l4,

• ttotal if it is tl4 and for any [iA iB jB ] ∈ σ there exists [iA iB jB jA] ∈ σ.



4.3. THE NOMINAL GAMESMODEL 109

Lemma 4.61 For any f : Q~a
′

1B B and any tl4 morphism ρ : Q~aBB TN, with B pointed and
~a ⊆ ~a′,

δ ;Q~a \~a^~a′℄ f ; ρ ∈ O~a ⇐⇒ δ ;Q~a
′

f ; ~a
′

~a ; ρ ∈ O~a
′

.

Moreover, for all relevant f, g and ~a ⊆ ~a′′ ⊆ ~a′,

f .~a′ g =⇒ \~a^~a′℄ f .~a \~a^~a′℄ g ,
f .~a g =⇒ ~a′

~a ; f .~a′ ~a′

~a ; g ,

~a′

~a′′ ; f .~a′ g =⇒ \~a^~a′′℄ f .~a \~a^~a′℄ g .
In particular, f .~aa g =⇒ \a℄ f .~a \a℄ g .
Proof: For the first part, ρ being tl4 and B being pointed imply that there exists some ~b# ~a

and a ttotal strategy ρ′ such that ρ = \~b℄ ρ′. Now let δ ;Q~a \~a^~a′℄ f ; ρ ∈ O~a, so there exists

[s ; t] = [(~a, ∗) ∗ ⊛ (0,⊛)
~b(~a′\~a)~c] ∈ (δ ;Q~a \~a^~a′℄ f) ; ρ, and let s = (~a, ∗) (~a, iB) jBm

(~a′\~a)~cs′

and t = (~a, iB) ∗⊛ j
~b
B t

′. Letting s′rα be s′
nlist(s′)\(~a′\~a)

, we can see that [(~a′, ∗) iB jBm~cs′rα] ∈

f and thus [s′′] , [(~a′, ∗) (~a, iB) jBm
~cs′rα] ∈ δ ;Q~a

′

f ; ~a
′

~a . Hence, [s′′ ; t] = [(~a′, ∗) ∗⊛ (0,⊛)
~b~c] ∈

δ ;Q~a
′

f ; ~a
′

~a ; ρ, as required. The converse is shown similarly.

For the second part, suppose f .~a′ g : Q~a
′

A B TB and take any tl4 morphism ρ :

Q~a(A −−⊗ TB)B TN. Then,
Λ~a(\~a^~a′℄ f) ; ρ ∈ O~a ⇐⇒ δ ;Q~aΛ(ζ ′ ; \~a^~a′℄ f) ; ρ ∈ O~a

(3.12)
⇐⇒ δ ;Q~a \~a^~a′℄(Λ(ζ ′ ; f)) ; ρ ∈ O~a

⇐⇒ δ ;Q~a
′

Λ(ζ ′ ; f) ; ~a
′

~a ; ρ ∈ O~a
′

f.~a′
g

=⇒ δ ;Q~a
′

Λ(ζ ′ ; g) ; ~a
′

~a ; ρ ∈ O~a
′

⇐⇒ Λ~a(\~a^~a′℄ g) ; ρ ∈ O~a.

For the next claim, it is easy to see that, for any h : Q~a
′

1B TN, h ∈ O~a
′

iff
(
~a
~a′

)
;h⊥ ; pu ∈ O~a.

Hence, if f .~a g then we have:

δ ;Q~a
′

Λ(ζ ′ ; ~a
′

~a ; f) ; ρ ∈ O~a
′

⇐⇒ δ ;Q~a
′ ~a′

~a ;Q~a
′

Λ(ζ ′ ; f) ; ρ ∈ O~a
′

⇐⇒
(
~a
~a′

)
;(δ ;Q~a

′ ~a′

~a ;Q~a
′

Λ(ζ ′ ; f) ; ρ)⊥ ; pu ∈ O~a

(N2’)
⇐⇒ δ ;Q~aΛ(ζ ′ ; f) ;

(
~a
~a′

)
; ρ⊥ ; pu ∈ O~a

f.~ag
=⇒ δ ;Q~aΛ(ζ ′ ; g) ;

(
~a
~a′

)
; ρ⊥ ; pu ∈ O~a ⇐⇒ δ ;Q~a

′

Λ(ζ ′ ; ~a
′

~a ; g) ; ρ ∈ O~a
′

.

For the last claim, if ~a′

~a′′ ; f .~a′ g then \~a^~a′℄( ~a′~a′′ ; f) .~a \~a^~a′℄ g, so it suffices to show\~a^~a′℄( ~a′~a′′ ; f) ⋍ \~a^~a′′℄ f . Now, observing that, for any h : Q~a
′′

1 B TN, h ∈ O~a
′′

iff
~a′

~a′′ ;h ∈ O~a
′

, we have:

δ ;Q~aΛ(ζ ′ ; \~a^~a′℄( ~a′~a′′ ; f)) ; ρ ∈ O~a
(3.12)
⇐⇒ δ ;Q~a \~a^~a′℄Λ(ζ ′ ; ~a

′

~a′′ ; f) ; ρ ∈ O~a

⇐⇒ δ ;Q~a
′

Λ(ζ ′ ; ~a
′

~a′′ ; f) ; ~a
′

~a ; ρ ∈ O~a
′

⇐⇒ ~a′

~a′′ ; δ ;Q~a
′′

Λ(ζ ′ ; f) ; ~a
′′

~a ; ρ ∈ O~a
′

⇐⇒ δ ;Q~a
′′

Λ(ζ ′ ; f) ; ~a
′′

~a ; ρ ∈ O~a
′′

⇐⇒ δ ;Q~a \~a^~a′′℄Λ(ζ ′ ; f) ; ρ ∈ O~a
(3.12)
⇐⇒ δ ;Q~aΛ(ζ ′ ; \~a^~a′′℄ f) ; ρ ∈ O~a,

as required. �

In order to prove that T is observational, we are only left to show that

JMK ∈ O~a ⇐⇒ ∃~b, S. JMK = \~b℄ JS̄ ; 0K

for any ~a ^∅_M : N. The “⇐=” direction is trivial. For the converse, because of correct-
ness, it suffices to show the following generalisation of adequacy.6

6At this point, notice that the proof of adequacy (proposition 4.44) is, in fact, a proof of O-adequacy. As we find
both proofs interesting, we present them both regardless of the redundancy.
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Lemma 4.62 (O-Adequacy) Let ~a ^∅_M : N be a typed term. If JMK ∈ Oǫ then there exists
some S such that ~a`M −→→ S ` 0.

Proof: The idea behind the proof is the same as that of the proof of adequacy (v. sec-
tion 4.3.4). It suffices to show that, for any suchM , there is a non-reducing sequent S ` N

such that ~a ` M −→→ S ` N ; therefore, because of Strong Normalisation in the sν-
calculus, it suffices to show that there is no infinite reduction sequence starting from ~a`M

and containing infinitely many DRF reduction steps.

To show the latter we will use an operation on terms adding new-name constructors just
before dereferencings. The operation yields, for each termM , a term (M)[ the semantics of

which is equivalent to that of M . On the other hand, ~a ` (M)[ cannot perform infinitely
many DRF reduction steps without creating infinitely many new names. For each termM ,

define (M)[by induction as:

(a)[ , a , (x)[ , x , ... (λx.M)[ , λx.(M)[ , (M N)[ , (M)[(N)[ , ...

and (!N)[ , νa. !(N)[ , some a /∈ fn(N).

We show that J(M)[K ⋍ JMK, by induction on M ; the base cases are trivial. The induction
step follows immediately from the IH and the fact that ⋍ is a congruence, in all cases except

for M being !N . In the latter case we have that J(M)[K = \a℄(~aa~a ; J!(N)[K) , while the IH
implies that JMK ⋍ J!(N)[K. Hence, it sts that for each f : Q~aA B TB we have f ⋍\a℄(~aa~a ; f) . Indeed, for any relevant ρ which is tl4,

Λ~a(\a℄(~aa~a ; f)) ; ρ ∈ O~a
lem 4.61
⇐⇒ δ ;Q~aaΛ(ζ ′ ; ~aa~a ; f) ; ~aa~a ; ρ ∈ O~aa

⇐⇒ δ ;Q~aa~aa~a ; ~aa~a ;Q~aΛ(ζ ′ ; f) ; ρ ∈ O~aa

⇐⇒ ~aa
~a ; Λ~a(f) ; ρ ∈ O~aa ⇐⇒ Λ~a(f) ; ρ ∈ O~a .

Now, take any ~a ^∅_M : N and assume JMK ∈ O~a, and that ~a ` M diverges us-

ing infinitely many DRF reduction steps. Then, ~a ` (M)[ diverges using infinitely many
NEW reduction steps. However, since J(M)[K ⋍ JMK, we have J(M)[K ∈ O~a and therefore

[(~a, ∗) ∗ ⊛ (0,⊛)
~b] ∈ J(M)[K for some ~b. However, ~a ` (M)[ reduces to some S ` M ′ us-

ing |~b|+1NEW reduction steps, so J(M)[K = \~c℄ JS̄ ;M ′K with |~c| = |~b|+1,	to determinacy.�

We have therefore shown observationality.

Proposition 4.63 (Observationality) (T , T,Q,O) is observational. �

4.3.7 Definability and full-abstraction

We now proceed to show definability in our model T , and through it ip-definability. Ac-

cording to the results of section 4.2.2, this will suffice for full abstraction.

We first make precise the notion of finitary strategy, that is, of strategy with finite descrip-
tion, by introducing truncation functions that remove inessential branches from a strategy’s

description.

Definition 4.64 Let σ : A B B in T and let [s] ∈ viewf(σ) be of even length. Define
trunc(s) and trunc′(s) by induction as follows.

trunc(ǫ) = trunc′(ǫ) , ǫ

trunc(x(O)y(P )s
′) ,

{

ǫ , if x = y are store-Q’s

xy trunc(s′) , o.w.

trunc′(x(O)y(P )s
′) ,







ǫ , if x = y are store-Q’s

ǫ , if x store-Q , y a store-A and s′ = ǫ

ǫ , if x ∈ IA, y ∈ IB and s′ = ǫ

xy trunc′(s′) , o.w.
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Moreover, say σ is finitary if trunc(σ) is finite, where

trunc(σ) , {[trunc(s)] | [s] ∈ viewf(σ) ∧ |s| > 3} .

Finally, for any [t] ∈ σ define:

σ≤t , strat{[s] ∈ viewf(σ) | ∃ t′ ≤ t. trunc′(s) = pt′q} .
N

Hence, finitary are those strategies whose viewfunctions become finite if we delete all the
store-copycats and all default initial answers— the latter dictated by totality. Moreover,

the strategy σ≤t is the strategy we are left with if we truncate viewf(σ) by removing all its

branches of size greater than 3 that are not contained in t, except for the store-copycatswhich
are left intact and for the store-A’s brancheswhich are truncated to the point of leaving solely

the store-A, so that we retain tidiness.
Note that, in general, trunc′(s) ≤ trunc(s) ≤ s. We can then show the following.

Proposition 4.65 If σ is a strategy and [t] ∈ σ is even-length then σ≤t is a finitary strategy with

[t] ∈ σ≤t and σ≤t ⊑ σ.

Proof: To show that σ≤t is an innocent strategy we need to show that

f , {[s] ∈ viewf(σ) | ∃ t′ ≤ t. trunc′(s) = pt′q}

is a viewfunction. For even-prefix closure, if s = s′xy and [s] ∈ f then [s] ∈ viewf(σ) and

trunc′(s) = pt′q, some t′ ≤ t. We have that trunc′(s′) ≤ trunc′(s) so trunc′(s′) = pt′′q, some
t′′ ≤ t′ ≤ t, so [s′] ∈ f . Single-valuedness is clear, as f ⊆ viewf(σ). The latter shows also

that σ≤t ⊑ σ.

Totality is obvious. For tidiness, let odd-length [s] ∈ σ≤t with psq = s. (TD2) clearly
holds. For (TD1), if s ends in a store-Q then there exists [sx] ∈ σ satisfying (TD1) and,

as trunc′(s−) = trunc′(sx), we have [sx] ∈ f . The same reasoning resolves (TD3).
We now show trunc(f) is finite. Each [s′] ∈ trunc(f) is [trunc(s)] for some [s] ∈ viewf(σ)

and t′ ≤ t such that |s| > 3 and trunc′(s) = pt′q. The cases of [trunc(s)] = [trunc′(s)] are

finitely many, as t is of finite length. For the rest, trunc(s) = trunc′(s)xy , x a store-Q awith
a ∈ S(trunc′(s)) and y a store-A. Hence, for each t′ ≤ t there are not more than |S(pt′q)|-
many elements added in trunc(f). Thus, σ≤t is finitary.
Finally, for any even-length t′ ≤ t, we have that trunc′(pt′q) ≤ pt′q, so there exists some t′′ ≤ t

such that trunc′(pt′q) = pt′′q and hence [pt′q] ∈ σ≤t. Then, by lemma 3.38, we have [t] ∈ σ≤t.�

We proceed to show definability. The proof is facilitated by the following lemma. Note

that for economy we define strategies by means of their viewfunctions modulo totality and
even-prefix closure. Moreover, we write σ ↾ i for the (total) restriction of a strategy σ to an

initial move i, and sr~b for swith~b removed from all of its name-lists.

Lemma 4.66 (Decomposition Lemma) Let σ : Q~aJAK B T JBK be a strategy. We can decom-

pose σ as follows.

1. If there exists an iA(0) such that ∃x0. [(~a, iA(0)) ∗ ⊛ x0] ∈ σ then

σ = Q~aJAK
〈[x

~a
= iA(0)], 〈σ0, σ

′〉〉PPPPPPPPPPPPPPPA N⊗ (T JBK)2
cndPPA T JBK

where:

[x
~a
= iA(0)] : Q~aJAK B N , {[(~a, iA(0)) 0]} ∪ {[(~a, iA) 1] | [(~a, iA)] 6= [(~a, iA(0))]} ,

σ0 : Q~aJAK B T JBK , strat{ [(~a, iA(0)) s] ∈ viewf(σ) } ,

σ′ : Q~aJAK B T JBK , strat{ [(~a, iA) s] ∈ viewf(σ) | [(~a, iA)] 6= [(~a, iA(0))] } .



112 CHAPTER 4. NOMINAL REFERENCES

2. If there exists an iA(0) such that ∀iA. (∃x0. [(~a, iA) ∗ ⊛ x0] ∈ σ) ⇐⇒ [(~a, iA)] = [(~a, iA(0))] ,

then σ = \~b℄σ~b , where:
σ~b : Q~a

~bJAK B T JBK , strat{ [(~a~b, iA(0))∗⊛m0 s
r~b] | [(~a, iA(0)) ∗⊛m

~b
0 s] ∈ viewf(σ) } .

3. If there exist iA(0),m0 such that ∀iA, x. [(~a, iA) ∗ ⊛ x] ∈ σ ⇐⇒ [(~a, iA)x] = [(~a, iA(0))m0] ,
then one of the following is the case.

(a) m0 = a, a store-Q of type C under ⊛, in which case we have σ = σ′ ↾ (~a, iA(0)), where:

σ′ , Q~aJAK
〈id, φ〉PPPPA Q~aJAK ⊗ T JCK

τ ; Tz ′PPPPPA TQ~a(JAK ⊗ JCK)
TσaPPPA T 2JBK

µPA T JBK ,

σa , strat{ [(~a, iA(0), iC) ∗ ⊛ s] | [(~a, iA(0)) ∗ ⊛ a iC s] ∈ viewf(σ) } ,

φ : Q~aJAK B T JCK ,

{

Q~a! ; ~aa ; drfC , if a ∈ S(~a)

Q~aπj ; ~aǫ ; drfC , if a# ~a .

(b) m0 = jA ∨m0 = (iB,⊛) , a store-H, in which case if [(~a, iA(0)) ∗ ⊛m0 a iC ] ∈ σ, for some

store-Q a and store-A iC , then

σ = Q~aJAK
〈∆, σa〉PPPPPA Q~aJAK ⊗Q~aJAK ⊗ T JCK

τ ;T (id⊗φ; τ);µPPPPPPPPPPPA TQ~aJAK
Tσ′ ;µPPPPPA T JBK

where:

σa : Q~aJAK B T JCK , strat{ [(~a, iA(0)) ∗ ⊛ (iC ,⊛) s] | [(~a, iA(0)) ∗ ⊛m0 a iC s] ∈ viewf(σ)

∨ [⊛ ⊛ s] ∈ viewf(idξ) } ,

σ′ : Q~aJAK B T JBK , strat( {[(~a, iA(0)) ∗ ⊛m0 y s] ∈ viewf(σ) | y 6= a }

∪ {[(~a, iA(0)) ∗ ⊛m0 a s] | [⊛ ⊛ a s] ∈ viewf(idξ)} ) ,

φ : Q~aJAK ⊗ JCK B T 1 ,

{

(Q~a! ; ~aa ) ⊗ idJCK ;updC , if a ∈ S(~a)

(Q~aπj ; ~aǫ ) ⊗ idJCK ; updC , if a# ~a .

In both cases above, we take j = min{j | (iA(0))j = a}.

Proof: 1 is straightforward: we just partition σ into σ0 and σ′ and recover it by use of

[x
~a
= iA(0)] and cnd. For 2, we just use the definition of name-abstraction for strategies and

the condition on σ.

For 3, it is clear thatm0 is either a store-Q a under ⊛, or a store-H jA, or a store-H (iB,⊛).
In case m0 = a with a ∈ AC , we define σa : Q~a(JAK ⊗ JCK) B T JBK , strat(fa) ,

where

fa , { [(~a, iA(0), iC) ∗ ⊛ s] | [(~a, iA(0)) ∗ ⊛ a iC s] ∈ viewf(σ) } .

To see that fa is a viewfunction it suffices to show that its elements are plays, and for that it

suffices to show that they are legal. Now, for any [(~a, iA(0), iC) ∗ ⊛ s] ∈ fa with [(~a, iA(0)) ∗
⊛ a iC s] ∈ viewf(σ), (~a, iA(0), iC) ∗ ⊛ s is a justified sequence and satisfies well-bracketing,

as its open Q’s outside s are the same as those in (~a, iA(0)) ∗ ⊛ a iC s , i.e. ⊛. Moreover,

visibility is obvious. Hence, fa is a viewfunction, and it inherits tidiness from σ. Moreover,
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we have the following diagram.

Q~aJAK
〈id,φ〉 ; τ ;Tz ′

// TQ~a(JAK ⊗ JCK)
Tσa // T 2JBK

µ // T JBK

(~a, iA(0))

∗

∗

∗

⊛

⊛

⊛
a

a

a

iC

iC

iC

(~a, iA(0), iC ,⊛)

(∗,⊛)

⊛

Because of the copycat links, we see that

viewf(〈id, φ〉 ; τ ;T ζ ′ ;Tσa ;µ) ↾ (~a, iA(0)) = {[(~a, iA(0)) ∗ ⊛ a iC s] | [(~a, iA(0), iC) ∗ ⊛ s] ∈ viewf(σa)}

= viewf(σ) ,

as required. Note that the restriction to initial moves [~a, iA(0)] taken above is necessary in

case φ contains a projection (in which case it may also answer other initial moves).
In casem0 = jA (som0 a store-H) and [(~a, iA(0)) ∗ ⊛m0 a iC ] ∈ σ, we have that

σ = strat(fa ∪ (f ′ \ f ′
a)) ,

where fa, f
′ are viewfunctions of typeQ~aJAK B T JBK, so that fa determines σ’s behaviour

if O plays a at the given point, and f ′ \ f ′
a determines σ’s behaviour if O plays something

else. That is,

fa , { [(~a, iA(0)) ∗ ⊛ jA a iC s] ∈ viewf(σ) }

f ′
a , { [(~a, iA(0)) ∗ ⊛ jA a s] | [⊛ ⊛ a s] ∈ viewf(idξ) }

f ′ , f ′
a ∪ { [(~a, iA(0)) ∗ ⊛ jA y s] ∈ viewf(σ) | y 6= a } .

f ′ differs from viewf(σ) solely in the fact that it doesn’t answer a but copycats it instead;

it is a version of viewf(σ) which has forgotten the name-update of a. On the other hand,
fa contains exactly the information for this update. It is not difficult to see that f ′, fa are

indeed viewfunctions. We now define

f ′′
a : Q~aJAK B T JCK , { [(~a, iA(0)) ∗ ⊛ (iC ,⊛) s] | [(~a, iA(0)) ∗ ⊛ jA a iC s] ∈ fa

∨ [⊛ ⊛ s] ∈ viewf(idξ) }

σa : Q~aJAK B T JCK , strat(f ′′
a )

σ′ : Q~aJAK B T JBK , strat(f ′)

σ′′ : Q~aJAK B T JBK , 〈∆, σa〉 ; τ ;T (id⊗φ ; τ) ;µ ;∼= ;Tσ′ ;µ .
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We can see that σ′ is a tidy strategy. For σa, it suffices to show that f ′′
a is a viewfunction, since

tidiness is straightforward. For that, we note that even-prefix closure and single-valuedness

are clear, so it suffices to show that the elements of f ′′
a are plays.

So let [(~a, iA(0)) ∗ ⊛ (iC ,⊛) s] ∈ f ′′
a with [(~a, iA(0)) ∗ ⊛ jA a iC s] ∈ viewf(σ). We have that

(~a, iA(0)) ∗ ⊛ (iC ,⊛) s is a justified sequence, because s does not contain any moves justified

by jA or a. In the former case this holds because we have a P-view, and in the latter because
a is a closed (answered) Q. Note also that there is no move in s justified by ⊛: such a move

(iB,⊛) would be an A ruining well-bracketing as jA is an open Q, while a store-Q under
⊛ is disallowed by tidiness as s.1 is an O-store-H. Finally, well-bracketing and visibility are

clear, while NC’s follow from lemma 3.53.

We now proceed to show that σ = σ′′. By the previous analysis on f ′′
a we have that σa =

σ′
a ; η (modulo totality) where σ′

a is the possibly non-total strategy

σ′
a : Q~aJAK B JCK , strat{ [(~a, iA(0)) iC s] | [(~a, iA(0)) ∗ ⊛ jA a iC ] ∈ fa } ,

and hence σ′′ ↾ (~a, iA(0)) = 〈∆, σ′
a〉 ; id⊗φ ; τ ;∼= ;Tσ′ ;µ . We have the following diagram.

Q~aJAK
〈∆,σ′

a〉 // Q~aJAK ⊗ Q~aJAK ⊗ JCK
id⊗φ ; τ ; ∼=// TQ~aJAK

Tσ′
// T 2JBK

µ // T JBK

(~a, iA(0))

(~a, iA(0),~a, iA(0), iC)

∗

∗

∗

⊛
⊛

⊛

(~a, iA(0), ⊛)

(∗, ⊛)

⊛
jA

jA

jA

a
a

a
a

a
a

iC

iC

iC

iC

iC

iC

y

y

y

Following the copycat paths and observing that the response of σ′′ to inputs different than
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[~a, iA(0)] is merely the initial answer ∗ imposed by totality, we obtain:

viewf(σ′′) = { [(~a, iA(0)) ∗ ⊛ jA a s], [(~a, iA(0)) ∗ ⊛ jA y s] ∈ viewf(σ′′) | y 6= a }

= { [(~a, iA(0)) ∗ ⊛ jA a iC s] | [(~a, iA(0)) ∗ ⊛ (iC ,⊛) s] ∈ f ′′
a ∧ s.1 ∈ JJCK }

∪ { [(~a, iA(0)) ∗ ⊛ jA y s] ∈ f ′ | y 6= a }

= fa ∪ (f ′ \ f ′
a) = viewf(σ)

as required.
In case x = (iB,⊛) we work similarly as above. �

The proof of definability is a nominal version of standard definability results in game se-
mantics. In fact, using the Decomposition Lemma we reduce the problem of definability of

a finitary strategy σ to that of definability of a finitary strategy σ0 of equal length, with σ0

having no initial effects (i.e. fresh-name creation, name-update or name-dereferencing). On

σ0 we then apply almost verbatim the methodology of [HY99]— itself based on previous

proofs of definability.

Theorem 4.67 (Definability) Let A,B be types and σ : Q~aJAK B T JBK be finitary. Then σ is

definable.

Proof: Wedo induction on (|trunc(σ)|, ‖σ‖), wherewe let ‖σ‖ , max{|L(s)| | [s] ∈ viewf(σ)},
i.e. the maximum number of names introduced in any play of trunc(σ). If |trunc(σ)| = 0

then σ = JstopBK ; otherwise, there exist x0, iA(0) such that [(~a, iA(0)) ∗ ⊛ x0] ∈ σ . By

Decomposition Lemma,

σ = 〈[x
~a
= iA(0)], 〈σ0, σ

′〉〉; cnd

with |trunc(σ′)| < |trunc(σ)| and (0, 0) < (|trunc(σ0)|, ‖σ0‖) ≤ (|trunc(σ)|, ‖σ‖) , so by

IH there exists term M ′ such that JM ′K = σ′. Hence, if there exist terms M0, N0 with

JM0K ↾ (~a, iA(0)) = σ0 and JN0K = [x
~a
= iA(0)]; η , then we can see that

σ = Jif0 N0 thenM0 elseM
′K .

We first constructN0 . Assume thatA = A1×A2×· · ·×An withAi’s non-products, and sim-
ilarly B = B1 × · · · ×Bm. Moreover, assume wlog that A is segmented in four parts: each of

A1, ..., Ak isN; each ofAk+1, ..., Ak+i, ..., Ak+k′ is [A′′′
i ]; each ofAk+k′+1, ..., Ak+k′+i, ..., Ak+k′+k′′

is A′
i → A′′

i ; and the rest are all 1. Take ~z, ~z′, ~z′′, ~z′′′ to be variable-lists of respective types.
Define φ0, φ

′
0 by:

φ0 , κ1, ..., κk , with (κ1, ..., κk) being the initial N-segment of iA(0) ,

φ′0 , κ′1, ..., κ
′
k′ , with each κ′i ,







(iA(0))k+i , if (iA(0))k+i ∈ S(~a)

z′j , if (iA(0))k+i # ~a

∧ j = min{j < i | (iA(0))k+i = (iA(0))k+j}

fresh(i) , otherwise .

fresh(i) is a meta-constant denoting that Opponent has played a fresh name in Ak+i. If

the same fresh name is played in several places inside iA(0) then we regard its leftmost
occurrence as introducing it— this explains the second item in the cases-definition above.

Now, define:

N0 , [〈~z, ~z′〉 = 〈φ0, φ
′
0〉] , where

[〈~z, ~z′〉 = 〈~κ,~κ′〉] , [z1 = κ1] ∧ · · · ∧ [zk = κk] ∧ [z′1 = κ′1] ∧ · · · ∧ [z′k′ = κ′k′ ] ,

[z′ = fresh(i)] , [z′ 6= a1] ∧ · · · ∧ [z′ 6= a|~a|] ∧ [z′ 6= z′1] ∧ · · · ∧ [z′ 6= z′i−1] ,

with the logical connectives ∧ and ¬ defined using if0’s, and [zi = κi] using pred ’s, in the

standard way. It is not difficult to show that indeed JN0K
~a
= [x = iA(0)]; η .
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We proceed to find M0 . By second part of Decomposition Lemma, σ0 = \~b℄σ~b with
~b = nlist(x0), |trunc(σ~b)| = |trunc(σ0)| and ‖σ~b‖ = ‖σ0‖ − |~b| . If |~b| > 0 then, by IH, there
exists termM~b such that JM~bK = σ~b , so taking

M0 , ν~b.M~b

we have σ0 = JM0K .
Assume now |~b| = 0, so x0 = m0. σ0 satisfies the hypotheses of the third part of the

Decomposition Lemma. Hence, ifm0 = a, a store-Q of type C under ⊛, then

σ0 = (〈id, φ〉 ; τ ;T ζ ′ ;Tσa ;µ) ↾ (~a, iA(0))

with trunc(σa) < trunc(σ0) . Then, by IH, there exists ~a ^ Γ, y : C_Ma : B such that

σa = JMaK , and taking

M0 ,

{

(λy.Ma)(! a) , if a ∈ S(~a)

(λy.Ma)(! z
′
j) , if a# ~a ∧ j = min{j | a = (iA(0))k+j}

we have σ0 = JM0K ↾ (~a, iA(0)).

Otherwise, m0 = jA ∨ m0 = (iB,⊛), a store-H. If there exists an a ∈ AC such that σ0

answers to [iA(0) ∗ ⊛m0 a] then, by Decomposition Lemma,

σ0 = 〈∆, σa〉 ; τ ;T (id⊗ φ ; τ) ;µ ;Tσ′ ;µ

with |trunc(σa)| , |trunc(σ′)| < |trunc(σ0)| . By IH, there exist~a ^ Γ_Ma : C and~a ^ Γ_M ′ :

B such that σa = JMaK and σ′ = JM ′K. Taking

M0 ,

{

(a := Ma);M
′ , if a ∈ S(~a)

(z′j := Ma);M
′ , if a# ~a ∧ j = min{j | a = (iA(0))k+j}

we obtain σ0 = JM0K . Note here that σa blocks initial moves [~a, iA] 6= [~a, iA(0)] and hence
we do not need the restriction.

We are left with the case of m0 being as above and σ0 not answering to any store-Q,

which corresponds to the case of Player not updating any names before playingm0.

Ifm0 = (iB,⊛) then we need to derive a value term 〈V1, ..., Vm〉 (as B = B1 × · · · × Bm).
For each p, if Bp is a base or reference type then we can choose a Vp canonically so that its

denotation be iBp
(the only interesting such case is this of iBp

being a name a# ~a, where
we take Vp to be z′j , for j = min{j | a = (iA(0))k+j}). Otherwise, Bp = B′

p → B′′
p and from

σ0 we obtain the (tidy) viewfunction f : Q~a(JAK ⊗ JB′
pK)B T JB′′

p K by:

f , {[(~a, iA(0), iB′
p
) ∗ ⊛ s] | [(~a, iA(0)) ∗ ⊛ (iB,⊛) (iB′

p
,⊛) s] ∈ viewf(σ0)}.

Note that, for any [(~a, iA) ∗ ⊛ (iB,⊛) (iB′
p
,⊛) s] ∈ viewf(σ0), s cannot contain store-Q’s

justified by ⊛ , as these would break (TD2). Hence, f fully describes σ0 after (iB′
p
,⊛) . By

IH, there exists ~a ^ Γ, y :B′
p_N : B′′

p such that JNK = strat(f) ; take then Vp , λy.N .
Hence, taking

M0 , 〈V1, ..., Vm〉

we obtain σ0 = JM0K ↾ (~a, iA(0)).

Ifm0 = jA, played in some Ak+k′+i = A′
i → A′′

i , then m0 = (iA′
i
,⊛) . Assume that A′

i =

A′
i,1 × · · · × A′

i,ni
with A′

i,p’s being non-products. Now, O can either ask some name a
(which would lead to a store-CC), or answer at A′′

i , or play at some A′
i,p of arrow type, say

A′
i,p = Ci,p → C′

i,p . Hence,

viewf(σ0) = fA ∪
⋃ni

p=1
fp
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where:

fA , f0 ∪ { [(~a, iA(0)) ∗ ⊛ (iA′
i
,⊛) (iA′′

i
,⊛) s] ∈ viewf(σ0) }

fp , f0 ∪ { [(~a, iA(0)) ∗ ⊛ (iA′
i
,⊛) (iCi,p

,⊛) s] ∈ viewf(σ0) }

f0 , { [(~a, iA(0)) ∗ ⊛ (iA′
i
,⊛) s] | [⊛ ⊛ s] ∈ viewf(idξ) }

and where we assume fp , f0 if A′
i,p is not an arrow type. It is not difficult to see that

fA, fp are viewfunctions. Now, from fA we obtain:

f ′
A : Q~a(JAK⊗JA′′

i K)B T JBK , { [(~a, iA(0), iA′′
i
) ∗⊛ s] | [(~a, iA(0)) ∗⊛ (iA′

i
,⊛) (iA′′

i
,⊛) s] ∈ fA } .

It is not difficult to see that f ′
A is indeed a viewfunction (note that P cannot play a store-

Q under ⊛ on the RHS once (iA′′
i
,⊛) is played, by tidiness). By IH, there exists some

~a ^ Γ, y :A′′
i _MA : B such that JMAK = strat(f ′

A).
From each fp 6= f0 we obtain a viewfunction f ′

p : Q~a(JAK ⊗ JCi,pK)B T JC′
i,pK by:

f ′
p , {[(~a, iA(0), iCi,p

) ∗ ⊛ s] | [(~a, iA(0)) ∗ ⊛ (iA′
i
,⊛) (iCi,p

,⊛) s] ∈ fp} .

By IH, there exists some ~a ^ Γ, y′ : Ci,p_Mp : C′
i,p such that JMpK = strat(f ′

p) , so take

Vp , λy′.Mp. For each A′
i,p of non-arrow type, the behaviour of σ0 at A′

i,p is fully de-
scribed by (iA′

i
)p , so we choose Vp canonically as previously. 〈V1, ..., Vni

〉 is now of type

A′
i and describes σ0’s behaviour in A

′
i.

Now, taking

M0 , (λy.MA)(z′′i 〈V1, ..., Vni
〉)

we obtain σ0 = JM0K ↾ (~a, iA(0)). �

Finally, using the definability result and proposition 4.65 we can now show the following.

Corollary 4.68 T = (T , T,Q,O) satisfies ip-definability.

Proof: For each~a,A,B, defineD~aA,B , {f : Q~aJAK B T JBK | f is finitary} . By definability,

every f ∈ D~aA,B is definable. We need also show:

(∀ρ ∈ D~aA→B,N . Λ
~a(f) ; ρ ∈ O~a =⇒ Λ~a(g) ; ρ ∈ O~a) =⇒ f .~a g .

Assume the LHS assertion holds and let Λ~a(f) ; ρ ∈ O~a, some ρ : Q~a(JAK −−⊗ T JBK) B TN.
Then, let [s ; t] = [(~a, ∗) ∗ ⊛ (0,⊛)

~b] ∈ Λ~a(f) ; ρ , [s] ∈ Λ~a(f) and [t] ∈ ρ. By proposition 4.65,

[t] ∈ ρ≤t , so Λ~a(f) ; ρ≤t ∈ O~a. Moreover, ρ≤t ∈ D~aA→B,N , so Λ~a(g) ; ρ≤t ∈ O~a, by hypothesis.

Finally, ρ≤t ⊑ ρ implies Λ~a(g) ; ρ≤t ⊑ Λ~a(g) ; ρ , hence the latter observable, so f .~a g. �

Hence, we have shown full abstraction.

Theorem 4.69 T = (T , T,Q,O) is a fully abstract model of νρ. �

4.3.8 Equivalences established semantically

In this last section we prove several equivalences using the full-abstraction result. We first

consider

stopB ≅ νa. ! a (4.17)

with a ∈ AB , for any type B. By full-abstraction it suffices to show JstopBK ⋍ Jνa. ! aK, and

for the latter it suffices to show
Jνa. ! aK . JstopBK ,
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since the other direction is implied from the fact that JstopBK ⊑ Jνa. ! aK. So take some tl4
strategy ρ : T JBK B TN and consider any [s ; t] ∈ Jνa. ! aK ; ρ with |s ; t| > 3. We know

(example 4.33) that Jνa. ! aK is given by

strat{ [∗ ∗ ⊛ aa iaB (iB,⊛)a sa] | [(⊛, iB) (⊛, iB) s] ∈ viewf(idξ⊗JBK) } ,

so s = ∗ ∗ ⊛ aas′, while ρ being tl4 and s ≍ t imply that t = ∗ ∗ ⊛ ⊛~b a~b t′, for some ~b # a.

Since ρ is tidy and a
~b is a fresh store-Q, t′.1 = a

~b and therefore s ; t starts with the sequence

∗ ∗ ⊛ a
~b. Hence, Jνa. ! aK ; ρ /∈ O and therefore Jνa. ! aK . JstopBK.

We now show equivalence (4.7) of page 80. Recall that

M4 , λf. stop : (1→ 1) → 1 , M5 , λf. f skip ; stop : (1 → 1) → 1 ,
and that we need to showM4 ≅ M5 . By full-abstraction, it suffices to show JM4K ⋍ JM5K,

where the latter are given as follows.

1
JM4K // T ((1 −−⊗ T 1) −−⊗ T 1)

∗ OQ

∗ PA

⊛ OQ

(

⊥

∗,⊛)
(1) PA

1
JM5K // T ((1 −−⊗ T 1) −−⊗ T 1)

∗ OQ

∗ PA

⊛ OQ

(∗,⊛)
(1) PA

(∗,⊛)
(2)

OQ

(∗,⊛)

⊥

(3) PQ

Bottom links stand for deadlocks: if Opponent plays amove (∗,⊛)(2) under the last ∗ in JM4K

(providing thus the function f ) then Player must play JstopK, i.e. remain idle. Similarly for
JM5K: if Opponent gives an answer to (∗,⊛)(3) (providing thus the outcome of fskip) then

Player deadlocks the play.
Observe that JM4K ⊑ JM5K, so we need only show JM5K . JM4K . Suppose ρ : T ((1 −−⊗

T 1) −−⊗T 1)B TN is a tl4 tidy strategy such that [∗ ∗ ⊛ (0,⊛)~a] ∈ JM5K ; ρ for some ~a. Then,

because of the form of JM5K, ρ can only play initial moves up to (∗,⊛)(1), then possibly ask
some names to (∗,⊛)(1), and finally play (0,⊛)~a. Crucially, ρ cannot play (∗,⊛)(2) under

∗: this would introduce a question that could never be answered by JM5K, and therefore ρ

would not be able to play (0,⊛)~a without breaking well-bracketing. Hence, JM4K and ρ can
simulate the whole interaction and therefore [∗ ∗ ⊛ (0,⊛)~a] ∈ JM4K ; ρ.

Finally, we show the equivalences DROP and SWAP of [Sta94]. Assuming typed terms

~a ^ Γ_M :A and ~aab ^ Γ_N :A (note that the latter implies ~aba ^ Γ_N :A is also a typed

term, by lemma 2.17), these are formulated as follows.

~a ^ Γ_ νa.M ≅ M (DROP)

~a ^ Γ_ νab.N ≅ νba.N (SWAP)

Arguing semantically, and recalling lemma 4.10, it suffices to show that, for any f : Q~aΓ B
B and any g : Q~aabB B with B pointed,

f ⋍~a \a℄(~aa~a ; f) (DROP)\ab℄ g ⋍~a \ba℄(~aba~aab ; g) . (SWAP)

Observe now that both of the above follow from lemma 4.61.



Chapter 5

Nominal Exceptions

In this chapter we examine extensions of the sν-calculus in which names can be raised and

handled as exceptions. Exceptions are a prevalent feature of programming languages for
raising and handling eccentric program behaviour, and more generally for manipulating

the flow of control. It is a key feature, for example, of ML, Java and C++. The raising

of an exception forces a program to escape out of its context and to the nearest available
exception-handler. Thus, exceptions provide a means of (an effect for) overriding nested

behaviour of functional programs.

We start with a simple extension of the sν-calculus, the νε-calculus, of which we briefly
examine the syntax and abstract categorical semantics. The main focus, though, is on the

νερ-calculus, the extension of νρ with nominal exceptions. For νερ we carry out a simi-
lar analysis as with νρ in the previous chapter (factoring out material covered previously

where possible), and thus construct a fully abstract semantics in nominal games. The con-

struction combines elegantly the use of an exception monad with the nominal games setting
where atoms are used (also) for exception names. We obtain a model of νερ in (innocent,

well-bracketed) nominal games, which we then restrict to strategies with ‘disciplined’ ex-
ceptional behaviour (x-tidy strategies) to the effect of obtaining a fully abstract model.

A fully abstract model for a language with exceptions and ground-type references was

constructed in [Lai01]. In rough terms, the model of [Lai01] allows for jumps in the prece-
dence with which a program answers questions posed by the environment (i.e. it mildens

the well-bracketing condition), thus translating in the semantical universe the override of
nested behaviour. This yields a description of the exception effect that is both accurate and

intuitive. However, the modelling of exceptions themselves is not nominal but rather based

on the ‘object-oriented’ approach which encodes exceptions as products of raise/handle
type. Therefore, “bad” constructors are included in the syntax, that is, the language exam-

ined includes bad exceptions (and also bad variables). Another point of difference between
the two languages is that the one of [Lai01], being an extension of Idealized Algol [Rey81],

is call-by-name with block-structured exceptions and references.

5.1 The νε-calculus

Exceptions are a mechanism allowing program control to jump out of the current context

and to the nearest handler. In the calculus we examine now, exceptions are terms of type E.
These can be raised and handled, and their closed values are given by names. The latter are
taken from a set of atoms

Ae ∈ (Ai)i∈ω

and hence the calculus is an extension of sν with names used for exceptions.

Definition 5.1 The νε-calculus is a functional calculus of nominal exceptions. Its types,

119
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terms and values are given as follows.

TY ∋ A,B ::= N | A→ B | A×B | E

TE ∋M,N ::= x | λx.M |M N | 〈M,N〉 | fstM | sndN λ-calculus

| n | predM | succN arithmetic

| if0M thenN1 elseN2 if then else

| a | νa.M | [M = N ] ν-calculus (a ∈ Ae)

| raiseM raise exception

| tryN1 handleM =>N2 try/handle exception

VA ∋ V,W ::= x | n | a | λx.M | 〈V,W 〉

The typing system involves (as before) terms in environments ~a^Γ; the main typing rules
are the following.

a ∈ ~a
~a ^ Γ_ a : E

~aa ^ Γ_M : B

~a ^ Γ_ νa.M : B

~a ^ Γ_M : E ~a ^ Γ_N : E

~a ^ Γ_ [M = N ] : N

~a ^ Γ_M : E

~a ^ Γ_ raiseM : A

~a ^ Γ_M : E ~a ^ Γ_N1, N2 : A

~a ^ Γ_ tryN1 handleM =>N2 : A

N

Observe that TE and VA are strong nominal sets. Regarding bound names and variables,
the same definitions and conventions as in the case of the sν-calculus are in effect. Note that

raised exceptions can have any type— even exception-type. Thus, for example, both the

following terms can have type E,

M1 , a , M2 , raise a ,

but they are quite different: the former is a value of exception-type, while the latter is clearly

non-value.

The operational semantics is defined by means of a small-step reduction relation, where
terms reduce in name-list environments containing the names created thus far in the com-

putation.

Definition 5.2 Reduction in the νε-calculus involves sν-calculus reduction rules and rules
for exceptions. The latter set of rules is given below.

HL
~a` try (raise a) handle a => N −−→ ~a` N

VHL
~a` try V handle a => N −−→ ~a` V

NHL a6=b

~a` try (raise b) handle a =>N −−→ ~a` raise b

XPN
~a` Z[raise a] −−→ ~a` raise a

CTX
~a`M −−→ ~a′ `M ′

~a` E[M ] −−→ ~a′ ` E[M ′]

Unhandled evaluation contexts Z are of the forms:

(λx.N) , N , 〈 , N〉 , 〈V, 〉 , fst , snd , if0 thenN1 elseN2 ,

succ , pred , [ = N ] , [a = ] , raise , tryN1 handle =>N2 .
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General evaluation contexts E are of the forms:

Z , try handle a =>N .
N

The νε-calculus is an extension of the sν-calculus without recursive effects, and hence it is

strongly normalising. Observational approximation is defined as usually: a termM obser-
vationally approximates a term N if, for any program context C, if C[M ] reduces to 0 then

so does C[N ]. Now, taking

M1 , λf. 0 : (E → N) → N

M2 , λf. νa.νb.[fa⇔ fb] : (E → N) → N

M3 , λf. νa.[fa⇔ fa] : (E → N) → N

(5.1)

we have the following equivalences/inequivalences in νε.

M1 6≅ M2 (5.2)

M2 ≅ M3 (5.3)

M1 and M2, which are equivalent in sν, can be distinguished by a context that raises an

exception as soon as f is used, e.g. the context

C , (λx. raise νa.a) .

On the other hand, the equivalence of M2 and M3 (which is invalid in νρ) is given in

section 5.2.6 semantically, after we introduce a fully abstract game semantics for the νερ-

calculus. Wewill also see that references and exceptions aremore expressive than references
alone.

We move on to sound categorical semantics for the νε-calculus. We follow the same

recipe as in the case of the νρ-calculus, that is, we work in a monadic-comonadic setting
for names and on top of it we require structure for modelling exceptions. In the categorical

semantics of νρ we used a single monad T for encapsulating both fresh-names and store.
As we saw in the concrete game semantics, this was achieved by first constructing a fresh-

names monad (lifting) and then, by use of a store-arena, deriving a store-monad T which

embedded lifting. This methodology heavily uses the fact that the store-monad uses expo-
nentials, and that lifting has such exponentials. Therefore, it is not relevant in the case of

exceptions; the standard practice for exceptions is monad composition.
Since our model analysis is an extensional (macroscopical) one, we find more useful

(and concise) the description of our monad T as separable into two components, rather

than a compound monad over a distributive law ℓ (definition 2.26). We therefore introduce
precompound monads.

5.1.1 Precompound monads

As discussed above, the computational monad T for the νε-calculus contains a component
for exceptions and another one for fresh names. The two-component nature of T does not

need the full specifications of a compound monad for its description.

Definition 5.3 A strong monad (T, η, µ, τ) is precompound if there exists a natural transfor-

mation θ : T B T 2 such that the following diagrams commute.

TA
θA //

id

  A
AA

AA
AA

AA
AA

T 2A

µA

��
TA

T 3A

µT A ; θT A

��

T 2A

µA ; θA

��

TθAoo θTA // T 3A

T (µA ; θA)

��
T 3A

TµA

// T 2A T 3AµT A

oo

A× TB
τA,B //

id×θB

��

T (A×B)

θA×B

��
A× T 2B

τA,TB ;TτA,B

// T 2(A×B)
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Moreover, each ηA is an inner- and outer-component arrow, where an arrow f : AB TB

is said to be:

• an inner-component arrow if f ; θB = f ; ηTB ,

• an outer-component arrow if f ; θB = f ;TηB .

We write T as (T, θ). N

In essence, θ is separating the two components in T , with each morphism

θA : TAB T(o)T(i)A

sending the outer T -component of TA to T(o), and its inner T -component to T(i). From

this viewpoint, outer-component arrows can be seen as involving computation in the outer

component of T , and similarly for inner-component arrows.
Arrows in each component form distinct Kleisli categories: η-arrows are in both compo-

nents and Kleisli-composition in the same component is a closed operation, as it is shown
in the following diagrams.

A
f // TB

Tg //

Tg

��8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8

θ

��
η

��

Tg

yysssssssssss
T 2C

Tθ

��
Tη

��

µ

��

T 2C

µ

��

η

%%KKKKKKKKKKK T 2B

T 2g

��

T 3C

µ

��
TC

η
%%KKKKKKKKKKK T 3C

Tµ

��

T 2C
θ

oo

T 2C T 3C
θ

oo

A
f // TB

Tg //

Tg

yysssssssssss

θ

��
Tη

��

T 2C

θ

��

µ

��

T 2C

µ

�� T 2η ))

Tη

22

Tθ

%%KKKKKKKKKKK T 2B
T 2g // T 3C

Tµ

��
TC

Tη
%%KKKKKKKKKKK T 3C

µ

��

T 2C
Tθ

oo

T 2C T 3C
θ

oo

Figure 5.1: Kleisli-composition for inner- and outer-component arrows.

Every monad T is trivially precompound, by simply taking θ to be η (empty outer com-

ponent) or Tη (empty inner component). More generally, compound monads are precom-

pound.

Lemma 5.4 Let T be a compound monad (T̈ Ṫ , ℓ). T is precompound with θ defined by:

θA : TAB T 2A , T̈ η̇ṪA ; T̈ Ṫ η̈ṪA .
�

5.1.2 Sound categorical semantics

We now proceed to formulate an abstract categorical semantics for the νε-calculus. The

semantics is based on νε-models, which resemble νρ-models of the previous chapter.

Definition 5.5 A νε-model M is a structure (M, T,Q) such that:

I. M is a category with finite products, with 1 being the terminal object and A × B the
product of A and B.

II. T is a strong monad (T, η, µ, τ) with exponentials.

III. M contains a natural numbers object N equipped with successor/predecessor arrows
and

b
n : 1B N, each n ∈ N. Moreover, for each objectA, there is an appropriate arrow

for zero-equality tests cndA : N× TA× TAB TA.
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IV. Q is a family of product comonads (Q~a, ε, δ, ζ )~a∈A# on M such that:

(a) the basis of Qǫ is 1, and Q~a = Q~a
′

whenever [~a] = [~a′],

(b) if ~a′ ⊆ ~a then there exists a comonad morphism ~a
~a′ : Q~a B Q~a

′

such that ~aǫ = ε ,
~a
~a = id and, whenever ~a′ ⊆ ~a′′ ⊆ ~a,

~a

~a′′
;
~a′′

~a′
=
~a

~a′

(c) for each ~aa ∈ A# there exists a strength-coherent (v. (3.5), page 72) natural trans-
formation nu~aa : Q~a B TQ~aa such that, for each A ∈ Ob(M) and ~aa ⊆ ~a′a, the

following diagrams commute.

Q~aA

nuA

��

〈id,nuA〉 // Q~aA× TQ~aaA

τ

��
TQ~aaA

T 〈
~aa
~a ,id〉

// T (Q~aA×Q~aaA)

Q~a
′

A
nu

~a′a
A //

~a′

~a
��

TQ~a
′aA

T
~a′a
~aa

��
Q~aA

nu
~aa
A

// TQ~aaA

(N2)

V. Setting Ae , Qa1, for a ∈ Ae, there is a name-equality arrow eqe : Ae × Ae B N in M
such that, for any distinct a, b ∈ Ae, the following diagram commutes.

Qa1
∆ //

!

��

Ae × Ae
eqe

��

Qab1
〈
ab
a ,

ab
b 〉

oo

!

��
1 b

0

// N 1b
1

oo

(N1)

VI. M contains a natural transformation inx : KAe
B T for exception-raising, where KAe

is the constant-Ae functor, such that the following diagrams commute.

A× Ae id×inxB //

π2

��

A× TB

τ

��Ae
inxA×B

// T (A×B)

Ae inxT B //

inxB %%KKKKKKKKKKK T 2B

µ

��
TB

(NE1)

Moreover, for each object A, an arrow hdlA : Ae × TA × TA B TA for exception-

handling such that the following diagram commutes.

Qȧḃ1 × TA
〈
ȧḃ
ȧ ,

ȧḃ
ḃ
〉×id

//

π1;
ȧḃ
ḃ

��

Ae × Ae × TA

id×inxA×id

��

Ae × TA
∆×idoo

vvvvvvvv

π2

zzvvvvvvvvvvvAe × TA× TA

hdlA

��

Ae ×A× TA
id×η×idoo

π12 ; η
uujjjjjjjjjjjjjjjjjjAe

inxA

// TA

(NE2)

Finally, T is precompound, (T, θ), with nu being in the outer component and inx in the

inner one.
N
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We observe that items I-IV appear verbatim in the definition of a νρ-model, while V presents
the same property applied to different objects of names. The reason is simple: these are the

sν-calculus specifications of the model, and the sν-calculus is the common denominator of
νε and νρ. On the other hand, item VI gives the specifications for exceptions.

We now proceed with the modelling of the νε-calculus in a νε-model.

Definition 5.6 Let (M, T,Q) be a νε-model. νε-types are translated inM as follows.

JNK , N , JA×BK , JAK × JBK , JA→ BK , T JBK JAK , JEK , Ae .
A typed term ~a ^ Γ_M :A is mapped to an arrow JMK

~a^Γ :Q~aJΓK B T JAK in M, which

we write simply as JMK : Q~aΓ B TA, by use of the following rules,

JMK : Q~aΓ A TAe
Q~aΓ

Jraise MK

##H
H

H
H

H
H

H
H

H
H

JMK // TAe
TinxA

��
T 2A

µ

��
TA

JMK : Q~aΓ A TAe JNiK : Q~aΓ A TA

Q~aΓ

Jtry N1 handle M => N2K

''N
N

N
N

N
N

N
N

N
N

N
N

N

〈JMK, JN1K;θ, JN2K〉 // TAe × T 2A× TA

ψ×id ; τ ′

��
T (Ae × TA× TA)

ThdlA ;µ

��
TA

and relevant rules of figure 4.3, p. 83. N

The fact that the translation of the νε-calculus into a νε-model follows closely that of νρ
into a νρ-model allows us to easily prove correctness of the translation for non-exceptional

behaviour. The exceptional cases are then attacked as in the case of νερ in the next section.

Proposition 5.7 (Correctness (νε)) For any typed term ~a ^ Γ_M : A and any r 6= NEW,

1. ~a`M
r

−−→ ~a`M ′ =⇒ JMK = JM ′K ,

2. ~a`M
NEW

−−−−−→ ~aa`M ′ =⇒ JMK = Jνa.M ′K .

Therefore, ~a`M −→→ ~a~a′ `M ′ =⇒ JMK = Jν~a′.M ′K . �

We close this section by giving adequacy specifications for νε-models. We do not proceed to

full-abstraction specifications, neither to concrete models in game semantics; these are seen

in detail in the next language we examine, the νερ-calculus.

Definition 5.8 LetM be a νε-model and J K be the respective translation of the νε-calculus.
M is adequate if, for any pair of states ~a,~a′, any n 6= 0 and any a ∈ Ae,

Jν~a.raise aK 6= Jν~a′.0K 6= Jν~a.nK .
N

The above condition for adequacy is a simplified version of the respective condition for

νρ, given that the calculus we are now examining is strongly normalising. It can also be
seen as an extended version of the mono requirement of computational models presented by

Moggi [Mog89].

Assuming M is an adequate νε-model we can show the following.

Proposition 5.9 (Equational Soundness (νε))

JMK = JNK =⇒ M / N
�
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5.2 The νερ-calculus

We combine nominal general references and nominal exceptions to a new language, the νερ-
calculus, extending both νρ and νε. Names in νερ are created with local scope, can be tested

for equality and can be passed around via function application. Moreover, some names
(reference names) can be dereferenced or updated, while others (exception names) can be raised

or handled. The syntax is built in nominal sets by assuming a set of atoms Ae ∈ (Ai)i∈ω for

exception names and a set of atoms AA ∈ (Ai)i∈ω for reference names of type A, for each
type A in the language.

Notation 5.10 As before, (general) names are denoted by a, b, c and variants. Note, though,

that we use different notations for exception and reference names. In particular, we use

ȧ, ḃ, ċ and variants for exception names; and ä, b̈, c̈ and variants for reference names.

Definition 5.11 The νερ-calculus is a functional calculus of nominal references and excep-

tions. Its types, terms and values are given as follows.

TY ∋ A,B ::= 1 | N | A×B | A→ B | [A] | E

TE ∋M,N ::= x | λx.M |M N | 〈M,N〉 | fstM | sndN λ-calculus

| skip | n | predM | succN return/ arithmetic

| if0M thenN1 elseN2 if then else

| a | νa.M | [M = N ] ν-calculus

| raiseM | try N1 handleM => N2 raise/ handle

|M := N | !M update/ dereferencing

VA ∋ V,W ::= x | skip | n | a | λx.M | 〈V,W 〉

The main typing rules are the following.

~aa ^ Γ_M : B

~a ^ Γ_ νa.M : B

~a ^ Γ_M : Aν ~a ^ Γ_N : Aν
Aν ∈ {E} ∪ {[A] |A ∈ TY}

~a ^ Γ_ [M = N ] : N

ȧ∈~a
∧ ȧ∈Ae~a ^ Γ_ ȧ : E

~a ^ Γ_M : E

~a ^ Γ_ raiseM : A

~a ^ Γ_M : E ~a ^ Γ_N1, N2 : A

~a ^ Γ_ try N1 handleM => N2 : A

ä∈~a
∧ ä∈AA~a ^ Γ_ ä : [A]

~a ^ Γ_M : [A]

~a ^ Γ_ !M : A

~a ^ Γ_M : [A] ~a ^ Γ_N : A

~a ^ Γ_M := N : 1
N

The operational semantics is defined inmixed environments P containing information both

about the (general) names created and about the values stored in those of them that denote
references:

P ::= ǫ | a, P | ä :: V, P . (5.4)

The domain of a mixed environment P is the list of names it enlists:

dom(ǫ) , ǫ , dom(a, P ) , a, dom(P ) , dom(ä :: V, P ) , ä, dom(P ) , (5.5)

and must be a list of distinct names.

Definition 5.12 Reduction in the νερ-calculus invokes sν-calculus reduction rules and rules
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from νρ and νε. The latter two sets are given below.

DRF
P, ä :: V, P ′ ` ! ä −−→ P, ä :: V, P ′ ` V

UPD
P, ä(:: W ), P ′ ` ä := V −−→ P, ä :: V, P ′ ` skip

HL
P ` try (raise ȧ) handle ȧ => N −−→ P ` N

VHL
P ` try V handle ȧ => N −−→ P ` V

NHL ȧ6=ḃ

P ` try (raise ḃ) handle ȧ =>N −−→ P ` raise ḃ

XPN
P ` Z[raise ȧ] −−→ P ` raise ȧ

CTX
P `M −−→ P ′ `M ′

P ` E[M ] −−→ P ′ ` E[M ′]

Unhandled evaluation contexts Z are of the forms:

(λx.N) , N , 〈 , N〉 , 〈V, 〉 , fst , snd , if0 thenN1 elseN2 , succ , pred ,

[ = N ] , [a = ] , raise , try N1 handle => N2 , ! , := N , ä := .

General evaluation contexts E are of the forms:

Z , try handle ȧ => N .
N

Contexts in νερ extend νρ-contexts in a straightforwardmanner, so contexts have types of the
form (~a,Γ, A) 7→ (~a′,Γ′, A′) (see definition 4.5). A program context is a name- and variable-

closing context yielding N, that is, a context of type (~a,Γ, A) 7→ (ǫ,∅,N). For typed terms
~a ^ Γ_M : A and ~a ^ Γ_N : A , we say thatM observationally approximates N , written

~a ^ Γ_M / N or simplyM / N , if, for any program context C,

( ∃P ′. ` C[M ] −→→ P ′ ` 0 ) =⇒ ( ∃P ′′. ` C[N ] −→→ P ′′ ` 0 ) .

Observational equivalence, ≅ , is the symmetric closure of / .

Let us examine briefly the expressivity of the νερ-calculus in relation to the expressivity
of the nominal calculi examined previously. Taking1

M1 , λf. 0 : (E → N) → N

M2 , λf. νa.νb.[fa⇔ fb] : (E → N) → N

M3 , λf. νa.[fa⇔ fa] : (E → N) → N

M4 , λf. stop : (1→ 1) → 1
M5 , λf. f skip ;stop : (1→ 1) → 1 (5.6)

we have the following inequivalences.

M1 6≅ M2 (5.7)

M2 6≅ M3 (5.8)

M4 6≅ M5 (5.9)

1Recall stop , νb.(b := λx.(! b)skip) ;(! b)skip , [M ⇔ N ] , if0 M then N else (if0 N then 1 else 0) .
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(5.7) and (5.8) are inherited from νρ, while M4 and M5 (which are equivalent in νρ) can be
distinguished by use of exceptions, e.g. by the context

C , νȧ.try ((λy.raise ȧ)) ; 0 handle ȧ => 0 .

The equivalences and inequivalences of the above terms in the calculi we examine in this

thesis are summarised in figure 5.2, where Aν is E in the case of νε, and [1] in all other cases.

M1 ≅ M2 M2 ≅ M3 M4 ≅ M5 M1 , λf. 0 : (Aν → N) → N

M2 , λf. νa.νb.[fa ⇔ fb] : (Aν → N) → N

M3 , λf. νa.[fa ⇔ fa] : (Aν → N) → N

M4 , λf. stop : (1 → 1) → 1
M5 , λf. f skip ; stop : (1 → 1) → 1sν ✓ ✓ −

νρ ✗ ✗ ✓

νε ✗ ✓ −

νερ ✗ ✗ ✗

Figure 5.2: Equivalences separating our nominal calculi.

5.2.1 Categorical semantics

We examine categorical semantics of νερ in the familiar monadic-comonadic setting. νερ

extending νε and νρ means that a model of νερ ‘incorporates’ a model of νε and a model of
νρ, so the computational monad T we are after should incorporate a monad for exceptions

and a monad for storage.

Compound monads are such a solution, but there is a subtlety here: we cannot achieve
T by simply composing a monad Ṫ of νεwith a monad T̈ of νρ, and therefore neither canwe

compose a νε-model with a νρ-model. The reason for this complication is that storage in T̈

would be higher-order and therefore would need to include functions returning exceptions,
a specification of Ṫ .

We therefore consider a monad T with separate components for storage and exceptions
which yields itself (rather than each of its components separately) both a νε-model and a

νρ-model. As done previously in νε, the compoundness of the monad is expressed exten-

sionally via precompoundness.

Definition 5.13 A νερ-modelM is a structure (M, T,Q) such that:

A. M is both a νε-model and a νρ-model (with common structure for items I-IV of defini-
tions 5.5, 4.8).

B. T is a precompound monad (T, θ), such that

• all arrows inxA are inner-component,

• all arrows updA and nuA are outer-component. N

We see that the precompound-monad analysis has paid off in conciseness in the above defi-

nition. Taking storage and fresh-names as outer-component and exceptions as inner follows

the common practice when composing exceptions with other effects.
We carry on with the semantical translation of the νερ-calculus in a νερ-model.

Definition 5.14 Let (M, T,Q) be a νερ-model. νερ-types are translated inM as:

J1K , 1 , JNK , N , JA×BK , JAK×JBK , JA→ BK , T JBK JAK , JEK , Ae , J[A]K , AA .
A typed term ~a ^ Γ_M : A is mapped to an arrow JMK~a^Γ : Q~aJΓK A T JAK in M, which
we write simply as JMK : Q~aΓ B TA, by use of the relevant rules of definition 5.6 and

figure 4.3, p. 83. N
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We reproduce most rules for the semantical translation in figure 5.3. The interesting part is
the use of θ in the case of exception-handling. Its function is to separate the two components

of TA yielded by JN1K, so that the inner-component is passed on to hdl and the outer-
component is passed to the output of the computation. This allows us to disregard the

outer-component of TAwhen applying hdl.

Correctness is now proved along the same lines as in νρ. To any store P , we relate the
term P̄ of type 1 as:

ǭ , skip , a, P , P̄ , ä :: V, P , (ä := V ; P̄ ) .

The following lemma is needed.

JnK : Q~aΓ
Q~a!PPPA Q~a1

~a
ǫPA 1

b
nPA N ηPA TN

JxK : Q~aΓ
Q~aπPPPA Q~aA

~a
ǫPA A

ηPA TA

JäK : Q~aΓ
Q~a!PPPA Q~a1

~a
äPA AA ηPA TAA

JȧK : Q~aΓ
Q~a!PPPA Q~a1

~a
ȧPA Ae ηPA TAe

JMK : Q~a(Γ ×A) A TB

Q~aΓ

Jλx.MK ))TTTTTTTT

ΛT (z ′ ; JMK) // TB A

η

��
T (TBA)

JMK : Q~aΓA T (A −−⊗ TB)

JNK : Q~aΓA TA

Q~aΓ

JMNK
**VVVVVVVVVV

〈JMK,JNK〉 // T (TBA) × TA

ψ ;T ev
T ;µ

��
TB

JMK : Q~aΓ A TAA
Q~aΓ

J!MK
))TTTTTTTT

JMK // TAA
TdrfA ;µ

��
TA

JMK : Q~aΓA TAA JNK : Q~aΓ A TA

Q~aΓ

JM :=NK

%%K
K

K
K

K
K

K
K

K
K

K

〈JMK,JNK〉 // TAA × TA

ψ
��

T (AA ×A)

TupdA ; µ

��
T 1

JMK : Q~aaΓ A TA

Jνa.MK : Q~aΓ
\a℄ JMKPPPPPA TA

JMK : Q~aΓ A TAi JNK : Q~aΓ A TAi
Q~aΓ

J[M=N ]K

%%J
J

J
J

J
J

J
J

J
J

J

〈JMK,JNK〉 // TAi × TAi
ψ
��

T (Ai × Ai)
Teqi

��
TN

JMK : Q~aΓ A TN JNiK : Q~aΓ A TA

Q~aΓ

Jif0 M then N1 else N2K

&&M
M

M
M

M
M

M
M

M
M

M
M

〈JMK,JN1K,JN2K〉 // TN× TA× TA

τ ′

��
T (N× TA× TA)

TcndA ;µ

��
TA

JMK : Q~aΓ A TAe
Q~aΓ

Jraise MK ))SSSSSSSS

JMK // TAe
TinxA ; µ

��
TA

JMK : Q~aΓ A TAe JNiK : Q~aΓ A TA

Q~aΓ

Jtry N1 handle M => N2K

''N
N

N
N

N
N

N
N

N
N

N
N

N

〈JMK, JN1K;θ, JN2K〉 // TAe × T 2A× TA

ψ×id ; τ ′

��
T (Ae × TA× TA)

ThdlA ;µ

��
TA

Figure 5.3: The semantic translation of νερ-terms.
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Lemma 5.15 For any f : Q~aaAB TB,\a℄(f ; θB) = \a℄ f ; θB .

Proof: Noting that nu ;Tf is outer-component, we have:\a℄(f ; θ) = nu ;Tf ;Tθ ;µ = nu ;Tf ;Tη ;Tµ ;Tθ ;µ = nu ;Tf ; θ ;Tµ ;Tθ ;µ = nu ;Tf ;µ ; θ

as required. �

Proposition 5.16 (Correctness) For any typed term ~a ^ Γ_M : A, any P with dom(P ) = ~a and

any transition rule r,

1. if r /∈ {NEW,UPD,DRF} then P `M
r

−−→ P `M ′ =⇒ JMK = JM ′K ,

2. if r ∈ {UPD,DRF} then P `M
r

−−→ P ′ `M ′ =⇒ JP̄ ;MK = JP̄ ′ ;M ′K ,

3. P `M
NEW

−−−−−→ P, a`M ′ =⇒ JP̄ ;MK = \a℄ JP̄ ;M ′K .

Therefore, P `M −→→ P ′ `M ′ =⇒ JP̄ ;MK = Jν~a′.(P̄ ′ ;M ′)K , with dom(P ′) = ~a~a′.

Proof: For 1-3, we do induction on the derivation of the reduction. Because of proposi-

tion 4.13, we need only show the base case of 1 for exceptions, and the inductive step of 1-3

for the case of contexts involving exceptions. In fact, by similarity to other cases,2 it suffices
to consider only handled evaluation contexts at the inductive step.

The base case follows from the specifications of νερ-models. We consider only the most
interesting case, that of XPN:

P ` Z[raise ȧ] −−→ P ` raise ȧ .

Similarly to lemma 4.12, we can show that, for any unhandled evaluation context Z,

JZ[M ]K = 〈id, JMK〉 ; τ ;T ζ ′ ;T JZ[x]K ;µ , (5.10)

and hence the following diagram commutes, as required.

Q~aΓ

〈id,|ȧ|〉 ))SSSSSSSSSSSSSSSSS

〈id,Jraise ȧK〉 // Q~aΓ × TA
τ // T (Q~aΓ ×A)

T (z ′;JZ[x]K) // T 2B

µ

��
Q~aΓ × Ae π2

//

id×inxA

OO Aeinx
Q~aΓ×A

OO

inxT B

55jjjjjjjjjjjjjjjjjjjjj

inxB

// TB

For the inductive step, take E , try handle ȧ => N . From the following diagram,

Q~aΓ
〈JP̄ K,id〉 //

〈〈JP̄ K,id〉,id〉

��

T1 × Q~aΓ
τ ′ //

id×〈JMK;θ,id〉

��

TQ~aΓ
T〈|ȧ|,JMK;θ,JNK〉// T (Ae × T 2A × TA)

T (τ×id ; τ ′)

��
T1 × Q~aΓ2

τ ′×id

��

id×(JMK;θ)×id

// T1 × T 2A × Q~aΓ
τ ′×id // T 3A × Q~aΓ

µ×id

��

τ ′ ; T (id×〈|ȧ|,JNK〉 ;∼=)

55jjjjjjjjjjjjjjj

T 2(Ae × TA2)
T2hdl //

µ

��

T 3A

Tµ ;µ

��
µ ; µ

��
TQ~aΓ × Q~aΓ

TJMK×id

// T 2A × Q~aΓ
(Tθ;µ)×id//

(µ ; θ)×id

(∗) 44T
2A × Q~aΓ

τ ′ ; T (id×〈|ȧ|,JNK〉 ;∼=)

// T (Ae × TA2)
Thdl ;µ

// TA

we have that JP̄ ; E[M ]K = 〈JP̄ ;MK ; θ, id〉 ; τ ′ ;T (id × 〈|ȧ|, JNK〉 ;∼=) ;Thdl ;µ , from which

the inductive step for 1-3 follows, with the aid of lemmas 5.15, 4.11. Note that (∗) follows
from the fact that f , 〈JP̄ K, id〉 ; τ ′ ;T JMK is outer-component (which follows from JP̄ K

being outer-component) by: f ;Tθ ;µ = f ;Tη ;Tµ ;Tθ ;µ = f ; θ ;Tµ ;Tθ ;µ = f ;µ ; θ . �

From correctness, we can obtain soundness by adding a further specification on adequacy.

2In particular, raise is treated exactly like ! , and try N1 handle => N2 like if0 then N1 else N2 .
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Definition 5.17 Let M be a νερ-model and J K the respective translation of νερ. M is ade-

quate if, for any typed term ~a ^∅_M : N, if JMK = Jν~b.P̄ ; 0K , some P,~b, then there exists

P ′ such that ~a`M −→→ P ′ ` 0 . N

Proposition 5.18 (Equational Soundness) Translating νερ into an adequate νερ-model M we
obtain:

JMK = JNK =⇒ M / N .
�

5.2.2 Full abstraction

Normally we would expect to obtain full-abstraction from soundness by adding further
specifications to νερ-models, and perhaps doing some quotienting, but this is not the case

here. For full-abstraction the model needs to satisfy definability, at least for the arrows
defining the semantical preorder. However, θ is clearly not definable— there is no context

separating the computational effects in the manner θ does— and its presence affects the

semantical preorder in a substantial way. For the latter, note for example that the terms

ä := 0 ; raise νȧ.ȧ and ä := 1 ; raise νȧ.ȧ

are observationally equivalent in the language, but their translations can be distinguished
by use of θ: simply discard their inner-component computations by composing them with

θ ;T !, and then return the value of ä.
Since it is unreasonable to ask definability with θ, we will remove it from our models and

thus work in νερ-submodels, that is, submodels of νερ-models that contain the translations of

all νερ-terms but not problematic arrows like θ.

Definition 5.19 Let M = (M, T,Q) be an adequate νερ-model and let J K be the semantic

translation of νερ into M. A νερ-submodel is a structure (M′, T ′, Q
′

) such that:

• M′ is a lluf subcategory of M, and T ′, Q
′

are restrictions of T,Q inM′.

• (M′, T ′, Q
′

) satisfies items I-IV of definitions 5.5,4.8.

• JMK ∈ M′(Q
′~aJΓK, T ′JAK), for each typed term ~a ^ Γ_M : A. N

By a slight abuse of notation, we denote M′ by (M′, T,Q). Evidently, a νερ-submodel M′

is an adequate model of νερ. Regarding observationality, since the intrinsic preorder cannot

be shown to be a congruence (the semantic translation comes from M as a black box), it is

stipulated to be so.

Definition 5.20 A νερ-submodel M′ = (M′, T,Q) is observational if:

• for all ~a, there exists O~a ⊆ M′(Q~a1, TN) such that, for all ~a ^∅_M :N,

JMK∈O~a ⇐⇒ ∃P,~b. JMK = Jν~b.P̄ ; 0K ,

• the induced intrinsic preorder .= (.~a)~a∈A# , defined on arrows inM′(Q~aA, TB) by

f .~a g ⇐⇒ ∀ρ : Q~a(TB A)B TN. (Λ~a(f) ; ρ ∈ O~a =⇒ Λ~a(g) ; ρ ∈ O~a) ,

with Λ~a(f) , ΛQ
~a,T (f), is a congruence.

We write M′ as (M′, T,Q,O). N

Recall from definition 4.17 that. being a congruence means that, for any pairM,N of terms

and any relevant context C,

JMK . JNK =⇒ JC[M ]K . JC[N ]K .

We can now prove the following.
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Lemma 5.21 (Inequational Soundness) Translating νερ into an observational νερ-submodelM′

we obtain:

JMK . JNK =⇒ M / N .
�

The final step is full-abstraction, which passes through definability for the intrinsic preorder.

Definition 5.22 Let (M′, T,Q,O) be an observational νερ-submodel and let J K be the se-
mantic translation of νερ intoM′. M′ satisfies ip-definability if, for any ~a,A,B, there exists

D~aA,B ⊆ M′(Q~aJAK, T JBK) such that:

• for each f ∈ D~aA,B there exists a termM such that JMK = f ,

• for each f, g ∈ M′(Q~aJAK, T JBK),

f .~a g ⇐⇒ ∀ρ ∈ D~aA→B,N . (Λ
~a(f) ; ρ ∈ O~a =⇒ Λ~a(g) ; ρ ∈ O~a) .

We write M′ as (M′, T,Q,O,D). N

Proposition 5.23 (FA) Translating νερ into an ip-definable νερ-submodelM′ we obtain:

JMK . JNK ⇐⇒ M / N .
�

5.2.3 The nominal games model

We proceed to construct a fully abstract model of the νερ-calculus, that is, an ip-definable
νερ-submodel, in a category of nominal games. Our basis is the category Vt of section 3.3,

which contains amongst others:

• an arena Ae for exceptions and, for each type A, an arena AA for references to type A,

• finite products, distributive coproducts, partial exponentials, big tensors.

Themodelling of storage ismonadic bymeans of a store-monad T̈ built around a store-arena
ξ ,

⊗

A∈TY(AA ⇒ JAK) , while exceptions are modelled by use of the coproduct monad Ṫ

of the exception-arena Ae. These specifications lead to the following domain equation.

JA→ BK = JAK −−⊗ (ξ⇒ (JBK + Ae) ⊗ ξ)

ξ =
⊗

A
(AA ⇒ JAK)

(SE’)

The full form of the store-equation (SE’) is the following.

J1K = 1 , JNK = N , J[A]K = AA , JEK = Ae , JA×BK = JAK ⊗ JBK ,

JA→ BK = JAK −−⊗ (ξ⇒ (JBK + Ae) ⊗ ξ) , ξ =
⊗

A(AA ⇒ JAK) .

This is solved in the same way the store-equation for νρ was solved, that is, by expressing
it as a fixpoint functorial equation and finding its minimal invariant. We avoid doing the

computations again, as they are almost identical to those for νρ. Explicitly, the solution is

depicted in figure 5.4.
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ξ

⊛ PA

ä OQ
(ä ∈ AA)

JAK

JA ×BK

(iJAK , iJBK) PA

JAK
−

JBK
−

JA→ BK

∗ PA

(iJAK ,⊛) OQ

JAK
− ξ−

(iJBK ,⊛) (ȧ,⊛) PA

JBK
− ξ−

Figure 5.4: The store arena ξ and the translation of νερ-types.

The monads Ṫ and T̈ needed for the semantics are already present in SE’. In particular, their
functors are given by:

Ṫ : Vt B Vt , + Ae
T̈ : Vt B Vt , ξ⇒ ⊗ ξ .

(5.11)

From the above we obtain the exception-monad (Ṫ , η̇, µ̇, τ̇ ) and the store-monad (T̈ , η̈, µ̈, τ̈ )

following the constructions of sections 2.3.3 and 2.3.5. Composing them (see proposi-

tion 2.27) we obtain a computational monad (T, η, µ, τ) for νερ, that is, T is a strong monad
with exponentials, defined as follows and depicted in figure 5.5 (recall diagrammatic con-

ventions of section 3.2.3).

T , T̈ Ṫ

ηA , A
η̈APPA T̈A

T̈ η̇APPPA TA

µA , T 2A
T̈ ℓṪAPPPPA T̈ 2Ṫ 2A

µ̈Ṫ2APPPPA T̈ Ṫ 2A
T̈ µ̇APPPA TA

τA,B , A× TB
τ̈A,ṪBPPPPA T̈ (A× ṪB)

T̈ τ̇A,BPPPPPA T (A×B)

ℓA , Ṫ T̈A
[T̈ ι1, ι2; η̈]PPPPPPPA T̈ ṪA

(5.12)

Moreover, there is a natural transformation β : ( )⊥ B T given by:

βA : A⊥
α̈PA T̈A

T̈ η̇APPPA TA , (5.13)

where α̈ : ( )⊥ B T is the monad morphism defined in section 4.3.2, that is,

α̈A = A⊥
(η̈A)⊥PPPPPA (T̈A)⊥

puT̈ APPPPA T̈A .

By proposition 2.27, T̈ η̇ is also a monad morphism, and therefore β is a monad morphism

from ( )⊥ to T .
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TA

∗ PA

⊛ OQ

ξ−

(iA,⊛) (ȧ,⊛) PA

A−
ξ−

TATf : // TB
∗ OQ

∗ PA

⊛ OQ

⊛ PQ

(ȧ,⊛) OA

(ȧ,⊛) PA

(iA,⊛) OA

(iB,⊛) PA
f

AηA : // TA
iA OQ

∗ PA

⊛ OQ

(iA,⊛) PA

T 2AµA : // TA
∗ OQ

∗ PA

⊛ OQ

⊛ PQ

(ȧ,⊛) OA

(ȧ,⊛) PA

(∗,⊛) OA

⊛ PQ

A⊗ TBτA,B : // T (A⊗B)

(iA, ∗) OQ

∗ PA

⊛ OQ

⊛ PQ

(ȧ,⊛) OA

(ȧ,⊛) PA

(iB,⊛) OA

(iA, iB,⊛) PA

Figure 5.5: The compound monad (T, η, µ, τ ) for νερ.

5.2.4 The sound model

Regarding the construction of a νερ-model in Vt the situation is as follows (notation follows
definition 5.13 and definitions 5.5, 4.8).

A. I-III. Vt is a category with finite products and an adequate object for natural numbers,

and T is a strong monad with exponentials.

IV. There is a family (Q~a, ε, δ, ζ )~a∈A# of product comonads, with each Q~a having
basis A~a (see section 3.4.2), which fulfills specifications (a,b). There are also fresh-

name constructors,
new~aa : Q~aB (Q~aa)⊥ ,

given in section 3.4.3, which satisfy (N2).

V. There are name equality arrows, eqe and eqA for each type A, making the (N1)
diagram commute (section 3.4.2).

VIνρ There are update and dereferencing arrows, ¨updA and ¨drfA for each type A, over

the store-arena T̈ . These are given as in definition 4.30.

VIνε There are distributive coproducts and arrows eqe, which essentially carry all the

structure that we need.
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B. By lemma 5.4, T is precompound. θ is depicted in figure 5.6.

We therefore need only do some work on items IV and VI. For the former, the transition
from new to nu is by use of the monad morphism taking us from ( )⊥ to T .

Definition 5.24 For each ~aa ∈ A~a, define a natural transformation nu~aa : Q~aB TQ~aa by:

nu~aaA , Q~aA
newAPPPA (Q~aaA)⊥

β
Q~aaAPPPPPA TQ~aaA .

N

Each arrow nu~aaA is explicitly given as follows, and diagrammatically in figure 5.6.

nu~aaA = strat{ [(~a, iA) ∗ ⊛ (~aa, iA,⊛)asa] | a# iA ∧ ([iAiAs] ∈ viewf(idA)

∨ [⊛ ⊛ s] ∈ viewf(idξ)) }
(5.14)

Because β is a monad morphism, nu satisfies the (N2) diagrams.

TAθA : // T 2A
∗ OQ

∗ PA

⊛ OQ

⊛ PQ

(ȧ/iA,⊛) OA

(∗,⊛) PA

⊛ OQ

(ȧ/iA,⊛) PA

Q~aAnu~aaA : // TQ~aaA

(~a, iA) OQ

∗ PA

⊛ OQ

(~aa, iA,⊛)a PA

Figure 5.6: Natural transformations θ and nu for νερ.

Regarding update and dereferencings, we have the following arrows,

¨upd : AA ⊗ JAK B T̈1 , ¨drf : AA B T̈ JAK ,

given as in definition 4.30 (modulo the use of a different store ξ). From these, we obtain

arrows upd and drf via a monad morphism.

Definition 5.25 For any type A, define the strategies:

• updA : AA ⊗ JAK
¨updAPPPA T̈1

T̈ η̇PPA T 1 ,

• drfA : AA ¨drfAPPPA T̈ JAK
T̈ η̇PPA T JAK . N

The fact that the above strategies factor through the monad transformation T̈ η̇ implies that
these are outer-component arrows, as required. Now, as we can see in the following figure,

the strategies work exactly as in the case of νρ, except for the fact that the copycat links may
also carry raised exceptions. It is therefore not difficult to show that the (NR) diagrams are

satisfied.
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(ä, iJAK) OQ

∗ PA

⊛ OQ

(∗,⊛) PA

b̈ OQ

b̈ PQ

ä OQ

iJAK PA

AAdrfA : // T JAK

ä OQ

∗ PA

⊛ OQ

ä PQ

iJAK OA

(iJAK ,⊛) PA

Figure 5.7: Update and dereferencing arrows in Vt.

Finally, we need to provide the structure necessary for exceptions. This is essentially given
by the coproducts and the exception-equality arrows.

Definition 5.26 For each object A, define the strategies:

• inxA , Ae ι2PA ṪA
η̈PA TA ,

• hdlA , Ae ⊗ TA⊗ TA
τ̈ ⊗ id ; τ̈ ′PPPPPPPA T̈ (Ae ⊗ ṪA⊗ TA)

T̈ ˙hdlAPPPPPA T̈ TA
µ̈PA TA ,

• ˙hdlA : Ae⊗ ṪA⊗TAB TA , { [(ȧ, iA, ∗) s] | [iA s] ∈ ηA }∪ { [(ȧ, ȧ, ∗) s] | [∗ s] ∈ idTA }

∪ { [(ȧ, ḃ, ∗) s] | [ḃ s] ∈ inxA ∧ ḃ 6= ȧ } . N

We give a depiction of hdlA in figure 5.8. Note also that inx, a composite of natural trans-

formations, is a natural transformation. Moreover, we can show the following.

Proposition 5.27 The above defined arrows make the (NE) diagrams commute.

Proof: The proof is straightforward, by showing the following diagrams.

A ⊗ Ae id⊗ιB //

π2

��

A ⊗ ṪB

τ̇

��Ae ιA⊗B

//

ιB

''OOOOOOOOOOOOOOO

ι
Ṫ B

��

Ṫ (A ⊗ B)

Ṫ 2B
µ̇

// ṪB

Qȧḃ1 ⊗ TA

〈
ȧḃ
ȧ
,
ȧḃ

ḃ
〉⊗id

//

π1;
ȧḃ

ḃ

��

Ae ⊗ Ae ⊗ TA

id⊗ιA⊗id

��

Ae ⊗ TA
∆⊗idoo

wwwwwwww

π2

{{ww
wwwwwwww

wAe ⊗ ṪA ⊗ TA

˙hdlA

��

Ae ⊗ A ⊗ TA
id⊗η̇⊗idoo

π12 ; η

uukkkkkkkkkkkkkkkkkkAe
inxA

// TA

�

We have therefore shown the following.

Theorem 5.28 (Vt, T,Q) is a νερ-model. �

We proceed to show that Vt is adequate. This is achieved via O-adequacy (lemma 5.39),

which is proven independently, and the following lemma (proven similarly to lemma 4.35).
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(ȧ , ∗ , ∗) OQ

∗ PA

⊛ OQ

⊛ PQ

(ȧ,⊛) OA

⊛ PQ

(ḃ,⊛) OA

(ḃ,⊛) PA

(iA,⊛) OA

(iA,⊛) PA

Figure 5.8: Exception-handling in Vt.

Lemma 5.29 Let ~a ^∅_M :A be a typed term. For any store P , if P `M is non-reducing then

I. ifM is not a value then for no~b, iA do we have [(~a, ∗) ∗ ⊛ (iA,⊛)
~b] ∈ JP̄ ;MK,

II. ifM is not a raised exception then for no~b, ȧ do we have [(~a, ∗) ∗ ⊛ (ȧ,⊛)
~b] ∈ JP̄ ;MK. �

Proposition 5.30 (Adequacy) Vt is adequate: for any typed term ~a ^∅_M : N, if JMK =

Jν~b.P̄ ; 0K, for some P , then there exists P ′ such that ~a`M −→→ P ′ ` 0. �

5.2.5 Full abstraction

As expected, although Vt is a sound νερ-model for νερ, it is not fully abstract due to its

strategies not satisfying tidiness conditions (v. section 4.3.5). But even with tidiness our
strategies are still missing discipline, this time related to exception-handling. In particular,

strategies may well handle fresh (unknown) exceptions, in contrast to what is possible in

the operational semantics. Hence, in addition to the tidiness conditions (TD1-3) familiar
from the model of νρ, we impose on strategies x-tidiness conditions which ensure a certain

fresh-exception-discipline.
We start by restricting our attention to arenas appearing as type-translations, and classify

their moves with regard to their store-behaviour and exception-behaviour (note there is a

circularity inHA−−⊗TB and XA−−⊗TB ; what is meant actually is an inductive definition).

Definition 5.31 Consider Vνερ , the full subcategory of Vt with objects defined as follows.

Ob(Vνερ) ∋ A,B ::= 1 | N | A~a | A⊗B | A −−⊗ TB

For each such arenaAwe define its set of store-Handles,HA, and its set of exception-raisers,
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XA, as follows.

H1 =HN = HA~a , ∅ ,

HA⊗B ,HA ∪HB ,

HA−−⊗TB , {(iA,⊛A), (iB,⊛B), (ȧ,⊛B)} ∪HA ∪HB ∪HξA
∪HξB

, withHξ ,
⋃

C HJCK ;

X1 =XN = XA~a , ∅ ,

XA⊗B ,XA ∪XB ,

XA−−⊗TB , {(ȧ,⊛B)} ∪XA ∪XB ∪XξA
∪XξB

, with Xξ ,
⋃

C XJCK ;

where we write A −−⊗ TB as A −−⊗ (ξA ⇒ (B + Ae) ⊗ ξB), and ξ as
⊗

C(AC ⇒ JCK).
In an arena A, a store-Handle justifies (all) Questions of the form ä, which we call store-

Questions. Answers to store-Questions are called store-Answers. N

The classification of moves relatively to the store is familiar from νρ. Regarding exceptions,
it is obvious that X-raisers are moves that raise an exception—note here that exception

names may also appear in a play as values (i.e. not inside X-raisers). We observe that X-

raisers are by definition A-store-H’s, justified by Q-store-H’s, and that every Q-store-H jus-
tifies X-raisers. An example of how the above classes of moves are related is given in the

next figure.

ξ⇒ (1 + AE) ⊗ ξ

∗

⋄ ⊛

⊲ ä ⋄ (∗,⊛) ⋄ (ȧ,⊛) z

⊳ iA ⊲ b̈ ⊲ c̈

⊳ iB ⊳ iC

store-H’s: ⋄ store-Q’s: ⊲

store-A’s: ⊳ X-raisers: z

Figure 5.9: Store-H’s -Q’s -A’s and X-raisers in arena T1.

From now on we work in Vνερ , unless stated otherwise. The above notions can be straight-
forwardly extended to prearenas, by setting

HA→B , HA ∪HB , XA→B , XA ∪XB , (5.15)

and similarly for store-Q’s and store-A’s. As in section 4.3.5, we can show that a move is
exclusively either initial or a store-H or a store-Q or a store-A.

Proposition 5.32 For any type A ∈ Ob(Vνερ),

MA = IA ⊎HA ⊎ {m ∈MA |m a store-Q} ⊎ {m ∈MA |m a store-A} .
�

Around these notions we define x-tidy strategies. Note that we endorse again the following

notational convention. Since stores ξmay occur in several places inside a (pre)arenawemay
use parenthesised indices to distinguish identical moves from different stores. For example,

the same store-question q may be occasionally denoted q(O) or q(P ) , the particular notation
denoting the OP-polarity of the moves.
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Definition 5.33 A total strategy σ is x-tidy if whenever odd-length [s] ∈ σ then:

(TD1) If s ends in a store-Q q then [sx] ∈ σ , with x being either a store-A to q introducing
no new names, or a copy of q. In particular, if q = ä~a with ä # psq− then the latter

case holds.

(TD2) If [sq(P )] ∈ σ with q a store-Q then q(P ) is justified by the last O-store-H in psq.

(TD3) If psq = s′q(O)q(P )t y(O) with q a store-Q then [s y(P )] ∈ σ with y(P) justified by psq .−3 .

(xTD1) If s ends in an X-raiser (ȧ,⊛)~a with ȧ# psq− then [s(ȧ,⊛)~a] ∈ σ.

(xTD3) If psq = s′(ȧ,⊛)~a(O)(ȧ,⊛)~a(P )q(O) with q a store-Q, (ȧ,⊛)(O) an X-raiser and ȧ# s′, then
[s q(P )] ∈ σ. N

The (TD) conditions define tidy strategies as in section 4.3.5, imposing thus a certain store-

discipline. The (xTD) conditions provide a fresh-exception-discipline:

When a fresh raised exception is encountered, it is simply copycatted.

In (xTD1), the X-raiser (ȧ,⊛)~a played by Player is an answer and hence needs to be justified

by the pending question; the following lemma shows that this is always possible.

Lemma 5.34 If odd-length [s] ∈ σ ends in an X-raiser (ȧ,⊛)~a then s has a pending-Q which is an

O-store-H, and s(ȧ,⊛)~a is a play.

Proof: s being odd-length implies that it has a pending question, say q. If q were a P-move
then s = s1qs2 with s1, s2 being odd-length, so anA in s2 should be justified by q,	. Hence,

q an O-move. Moreover, q cannot be initial, by totality, and neither a store-Q: q being unan-
swered would mean that P copycats after it, so the move following q would be a copy of

it answered by an O-store-A y, say. After y is played, P must answer q with a copy of y,

thus y can only be the last move in s, i.e. (ȧ,⊛)~a, 	as y a store-A. Hence, q an O-store-H.
Thus, s(ȧ,⊛)~a is a justified sequence satisfying well-bracketing, and it clearly satisfies NC’s.

Finally, it also satisfies visibility since s and psq have the same pending-Q (see e.g. [McC98]).
�

It is easy to see that identity arrows are x-tidy. Moreover, x-tidy strategies compose and thus
we have a category of nominal arenas and x-tidy strategies.

Proposition 5.35 If σ : AB B and τ : BB C are x-tidy strategies then so is σ ; τ .

Proof: Fromproposition 4.56we know that σ ; τ satisfies the (TD) conditions. The (xTD) con-
ditions are shown similarly. We only show (xTD1). So let odd-length [s ; t] ∈ σ ; τ be ending

in an X-raiser (ȧ,⊛)~a
′

with ȧ# ps ; tq−. Assume, wlog, that s ; t ends in A, so s.−1 = (ȧ,⊛)~a1 ,
some~a1 � ~a′. Then, similarly to proposition 3.36, ȧ#psq− so, by x-tidiness, [s(ȧ,⊛)~a1 ] ∈ σ. If

(ȧ,⊛)~a1 is in A then we are done. Otherwise, we have that [t(ȧ,⊛)~a2 ] ∈ τ some ~a2 � ~a′. Ap-

plying the same reasoning consecutively, some (ȧ,⊛)~an is played in AC, giving the required
copy of (ȧ,⊛)~a

′

. �

Definition 5.36 xT is the lluf subcategory of Vνερ of x-tidy strategies. N

Many of the strategies we have encountered thus far are x-tidy, but not all of them: θA is not

x-tidy, for any object A. But this was exactly the reason for introducing νερ-submodels in

definition 5.19. Thus, we have the following.

Proposition 5.37 xT forms a νερ-submodel of Vνερ.

Proof: It is not difficult to show the following (see also proposition 4.58).
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⊲ If f : A → B, g : A → C are x-tidy then 〈f, g〉 is. Moreover, projections and terminal
arrows are all x-tidy.

⊲ ηA, µA, τA,B are all x-tidy, and if h is x-tidy then Th is. Moreover, f : A⊗B → TC is x-tidy

iff ΛT (f) is.

⊲ εA, δA are x-tidy, and if h is x-tidy then so is Q~ah.

⊲ Successor, predecessor and numeral arrows are x-tidy.

⊲ Name-equality arrows are x-tidy. Moreover, ( ~a~a′ )A and nu~aaA are x-tidy.

⊲ updA, drfA are x-tidy.

⊲ inxA are x-tidy, and so are the following composite strategies.Ae ⊗ TA⊗ TA
id ⊗ θA ⊗ idPPPPPPPPPA Ae ⊗ T 2A⊗ TA

τ ⊗ id ; τ ′PPPPPPPA T (Ae ⊗ TA⊗ TA)
ThdlA ;µPPPPPPPA TA

Hence, xT is a νερ-submodel. �

Henceforth, by strategies we shall mean x-tidy strategies, unless stated otherwise.

We now proceed to add the structure necessary for an observational νερ-submodel.

Definition 5.38 Expand xT to (xT , T,Q,O) by setting, for each ~a,

O~a , {f ∈ xT (Q~a1, TN) | ∃~b. [(~a, ∗) ∗ ⊛ (0,⊛)
~b] ∈ f} .

N

With the above definition, the semantic preorder is given as follows. For each f, g ∈ xT (Q~aA, TB),

f .~a g ⇐⇒ ∀ρ∈xT (Q~a(A −−⊗ TB), TN). (Λ~a(f) ; ρ ∈ O~a =⇒ Λ~a(g) ; ρ ∈ O~a) ,

where

Λ~a(f) = ΛQ
~a,T (f) , Q~a1 δPA Q~aQ~a1

Q~aΛT (z ′ ; f)PPPPPPPPPA Q~a(A −−⊗ TB) .

In order to show observationality we need to show O-adequacy and that the semantical

preorder is a congruence. The former is shown in the next lemma. The latter can be shown
as in the case of νρ (section 4.3.6) and lemma 4.18 (note that we do not need to consider θ

itself, but rather the x-tidy arrow of proposition 5.37 which includes it).

Lemma 5.39 (O-Adequacy) Let ~a ^∅_M : N be a typed term. If JMK ∈ O~a then there exists

some P such that ~a`M −→→ P ` 0.

Proof: By lemma 5.29 it suffices to show that, for any such M , there is a non-reducing se-
quent P ` N such that ~a`M −→→ P ` N , as thenN would necessarily be 0. For sake of

contradiction suppose the opposite, that is, that there exists an infinite reduction sequence

starting from ~a`M .
The sequence must contain infinitely many reductions from the set {HL,NHL,VHL,XPN},
or otherwise it would end in an infinite reduction sequence in νρ, contradicting the lat-
ter’s O-adequacy (lemma 4.62). Moreover, if it contained infinitely many reductions from

{NHL,XPN,VHL} but finitely many HL reductions, then it would have either to terminate

at some raised exception or to end in an infinite sequence of reductions in νρ+VHL. The lat-
ter would then produce an infinite reduction sequence in νρ. We therefore have that ~a`M

has a reduction sequence containing infinitely many HL reductions.
Now we can apply a similar methodology to lemma 4.62. Namely, for each termM , define

(M)[by induction as follows.

(a)[ , a , (x)[ , x , . . . (λx.M)[ , λx.(M)[ , (M N)[ , (M)[(N)[ , . . .
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and (try N1 handleM => N2)
[ , try (N1)

[handle (M)[=> νa.(N2)
[, some a /∈ fn(N2) .

We can show that J(M)[K ⋍ JMK, by induction onM .

Now, for the term M we are examining, JMK ∈ O~a implies J(M)[K ∈ O~a. Moreover, since
~a ` M diverges using infinitely many HL reduction steps, ~a ` (M)[ diverges using in-

finitely many NEW reduction steps. But the latter contradicts J(M)[K ∈ O~a. �

Hence, we can show the following.

Proposition 5.40 (Observationality) xT is observational. �

Our last task is to show ip-definability. Ourmethodology follows closely that of section 4.3.7,

and therefore wewill be omitting some proofs which are similar to proofs presented therein.
We start by defining truncation functions for x-tidy strategies, the notion of finitary strat-

egy, and a sub-strategy constructor.

Definition 5.41 Let σ : A B B in xT and let [s] ∈ viewf(σ) be of even length. Define

trunc(s) and trunc′(s) by induction as follows.

trunc(ǫ) = trunc′(ǫ) , ǫ

trunc(x(O)y(P )s
′) ,







ǫ , if x = y are store-Q’s

ǫ , if x = y are fresh X-raisers

xy trunc(s′) , o.w.

trunc′(x(O)y(P )s
′) ,







ǫ , if x = y are store-Q’s

ǫ , if x a store-Q, y a store-A and s′ = ǫ

ǫ , if x ∈ IA, y ∈ IB and s′ = ǫ

ǫ , if x = y are fresh X-raisers

xy trunc′(s′) , o.w.

Moreover, say σ is finitary if trunc(σ) is finite, where

trunc(σ) , {[trunc(s)] | [s] ∈ viewf(σ) ∧ |s| > 3} .

Finally, for any [t] ∈ σ define:

σ≤t , strat{[s] ∈ viewf(σ) | ∃ t′ ≤ t. trunc′(s) = pt′q} .
N

Hence, we call finitary those strategies whose viewfunctions become finite if we delete all
the store-copycats, all default initial answers, and all fresh-exception-copycats. On the other

hand, the strategy σ≤t is the strategy we are left with if we truncate viewf(σ) by removing

all its branches of length greater than 3 which are not contained in t, except for:

• the store-copycats and the fresh-exception-copycats, which are left intact,

• the store-A’s branches which are truncated to the point of leaving solely the store-A,
so that we retain tidiness.

Note that, in general, trunc′(s) ≤ trunc(s) ≤ s. We can now show the following.

Proposition 5.42 If σ is an x-tidy strategy and [t] ∈ σ is even-length then σ≤t is a finitary x-tidy
strategy with [t] ∈ σ≤t and σ≤t ⊑ σ. �

The proof of definability is facilitated by the following decomposition lemma (cf. lemma 4.66

and its proof).
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Lemma 5.43 (Decomposition Lemma) Let σ : Q~aJAK B T JBK be a strategy. We can decom-
pose σ as follows.

1. If there exists an iA(0) such that ∃x0. [(~a, iA(0)) ∗ ⊛ x0] ∈ σ then

σ = Q~aJAK
〈[x

~a
= iA(0)], 〈σ0, σ

′〉〉PPPPPPPPPPPPPPPA N⊗ (T JBK)2
cndPPA T JBK

where:

[x
~a
= iA(0)] : Q~aJAK B N , {[(~a, iA(0)) 0]} ∪ {[(~a, iA) 1] | [(~a, iA)] 6= [(~a, iA(0))]} ,

σ0 : Q~aJAK B T JBK , strat{ [(~a, iA(0)) s] ∈ viewf(σ) } ,

σ′ : Q~aJAK B T JBK , strat{ [(~a, iA) s] ∈ viewf(σ) | [(~a, iA)] 6= [(~a, iA(0))] } .

2. If there exists an iA(0) such that ∀iA. (∃x0. [(~a, iA) ∗ ⊛ x0] ∈ σ) ⇐⇒ [(~a, iA)] = [(~a, iA(0))] ,

then σ = \~b℄σ~b , where:
σ~b : Q~a

~bJAK B T JBK , strat{ [(~a~b, iA(0))∗⊛m0 s
r~b] | [(~a, iA(0)) ∗⊛m

~b
0 s] ∈ viewf(σ) } .

3. If there exist iA(0),m0 such that ∀iA, x. [(~a, iA) ∗ ⊛ x] ∈ σ ⇐⇒ [(~a, iA)x] = [(~a, iA(0))m0] ,

then one of the following is the case.

(a) m0 = ä, a store-Q of type C under ⊛, in which case we have σ = σ′ ↾ (~a, iA(0)), where:

σ′ , Q~aJAK
〈id, φ〉PPPPA Q~aJAK ⊗ T JCK

τ ;Tz ′PPPPPA TQ~a(JAK ⊗ JCK)
TσäPPPA T 2JBK

µPA T JBK ,

σä , strat{ [(~a, iA(0), iC) ∗ ⊛ s] | [(~a, iA(0)) ∗ ⊛ ä iC s] ∈ viewf(σ) } ,

φ : Q~aJAK B T JCK ,

{

Q~a! ; ~aä ; drfC , if ä ∈ S(~a)

Q~aπj ; ~aǫ ; drfC , if ä# ~a .

(b) m0 = jA ∨m0 = (iB/ȧ,⊛) , a store-H, in which case if [(~a, iA(0)) ∗ ⊛m0 ä iC ] ∈ σ, for

some store-Q ä and store-A iC , then

σ = Q~aJAK
〈∆, σä〉PPPPPA Q~aJAK ⊗Q~aJAK ⊗ T JCK

τ ;T (id⊗φ; τ);µPPPPPPPPPPPA TQ~aJAK
Tσ′ ;µPPPPPA T JBK

where:

σä : Q~aJAK B T JCK , strat{ [(~a, iA(0)) ∗ ⊛ (iC ,⊛) s] | [(~a, iA(0)) ∗ ⊛m0 ä iC s] ∈ viewf(σ)

∨ [⊛ ⊛ s] ∈ viewf(idξ) } ,

σ′ : Q~aJAK B T JBK , strat( {[(~a, iA(0)) ∗ ⊛m0 y s] ∈ viewf(σ) | y 6= ä }

∪ {[(~a, iA(0)) ∗ ⊛m0 ä s] | [⊛ ⊛ ä s] ∈ viewf(idξ)} ) ,

φ : Q~aJAK ⊗ JCK B T 1 ,

{

(Q~a! ; ~aä ) ⊗ idJCK ; updC , if ä ∈ S(~a)

(Q~aπj ; ~aǫ ) ⊗ idJCK ; updC , if ä# ~a .

In both cases above, we take j = min{j | (iA(0))j = ä}. �

Theorem 5.44 (Definability) Let A,B be types and σ : Q~aJAK B T JBK be finitary. Then σ is
definable.

Proof: The proof follows the same route as the proof of definability in νρ (theorem 4.67). We

only show the parts where there is some extra work needed.

The proof is by induction on (|trunc(σ)|, ‖σ‖). Using the Decomposition Lemma, we
reduce the inductive step to showing that for any σ0 : Q~aJAK B T JBK with (0, 0) <

(|trunc(σ0)|, ‖σ0‖) ≤ (|trunc(σ)|, ‖σ‖) and such that, for some iA(0),m0,

∀iA, x. [(~a, iA) ∗ ⊛ x] ∈ σ0 ⇐⇒ [(~a, iA)x] = [(~a, iA(0))m0] ,
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with m0 a store-H and with σ0 not updating any names before playing m0, there exists a
term M0 with σ0 = JM0K ↾ (~a, iA(0)). The case of m0 = (iB,⊛) is treated exactly as in

theorem 4.67. We need also check the casesm0 = (ȧ,⊛) andm0 = jA.
Ifm0 = (ȧ,⊛) then σ0 = JM0K ↾ (~a, iA(0)) by taking

M0 ,

{

raise ȧ , if ȧ ∈ S(~a)

raise z′j , if ȧ# ~a ∧ j = min{i | ȧ = (iA(0))k+i} .

If m0 = jA , played in some Ak+k′+i = A′
i → A′′

i , then m0 = (iA′
i
,⊛) . Assume that

A′
i = A′

i,1 × · · · × A′
i,ni

with A′
i,p’s being non-products. Now, O can either ask some name

ä (which would lead to a store-CC), or answer at A′′
i , or raise a known exception ḃ, or raise

some fresh exception ȧ (whichwould lead to an exception-CC), or play at someA′
i,p of arrow

type, say A′
i,p = Ci,p → C′

i,p . Hence, taking S , S(~a, iA(0)) we have:

viewf(σ0) = fA ∪
⋃

ḃ∈S
fḃ ∪

⋃ni

p=1
fp

where:

fA , f0 ∪ { [(~a, iA(0)) ∗ ⊛ (iA′
i
,⊛) (iA′′

i
,⊛) s] ∈ viewf(σ0) }

fḃ , f0 ∪ { [(~a, iA(0)) ∗ ⊛ (iA′
i
,⊛) (ḃ,⊛) s] ∈ viewf(σ0) }

fp , f0 ∪ { [(~a, iA(0)) ∗ ⊛ (iA′
i
,⊛) (iCi,p

,⊛) s] ∈ viewf(σ0) }

f0 , { [(~a, iA(0)) ∗ ⊛ (iA′
i
,⊛) s] | [⊛ ⊛ s] ∈ viewf(idξ)

∨ (s.1 = (ȧ,⊛) ∧ ȧ /∈ S ∧ [s] ∈ viewf(idAe⊗ξ)) }

and where we assume fp , f0 if A′
i,p is not an arrow type. It is not difficult to see that

fA , fḃ , fp are viewfunctions. Now, from fA we obtain f ′
A : Q~a(JAK ⊗ JA′′

i K)B T JBK by:

f ′
A , { [(~a, iA(0), iA′′

i
) ∗ ⊛ s] | [(~a, iA(0)) ∗ ⊛ (iA′

i
,⊛) (iA′′

i
,⊛) s] ∈ fA } .

It is not difficult to see that f ′
A is indeed an (x-tidy) viewfunction. By IH, there exists some

~a ^ Γ, y :A′′
i _MA : B such that JMAK = strat(f ′

A).
From each fp 6= f0 we obtain a viewfunction f ′

p : Q~a(JAK ⊗ JCi,pK)B T JC′
i,pK by:

f ′
p , {[(~a, iA(0), iCi,p

) ∗ ⊛ s] | [(~a, iA(0)) ∗ ⊛ (iA′
i
,⊛) (iCi,p

,⊛) s] ∈ fp} .

By IH, there exists some ~a ^ Γ, y′ : Ci,p_Mp : C′
i,p such that JMpK = strat(f ′

p) , so take

Vp , λy′.Mp. For each A
′
i,p of non-arrow type, the behaviour of σ0 at A

′
i,p is fully described

by (iA′
i
)p , so we take Vp to be the denotation of (iA′

i
)p . 〈V1, ..., Vni

〉 is now of type A′
i and

describes σ0’s behaviour in A
′
i.

Finally, from each fḃ we obtain a viewfunction:

f ′
ḃ

: Q~aJAK B T JBK , {[(~a, iA(0)) ∗ ⊛ s] | [(~a, iA(0)) ∗ ⊛ (iA′
i
,⊛) (ḃ,⊛) s] ∈ fḃ} .

By IH, there exists some ~a ^ Γ_Mḃ : B such that JMḃK = strat(f ′
ḃ
) .

Now, taking for each known exception-name ḃ

Nḃ ,

{

ḃ , if ḃ ∈ S(~a)

z′j , if ḃ# ~a ∧ j = min{i | ḃ = (iA(0))k+i} ,

and

M0 , (try (λx′.λx.(λy.MA)x′)(z′′i 〈V1, ..., Vni
〉) handle

−→
Nḃ =>

−−−−→
λx.Mḃ) skip ,

for some x, x′ not free inMA,Mḃ’s, we obtain σ0 = JM0K ↾ (~a, iA(0)) . �
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Corollary 5.45 (ip-Definability) xT = (xT , T,Q,O) is an ip-definable νερ-submodel.

Proof: For each~a,A,B, defineD~aA,B , {f : Q~aJAK B T JBK | f is finitary} . By definability,

every f ∈ D~aA,B is definable. We need also show:

(∀ρ ∈ D~aA→B,N . Λ
~a(f) ; ρ ∈ O~a =⇒ Λ~a(g) ; ρ ∈ O~a) =⇒ f .~a g .

Assume the LHS assertion holds and let Λ~a(f) ; ρ ∈ O~a, some ρ : Q~a(JAK −−⊗ T JBK) B TN.
Then, let [s ; t] = [(~a, ∗) ∗ ⊛ (0,⊛)

~b] ∈ Λ~a(f) ; ρ , [s] ∈ Λ~a(f) and [t] ∈ ρ. Then, by proposi-

tion 5.42, [t] ∈ ρ≤t , so Λ~a(f) ; ρ≤t ∈ O~a. Moreover, ρ≤t ∈ D~aA→B,N , so Λ~a(g) ; ρ≤t ∈ O~a, by

hypothesis. Finally, ρ≤t ⊑ ρ implies Λ~a(g) ; ρ≤t ⊑ Λ~a(g) ; ρ , hence the latter observable, so
f .~a g. �

Hence, we have finally shown the following.

Theorem 5.46 xT = (xT , T,Q,O) is a fully abstract model of νερ. �

5.2.6 Equivalences established semantically

Reasoning as in section 4.3.8 we can show that, for any B ∈ TY and taking ä ∈ AB , we

have νä. ! ä ≅ stopB in the νερ-calculus. Moreover, using the fact that νερ-environments are

x-tidy we can also show in a similar way that

stopB ≅ νȧ.raise ȧ . (5.16)

This implies that νȧ.raise ȧ / M for any ǫ ^∅_M : B, in νερ and in νε.

Let us now prove equivalence (5.3) in the νε-calculus using the full-abstraction result for

νερ. Recall that

M2 , λf. νȧ.νḃ. [fȧ⇔ f ḃ] : (E → N) → N , M3 , λf.νȧ. [fȧ⇔ fȧ] : (E → N) → N ,

and that we need to show M2 ≅ M3 . By full-abstraction of νερ (in fact, by correctness and
adequacy), it suffices to show that, for any ρ : T ((Ae −−⊗ TN) −−⊗ N) B TN which is tl4 and

does not use the store,

JM2K ; ρ ∈ Oǫ ⇐⇒ JM3K ; ρ ∈ Oǫ. (5.17)

In fact, it suffices to assume ρ does not use the store for dereferencings, i.e. it does not

ask store-Q’s unless in a copycat. The viewfunctions of JM2K and JM3K are given below.
Note that we have omitted store-copycat links (as we won’t be using the store) and also the

exception-copycat that occurs if Opponent plays an exception under (ḃ,⊛)ȧḃ(4)/(ȧ,⊛)ȧ(4) .
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1
JM2K // T ((Ae −−⊗ TN) −−⊗ TN)

∗ OQ

∗ PA

⊛ OQ

(∗,⊛)
(1) PA

(∗,⊛)
(2)

OQ

(ȧ,⊛)
ȧḃ
(3)

PQ

(ċ,⊛)ȧḃ OA

(ċ,⊛)ȧḃ PA

(n,⊛)ȧḃ OA

(ḃ,⊛)
ȧḃ

(4)
PQ

(m,⊛)
ȧḃ OA

(n⇔ m,⊛)
ȧḃ PA

1
JM3K // T ((Ae −−⊗ TN) −−⊗ TN)

∗ OQ

∗ PA

⊛ OQ

(∗,⊛)
(1) PA

(∗,⊛)
(2)

OQ

(ȧ,⊛)ȧ
(3)

PQ

(ċ,⊛)
ȧ

OA

(ċ,⊛)ȧ PA

(n,⊛)
ȧ

OA

(ȧ,⊛)
ȧ
(4)

PQ

(m,⊛)
ȧ

OA

(n⇔ m,⊛)ȧ PA

We show only one direction of the equivalence; the other is shown by a similar argument.

Let [∗ ∗ ⊛ (0,⊛)~a] ∈ JM2K ; ρ, some ρ,~a with ρ being tl4 and not asking store-Q’s. Then,

the interaction witnessing this sequence starts with [∗ ∗ ∗ ⊛ ⊛~b], some ~b introduced by ρ,

to which JM2K plays (∗,⊛)
~b
(1). At this point, ρ can either play (0,⊛)~a or ask some (∗,⊛)

~b1
(2).

In the latter case, JM2K plays (ȧ1,⊛)
~b1ȧ1ḃ1
(3) and now ρ has three choices: either play some

(n,⊛)
~b1ȧ1ḃ1~c, or ask again some (∗,⊛)

~b2
(2), or play some exception (ċ,⊛)

~b1ȧ1ḃ1~c. In the latter

case, JM2K responds by also playing (ċ,⊛)
~b1ȧ1ḃ1~c. Note that ċ cannot be ḃ1 as then x-tidiness

of ρwould copycat the exception to the output giving [∗ ∗ ⊛ (ċ,⊛)
~b1ȧ1ḃ1~c] ∈ JM2K ; ρ. Hence,

the interaction can be simulated (modulo ḃ1 ) by JM3K ; ρ. At this point, ρ can play either

(∗,⊛)
~b2
(2) or (0,⊛)~a. In the former case, JM2K will play (ȧ2,⊛)

~b2ȧ2ḃ2
(3) with ȧ1 6= ȧ2. Up to now,

the interaction can be simulated by JM3K ; ρ, as the ḃi’s have not played any part.

So suppose that, after some rounds of Opponent answering to (ȧi,⊛)
~biȧiḃi
(3) with excep-

tions or with fresh openings of (∗,⊛)
~bj

(2), Opponent plays some (n,⊛)
~bk ȧk ḃk~c. At this point,

JM2K plays (ḃk,⊛)
~bkȧk ḃk~c
(4) and the play continues. But now (ḃk,⊛)

~bkȧk ḃk~c
(4) has hidden ȧk from

the P-view of ρ and therefore, because of innocence, the latter will play in the same way as if

(ȧk,⊛)
~bȧk ḃk~c
(4) had been played. Hence, JM3K ; ρ can simulate this appearance of ḃk. Using the

precisely the same argument for all appearances of ḃi’s, we have that JM3K ; ρ can simulate

the whole interaction.
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Conclusion

E quindi uscimmo a riveder le stelle.

Dante, La Divina Commedia, Inferno.

Summary

In this thesis we have examined the semantics of nominal computation, that is, of computa-

tion capable of creating fresh names, comparing them and passing them around. Following
the work on the ν-calculus, a characteristic feature of our approach is the stipulation of

names being constants rather than variables. We find this more adequate not only for de-
notational reasons (absence of ‘bad’ constructors) but also because it seems more intuitive:

names are just like integers, but can only be compared for equality.

The constants-as-names rationale allows for a simple— syntactic and denotational—
modelling of names once an adequate framework for such constants has been laid down.

The chosen relevant framework is that of nominal sets, that is, sets supplied with atoms and
atom-permutation technology, which provide an elegant foundational mathematical theory

for reasoning with names (by atoms). The whole discussion— of nominal computation and

its semantics—was made inside the universe of nominal sets.
Our denotational models were built in game semantics, and in particular in nominal

games. The latter are stateful, call-by-value games built inside nominal sets: names appear
as constants inside games, and states contain precisely the names created along a compu-

tation. We have examined names for general references and exceptions. The methodol-

ogy followed was that of establishing a basic category of games corresponding to a basic
nominal calculus, and from that obtain models of the additional nominal computational

effects by means of computational monads. Thus, our models differ importantly from pre-

vious models of general references and exceptions. While in those models names were se-
mantically modelled as compound objects encapsulating the structure necessary for name-

manipulation (i.e. read/write or raise/handle methods), in our models names are elemen-
tary objects manipulated by computational monads. This feature allowed us to obtain fully

complete models without the need to add ‘bad’ constructors in the language.

Further directions

This thesis has taken some basic steps in the modelling of nominal computation which can

serve as a stable platform for further research on names. A first further direction is that of

characterising the nominal effect— i.e. the computational effect that arises from the use of
names— in abstract categorical terms. Here we have pursued this task to some extent by

introducing the monadic-comonadic description of nominal computation, but it is evident
that the description needs further investigation. We see that there aremoremonad-comonad
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connections to be revealed, which will simplify and further substantiate the presentation.
The work of Schöpp which examines categories with names [Sch06] seems to be particularly

helpful in this direction.
A second direction, which has not been pursued here, is that of decidability of obser-

vational equivalence in nominal languages. The use of denotational methods, and game

semantics in particular, for attacking the problem has been extremely successful in the ‘non-
nominal’ case, having characterised decidability of (fragments of) Idealized Algol [GM00,

Ong02, Mur03]. It would therefore be useful to ‘nominalise’ that body of work and apply
it to nominal calculi. Already from [Mur03] we can deduce that nominal languages with

ground store are undecidable, and from [PS93] we know that equivalence is decidable for

programs of first-order type in the ν-calculus, but otherwise the problem remains open. A
major challenge to be faced is that the fully abstract models we have devised lean heavily

on semantical quotientings and therefore disallow direct reasoning on strategies. To this
end, Laird’s approach to nominal games [Lai08] seems very relevant. A first step, covering

Reduced ML, has been taken in [MT09].

A third direction would be to examine nominal languages for concurrent computation.
In concurrency, names may also appear in threads, channels etc, and it is therefore natural

to extend nominal games to the concurrent setting. Usually, the passage from sequential
games to concurrent games is achieved by interleaving of sequential plays [GM04, Lai05],

an approach that could be tested in the nominal setting. It would also be interesting to

examine formal properties, such as private names and common store, of nominal concurrent
languages. Work in this direction has so far only been conducted by Laird [Lai06].

Finally, it would be interesting to examine AJM-games [AJM00] under the lens of nomi-
nal sets. A distinctive feature of AJM-games is the use of moves-with-tags inside a play in

order to distinguish between different threads of computation. Evidently, strategies need

only distinguish between different tags and be impervious to permutation of tags. We see
that tags play a role of names and seems therefore natural to use atoms as tags. This ap-

proach seems more natural than the usual naturals-as-tags and would greatly simplify the

presentation of AJM-games allowing also the nominal consideration of issues arising in Lin-
ear Logic and Geometry of Interaction.
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Deferred Proofs

Proof of lemma 4.10: The first part is by induction on M , using substantially (N2). For
the second part we do again induction on M . The base cases are straightforward; for the

induction step we show the following cases:

⊲ IfM = νa.N then, assuming a# ~a,

JM{~V /~x}K = Jνa.N{~V /~x}K = nuΓ ;T JN{~V /~x}K ;µ

IH
= nuΓ ;T (〈id, ~aa~a ; |~V |〉 ; ζ ′ ;Q~aaπ2 ; JNK) ;µ

(N2)
= 〈nuΓ, id〉 ; τ ′ ;T (id× |~V |) ;T ζ ′ ;TQ~aaπ2 ;T JNK ;µ

= 〈nuΓ, id〉 ; τ ′ ;T ζ ′ ;TQ~aa(id× |~V | ;π2) ;T JNK ;µ

= ∆Q~aΓ ; ζ ′ ; nuΓ×Q~aΓ ;TQ~aa(id× |~V | ;π2) ;T JNK ;µ

= ∆Q~aΓ ; ζ ′ ;Q~a(id× |~V | ;π2) ; nuΓ ;T JNK ;µ

= ∆Q~aΓ ; id× |~V | ; ζ ′ ;Q~aπ2 ; nuΓ ;T JNK ;µ .

⊲ IfM = λx.N then,

JM{~V /~x}K = Jλx.(N{~V , x/~x, x})K = ΛT (ζ ′ ; JN{~V , x/~x, x}K) ; η

IH
= ΛT (ζ ′ ;〈id, ~|V |, |x|〉 ; ζ ′ ;Q~aπ2 ; JNK) ; η

= ΛT (〈id, ~|V |〉 × id ; ζ ′ ;Q~aπ2 ; JNK) ; η

= ΛT (〈id, ~|V |〉 × id ; ζ ′ × id ;Q~aπ2 × id ; ζ ′ ; JNK) ; η

= 〈id, ~|V |〉 ; ζ ′ ;Q~aπ2 ; ΛT (ζ ′ ; JNK) ; η .

⊲ The case ofM = N K is paradigmatic for all other cases:

JM{~V /~x}K = JN{~V /~x}K{~V /~x}K = 〈JN{~V /~x}K, JK{~V /~x}K〉 ;ψ ;T evT ;µ

IH
= 〈〈id, |~V |〉 ; ζ ′ ;Q~aπ2 ; JNK, 〈id, |~V |〉 ; ζ ′ ;Q~aπ2 ; JKK〉 ;ψ ;T evT ;µ

= 〈id, |~V |〉 ; ζ ′ ;Q~aπ2 ;〈JNK, JKK〉 ;ψ ;T evT ;µ
�

Proof of lemma 4.11: The equalities are shown by the following diagrams.

Q~aA

nu

��

〈nu,id〉 // TQ~aa
× Q~aA

τ ′

��

Tf×g // T 2B × TC

τ ′

��

µ×id // TB × TC

ψ

''PPPPPPPPPPPPP

TQ~aaA
T〈id,

~aa
~a

〉

// T (Q~aaA × Q~aA)
T (f×g)

// T (TB × TC)
Tψ

// T 2(B × C)
µ

// T (B × C)
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Q~aA
nu // \a℄ f

++VVVVVVVVVVVVVVVVVVVVVVVVVV TQ~aaA
Tf // T 2B

T2g //

µ

��

T 3C

Tµ

��
µ

��
TB

Tg

// T 2C µ
// TC

�

Proof of lemma 4.12: We show the following paradigmatic cases.

Q~aΓ
〈id,JMK〉

//

J[M=N ]K

--Q~aΓ × TAA JNK×id //

τ

��

TAA × TAA ψ′

//

τ

��

T (AA × AA)
T (〈π2,π1〉 ; eq)

// TN
T (Q~aΓ × AA)

T (JNK×id) //

Tz ′
))SSSSSSSSSSSSSS

T (TAA × AA)
Tτ ′

// T 2(AA × AA)

µ

OO

T 2(〈π2,π1〉 ; eq)// T 2B

µ

OO

TQ~a(Γ × AA)

T Jx=NK

22ffffffffffffffffffffffffffffffff

T 〈JNK,|x|〉

OO

Q~aΓ

J[a=M ]K

--
〈id,JMK〉

// Q~aΓ × TAA |a|×id //

τ
))SSSSSSSSSSSSSS
AA × TAA τ // T (AA × AA)

Teq
//

T (η ;Teq)
((PPPPPPPPPPPPPP
TN

T (Q~aΓ × AA)

T (|a|×id)
55kkkkkkkkkkkkkk

Tz ′
// TQ~a(Γ × AA)

T Ja=xK
// T 2B

µ

OO

Q~aΓ

Jif0 M then N1 else N2K

--
〈id,JMK〉

// Q~aΓ × TN 〈JN1K,JN2K〉×id //

τ

��

(TA)2 × TN
τ

��

TA

T (Q~aΓ × N)
T (〈JN1K,JN2K〉×id) //

Tz ′ ; T Jif0 x then N1 else N2K

22T ((TA)2 × N)
T (〈π2,π1〉 ; cnd) // T 2A

µ

OO

Q~aΓ

J(λy.N)MK

--
〈id,JMK〉

// Q~aΓ × TA
Jλy.NK×id //

τ

��

(TBA) × TA
τ // T ((TBA) ×A)

T ev
T

��

TB

T (Q~aΓ ×A)

T (Jλy.NK×id)

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Tz ′
// TQ~a(Γ ×A)

T J(λy.N)xK
// T 2B

µ

66nnnnnnnnnnnnnnn

Q~aΓ

JM NK

,,
〈id,JMK〉

// Q~aΓ × T (TBA)
JNK×id //

τ

��

TA× T (TBA)

τ

��

TB

T (Q~aΓ × (TB A))

Tz ′

��

T (JNK×id) // T (TA× (TB A))

Tτ ′ ;µ ; T 〈π2,π1〉

��
TQ~a(Γ × (TB A))

T 〈|x|,JNK〉 //

T JxNK

22T ((TBA) ×A)
T ev

T

// T 2B

µ

OO

�

Proof of proposition 4.31: Commutativity of the (NR) diagrams is shown by direct compu-

tation. For example, for the first diagram, the viewfunction of 〈π1, updA〉 ; τ ;∼= ;TdrfA ;µJAK
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is computed in the following figure, from which we see that it equals 〈π2, updA〉 ; τ ;∼=.AA ⊗ JAK
〈π1,updA〉 // AA ⊗ T 1

τ ;∼= ;TdrfA // T 2JAK
µJAK // T JAK

(a, iA)

(a, ∗)

∗

∗

⊛

⊛

⊛

(∗,⊛)

(∗,⊛)

⊛
a

a

a

iA

iA

iA

(iA,⊛)

(iA,⊛)

a

...
...

...

iA

b

...
...

...

b

We now show the (SNR) equation holds. We observe that (note we omit superscripts and

subscripts for economy)

Λ−1(upd) = Λ−1(upd) ; pu ; up : AA ⊗ JAK ⊗ ξB (1 ⊗ ξ)⊥

and hence upd = Λ(Λ−1(upd) ; pu ; up) = f ; Λ(ev ; up) , with f , Λ(Λ−1(upd) ; pu). Thus,

nu× upd ;ψ = new× f ;α× Λ(ev ; up) ;ψ
(∗)
= new× f ;α× Λ(ev ; up) ;ψ′ = nu× upd ;ψ′ ,
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where (∗) is proven as follows.

α× Λ(ev ; up) ;ψ = α× Λ(ev ; up) ; τ ′ ;Tτ ;µ = id× Λ(ev ; up) ; st′ ; τ⊥ ;α ;µ

= Λ((id× Λ(ev ; up) ; st′ ; τ⊥ ;α) × id ; ev ; ev⊥ ;dn)

= Λ((id× Λ(ev ; up) ; st′ ; τ⊥) × id ; st′ ; ev⊥ ;dn)

= Λ((id× Λ(ev ; up) ; st′) × id ; st′ ;(τ × id)⊥ ; ev⊥ ; dn)

= Λ((id× Λ(ev ; up) ; st′) × id ; st′ ;(id× ev ;st)⊥ ; dn)

= Λ(st′ ;(id× Λ(ev ; up) × id)⊥ ;(id× ev ;st)⊥ ; dn)

= Λ(st′ ;(id× (ev ; up) ; st)⊥ ; dn) = Λ(st′ ;(id× ev)⊥)

α× Λ(ev ; up) ;ψ′ = α× Λ(ev ; up) ; τ ;Tτ ′ ;µ = id× Λ(ev ; up) ; τ ;Tst′ ;Tα ;µ

= Λ((id× Λ(ev ; up) ; τ ;Tst′ ;Tα) × id ; ev ; ev⊥ ; dn)

= Λ((id× Λ(ev ; up) ; τ ;Tst′) × id ; ev ;(α× id)⊥ ; ev⊥ ; dn)

= Λ((id× Λ(ev ; up) ; τ ;Tst′) × id ; ev ; st′⊥ ; dn)

= Λ((id× Λ(ev ; up) ; τ) × id ; ev ;(st′ × id)⊥ ; st′⊥ ; dn)

= Λ((id× Λ(ev ; up) ; τ) × id ; ev ; st′⊥ ; dn)

= Λ(id× Λ(ev ; up) × id ; id× ev ; st ; st′⊥ ; dn)

= Λ(id× (ev ; up) ; st ; st′⊥ ; dn) = Λ(id× ev ; st′)
�
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Birkhäuser, 1997.

[PG00] Andrew M. Pitts and Murdoch J. Gabbay, A metalanguage for programming with
bound names modulo renaming, MPC2000: Proceedings of 5th International Con-

ference on Mathematics of Program Construction (R. Backhouse and J. N.

Oliveira, eds.), Lecture Notes in Computer Science, vol. 1837, Springer-Verlag,
2000, pp. 230–255.

[Pit03] Andrew M. Pitts, Nominal logic, a first order theory of names and binding, Informa-

tion and Computation 186 (2003), 165–193.

[Pit06] , Alpha-structural recursion and induction, Journal of the ACM 53 (2006),

459–506.

[Plo77] Gordon D. Plotkin, LCF considered as a programming language, Theoretical Com-

puter Science 5 (1977), 223–255.

[Pow00] John Power, Models for the computational lambda-calculus, MFCSIT2000: Proceed-
ings of First Irish Conference on the Mathematical Foundations of Computer

Science and Information Technology (Cork, Ireland), Electronic Notes in Theo-

retical Computer Science, vol. 40, Elsevier, 2000, pp. 288–301.

[PP02] Gordon D. Plotkin and John Power, Notions of computation determine monads,

FoSSaCS ’02: Proceedings of the 5th International Conference on Foundations
of Software Science and Computation Structures (Grenoble, France), Springer-

Verlag, 2002, pp. 342–356.

[PR97] John Power and Edmund Robinson, Premonoidal categories and notions of compu-
tation, Mathematical Structures in Computer Science 7 (1997), no. 5, 453–468.

[PS93] AndrewM. Pitts and Ian D. B. Stark, Observable properties of higher order functions

that dynamically create local names, or: What’s new?, MFCS ’93: Proceedings of 18th
International Symposium on Mathematical Foundations of Computer Science
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à la Laird, 73
nominal language, 10

Nominal Logic, 15

nominal relation, 18
nominal function, 18

nominal set, 10, 16
strong, 20

nominal subset, 17

normal filter, 22
(NR), 82



160 INDEX

nu, 81, 92, 123, 127, 134
ν-calculus, 10, 24

evaluation context, 27
operational semantics, 26

typing rules, 26

νε-calculus, 120
evaluation context, 120

unhandled, 120
operational semantics, 120

typing rules, 120

νε-model, 122, 127
νρ-calculus, 76

context, 78
basic, 79

instantiation, 79

program context, 79
typing rules, 79

evaluation context, 77
operational semantics, 77

typing rules, 76

νρ-model, 81, 94, 127

O
O, 32

O~a, 85, 108, 130, 139
observables, 32, 79

observational approximation, 29, 79, 126

observational equivalence, 79, 126
decidability, 146

observationality, 85, 110, 130, 140

ω-chain, 89
Opponent, 40

view (O-view), 43
outer-component arrow, 122, 127

P
P , 125

PA, 43
P i
A, 53

partial exponentials, 65
P̄ , 128

PCF, 9, 11

call-by-value, 12
PERM, 16

permutation, 15
action, 16

basic permutation, 16

play, 43
almost composable, 44

composable, 44
composite, 45

innocent, 53, 54

parallel interaction, 45
Player, 40

view (P-view), 43

prearena, 40
precpo, 68

prefix closure, 44
products, 65

proj, 52

ψ, 31
ψ′, 31

Q
Q (comonad), 36

(Q, T )-exponentials, 38

Q~a, 70, 81, 123, 127, 133
question, 40

open, 43
pending, 43

R
Reduced ML, 76, 146
reference-equality test, 75

S
S, 77
S̄, 84

S, 16
semantics

Denotational, 9

Game Semantics, 9, 11
Operational, 9

semantic cube, 11
trace semantics, 75

Separation of Head Occurrence, 65

single-valuedness, 58
(SNR), 82

sν-calculus, 28
operational semantics, 28

typing rules, 28

soundness
equational, 85, 124, 130

inequational, 87, 131
stop, 77, 95

Store Equation

(SE’), 131
(SE), 88

store-A, 101, 137

store-H, 101, 137
store-Q, 101, 137

strat, 59
strategy, 44

!B (initial), 67

!B (terminal), 44b
n , 44
(
~a
~a′

)
, 73

δ, 70

dn, 69

drf, 93, 134



INDEX 161

¨drf, 134
dst, 67

ε, 70
eq, 44, 70

new, 71, 92, 133

hdl, 135
˙hdl, 135

idB , 44
ι, 67

incl, 52

inx, 135
nu, 92, 134

π, 65
~a
~a′ , 44

proj, 52

pu, 69, 91
st, 69

θ, 134
JstopK, 95

upd, 93, 134
¨upd, 134

up, 69

composition, 47
finitary, 111, 140

gen. name-abstraction (\ ^ ℄), 73
innocent, 56
l4, 62

l4*, 62

name-abstraction (\ ℄), 72, 93
order (⊑), 52

pairing, 65
t4, 62

t4*, 62

tidy, 102
tl4, 62

tl4*, 62
total, 62

ttotal, 62

ttotal*, 62
x-tidy, 138

strength-coherence, 72, 82, 123
strong support lemma, 20, 21

support, 16

finite, 16
strong, 20, 48

support abstraction, 18
support ideal, 16

S supports x, 16, 22

switching condition, 45
symmetric premonoidal tensor, 32

T
T (monad), 30, 81, 92, 122, 127, 133

T -computation, 31

T -evaluation arrow, 31
T -exponentials, 30

T -exponentiation functor, 31
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