Computing Science Group

Nominal Game Semantics

Nikos Tzevelekos

CS-RR-09-18

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD

Nominal Game Semantics

Nikos Tzevelekos

Brasenose College

University of Oxford

Trinity 2008
A thesis submitted for the degree of Doctor of Philosophy

Abstract

Game Semantics arguably stands for one of the most successful techniques in
denotational semantics, having provided not only proper denotational, accurate
models for a large variety of programming languages, but also new semantical
tools for program verification and validation. Most of all, over the last couple
of decades, game semantics has contributed a novel understanding of compu-
tations, namely as functions with inner structure, the latter being described as
interaction between two players — the Program and the Environment.

On the other hand, Nominal Computation is a key theme within the Theory of
Computation which has not been adressed semantically in a satisfactory man-
ner. The significance of nominal computation is clearly depicted in the ubiquity
of names in computational scenarios: names form the basis of many calculi of
mobile processes; appear in network protocols and secure transactions; and are
generally essential in programming for identifying variables, channels, threads,
objects, codes, and many other sorts of name in disguise.

This thesis examines nominal game semantics, that is, game semantics for nomi-
nal computation. Our starting point is the basic nominal language, the v-calculus,
which we model in a basic category of nominal games. The construction of nom-
inal games is based on recent advances in game semantics, and also on the the-
ory of Nominal Sets, which serves as a general foundation for reasoning about
names.

Our main focus is on languages extending the basic nominal language by use of
names for general references and exceptions. These languages faithfully reflect
the practice and reach the expressivity of programming languages such as ML;
moreover, their full-abstraction problems had not been solved previously in a
fully satisfactory manner. Such solutions we provide herein. We first devise
abstract categorical models for these languages, and then construct fully abstract
models in nominal games.

Preface to the Technical Report

This Report of December 2009 corrects discrepancies related to the terms M,
and M3 used in Chapters 4 and onwards (especially Section B.2Z.6) in order to
distinguish the examined nominal calculi. I am grateful to Andrzej Murawski
for the many fruitful discussions, out of which those problems became apparent.

Acknowledgements

First, I would like to thank my supervisor, Samson Abramsky, for his constant
encouragement, support and guidance, and his impeccable academic ethos. Fur-
thermore, certain people have been particularly supportive of this work, thus
greatly contributing to its successful completion; among them I would like to
single out Andy Pitts, Luke Ong, Andrzej Murawski, Guy McCusker, Dan Ghica
and Ian Stark. In addition, Andy was happy to offer advice on nominal matters;
Guy readily advised on game-semantics; and Andrzej, lan and Luke (the latter
two acting as examiners) read the thesis and suggested several corrections and
improvements. I would also like to thank Jim Laird, Paul Levy and Sam Sanjabi
for fruitful discussions, suggestions and criticisms.

Many thanks go to my friends during these years in Oxford, and particularly to
Elfy, Loukia, George, Nicholas, Antonis, Iris, Andria and Elina. I would also like
to thank my family for their faith and support. I am deeply grateful to Note, for
everything.

Finally, I would like to acknowledge the financial support of the Engineering and
Physical Sciences Research Council, the Eugenides Foundation, the A. G. Leven-
tis Foundation and Brasenose College.

3t Néta.

List of Figures

1.1

2.1
2.2

3.1
3.2

41
4.2
4.3
4.4
4.5
4.6
4.7
4.8
49

51
52
53
54
55
5.6
5.7
5.8
59

Cumulative Hierarchiesin ZFand ZFA [l
Strong Support Lemma L L b1l
The sv-calculus: typing and reductionrules. bd
Basic arena constructions. Lo kd
Definition of innocent play. L L. B4
The vp-calculus: typingrules. iz2
The vp-calculus: reductionrules. 78
The semantic translationof vp. Lo L %
The store arena { and the translation of vp-types. o1l
The store monad (T, n, pu,7)forvp. o]
The fresh-name natural transformation forvp. %%
Update and dereferencing arrowsin V.. b4
A dialogue in innocent store. L Lo oL 04
Store-H's-Q’s-A’sinarenaT1. ko1
Kleisli-composition for inner- and outer-component arrows. 23
Equivalences separating our nominal calculi. [22
The semantic translation of vep-terms. fiod
The store arena & and the translation of vep-types. 33
The compound monad (T, n, u, 7) forvep. [3d
Natural transformations § andnuforvep. [34
Update and dereferencing arrowsin V.. 33
Exception-handlingin V.. [3d
Store-H’s -Q’s -A’s and X-raisersinarena 1. @

Contents

1 Introduction
1.1 BackgroundRemarks
1.1.1 Nominal Languages
112 NominalSets
113 GameSemantics o
12 ThesisOutline
121 MainContributions o o o o
2 Names, Nu and Monads
21 NominalSets. e
211 Definition
212 Strongsupport
213 Ahistoricalnote oL Lo
2.2 A paradigmaticnominal language
221 Thewv-calculus.
222 Thesv-calculus
23 Monadsand Comonads
231 Monads
2.3.2 The Kleisli construction and the intrinsic preorder
233 Defining side-effects
234 Monad composition L oL
23.5 Definingexceptions L.
236 Comonads
2.3.7 Monadic-comonadicsetting L 0L
3 Nominal Games
3.1 The basic category G of nominal games
3.1.1 Nominal arenas and strategies
312 Composition.
3.1.3 ArenaandstrategyordersinG L.
32 Innocence
3.21 Thesubcategory V
322 Viewfunctions
3.2.3 Diagrams of viewfunctions
33 Totality
3.3.1 Thesubcategory V,
3.3.2 Liftingandproduct. L L L
3.3.3 Partialexponentials L.
334 Coproducts
3.35 Strategyandarenaorders,
3.4 Amonad,andsomecomonads
3.4.1 Liftingmonad
3.4.2 Initial-statecomonads 0L

8 CONTENTS
34.3 Fresh-name constructors L. izl

3.5 NominalgamesalaLaird 7z |

4 Nominal References 4
41 Thewp-calculus 76
42 Semantics S0
421 Soundness e e e Bl

422 Completeness k3

4.3 Thenominal gamesmodel RS
43.1 Solving the Store Equation RS

432
4.3.3
434
435
4.3.6
4.3.7
4.3.8

Thestoremonad T
Obtaining the vp-model
Adequacy
Tidy strategies L
Observationality
Definability and full-abstraction
Equivalences established semantically

5 Nominal Exceptions
51 Thewe-calculus

5.1.1
5.1.2

521
522
523
524
5.2.5
5.2.6

6 Conclusion

Precompoundmonads o oL L
Sound categorical semantics. oo

Categorical semantics
Full abstraction
The nominal gamesmodel
Thesoundmodel L.
Full abstraction
Equivalences established semantically,

A Deferred Proofs

Bibliography

Index

il
b3
i,
fi1d
17
fr1d
f11d
121
g
52 Thewep-calculus fi2d
127
f3d
31
L33
34
h4d
fad
a7
fis1
157

Chapter 1

Introduction

A focal point in Computer Science is the semantics of programs, i.e. What does a program re-
ally mean? A first answer to the question is given by means of the machine code produced by
a compiler. However, this description is problematic if we are interested in a semantics in-
dependent of hardware and compiler design, revealing of the essence of computation hidden
behind the implementation; a more abstract semantics is needed. In this direction, Opera-
tional Semantics considers programs as executing on an abstract, high-level computational
environment. The semantics of a program is then its observable behaviour in this environment.
Two programs are observationally equivalent if they have indistinguishable behaviours. This
procedural description of computation at a level of abstraction that is both useful and intu-
itive is by and large thought of as giving the intended semantics of a programming language.

On the other hand, programs are expressive enough to be given a syntax-free descrip-
tion in an abstract mathematical domain. This method, called Denotational Semantics, was
pioneered by Strachey as a “mathematical semantics” of programming languages [Str66],
and was substantiated through the work of Scott on Domain Theory [ScoZ0]. With oper-
ational semantics giving the intended program behaviour, a denotational model needs to
capture both the programming language and its observational equivalence. The model is
fully abstract if observational equivalence and denotational equality coincide through se-
mantic translation.

The quest for fully abstract denotational semantics started with the purely functional
language PCF, introduced by Plotkin [Plo77] and embodying the logic LCF of Scott [Sco93].
With PCF it was understood that for full-abstraction it was necessary to work in a do-
main of ‘sequential” functions: the parallel nature of argument evaluation inherent in or-
dinary functions is simply impossible to capture with PCE. The problem was finally solved
in the mid 90’s independently by three teams of researchers: Abramsky, Jagadeesan and
Malacaria [AJM00]; Hyland and Ong [HOQ0]; Nickau [[Nic96]. Their models were based on
Game Semantics: computation was modelled by dynamic interaction between two partic-
ipants, one of them representing the program and the other the environment. It was soon
realised that the potential of game semantics was not confined to the semantics of PCF. The
flexibility in applying and removing conditions from the rules of the games, along with
the potentiality of altering the structure of the games themselves, allowed for the accurate
modelling of a wide range of programming languages exhibiting various computational ef-
fects. This series of full-abstraction results established game models as a powerful paradigm
within denotational semantics.

At around the same time that game semantics appeared on the scene, Pitts and Stark
were focusing on a computational effect pervasive in computing, the use of names, and
examined a prototypical nominal language, the v-calculus [[PS93]]. Names are syntactic atoms
used to distinguish objects which are otherwise indistinguishable yet have distinct roles
inside a computation; more importantly, names can be dynamically generated provoking a
local-state effect. This latter feature along with mobility of names rendered the operational
semantics of this seemingly simple language quite intricate.

9

10 CHAPTER 1. INTRODUCTION

The full-abstraction problem for the v-calculus remained open for a decade. Meanwhile,
Gabbay and Pitts [GP02] had introduced Nominal Sets as a general mathematical foun-
dation for nominal structures, by revisiting the Fraenkel-Mostowski permutation models
of ZFA discovered in the 20’s and 30’s. In 2004, Abramsky, Ghica, Murawski, Ong and
Stark [AGM™04], and independently Laird [Lai04], introduced Nominal Games for the se-
mantical description of nominal computation; [AGM™04] in particular proposed a fully ab-
stract semantics for the v-calculus. This thesis is a further investigation on nominal game
semantics. We rectify the discrepancies arising in the original presentation of [AGM™04]
and then examine fully abstract semantics for languages with nominal general references
and nominal exceptions.

1.1 Background Remarks

1.1.1 Nominal Languages

One of the most pervasive features in computation is the use of names to distinguish entities
that are otherwise indistinguishable yet have distinct roles inside a computation. The names
we focus on have no inner structure whatsoever: in Needham’s taxonomy they correspond
to ‘pure names’ [Nee93|]. Moreover, following the What’s new motto of Pitts and Stark [[PS93]],
names can be

created with local scope, compared for equality, and passed around via function applica-
tion.

The above describes the basic nominal specification, which we may refer to as the nomi-
nal effect. In programming languages, though, more specifications may be added so that
names be used for channels, threads, references, codes, exceptions, etc. We refer to such
languages generically as nominal languages. The prototypical nominal language is the v-
calculus [PS93]], which constitutes a call-by-value A-calculus incorporating the basic nom-
inal specification. Of the more sophisticated and more ‘realistic’ nominal languages, one
that stands out is the 7-calculus of Milner [SW0T]]. It is the paradigmatic language incorpo-
rating names-for-channels, providing a programming framework for concurrent processes
intercommunicating through named channels.

Although constructed as simple computationally as possible, the v-calculus exhibits a
rather delicate behaviour, [Sta97]:

Functions may have local names that remain private and persist from one use of the
function to the next; alternatively, names may be passed out of their original scope and
can even outlive their creator. It is precisely this mobility of names that allows the nu-
calculus to model issues of locality, privacy and non-interference.

Hence, this seemingly plain language became of increasing importance to semanticists. Re-
search focused primarily on the notion of observational equivalence, which resisted all at-
tempts to be modelled accurately by use of ordinary (non-nominal) techniques, be they
denotational or operational [Sta94} [S5ta96), Sta97, [ZNO3].

1.1.2 Nominal Sets

Invented in the 20’s and 30’s by Fraenkel and Mostowski as a model of set theory with
atoms (ZFA), for showing its independence from the Axiom of Choice, nominal sets were
re-introduced in the late 90’s by Gabbay and Pitts [GP02, [Pit03] as a general framework for
the formal treatment of names and name-binding. The main objective was to exploit the rich
structure of nominal sets for defining abstract syntaxes with variable binding which would
incorporate ‘clean’ rules for structural recursion and induction. Nominal sets (and nominal
abstract syntax) have been used extensively for building languages with symbolic-binding

1.1. BACKGROUND REMARKS 11

constructors, for devising nominal theorem provers, and for studying programming lan-
guage semantics: see [Che(5] for a survey, and [Gab(0), (Che(04), Shi05a]] for thorough inves-
tigations.

Figure 1.1: The von Neumann cumulative hierarchy of sets is built (in ZF) starting from the
empty set and taking powersets, while for the Fraenkel-Mostowski hierarchy (the basic Fraenkel
model, in ZFA) we start from the set of atoms A and take powersets constrained to elements of
finite support (i.e. involving finitely many atoms).

Intuitively, nominal sets are sets whose elements involve a finite number of atoms, and
which can be acted upon by finite atom-permutations. The expressivity thus obtained is
remarkable: in the category of nominal sets, notions like atom-permutation, atom-freshness
and atom-binding are essentially built inside the underlying structure. It is therefore self-
suggesting to use nominal sets, with atoms playing the role of names, as a general founda-
tion for reasoning about names.

1.1.3 Game Semantics

The first success of games in the semantics of programming languages was the fully ab-
stract modelling of PCF (an idealised functional language with if-then-else, basic arithmetic
and recursion) [AJMO00, HOQO0, Nic96]. What distinguishes game semantics from traditional
denotational semantics is its intensional character, which is expressed by the description of
computation as a dynamic interaction between two participants: a Player and an Opponent.
In particular, games are specified by plays, that is, sequences of moves played in alternation
by the two participants in relevant arenas of moves. Moves are in effect a representation of
computation steps, and hence programs are modelled by strategies, which are collections
of instructions for Player on how to play a game on a specific arena.

Due to the intensional character of games and the great flexibility in applying and re-
moving constraints from strategies, game semantics is able to capture accurately a wide
range of computational effects and provide fully abstract, proper denotational models for a
variety of languages. Some characteristic such constructions obtained from the models of
PCF are the following. The first, second and fourth constructions, along with the model of
PCF, produce what is known as the semantic cube [AM99].

1996. Removing the innocence condition from strategies, Abramsky and McCusker [[AM97]
were able to model fully abstractly Idealized Algol (IA) [Rey81]], an extension of PCF with
ground-type references. Moreover, the model of IA was shown to be effectively presentable,
something that wasn't true for PCF — and for a good reason as shown by Loader [Loa0T].

1997. Relaxing the well-bracketing condition, Laird [Lai97, [Lai98] modelled fully abstractly
PCF with non-local control flow.

1998. Abandoning the visibility condition, Abramsky, Honda and McCusker [AHMO98] were
able to provide a fully abstract model for a functional language with general, higher-
order references.

12 CHAPTER 1. INTRODUCTION

1999. Abandoning the determinacy condition, Harmer and McCusker [HM99, [Har99] pro-
duced a fully abstract model for finite-nondeterminism.

In addition to alterations to the constraints on strategies, variations to the notion of game
itself proved also meaningful computationally.

1996. Departing from the PCF models, McCusker [McC96, IMcC98] introduced a game-
setting with rich structure which allowed for the modelling of coproducts and the solu-
tion of domain equations on games. The result was a fully abstract model for FPC, an
extension of PCF with coproducts and recursive types.

1997. Game models had thus far focused exclusively on call-by-name languages. At this
point, Honda and Yoshida [HY99] showed that the current framework of games could be
dualised appropriately, yielding the (equally primary) notion of call-by-value games. At
the same time, Abramsky and McCusker [[AM98] introduced a general categorical con-
struction, the family construction, which built CBV models from CBN ones, and applied
it to CBN games. The two constructions, which are essentially equivalent, yielded fully
abstract semantics for the CBV version of PCE.

1997. The introduction by Hughes of the notion of second-order move, that is, a move intro-
ducing a new ‘game-board’, lead to the development of hypergames and to full-abstraction
for system F' [Hug97, [Hug00].

The above results, which are by no means proposed as a complete enumeration of the
achievements of games, built a significant momentum for game semantics and established
it as a powerful paradigm in denotational semantics.

1.2 Thesis Outline

The thesis is structured as follows.

Chapter 2. In this chapter we present some background material necessary for the devel-
opments in the sequel. We start by presenting the theory of nominal sets, following
the exposition of Pitts, and introducing the notion of strong support.

We continue by presenting the v-calculus of Pitts and Stark, in a strongly supported
version, and give some of its basic properties.

In the last part we give an exposition of the categorical notions of monad and comonad,
and briefly examine the properties of monadic-comonadic (bi-Kleisli) categorical frame-
works.

Chapter 3. In this chapter we present (AGMOS-style) nominal games. These are ordinary,
call-by-value, stateful games cast inside the universe of strong nominal sets. We in-
troduce the basic definitions of arenas, plays and strategies, and construct the basic
category of nominal games G. The rest of the chapter examines G and its subcategories
V and V, of innocent and total strategies respectively.

Chapter 4. This chapter introduces the vp-calculus, an extension of the v-calculus with nom-
inal general references, and models it fully abstractly in nominal games. The seman-
tical part starts by presenting abstract categorical models, vp-models, which give cor-
rect interpretations of vp. We then build a concrete such model in the category V.,
and finally obtain full-abstraction by restricting to tidy strategies, that is, strategies
following a certain ‘discipline” with regard to storage.

Chapter 5. In this chapter we examine fully abstract semantics for nominal exceptions in
nominal games. We introduce the calculi ve and vep, which are extensions with nom-
inal exceptions of the v-calculus and the vp-calculus respectively. Categorical models
for the calculi are presented: these are based on the fact that exceptions and local state

1.2. THESIS OUTLINE 13

are separable effects, described abstractly by the notion of precompound monad. Fi-
nally, a specific fully abstract model for vep is constructed in the subcategory of V,
containing x-tidy strategies, that is, tidy strategies following some extra discipline for
exceptions.

1.2.1 Main Contributions

The contributions of this thesis, which have also appeared in [Tze(07, [Ize08], can be sum-
marised as follows.

o The identification of strong nominal sets, that is, nominal sets with ‘ordered involvement’
of names, as the appropriate setting for nominal languages and (mainly) their semantics.

o The abstract categorical description of the nominal effect of nominal languages. More-
over, the categorical presentation of fully abstract models of languages with nominal ref-
erences and exceptions, in the spirit of [Abr00].

o The formulation/rectification of nominal games and their use in constructing models of
nominal references and exceptions.

o The introduction of game-disciplines to capture computation with names-as-references
and names-as-exceptions, leading to definable and hence fully abstract game models.

14

CHAPTER 1. INTRODUCTION

Chapter 2

Names, Nu and Monads

In this chapter we present background material necessary for this thesis. In section Zllwe
present the theory of Nominal Sets of Gabbay and Pitts, which we use as a general foun-
dation for constructions with names. In section we present the basic nominal calculus,
i.e. the v-calculus of Pitts and Stark, and also a version of the latter with ordered local state,
the sv-calculus. In the final section we expose some results regarding the categorical notions
of monad and comonad.

2.1 Nominal Sets

The use of nominal sets in this thesis is limited, albeit essential. In particular, we express the
intuitive notion of names by use of atoms, either in the syntax of our languages or in their
denotational semantics. The features of nominal sets allowing this modelling are:

o all finitely supported constructions with atoms can be carried out in nominal sets,
e atom-equality is decidable,
e there is an infinite supply of (fresh) atoms.

Another appealing feature of nominal sets is the ‘transparent” notion of atom-permutation,
which we see as a ‘clean’ version of atom-substitution.

Perhaps it is not clear to the reader why nominal sets should be used — couldn’t we sim-
ply model names by natural numbers? Indeed, numerals could be used for such semantical
purposes (see e.g. [Lai08]), but they would constitute an over-specification: numerals carry
a linear order and a bottom element which would need to be carefully nullified in the se-
mantical definitions. Nominal sets factor out this burden by providing the minimal solution
to specifying names; in this sense, nominal sets are the intended model for names.

Finally, note that nominal sets appear in the literature also as “FM-sets” (e.g. [GP02]]),
since they descend from Fraenkel-Mostowski permutation models of set theory with atoms.
We will see more on that in section

2.1.1 Definition

We are generally interested in languages having possibly infinitely many types of names,
and hence we construct nominal sets over an w-indexed family of sets of atoms. Thus, we
generally follow the presentation of [Pit03], the only difference being that, since we are
not interested in supplying “a first order theory of atoms and binding” (Nominal Logic),
we base our presentation on finite permutations instead of swappings of atoms (following
e.g. [PGO0, Appendix]).

Let us fix a countably infinite family (A;);c., of pairwise disjoint, countably infinite sets
of atoms, and let us denote by PERM(A;) the group of finite permutations of A;. Atoms

15

16 CHAPTER 2. NAMES, NU AND MONADS

are denoted by a, b, c and variants; permutations are denoted by 7 and variants; id is the
identity permutation and (a b) is the permutation swapping a and b (and fixing all others).
We write A for the union of all the A;’s. We take

PERM(A) £ (P PERM(A;) (2.1)
IS
to be the direct sum of the groups PERM(4;), so PERM(A) is a group of finite permutations
of A which act separately on each constituent A;. For each S C A we let

fix(S9) £ {7 € PERM(A) |Va€ S.7(a) = a} (2.2)

and say that a permutation 7 fixes S if 7 € £ix(S5).

Recall that PERM(A) being a direct sum means that each 7 € PERM(A) is an w-indexed
list of permutations, 7 € [];.,, PERM(A;), and that (7); # ida, holds for finitely many
indices i. If (7); # ida, holds for exactly one index i then we call 7 a basic permutation, and
(), the basic component of .

Fact 2.1 If 7 € PERM(A) then,
e there exist basic permutations 7, ..., m, such that 7 = idom o--- oy,

e there exist basic permutations =, ..., 7, such that the basic component of each 7; is a
swapping, and m = idomo---om,,

e forany S C A, if 7 € £ix(S) then there exist basic permutations =, ..., 7, such that the
basic component of each 7; is a swapping of atoms outside S, and 7 = idomjo---om,.

We will therefore abandon the list-representation of permutations and — with a slight abuse
of notation which identifies a basic permutation with its basic component —we will write
(non-uniquely) each permutation 7 as a finite composition 7 o - - - o 7, such that each =;
belongs to some PERM(A;).

We proceed to nominal sets. As seen in the following definition, the notion of finite sup-
port is central to our presentation. More general supports have been examined in [Gab02,
Che04]; in the latter work it is shown that the notion of support ideals completely corre-
sponds to the axioms of Nominal Logic. But these matters will not concern us here since all
our constructions entail finitely many atoms.

Definition 2.2 (Nominal Set on A) A nominal set X is a set | X | (usually denoted X) equipped
with an action of PERM(A), that is, a function _ o _ : PERM(A)x X — X such that, for any
m, 7 € PERM(A)and z € X,

mo(r’ ex)=(ron')eux, idez =12x.
Moreover, for any « € X there is a finite set S C A such that
£ix(S) C{m € PERM(A) |mex =z} .
We say that S supports x. A
Concretely, a set S C A supports some x € X if, for all permutations ,
(Va€S.m(a) =a) = mox=1x.

For example, A with the action of permutations being simply permutation-application is a
nominal set.

As shown below, finite support is closed under intersection. Hence, each element x of a
nominal set X has least finite support, called the support of x:

S(x) = ﬂ{S Ciin A | S supports x} . (2.3)

For example, for each atom a € A, S(a) = {a}. We say that a is fresh for x, written a # x, if
a ¢ S(x). x is called equivariant if it has empty support.

2.1. NOMINAL SETS 17

Proposition 2.3 Let X be a nominal set and = € X. For any finite S C A, S supports x iff
Va,a'€(A\ S).(ad)ox =x.
Moreover, if finite S, S’ C A support x then S N S" also supports x. Finally,
S(z) = {a € A | for infinitely many b. (a b) oz # x}.

Proof: For the first claim we need only show that S supports z if (a a’) o x = x for all atoms
a,a’ outside S. Assume the latter condition holds and take any n € £ix(S). By fact]
m =1idom; o---om, with each m; being a swapping of atoms outside S, and hence 7o z = z.
Now, if finite S,S" C A support z then take any distinct a,a’ ¢ (S N S’). For any b ¢
SUS' U{a,d'}, (aa’)ex = (ab)e(a’b)e(ab)ex =xsince (ab)ox =z = (a’b)ox. Hence,
S NS’ supports .

Finally, let

A £ {a € A|for infinitely many b. (a b) oz # 2} .

If a € A\ S(x) then there are infinitely many b such that (a b) o # x and, since S(x) is finite,
there is such a b ¢ S(w), Y as S(z) supports 2. Hence, A C S(z). Conversely, it suffices to
show that (a a’) cx = z for all distinct a,a’ ¢ A. But a,a’ ¢ A implies that, for cofinitely
many b, (a b) cox = x = (a’ b) o x. Take some b # a, a’ of the cofinitely many; we have

(aaYox = (ab)o(a' b)e(ab)ex=1x.

n
From the last part of the proposition we have:
a # x <= for cofinitely many b. (a b)cx =z
LN b A (ab)ox =z @4
The “fresh” quantifier 1, introduced in [GP02], quantifies over cofinitely many atoms, i.e.
MaeA. ¢p(a) <= for cofinitely many a€A. ¢(a). W)

A subtlety here is that the holes in ¢ must all be of the same atom-type, say ¢, and that, in
fact, we mean “for cofinitely many a € A;”.

Example 2.4 There are several ways to obtain new nominal sets from given nominal sets X
and Y:

o The disjoint union X & Y with permutation-action inherited from X and Y is a nominal
set. The construction easily extends to infinite disjoint union.

o The cartesian product X xY with permutations acting componentwise is a nominal set;
if (z,y) € X xY then S(z,y) = S(z) US(y).

o The fs-powerset Pr(X), that is, the set of subsets of X which have finite support, with
permutations acting elementwise.

o X' C X is a nominal subset of X if X’ is closed under permutations, these acting as on
X.

o The fs-function space X —Y/, thatis, the set of functions from X to Y with finite support:
X =Y £ {f € Ps(XxY) | f a function with domain X}.

Example 2.5 Apart from A, some standard nominal sets are the following.

18 CHAPTER 2. NAMES, NU AND MONADS

e Using products and infinite unions we obtain the nominal set:

A* &2 Haran|Vijelnai e AN #j = ai#a)) }, (2.5)

necw

that is, the set of finite lists of distinct atoms. Such lists we denote by @, b, Zand variants.
For notational economy, we write a € @ for a € S(@). Moreover, for each @ € A* we set:

A% 2 [70G|mePERM(A) }. (2.6)

Finally, for @,b € A# we write:

o 0 < b if&’isaprefixofg,
e @=bifdisa(not necessarily contiguous) sublist of b,
o @Cb ifs(@) Csb).

o The fs-powerset P(A) is the set of finite and cofinite sets of atoms, and has Pn(A) as a
nominal subset (the set of finite sets of atoms).

For X and Y nominal sets, a relation R C X xY is a nominal relation if it is a nominal subset
of X xY. Concretely, R is a nominal relation iff, for any permutation 7 and (z,y) € X xY,

TRy < (mex)R(moy). (2.7)
For example, # C A x X is a nominal relation: for all relevant a, x, 7,

a#tr = NWbeA (ab)ex =0 = WNbeA.mo(ab)ox=mox
= WNbeA. (m(a) n(b)omox=mmox = UV €EA. (n(a)b)omox=mox
= w(a)#mox.

From nominal relations we proceed to nominal functions and the category of nominal sets.

Definition 2.6 (The category Nom) A function f : X — Y is a nominal function if, for any
7 € PERM(A) and z € X,
f(mox)=me f(z).

We let Nom be the category of nominal sets and nominal functions. A

Thus, nominal functions are fs-functions with empty support. For example, the support
function S(_) : X — P4n(A) is a nominal function since S(m o x) = 7o S(z).

Nom inherits rich structure from Set and is in particular a topos. More importantly,
it contains atom-abstraction mechanisms. The mechanism which triggered the study of
nominal sets in programming is the following. For any nominal set X, any z € X and any
a € A, we can abstract a from z by forming

(ayr = {(by) eAxX | (b=aVb#x)Ny=(ab)ox}.

The abstraction takes the orbit of (a,x) under all swappings of a for fresh atoms. In A-
calculus terminology, (a)z is literally the a-equivalence class of (a,x) (that is, with regard
to the abstraction of a). Hence, it is not difficult to see that S({a)x) = S(x) \ {a}. Moreover,
mo(a)yr = (mea)(mox) and therefore we can define the nominal set (A)X C Pi(A x X) of
abstracted elements as

(AYVX 2 {(a)z|ac ANz € X},

and atom-abstraction as an arrow (_)_ : AX X — (A)X in Nom.

However, in this thesis we are not interested in treating name- and variable-abstractions
nominally, and therefore we will not use the above form of abstraction. The abstraction
mechanism which is useful to us, instead of abstracting specified atoms from z, abstracts all
atoms outside a specified subset of S(x). It is therefore similar to the abstaction mechanisms
used in [AGM™04, [Tze(7].

2.1. NOMINAL SETS 19

Definition 2.7 (Support abstraction) Let X be a nominal set and 2 € X. For any finite
S C A, we can abstract « to S, by forming

[r]s 2 {ye€ X |3Irefix(SNS(z)).y=mox}. N

This form of abstraction restricts the support of = to S N S(z) by appropriate orbiting of z
(and note that [z]g € Pi(X)). This is shown in the following lemma, along with the fact that
[~] is itself nominal.
Lemma 2.8 Forany z € X, S Csin A and m € PERM(A),

o To[z]g =[ToT]ros,

e S([z]s) =8(x)NS.
Proof: For the first clause, we have:

’
T

L

yEmolz]s = y=mon oz AVaeSNS(z).7"ca=a
= y=(nor’or omox AVacSNS(x).(ror on Horoa=moa
— y=(roron Norox AVd' €ro(SNS(x)).(mor o od =d
= yE€[mox|ros (notewo(SNS(x)) =(mreS)NS(wex)),
2

z€[moxlres z=n'omox AVad' e€mo(SNS(x)). 7 oad =d
z=momox ANVaeSNS(z). " oreca=moa

z=mo(r ton'om)ox AVaeSNS(z). (P or’om)ea=n"toroa=a

Lell

z € molr]g.

Note that V7. 7 o[z]s = [T o z]x. s implies S([z]s) C S(z)U S.

For the second clause, assume a € SNS(z) and a # [z]s. Then, for any b# z, S, (a b) o[z]s =
[z]s, and hence = € (a b) o[z]s . This means there exists 7 € £ix(S N S(x)) such that z =
(a b) om oz, and therefore a € S(x) implies

b= (ab)emoacS((ab)emox)=_S(x),

b to b# . Hence, S N S(x) C S([z]s).
For the converse, for any a,b ¢ S N S(z), we have

(ab)olz]s={(ab)omox |me £ix(SNS(x))} ={mox|m € £ix(SNS(x))} = [z]s,
and hence S([z]s) C SN S(z). |
Two particular subcases of support abstraction are of interest. First, in case S C S(x), the

abstraction becomes
[z]s ={y € X | Irefix(S).y=mox}. (%)

This is the mechanism used in [Tze07] | Note that if S ¢ S(z) AS(z) € S then (*) does not
yield S([z]s) = S N S(x). Note also (proof left as exercise) that if S C S(z) N S(y) then

[z]s = [yls <= y € [7]s. (2.8)

The other subcase is the simplest possible, that is, of S being empty; it turns out that this is
all we need from support abstractions in this thesis. We define:

] £ {ye X |Imy=mox}. (2.9)

1The mechanism used in [AGM™T04] is [z]s £ {(y,S) | Ir€£ix(S). y = 7 oz}, and is equivalent to the other
two in case S C S(z), but not in general.

20 CHAPTER 2. NAMES, NU AND MONADS

2.1.2 Strong support

Nominal sets describe a framework of objects built around a finite (or cofinite) amount of
atoms. The framework does not specify how these atoms are present inside an object’s
structure, so atoms may appear in an ‘unordered’ fashion, as for example in the set {a, b}.
The distinction between ordered and unordered involvement of atoms can be formally seen
in the definition of support. In particular, we have seen that a set S supports x if

(Va€S.m(a) =a) = mox=1x.

Ordered involvement then means that the reverse implication is also true. This notion we
call strong support.

Definition 2.9 For any nominal set X, any « € X and any S C A, S strongly supports x if
fix(S) ={7m € PERM(A) |[mexz =2z }.
We say that X is a strong nominal set if all its elements have strong support. A

Thus, the set {a, b} does not support {a, b} strongly, since the permutation (a b) does not fix
{a, b}H but still (a b) o{a, b} = {a, b}. On the other hand, {a, b} strongly supports the list ab.
In fact, all finite lists of (distinct) atoms have strong support, and therefore A# is a strong
nominal set.

The notion of strong support is stronger than that of support, as we saw in the example
of {a, b}. Nonetheless, strong support coincides with weak support when the former exists.

Proposition 2.10 If X is a nominal set and x € X has strong support S then S = S(z).

Proof: By definition, S supports z, so S(x) C S. Now suppose there exists a € S\ S(x). For
any fresh b, (a b) fixes S(z) but not S, so it doesn’t fix ,).]

Hence, Psin(A) is not a strong nominal set (but A# is). The main reason for using strong
nominal sets is the following result.

Lemma 2.11 (Strong support lemma) Let X be a strong nominal set and x1, 2, y1, Y2, 21, 22 €
X. Suppose also that, for some S Cgin A,

S C S(zi) NS(y;) C8(xy),
fori = 1,2, and there exist my, w, € £ix(S) such that
Tyol] =M, 0L =Ty, TyoYyi =Yz, T2 =23.
Then, there exists some w € £ix(S) such that moxqy = 2o, Toyy = Yo and wo 21 = z2.

Proof: Note that S(Zl) N S(yl) - S(l’l) iff (S(Zi) \ S(aci)) n S(yl) = . Let A, £ S(Zl) \ S(l’i),
i=1,2,50 Ay =7, 0A;,and let 7’ = w;l o m,. By assumption, 7’ o 2 = z1, and therefore
' € fix(S(z1)) by strong support. Take any b € A;. Then, n'(b) # n’ cx1 = z; and
mo(b) €m0 Ay = Ay, . (D) #y2, o 7 (b) # 7, oya = y1. Hence,

be Ay = b,7'(b) # 1,91
Now assume Ay = {b1, ..., bx} and define mg, 71, ..., 7y by recursion:
7o = id, mir1 = (bip1 (miom)(bir1)) o .
We claim that, foreach 0 <i < Nand 1 < j <, we have

!
miom ob; =b;, moxi =z, Moy =1y1.

2Recall that a permutation 7 fixes a set of atoms S if 7(a) = a for alla € S.

2.1. NOMINAL SETS 21

We do induction on i; the case of ¢ = 0 is trivial. For the inductive step, if 7; o 7" 0 b; 11 = bi1
then Ti4+1 = T4y and Ti41 © o bi+1 = T; ° 7o bi+1 = bi+1. Moreover, by IH, Ti41 © 7o bj =
bj foralll S _j S i, and Ti+1°T1 = X1 and Ti+1°Y1 = Y1. If v 071'/ Obi+1 = b/iJrl 75 bi+1 then,
by construction, 741 o7’ 0 b;y1 = b;y1. Moreover, foreach 1 < j < ¢, by IH, w41 o7’ 0 b; =
(biy1 b, 1) © bj, and the latter equals b; since b; 1 # b; implies b} | # m; o7’ o b; = b;. Finally,
for any a € S(xl)US(yl), Tit1°a = (bi+1 b;Jrl) om;oq = (bi+1 b/iJrl) oa, by IH, with a #* bit1.
But the latter equals a since 7' (b;11) # a implies that b, | # 7; ° a = a, as required.

Hence, foreach1 < j < N,

7TN°7TIObj:bj, TN °X1 =71, TN °Y1 = Y1 -
Moreover, 7 o' o 21 = 21, as we also have
beS(z1)NS(x1) = wnom ob=qnob=10
(again by strong support). Thus, taking 7 £ 7, o 7' we have:
Ty oMy 0TI =Ty oL =Tz, Wy oWy oYL =Ty oY1 = Y2,

—1 _ —1 / _ / _
Ty oMy ©21 =TyOoT)y OCMTNOT ©021 =TyoT 021—7Ty07Ty

o, 021 = 23.
Finally, from 7y € £ix(S(z1)) C £ix(S) and 7, € £ix(S) we obtain = € £ix(S5). |

A more enlightening formulation of the lemma can be given in terms of abstractions.

Let X be a strong nominal set and x1, x2,y1,Y2, 21,22 € X. Suppose also that, for
some S Cgp, A,

for i = 1,2, and moreover that

[1,91]s = [T2,92]s A [21,21]5 = [72, 22]5 .

Then [x1,y1,21]s = [#2,Y2, 22]s-

Figure 2.1: Strong Support Lemma

In the context of nominal games later on, where we will be dealing with abstractions of plays
of this form (with § = @), the strong support lemma will guarantee us that composition of
abstractions of plays can be reduced to composition of plays.

2.1.3 A historical note

In this section we briefly describe the permutation models of Fraenkel and Mostowski,
which form the basis of what we call in this thesis “nominal sets”. Our main reference
here is the book by Jech [Jec73| Chapter 4]; for further references the reader is referred to the
references therein.

Fraenkel-Mostowski (FM) permutation models of set theory were introduced by Fraenkel
in the early 20’s, and further developed by Mostowski in the late 30’s, in order to prove the
independence of the Axiom of Choice from the axioms of Zermelo-Fraenkel set theory with
Atoms (ZFA). ZFA is an axiomatisation of set theory which allows for a set A the elements of
which are not sets but atoms (urelemente). Atoms contain no elements, but are not the empty
set. The usual axioms of ZF are present in ZFA with the necessary restrictions for atoms.

The universe of sets is constructed following the construction of the Cumulative Hierar-
chy, only from a different starting point: the set A of atoms, instead of @. Put formally, the

22 CHAPTER 2. NAMES, NU AND MONADS

universe isnow V' £ J,con Va, where:

Vo £ A
Var1 2 AUP(V,) (V)
Vs £ | Va
a<d

Note here that by convention the notion of subset applies only to sets, that is,
rCy <2 @ AANVz.zEXx = z€y.

Powersets are defined accordingly.

A genre of models for ZFA is that of permutation models. Within V, consider a group G
of permutations of A. Permutations are expanded to act on all sets in V' elementwise, with
mo @ = & for every m € G. We fix a normal filter F on G, which is a set of subgroups of G
such that, for all subgroups H, K of G,

e GeEF,

e if He Fand H C K then K € F,

o if H K€ Fthen HNK € F,
eifrcGand H e FthentroHon ! € F,
e foreacha € A, sym(a) € F,

where sym(z) £ {7 € G| mox = x}, for any z. The permutation model is constructed by
taking the intersection of the set X of elements x such that sym(z) € F, and of the transitive
closure of X (atoms included). That is,

V2 AU{z|syn(z) e FAzCV}.

Analytically, V £ V,, where:
y Y acen

(1>

Vo = A
Vat1 = AU{z CV, |syn(z) € F}

Vs & | Va

a<d

One can show that V is a transitive model of ZFA.

The basic Fraenkel model is a simple permutation model that refutes the AC; hence, the
AC is not provable from the axioms of ZFA. A is assumed to be countably infinite while the
group G consists of all permutations of A. Now, for each set we define

fix(z) £ {re€G|Vycaz.moy=1y}.

We take the filter F to be the one generated by the subgroups £ix(S), for finite S C A, that
is,

F £ {HCG|3S Cuin A.£ix(S) C H}.
F is a normal filter and consists of subgroups of G that fix some finite set of atoms. We take
V to be the resulting model. Concretely, we have that, for any z, sym(z) € F iff there is a
finite S C A such that S supports x, that is,

£ix(S) C sym(x).

Hence, x € V iff « has finite support and all its elements have finite support, and so on.
Moreover, since supports are closed under intersection, for each « € V there exists a least

support S(z).

2.1. NOMINAL SETS 23

To see that the Axiom of Choice fails for V, suppose that there is in V' a choice function f
for A,i.e. an
fPv(A)\{g}—A

such that, for any non-empty subset X of AinV, f(X) € X. Note that A is an element of V,
and its powerset in V' contains all its finite and cofinite subsets. Then, we can define in V

I Pin(A) — A £ X~ f(A\X).

f' is defined on the set of finite subsets of A, and is itself supported by some finite such set,
say S. Then, by definition, f'(S) ¢ S. Since S is finite, there is some a € A\ (S U {f'(5)}).
Let (a f'(S)) be the permutation swapping a and f’(S) and leaving all other atoms stable;
we then have that

(a f(9) € £ix(S), .. (a f'(S))=f" =1,

and since (a f'(S5)) o(S, f'(S)) = (S,a), we get (S, f'(5)),(S,a) € f/, ie. f/(S) = a, a
contradiction.

24 CHAPTER 2. NAMES, NU AND MONADS

2.2 A paradigmatic nominal language

The v-calculus of Pitts and Stark [[PS93} [Sta%94] is a paradigmatic nominal language consist-
ing of a call-by-value simply-typed A-calculus with names. Names are constant terms of
ground type which, according to the What’s new? motto [PS93],

“...are created with local scope, can be tested for equality and can be passed
around via function application, but that is all.”

The locality of creation and the possibility to communicate names add the feature of local
state in an otherwise purely functional calculus. In each step of a program evaluation the
local state is simply the set of available names, that is, the set of names created up to that
step.

A specification that is implied by the previous motto is that an infinite supply of names is
needed, so that a program can always create new names. However, the crucial specification
that is hidden in the definition is that

creation of fresh names is important as a feature, yet which names are specifically
created is not important.

In other words, computation is impervious to name-permutation.

Pitts and Stark did not use the nominal framework for formulating their nominal lan-
guage; after all, the (re)introduction of nominal sets occurred several years after the intro-
duction of the v-calculus. Nonetheless, such an approach is self-suggesting: the casting of
syntactic constructions inside nominal sets, with atoms playing the role of names, results
in a syntax which comes equipped with name-permutations, a name-freshness relation, etc.
We upgrade this reasoning to a general guideline for modelling nominal languages, which
we will strengthen in the next section and follow throughout this thesis:

Model names by atoms and cast all structure in nominal sets.

Note that we do not use the full force of nominal sets in our approach, that is, we do not
present binding constructors by nominal abstractions. In the languages we examine there
are two forms of binding: variable-binding and name-binding. Both of these are presented
in the usual way, using the Barendregt convention [Bar84]: terms are equal up to choice of
bound names and variables, but we may also assume that our particular choices are suf-
ficiently fresh. Although this approach introduces some amount of informalityﬂ it is pre-
ferred for its simplicity, which allows us to concentrate on more pressing issues. In fact, it
has been shown in [Pit06] (using nominal sets) that arguments in the style of the Barendregt
convention are correct once a certain hygiene is followed.

2.2.1 The v-calculus

The v-calculus we present below is that of [PS93]], only equipped with natural numbers
instead of booleans. The calculus is cast inside Nom, by stipulating the existence of a set of
atoms

Ay € (Ai)icw

from which names are drawn. We will briefly examine the syntax of the calculus and its op-
erational semantics, experimenting with nominal versions of results proven in [PS93}[Sta94].
The types of the calculus are given as follows. We have types for names, naturals and
functions:
TY> A B:=v|N|A—B

3In particular, the results obtained from these fresh choices are usually not shown to be independent of choice.

2.2. A PARADIGMATIC NOMINAL LANGUAGE 25

Terms form a strong nominal set TE:

TE> M,N 2= z| e M |MN A-calculus
| n|pred M | succ N arithmetic
| if0 M then N; else Ny if_then_else
| a name, a € A,
| [M = N] name-equality test
| va.M v-abstraction

Of the terms above, the values are:
VASV,W:u=nlal|z| z.M
Permutations act on TE componentwise, that is, for any = € PERM(A),
moa=m(a) wovaM =v(mrea).(moM) mox =2 mwolx.M =Ax.(mroM) etc.

Note that there are two types of binding in the syntax, variable-binding and name-binding,
and each of these yields its own notion of a-equivalence (note also that variables are not
names). The set of free variables of a term is defined by:

fv(z) 2 {z}, fvQa.M) 2 fvy(M)\ {2z}, fv(va.M) = tv(M), fv(n)=*fv(a) 2 @,

plus standard rules for the other non-binding constructs. A term M is closed if fv(M) is
empty. Similarly, the set of free names of a term is defined by:

fn(a) £ {a}, fn(va.M) = to(M)\ {a}, fn(0z.M) = fn(M), fn(n)=fn(z) £ @,

plus standard rules for the other non-binding constructs. a-equivalence for variable-binding,
henceforth called ay-equivalence and written =, is defined as usuallyHa-equivalence for
name-binding, henceforth called ay-equivalence and written =, is defined by recursion
(on term size) as follows,

——————— M ==z,a,n MbGAV'(a’b)OM:aN (a/b)OMI M:OCN M’
M=o M va.M =a, va' .M’ o.M =g o.M’

plus standard rules for the other non-binding constructs. The definition is adapted from [GP02]
and it captures the usual notion of a-equivalence, i.e. it equates terms up to choice of bound
names (v. [GP02, proposition 2.2]).

The casting of our calculus in nominal sets equips us with a well-behaved action of
name-permutation and a crisp notion of name-freshness. In the following proposition we
give a couple of examples of results that can be shown with elegance using these mecha-
nisms. Note that a consequence of the first result is that the second rule for =, reduces to

fora=a'.

Proposition 2.12 For all terms M, N and a,b € A,,
e M=,y N = (ab)oM =,, (ab)oN,
e a,b¢ fn(M) = (ab)o M =4, M.

Proof: The first claim is shown by induction on M, and the only non-trivial case is that
of v-abstraction. So let M = va’.M’' and M =,, N. By definition, N = vb'.N’ and
Ve.(a'¢) o M' =4, (b ¢) o N'. For any such c#a, b, by IH, (ab) o(a' ¢) o M' =4 (ab) o(b' ¢) o N'.
Taking a” = (a b) ca’ and V"' = (a b) oV’ we have (a” ¢) o(a b) e M" =, (V" ¢)o(ab)oN’,

4

i.e. nominally! See [Kxi90].

26 CHAPTER 2. NAMES, NU AND MONADS

and therefore va”.(a b) e M' =4, vb”.(a b) o N', as required.

For the second claim we do induction on M and assume a # b. Again, the only non-
trivial case is that of v-abstraction, so let M = va’.M'. If o’ # a,b, then (a b)o M =
va'.(a b)o M and a,b ¢ £n(M’) so, by IH, (a b) e M’ =, M’ and therefore, by use of first
claim, va’.(a b) o M' =4, va' M'. If a’ € {a,b}, say a’ = q, then (a b) o M = vb.(a b) o M’
and b ¢ fn(M’) so, by IH and for any fresh ¢, (b ¢)o M’ =,, M’, hence, by first claim,
(be)o(ab)e M = (ac)o(bc)e M =4, (ac)eo M’, and therefore vb.(a b) e M’ =, va.M’, as
required.]

We now take the usual step of equating terms up to a-equivalence. Itis true that the nominal
setting allows us to work without « y-equivalence with relevant elegance, but such a choice
would undeservedly complicate our presentation.

We assume the set of terms is quotiented by a-equivalence for both binding mechanisms,
that is, we equate terms up to choice of bound variables and bound names.

We proceed to the typing system of the calculus. Terms are typed in environments s|T,
where s is a finite subset of A, and I" a finite set of variable-type pairs.

. sIT'HFM:N sIT'HFM:N
sITFn:N sITFa:v sIT b pred M : N sIT F succ M : N
sITHFM:N sITEN:A sITFNy: A
sITz:Aba: A s|II' - if0 M then Ny else Ny : A
sIT,2:A+FM:B sITHFM:A— B sITEN:A
sITkHXe.M:A— B sITHFMN:B
s,alT’FM:B sITHFM:v sITHFN:v

¢ s

sITFvaM:B ' sITHF[M=N]:N

We can show the following equivariance and weakening properties.

Lemma2.13 Let s | T' = M : A have a derivation D. Then,
o (ab)o(s| T+ M : A) has a derivation D" with |D| = |D'|, for any a, b,
o ' |T F M : Ahas a derivation D' with |D| = |D’|, for any s C s'.

Proof: By (simultaneous) induction on |D|. The base cases are straightforward. Of the
cases in the inductive step, only v-abstraction is non-standard. Solet s | I' i ve.M : A have
derivation D, and let the penultimate sequent in D be s,c | I' = M : A. For the first claim,
let x’ be (a b) oy, for x = ¢,s, M. Then, by IH, s’,¢/ I T' = M’ : A has a derivation D" with
|D'| = |D| — 1, and by v-abstracting we obtain a derivation of size |D| for s’ I T' - v¢/ . M': A,
as required. For the second claim, take ¢’ fresh for . By IH, s,/ IT F (¢)e M : Ahas a
derivation D’ with |D’| = |D| — 1. Now s,¢’ C §',¢/,s0, by IH, s',¢/ IT F (¢ ¢’) e M : Ahas
a derivation D" with |D”| = |D| — 1, and by v-abstracting we obtain a derivation of size |D|
fors’ IT Fuvd(cd)eM:A=¢s"IT F ve.M:A, by a-equivalence. |

We proceed with the operational semantics, which is defined via a small-step reduction rela-
tion. Reduction occurs in local state environment s. We write s Fr 4 M onlyifs |T' - M :
A is derivable, and usually we write simply s = M. Reduction rules are as follows.

2.2. A PARADIGMATIC NOMINAL LANGUAGE 27

LAM sucC

s E Qe M)V —s E M{V/z} s Fsucen — s En+1
PRDSFpred(n+1)—>sl=n PRDsl=pred0~%s|=0
IFO N=Nj if n=0

s F ifOn then Ny else Ny — s F N N=N2ifn>0

EQ n=0if a=b NE bés

s Ela=b — sk nn=lifazd Vs FvaM — s,bE (ab)o M

N sEM — M
s F EM] — s F E[M]

CT

We let — denote the reflexive-transitive closure of reduction, and — denote its n-step
n
restriction. Evaluation contexts E are of the forms:

[-=N], [a=_], if0_ then Ny else N3, (Az.N)_, _ N, pred_ , succ_.

Note that, because of a-equivalence, the NEW rule can be also written as:

NEW Zs

a
s FvaM — s,akE M
We observe that whenever s = M — s’ = M’ then s C s’. Moreover, as the following
result shows, the reduction relation is nominal and yields a reduction calculus which is
deterministic up to choice of fresh names.

Proposition 2.14 Let s, s',s" Cun A, and M, M', M" € TE. Then,
e ifsEM — s FMthenmos EnoM — mwos' Emwel,
eifsEM — s EMands EM — s" E M" then (s",M") = (a b) o(s', M"), for

some a,b ¢ s,

eifsEM — ¢ FEMands B M — s & M" then there exists m € £ix(s) such

n

that (s”, M"") = 1 o(s', M").

Proof: For the first claim we do induction on the size of the derivationof s F M — '
M'. For the base case, the only non-trivial subcase is that of reducing by NEW, say s
va.N — s,b F (ab)eN. Wehave thatmes E mova. N =mos E v(mrea).(mroeN) —
wos, b E ((mea)b)omoN,any i/ # meos. Now, b # s implies that m o b # 7 o s, hence we
can take b’ to be 7(b), and thus

mos EmovaN — mwos,m(b) E (mw(a) (b)) omo N =mo(s,b) E mo(ab)e N

as required. For the induction step, assume s F E[N] — s F E[N’] is derived from
s EN — s F N.BylH,wecanderive ros = mo N — 7os’ F moN’, and by
applying CTX with context 7 o E we obtain what required.
For the second claim we again do induction. The base case is by observation. For the in-
ductive step, assume s = E[N] — s F E[N'] is derived froms = N — s F N'.
Then it must be the case thats E M — s = M"”iss = E[N] — s” & E[N"], some
N",derived froms F N — s” F N”.BylIH, s” = (ab)os" and N’ = (a b) o N/, some
a,b# s, and hence we nos that E[N"] = (a b) - E[N']. But E[N] being typed in s implies that
a, b are not free in E, hence, by a-equivalence, (a b) c E[N"] = E[(a b) e N”] = E[N’].
For the last claim we do induction on n. The base case is trivial. For the inductive step,
assume

sEM — s EM] — S EM AN sEM — s M — " M.

n—1 n—1

28 CHAPTER 2. NAMES, NU AND MONADS

By our previous claims we have that (s{,m{) = (a b) o(s7,m}) and (a b) e s} F (ab)e M|
— (ab)es’ F (ab)oM' BylIH, (s",M") = mo(ab)o(s’, M), for some m € fix(s}). But

then o (a b) € £ix(s), so we are done.]

Note that the notion of determinism up to fresh names is succinctly captured by support
abstraction as follows. We observe that, for every typed term s | I' = M : A and any values
sSSITFV:Aands” IT VA,

eifskEM — s EVands E M —» s’ = V"then[s, V'], = [s", V"],
eifskFM — ¢ EVand [¢,V']; =[¢",V"]sthens F M —» " V",

This allows us to define an abstract evaluation relation between terms and abstracted values,
as follows.

SEM — [EV]y <& s=s"AskEM —» & £V (2.10)

eval

The previous proposition implies that —— is a well-defined partial function. More than

eval

that, it is a total function on closed terms, as the following theorem shows.

Theorem 2.15 (SN) Forany s | @ & M: A thereexist s', V' suchthats & M — s V.

Proof: Shown as [Sta94, theorem 2.4]. [|

2.2.2 The sv-calculus

Modelling of local state in sets of names yields a notion of unordered state, which is inade-
quate for our intended denotational semantics. Nominal game semantics is based on plays
of moves containing information about the current state. Programs are then modelled by
strategies, that is, partial functions operating on plays. These strategies, however, are de-
terministic up to choice of fresh names, a feature which is in direct conflict to unordered
stateE

Ordered state is therefore more appropriate for our purposes. One possible approach
would be to use unordered state at the level of syntax and operational semantics of our
nominal languages, and ordered state at the level of denotational semantics. In fact, this al-
ready happens with contexts: a context I is a set of premises, but [I'] is an (ordered) product
of type-translations. Another approach would be to use ordered state both for syntactic and
semantic purposes. For the syntax this would mean to use lists of (distinct) names instead of
sets of names in local state. As lemma T suggests, one should not expect substantial dif-
ferences between the two approaches. In this thesis we choose to follow the latter: ordered
state does not add much complication while it saves us from some informality.

Once we shift to ordered state, the presentation of the v-calculus is given entirely in-
side strong nominal sets. For this reason we call this version of the calculus sv-calculus,
i.e. strong v-calculus. As mentioned above, all the nominal calculi we will examine in the
sequel will de facto be “strong”.

Definition 2.16 The sv-calculus shares the same syntax as the v-calculus (page 4. Its typ-
ing system is given in environments @|I' and its operational semantics in environments
@, where @ € A}. The rules for these are given in figure (note we write “a € a@” for
“a € 8(a@)"); contexts E and the condition (x) are as in page 27 A

The two calculi, v and sv, are equivalent in the following sense.

Lemma 2.17 Forany M, N € TE and any @, ac € A¥,

5The problematic behaviour of nominal games in weak support is discussed again in detail in remark B19

2.2. A PARADIGMATIC NOMINAL LANGUAGE

29

Ca alTFM:N alTFM:N
all'kFn:N all'ka:v dlT FpredM : N all FsuccM:N

6|F|_MN &'IFI—Nl,NQ:A
all,z:AkFz:A all Fif0 M then Nj else Ny : A

all,z:A+M:B dalTHFM:A— B dalTEFN:A
all-Xx.M:A— B all' WMN:B

aa |l +-M:B allFM:v alTFN:v

(a ¢ a) S
alT FvaM:B alT'F[M=N]:N

b¢a EQ < n=0if a=b

NEwd’i=ya.M—>d‘b|=(ab)oM ik [a=10] — g E pn=lifa#b

LAM T = sucC
akE NM)V — dkE M{V/z} dkFsucccn — dakFEn+1

PRD PRD
dkFpred(n+1l) — dakEn dkF pred0 — d@ k0

IFo (%) aEM — d =M
d = ifOnthen Njelse Ny — ad = N X F E[M] — @ F E[M]

Figure 2.2: The sv-calculus: typing and reduction rules.

e il Fy,M:A iff S(@@IT F,M:A,
e S(@) F M —» 8(@c) = N implies a = M —» ' kN, for[¢'] = [d,

ed M —» ack N implies S(@) F M — S(ac) £ N.

From the lemma it follows that sv is strongly normalising. Moreover, we have that the
calculi are essentially equal, meaning that their notions of observational approximation co-

incide:

GIT ko, MSN iff 8(@)ITF,MSN. 2.11)

We do not wish to elaborate on this (easy) result, as we have not yet formally defined ob-
servational approximation; the interested reader can check its validity by referring to the

definitions of observational approximation in the next chapters.

30 CHAPTER 2. NAMES, NU AND MONADS

2.3 Monads and Comonads

In this section we present some basic results on the categorical constructions we will be
using in the following chapters. Some basic category theory is assumed, covering notions
such as products, coproducts, adjoints, etc. (see e.g. [Mac98]).

Monads and comonads are standard categorical notions (v. [Mac9§] and [BW99, “triples”])
which have been used extensively in denotational semantics of programming languages in
order to encapsulate computation. The success of these constructions is due to their con-
ceptual simplicity: definitions involve nothing more than ome natural transformations and
commuting diagrams. Combining monads is not always an easy (or even possible) task,
and this is their main defect. However, the monads we use in this thesis combine relatively
well.

2.3.1 Monads

Monads were introduced in denotational semantics through the work of Moggi [Mog89,
Mog91]], who proposed them as a generic tool for encapsulating computational effects.
Wadler [Wad92, Wad95|] popularised monads in programming as a means of simulating
effects in functional programs, and nowadays monads form part and parcel of the Haskell
programming language [Jon03].

Definition 2.18 A strong monad on a category C with finite products is a quadruple (7', 7, i1, 7),
where:

o (T,n,p) is a monad, i.e. T is an endofunctor in C and n : Ide —> T, u : T? — T are
natural transformations such that the following diagrams commute.

KT A nrTAa Tna

T3A——>T%A TA T%A TA
T“Al l“ Nl %
T2 ——>TA TA
o 7:_ xT_ —T(_ x _)is anatural transformation such that the following diagrams
commute.
(Ax B)xTC e T((A x B) x 1><TA—>T1><A)
Ax (BxTC)- AXT(Bx(C)—— (B x (C))
ida X7TB,C
AxTB—"" > AxTB Ax B—2"" AxTB
TA,B
TA,TB\L M\ l‘l‘A,B
T(AxTB) —= T Ax B)————T(A x B) T(A x B)
TTA,B HAXB

We say that C has T-exponentials if, for every pair B, C of objects in C, there exists an object
TCB such that, for any object 4, there exists a bijection

AL g C(Ax B,TC)—=>C(A,TC?)

natural in A. A

2.3. MONADS AND COMONADS 31

Given a strong monad (7', 7, u, 7), we define 7/ : T(_) x — — T'(_ x _) as follows.

Thp:TAx B—=> BxTA—2%5T(B x A)—>T(A x B) (2.12)

7’ satisfies the corresponding strength equations. We may refer to 7 as right strength and to 7/
as left strength. Combining strengths and multiplications we obtain natural transformations:

T‘I’A,B

Yap:TAxTB—2I%, T(A x TB) TA x B) 222, T(A x B),

N (2.13)

Wy p: TAxTB—"25 T(TAx B) —>2 TYA x B) 22 T(A x B).

T-exponentials supply us with of T-evaluation arrows, that is,
evh o : TCP x B—TC £ AT (idgen) (2.14)

so that, for each f : A x B — T'C, the following diagram commutes.

(TC)E x B——TC
A (f)xm] /
Ax B

T-exponentiation is in fact a functor (7-)~ : C°? x C — C which takeseach f : A’ — A
andg: B — Bto

/ i ev?
Tg! :TB'A—TBY 2 A\T(TB'Ax A 220, rp4x A= 75’ L% TB). (2.15)

Finally, monads on a given category form a category of their own by use of the following
notion.

Definition 2.19 Let (T, 7, j1,7) and (T, 7, i, 7) be strong monads on a category C. A monad
morphism a : (T,n,u,7) —> (T, 7, f1,7) is a natural transformation a : T'— T making the
following diagrams commute.

A—" 72 T24 ——TA AxTB—22~ T(Ax B)
na |aA ar A ;TaAl aA idaxap GAxB

TA T°A——>TA AxTB———T(Ax B)
TA,B A

2.3.2 The Kleisli construction and the intrinsic preorder

Given a monad (7,7, 1) on a category C one may want to construct a category C* including
all objects of C but constraining its collection of arrows to those of types

A—TB.

This construction is called the Kleisli construction. The reasons for applying it can be
category-theoretical: the Kleisli construction provides a means for factorising the monad
T into a pair of adjoint functors between C and CT. Most importantly for us, though, the
category CT represents the category of T-computations and is therefore the universe which
holds our denotational translations.

32 CHAPTER 2. NAMES, NU AND MONADS

Definition 2.20 Let C be a category and (7', 7, 1) be a monad on C. The Kleisli category C*
contains the same objects as C and, for all objects A, B3,

CT(A,B) & C(A,TB).
Moreover, the identity arrow on A is 774, and composition of arrows f : A — T'B and

g: B—TC is given by:

AL T, o o A

If C has finite products then 7T being a strong monad corresponds to C* having a symmetric
premonoidal tensor, that is, a non-bifunctorial tensor product (see [PR97]), which allows us
to model computation products in CT. Furthermore, the requirement for T-exponentials
makes the premonoidal structure of CT closed (and corresponds to closure of the related
Freyd category, see [Pow00]).

Intrinsic preorder The notion of equating programs modulo their observable behaviour
can be modelled categorically by means of quotienting by the intrinsic preorder. So let us
assume that 7" is a strong monad with exponentials on C and that there is a distinguished
object o of C corresponding to a type of observables. We fix a collection

O Cc(1,To)

of arrOVés of specific observable behaviour and build the intrinsic preorder on arrows as
follows

Definition 2.21 Let C, T, 0,0 be as above. We define the intrinsic preorder, <, to be the
union, over all objects A, B, of relations <, ;€ C(A, T'B)? defined by:

fSapg < VpeC(TBATo). A" (f);pe O = A(g)ipeO.
A

Note that our definition of the intrinsic preorder relates only arrows which correspond to
computations, that is, arrows of C T Clearly, on those arrows < is a preorder. To make use
of the intrinsic preorder in the semantical translation of programs, it is necessary that <
be coherent with the structure of CT, that is, it should preserve composition, premonoidal
tensors and tensor exponentialsﬂ In C, these conditions are translated as follows.

Proposition 2.22 Let C, T, 0,0 and < be as above. For any f,g : A — T B and any arrow h, if
f < g then:

if h:B—TB then f;Th;u<Sg;Th;u,

if h:A—TA then h;Tf;pSh;Tg;p,

f hiA—TC then (fh);0 S (g h)ie and (b f)i S (hog)io,

if A=AixAy then A} 4, p(f)in S AL a,509)0.

Proof: The claims follow from the following equations,

o AT(f;Th;p)=AT(f);AT(TB* x A—— TB-Lhs 7°B' X5 TR)

TevT;

o AT(h;Tfip)=AT(f);AT(TBA x A’ 22X, TRA X TA-Ls T(TB# x A) 2, TB)

, 25 h)

o AT((f,h) ;) = AT(F): AT(TBA x A2 1 7025 T(B x O))

®Note that, for an arrow f : A — TB, we may write (abusively) AT(f) : 1 — TBA for the arrow
AT(1xA-ZsaLorp).
7In few words, < should enrich CT.

~

2.3. MONADS AND COMONADS 33

AT (evT)

o AT(AT(f);m) = AT(f); AT(TBA A2 x A4 > TB#A2 - T(TB42))

which are true due to naturality of AT. u

Let us remark here that we will not be making actual use of the Kleisli construction in the
semantical models of the following chapters. Rather, we will remain at the base semantical
categories and make use of properties coming from the categories’ Kleisli counterparts, such
as the intrinsic preorder properties of the previous proposition.

2.3.3 Defining side-effects

Given a strong monad with exponentials and any object £ of C, we can form a ¢-side-effect
monad on C as follows (cf. [Mog88]]).

Proposition and Definition 2.23 Let (T',7, yu,) be a strong monad with exponentials on C and
let & be an object of C. Form the quadruple (T, 1j, ji, 7) by taking:

e I':C—C 2 T(— x &),

o ija:A—TA 2 AT(iiy),

o jig:T?A—=TA 2 AT (fia),

e fap:AXTB—T(Ax B) 2 AT (7a.5);

o 4 2 AxET(AXE),

o jin 2 TAx LS T(TAxE) s THAx &) LS T(Ax€),

id X ev

e Fap 2 AXTBXx (""" 5 AXT(BxE&) ->T(Ax BxE).

Then (T, i, i, 7) is a strong monad on C. Moreover, we obtain T-exponentials by taking, for each
A,B,Candany f : Ax B—1TC,g: A—TC?5,

TAB & TAPXE
.. 1
AT(f) £ AE,BX&,CX&(AEXB,ﬁ,fo (f))
.1 1
(9)) -

AT (9) £ A?;XB,E,CXE(A?;,BXE,CXE
Proof: Standard result [Mog8§]. [

We can now define a natural transformation 3 : TT — T which embeds T inside T, by
setting, for each object A, 84 2 AT(B4) and

Ba 2 TTA x € o T(TAx &)L THA x &) 5 T(A x £). (2.16)

Lemma 2.24 For (T,n, p, 7), (T, ij, i, 7) and (3 defined as above, the following diagrams commute.

.. N A Hegp .. Tiia oo . TatpiTfaB .
TA—1TTA TTA TTA TT?A AxTTB————TT(Ax B)
ia Ba TBA Ba Bia idxfBp BaxB
TA TTA— TA<— 124 AxTB———>T(AxB)
A A TA,B

Interestingly, a natural transformation 3 : TT — T satisfying the first two diagrams above
corresponds to a layering of T' over T, in Filinski’s terminology [Eil99]. We can show that 5
yields a monad morphism o : T'— T

34 CHAPTER 2. NAMES, NU AND MONADS

Proposition 2.25 Let (T, n, i, 7), (T, 7, ji, 7) and 3 be as above, and let oo : T — T be defined by:

g 2 T7A AL g BaLfg

Then, « is a monad morphism.

Proof: That « is a morphism between (possibly non-strong) monads is a corollary of the pre-
vious lemma, shown in [BW(02} Section 3.6]. Regarding strengths, we have that the diagram

TA,B

A4>T(AXB)

ida XTp T(idAXﬁB)

. T a7 . T#4, .
Ax TTB —2>T(A x TB) —=2> TT(A x B)

ida X 03p Baxs
AxTB . T(A x B)
TA,B
commutes, which completes the proof. u

Moreover, o can be reduced as follows.
a =Tij; = Tij; AT (7' ; Tev"; p) = AT(Tij x id; 7' Tev';) 2.17)
= AT(r T(ij > id) s TevTs) = AT(r' s Ty) = A(7) '

2.3.4 Monad composition

Simple computational effects may be composed in a serial fashion, yielding more complex
effects. In the monadic reading this corresponds to monad composition, that is, to monads T
and T being composed to the compound monad 7'T. Although this construction yields a
compound functor, it does not necessarily yield a monad: the resulting structure may fail
to satisfy the monad axioms. Nevertheless, when T distributes over T’ such a composition is
successful.

Definition 2.26 Let (7,7, ji,7) and (T, %, i, 7) be strong monads on a category C. A dis-
tributive law of T over T is a natural transformation ¢ : 71" — T'T" such that, for all objects
A, B, the following diagrams commute.

. .. Lo ?TZA e .. ida X{4p ...
TA 7724 T2 A AxTTB———> AxTTB
. T A . . .
Tija Tiia fig o TATB TATB
TTA—">TTA jjq—2 sips T(AxTB) T(A x TB)
A j%ﬁA B o fﬂA T‘I‘A,B T‘i’A,B
ra 727 A 7724 TT(Ax B)——=TT(Ax B)

Tlaslsy taxns

2.3. MONADS AND COMONADS 35

If such an / is given, define the compound monad (T, n, u, 7) by:

T27T

na 2 AA, P AL 7y

pa & 24 Hra gapay s ooy Tia, oy
Tap 2 "ATe L (A x TB) —AE, T(A x B).

A

The notion of monad-distributivity was introduced by Beck [Bec69], who showed that it is a
sufficient requirement for composing monads. The last diagram above allows the extension
of Beck’s result to strong monads. In the previous definition note that compound monads
are by-products of distributivity laws, and hence the use of different laws can give distinct
compound monads for the same pair of monads.

Proposition 2.27 Let T, T and ¢ be as above. Then, T is a strong monad and the natural transfor-
mations
i T—T, Ti:T—T

are monad morphisms. |

2.3.5 Defining exceptions

Let C be a category with binary products and coproducts, and let us use the following nota-
tion for coproducts.
A A+ BB

Moreover, suppose C is distributive, i.e. the canonical arrow
dstapc:AXxB+AxC—Ax(B+C0C)

is an isomorphism, for all objects A, B, C. For any object E of C, we can form the F-exception
monad as follows.

Proposition and Definition 2.28 For C and E as above, define the quadruple (T', 1, j1,7) as fol-
lows.
T:C—C% _+E
Na:A—TA 2,
fia:T?A—TA 2 [idj ., 1]
tap: AXTB—T(Ax B) £ dst'y pi(idaxp + 7m2)

Then, (T, 1, fi, 7) is a strong monad and, for any other monad (T, ji, 7) on C, T distributes over T
via 04 2 TTAM TTA.

Proof: This is a standard result [Mog8§]. [

2.3.6 Comonads

Comonads, the dual of monads, were proposed in denotational semantics by Brookes and
Geva [BG92] for modelling programs intensionally: instead of abstracting away from com-
putations and seeing programs as functions, one models programs as mechanisms which
receive external computation data and decide on an output. The comonadic approach was
further pursued by Brookes and van Stone [[BvS93|], who examined monadic-comonadic ap-
proaches, and others [Kie99, [LSLMO00, [UV05| PW02], yet it never reached the popularity of
monads due to its seemingly limited applicability.

36 CHAPTER 2. NAMES, NU AND MONADS

Definition 2.29 A comonad on a category C is a triple (Q, ¢, 0), where @ is an endofunctor
inCande: Q — Ide, ¢ : Q — Q?*are natural transformations such that the following
diagrams commute.

QALQQA QA
2 3 2
Q A 5QA Q A QA QA Q A QEA QA A

In case C has products, we define a transformation ¢ : Q(— x _) — _ x Q(_),

Tap:QAx B)Lmlm), 04y Qp 24738, 4y B (2.18)

which makes the (comonadic) strength-diagrams commute.

Lemma 2.30 Let (Q,¢,8) be a comonad on a category C with finite products. Then, { makes the
following diagrams commute.

laxs,c

x QC =—— Q((A x B) x 1><QA<—Q1><A

B)
T \ \ QN
X (BxQC)=———AXxQ(BxC) <—QA>< B x ()

idax {B,c {AaBxC

IR

ida Xdp ida Xep

AxQ’B AXx QB Ax B<——""—Ax Q@B
zA,QBT e \ T Zas
QA X QB) =<—— QYA x B) Q(A x B) Q(A x B)

QlaB AxB
Proof: This follows easily from the comonadic properties; we show the last two cases.

Cap;ida xep = (Qm1,Qma) ;4 X idgp;ida X ep = (Qm1 564, QM2 eR)

= (€AxB;T1,EAxB;T2) = EAxB

6axB;Q {a; {aos =0axp;Q(Qm, Qma); Q(ea X 1dgp) ;(Qm1, Qm2) ;64 X idgep
= 0axB; Q(Qm, Qm2) (Q71;Qea, Qm2) ;64 X idgep
= 0axB; Q(Qm, Qma) (Qm1, Qma) 5(Qeasea) X idgep
= 0axB;{Q%m1, Qr2) ;(Qea;e4) X idgep
= (Qm1;04,Qm2;0B):(Qea;en) X idgep
= (Qm1;€4,Qm2;05) = Caxp;ida X 6p .

Stronger comonads are obtained by stipulating a transformation ¢ in the other direction, as
in the case of strong comonads of [BvS93]]. In our case, we stipulate even stronger conditions.

Definition 2.31 A coEnonad (Q,¢,8) with transformation ¢ defined as above is called a
product comonad if (is a natural isomorphism. A

We write { : _ x Q(—) — Q(_ x _) for the inverse of {. Moreover, and as in the case
of monadic strengths, we let {’, {’ be their symmetric counterparts. Note that a product
comonad () can be written as

Q- =Q1x_ (2.19)
hence the name fl We say that Q1 is the basis of the comonad.

8Note this is an isomorphism between comonads, not merely between functors.

2.3. MONADS AND COMONADS 37

Comonad morphisms Now let (Q, ¢, 9), (Q, g, 3) be comonads on a category C. A comonad

morphism a : (Q,e,0) — (Q,é, 0) is a natural transformation a : Q — Q making the
diagrams on the left below commute.

QA—2 — 4 QA—2 -2 Ax QB —2_ (A x B)

aa ea aA aga;Qaa idaXap AAxB

QA 04— %4 AxOB—— Q(A x B)
94 CaB

If Q,Q are product comonads then a necessarily respects coherence conditions for £, l (de-

picted on the right above). This follows from l A,B;1idAa X ap = aAxB; Z A,B, wWhich is
shown below.

id 1,2
Ax QB <2208 04y QB <L) 64« B)
ida Xap aaXap AQAXB
EaXidypg (Qm1,Qms)

AxQB<—QA><QB<—Q(A><B)

2.3.7 Monadic-comonadic setting
In the presence of both a strong monad (7,7, u, 7) and a product comonad (@Q,¢,d,{) ina
cartesian category C, one may want to consider solely arrows of types

QA—TB,

that is, arrows from some initial computation data (e.g. some initial state) of type A to some
computation of type B. This amounts to applying the biKleisli construction on C, i.e. to
defining the category C/, with the same objects as C, and arrows

CH(A,B) £ C(QA,TB).

For arrow composition to work in the biKleisli category, we stipulate a distributive law
between () and T, that is, a natural transformation ¢ : QT — T') making the following
diagrams commute.

04— OoTA—TA g o124 — M orA— " L 214
nga eA TEA eTA ;TEA éA QZA ;éQA
TQA 2
@ TQQA HQA QA Téa TQA

In this case, composition of f : QA — T B and g : Q B — T'C is performed as:

QA4 0249 orp 25 7B L% 70 < 7O (2.20)
Identities in the category are given by arrows of the form:
QA -S45 A 14, 74 2.21)

Recall we are examining a monadic-comonadic setting for strong monad 7" and product
comonad @, which means that a distributive law amounts to a natural transformation

0:QIXxT_ —T(Q1x)

and which is therefore given for free: take ¢ £ 7¢;,_ . The distributivity equations follow
straightforwardly from the strength equations.

38 CHAPTER 2. NAMES, NU AND MONADS

Exponentials and the intrinsic preorder The notion of T-exponentials can be generalised
to the monadic-comonadic setting as follows.

Definition 2.32 Let C be a category with finite products and let (T, 7, u,7), (Q,¢,9) be a
strong monad and a comonad respectively on C. We say that C has (Q, T)-exponentials if,
for each pair B, C of objects in C there exists an object (Q, T')C' B such that, for each object A,
there exists a bijection

ba.B.c:C(Q(Ax B), TC) = C(QA,(Q,T)CB)
natural in A. A

In the particular case of @ being a product comonad and 7' having exponentials, (Q,T)-
exponentials come for free.

Proposition 2.33 In the setting of the previous definition, if C has T-exponentials and Q is a product
comonad then C has (Q, T)-exponentials defined by:

(Q.T)CP £ TCP
6(f : QA x B) —TC) 2 AT(QA x B Q(Ax B) 1> T0),

in which case ¢ is a bijection with its inverse sending each g : QA — TC B to

F2 . VT
Q(Ax B)—5 QAx BL4 708 x B2 1C.
| |

In this same setting, we can also define an extended notion of intrinsic preorder. So, assum-
ing an observable object 0 and a collection O C C(Q1, T'0) of observable arrows, we can have
the following.

Definition 2.34 Let C,Q, T, 0,0 be as above. We define < to be the union, over all objects
A, B, of relations < 4 5C C(QA, T B)? defined by

fSap9 = ¥peCQITB),To). A%T(fipe O = A% (g);p€O,

where
QAT (L' f)

AT(f) £ Q1-5 Q% — Q(TB™).

As in the monadic setting, we have the following enrichment properties.

Proposition 2.35 Let C,Q, T, 0,0 and S be as above. For any f,g : QA — T B and any arrow
h,if f < g then:

if h:QB—TB" then 6;Qf;¢;Th;u<0;Qg;¢;Th;p
if h:QA'—TA then 6;Qh;0;Tf;pS0;Qh;l;Tg;p
if h:QA—TC then (f h);v < (g.h)s¢ and (h,f);¢ < (h.g):
if A=AixAy then Abu 4,55 1) in S A a, 4,8 59)m.
Proof: The claims follow from the following equations,
o §;QAT(L;6;Qf 4 Thyp) =6;QAT(L5 £);6; QAT (L ;Qev” 4, Th;)
o §;QAT(L;6;Qh; ;T) =6;QAT(L5f);6;QAT(L; sid x hyr;Tev? ;)
o §;QAT(L(f,h) ;) =65 QAT (L5 f);6; QAT (L5 Q(evT , ma) 5 {54d X h;)
o QAT AT f)5m) = 05QAT (L5) QAT (AT (evT) 5m)

which are true due to naturality of AT.]

Chapter 3

Nominal Games

Nominal games were introduced in [AGM™04, [Lai04] as a basis for the fully abstract mod-
elling of nominal computation. They constitute a reformulation of ordinary games in nomi-
nal setsfl thus allowing for names (atoms) to appear in plays as atomic moves and therefore
for strategies to involve (equivariant) name-reasoning.

In this thesis we follow the presentation of [AGM™04] (the AGMOS approach), rectifying
also discrepancies arising in [AGMT04] from the incompatibility of unordered state with
determinacy of strategies. Two further guidelines for (our) nominal games are the following.

e Use of moves with local state attached, a notion that had been used before by Ong for
the semantics of Idealized Algol [Ong02].

e Use of call-by-value discipline, as advanced by Honda and Yoshida [HY99] for the
semantics of call-by-value PCFE.

These stem from the fact that the languages we examine are stateful subsets of ML [MTMO97].
With regard to local state, our approach coincides with the AGMOS approach in that moves
inside a play are attached with the full list of names available at the computation step they
represent. This is advantageous in that it is simple and allows for better control over plays
and strategies, witnessed e.g. by the concise proof of adequacy in the next chapter. More-
over, the approach is easily customisable to nominal languages with a variety of effects:
once the denotational framework for names has been set, further nominal effects can be
modelled by use of monads. Here this is exemplified through general references (chapter B)
and exceptions (chapterB).

On the other hand, full access to local names and the use of monads for effects allow
strategies to make too many distinctions at the intentional level and therefore our full-
abstraction results rely on quotienting. Stricter approaches to local state followed in [Lai08,
MT09], for languages with ground store, factor out such distinctions and lead to fully ab-
stract models without quotienting. Those models make use of a local state that includes only
those names that have been used and are still available, for appropriate notions of name-use
and name-availability. Naturally, the added strictness comes with a cost of added com-
plicacy in the manipulation of strategies and, in fact, the methods are no longer generic:
different languages have different notions of name-use, name-availability and local state. In
particular, the approach is not applicable to general references — at least not directly. See
section B3 for further discussion.

The chapter is structured as follows. In sectionBIlwe introduce the basic notions of nom-
inal games, that is, nominal arenas, plays and strategies. We work on play- and strategy-
composition and obtain the category G of nominal arenas and nominal strategies. In sec-
tion B2 we focus on innocence, and produce the subcategory V of innocent strategies. In
section B3 we further restrict ourselves to total strategies and obtain the category V,, which

1 Although nominal sets are not explicitly mentioned in [Lail4], they are in the journal version of the pa-
per [Lai08].

39

40 CHAPTER 3. NOMINAL GAMES

we show to have products, distributive coproducts and partial exponentials. In section B4
we construct a monad for fresh-name creation and a family of comonads for initial state on
V,. In the final section we discuss Laird’s presentation of nominal games [Lai04} [Lai0§].

3.1 The basic category G of nominal games

We start from the basic category of nominal games G, containing nominal arenas and nomi-
nal strategies. G will be further refined in the next sections so as to incorporate the notions
of innocence and totality.

3.1.1 Nominal arenas and strategies
The basis for all constructions to follow is the category Nom of nominal sets. We proceed
to arenas.
Definition 3.1 A nominal arena A £ (M4, 4,4, \4) is given by:
e astrong nominal set M4 of moves,
e anominal subset I4 C M4 of initial moves,
e anominal justification relation = 4C Ma X (Ma \ La),

e anominal labelling function Ay : M4 — {O, P} x {A,Q},
which labels moves as Opponent or Player moves, and as Answers or Questions.

An arena A is subject to the following conditions.

(f) For each m € M4, there exists unique ¥ > Osuch that [4 > mq 4 --- F4 mi Fa m, for
some m;’s in M 4. k is called the level of m.

(I1) Initial moves are P-Answers.

(12) If mi,ma € M4 are at consecutive levels then A4 assigns them complementary OP-
labels.

(13) Answers may only justify Questions. A

Note that, although the nominal arenas of [AGM™04] are defined by use of a set of weaker
conditions than those above, the actual arenas used there fall within the above definition.

Note that initial moves have level 0. We let level-1 moves form the set J4 ; since 4 is
a nominal relation, J, is a nominal subset of M4 (and so are I4,.J4 below). Moves in M4
are denoted by m 4 and variants, initial moves by i4 and variants, and level-1 moves by j4
and variants. By 14 we denote M4 \ 14, and by J4 the set M4 \ J4. We also write A4 for the
OP-complement of A4.

We move on to prearenas, which are the ‘boards’ on which nominal games are played.

Definition 3.2 A prearena is defined exactly as an arena, with the only exception of condi-
tion (I11): in a prearena initial moves are O-Questions.
Given arenas A and B, construct the prearena A — B by:

Map = Ma+ Mp

Inp 2 I,

Mg = [(ia—=0Q, ma— Aa(ma)), A5
Famp = {(ia,ig)}U{(m,n) |mbapn}

3.1. THE BASIC CATEGORY G OF NOMINAL GAMES 41

It is useful to think of the (pre)arena A as a vertex-labelled directed graph with vertex-
set M4 and edge-set -4 with the labels on vertices given by A4 (and satisfying (11-3)). It
follows from (f) that the graph so defined is levelled: its vertices can be partitioned into
disjoint sets LO, L1, L2,... such that the edges may only travel from level i to level i 4+ 1 and
only level-0 vertices have no incoming edges (and therefore (pre)arenas are directed acyclic).
Accordingly, we will be depicting arenas by levelled graphs or triangles (e.g. figure B1).

The simplest arena is 0 £ (2,3, d,). Other flat arenas are 1 (unit arena), N (arena of
naturals), and A% (arena of G-names), for any @ € A#, which we define by:

My=I 2 {x}, My=Iy2N, Mua=1Is%2A% (3.1)

Note that for @ empty we get A° = 1, and that we write A; for A* with a € A;.
More involved are the following constructions.

Definition 3.3 For nominal arenas A, B, define the arenas A® B, A,, A—= B, A= B and
A + B as follows.

Magp = IaxIp+1Ia+1p (A® B)
Ingp = IaxIp
Mgs £ [((ta,ig) — PA),Aa I Ia, Mg | Ip]
Fags = {((ia,ig),m) |iaFamVigFpm}U(Fal I4*) U (Fp| Ig?)
My, = {1} + {2} + Mg (A1)
In, = {x1}
M, 2 [(x1+— PA), (%2 — 0Q), \a]
Far & {(x1,%2), (k2,04) } U (Fal Ma®)
Maop £ Ip+IaxJg+Ia+1IpNJp (A—=B)
Inop £ Ip
M 2 [(ip = PA), ((ia,78) = 0Q),Aa [Lo, Ap | (Ip N Jp)]
Fasp 2 {(i, (ia,58)) lip b5 jp} U{((ia,8),m) | (ia FamV jp pm)}
U(Fal Ia®) U (sl (I N JB)?)
A=DB 2 A-sB, (A= B)
Maip & Ma+ Mp (A+ B)
Inip = Ia+1p
Mis = [Ma, 5]
Fasp £ FaUbp
The constructions are sketched in figure Bl A

In the constructions above it is assumed that all moves which are not hereditarily justified
by initial moves are discarded — and therefore the resulting arenas satisfy the (f) condition.
Hence, for example, for any A, B,

Jp=0 — A—-wB=20D.

Moreover, we usually identify arenas with graph-isomorphic structures; for example, for
any A, B,
0+A=A+0=4, 1 =A=A.

42 CHAPTER 3. NOMINAL GAMES

;”;Mi\mﬁl

A®B A—-eB A= B
A®B A—-B A=B
(ia,ig) PA ZB PA ¥ PA Another depiction of A ® B,

A —e B and A = B. Note
Z oQ oQ
A"yB thatby A~ we denote A\I4,
and by B~ the structure B \
(IB] JB)-

Figure 3.1: Basic arena constructions.

Using the latter convention, A= B of the previous definition corresponds to A= B of [HY99,
AGM™04]; concretely, it is given by:

MAﬁBé{*}-i-IA-i-I_A-i-MB (AiB)
Ia=B = {*}
Mop 2 [(x— PA),(ia— 0Q),Aa | Ia,A5]

(1>

Famp {(*,iA)}U {(iA,m) | iabFamVme IB}U (I—A[I_A2) U (I—B[MBQ).

Of the above constructors all look familiar apart from —e. The latter can be seen as a
function-space constructor merging the contravariant part of its RHS with its LHS. For ex-
ample, for any A,B,C, we have

A—<N=N and A—=s(B=C)=(A®B)=C.

In the first equality we see that N, which appears on the RHS of —s, has no contravariant
part and hence A is redundant. In the second equality B, which is the contravariant part of
B=C,is merged with A. This construction will be of great use when considering a monadic
semantics for store.

Before proceeding to plays and the essence of nominal games, let us introduce some
useful notation for sequences (and lists).

Notation 3.4 (Sequences) A sequence s will be usually denoted by zy ..., where z,y, ... are
the elements of s. For sequences s, ¢,

e s <tdenotes that sis a prefix of ¢, and then ¢t = s (¢ \ s),
e s~ denotes s with its last element removed,
e if s = s;...s, then s; is the first element of s and s,, the last. Also,

o nis the length of s, and is denoted by |s|,

o s.i denotes s; and s.-i denotes s,11—;, that is, the i-th element from the tail of s (for
example, s.-11is sy,),

o S<s; denotes s;...s;,and so does s, ;. A

3.1. THE BASIC CATEGORY G OF NOMINAL GAMES 43

We move on to describe how nominal games are played. Given a prearena A, plays of a
game consist of sequences of moves from A. These moves are augmented with name-lists
(elements of A#) to the effect of capturing name-environments.

Definition 3.5 A move-with-names of a prearena A is a pair, written m?, where m is a move
of A and d@ is a finite list of distinct names (name-list). A

If z is a move-with-names then its name-list is denoted by nlist(x) and its underlying move
by x ; therefore,
T = lnIist(ac)) (32)

The above notation is extended to sequences of moves-with-names, so that for such a se-
quence s we write s = s""**(*), where nlist(s) is a list, of length |s|, of lists of names.

A justified sequence over a prearena A is a finite sequence s of OP-alternating moves
such that, except for s.1 which is initial, every move s.i has a justification pointer to some
s.jsuch that j < iand s.j F4 s.i; we say that s.j (explicitly) justifies s.i. A move in s is an
open question if it is a question and there is no answer inside s justified by it.

There are two standard technical conditions that one may want to apply to justified se-
quences: well-bracketing and visibility. We say that a justified sequence s is well-bracketed if
each answer s.7 appearing in s is explicitly justified by the last open question in s ; , called
the pending question. Seeing questions as opening brackets and answers as closing ones
this condition indeed corresponds to well-bracketing. For visibility, we need to introduce
the notions of Player- and Opponent-view. For a justified sequence s, its P-view "s'and its
O-view s, are defined as follows.

&2 ¢ € 2
Tsx! 2 sz if x a P-move s, & s, if z an O-move
Ay if x is initial szs'y, £ sy if yaP-move
Tsxs'y! £ Ts'zy if y an O-move expl. justified by «
expl. justified by x

The visibility condition states that any O-move z in s is justified by a P-move in s<, ,and
any P-move y in s is justified by an O-move in "s.,'. We can now define plays.

Definition 3.6 Let A be a prearena. A legal sequence on A is a sequence of moves-with-
names s such that s is a justified sequence satisfying Visibility and Well-Bracketing.

A legal sequence s is a play if s.1 has empty name-list and s also satisfies the following
Name Change Conditions.

(NC1) The name-list of a P-move x in s contains as a prefix the name-list of the move pre-
ceding it. It possibly contains some other names, all of which are fresh for s,.

(NC2) Any name in the support of a P-move z in s that is fresh for s, is contained in the
name-list of z.

(NC3) The name-list of a non-initial O-move in s is that of the move explicitly justifying it.
The set of plays on a prearena A is denoted by Pj. A

It is important to observe that plays have strong support, due to the tagging of moves with
lists of names (instead of sets of names [AGMT04]). Note also that plays are the e-plays
of [Tze(7]. Now, some further notation.

Notation 3.7 (Name-introduction) A name a is introduced (by Player) in a play s, written
a € L(s), whenever there exist consecutive moves yx in s such that z is a P-move and
a € nlist(z) \ nlist(y). A

44 CHAPTER 3. NOMINAL GAMES

From plays we move on to strategies. Recall the notion of name-abstraction we introduced
in definition 7 for any nominal set X and any = € X,

[] ={mex |7 € PERM(A)}.

Definition 3.8 Let A be a prearena. A strategy ¢ on A is a non-empty set of equivalence
classes [s] of plays in A4, satisfying:

o Prefix closure: If [su] € o then [s] € 0.

¢ Contingency completeness: If even-length [s] € o and sz is a play then [sz] € 0.

e Determinacy: If even-length [s121], [sex2] € 0 and [s1] = [s2] then [s121] = [s2x2].

We write 0 : A whenever o is a strategy on A. A

By convention, the empty sequence ¢ is a play and hence, by prefix closure and contingency
completeness, all strategies contain [¢] and [i4]’s. Note that strategies always have empty
support because their elements are equivariant support abstractions.

Some basic strategies are the following — note that we give definitions modulo prefix clo-
sure (and recall that @’ C @ if S(a’) C S(d)).

Definition 3.9 For any @ C @ € A%, i,n € N and any arena B, define the following strate-
gies.

e n:1—N=2 {[xn]},
° !B:B—>1é{[i3*]},
© FiAT—AT & {[ad]},

o eq i A @A —N = {[(a,0)0] }U{[(a,b)1]|a#D},

e idp:B— B 2 {[sxx]||s|even A[s]€idgAsxz € Pg_p}. A
Note that in general we do not include justification pointers in definitions/expressions of
strategies (or plays), unless they cannot be easily determined.

3.1.2 Composition

We proceed to composition of plays and strategies. In ordinary games, plays are composed
by “parallel composition plus hiding” (v. [AJ94]]); in nominal games we need to take some
extra care for fresh names.

Definition 3.10 Let s € P4_.p and t € Pg_,c. We say that:
e sand ¢ are almost composable, s — t,if s | B=1t] B.
e sandtare composable, s < t,if s — tand, forany s’ < s, ¢’ <t with s’ « t":

(C1) If s’ ends in a (Player) move in A introducing some name a then a # t';
dually, if ¢’ ends in a move in C' introducing some name a then a # s'.

(C2) If both &', ¢ end in B and s’ ends in a move introducing some name a then a # ¢'~;
dually, if ' ends in a move introducing some name a then a # s'~. A

The following lemma is taken verbatim from [HY99], adapted from [BDE97].

Lemma 3.11 (Zipper lemma) If s € Py_.pandt € Pg_,c with s — t theneither s | B =1

= 6,
orsendsin Aand t in B, or sends in B and t in C, or both s and t end in B. []

3.1. THE BASIC CATEGORY G OF NOMINAL GAMES 45

Note that in the sequel we will use some standard switching condition results (see e.g. [A]JMO0,
HY99]) without further mention. Composable plays are composed as below. Note that jus-
tification pointers inside s || ¢ follow precisely those in s, t. Moreover, we may tag a move m
as moy (or mpy) to specify it is an O-move (a P-move).

Definition 3.12 (Play composition) Lets € P4_.p andt € Pp_.¢ with s < t. Their parallel
interaction s ||t and their mix s e ¢, which returns the final name-list in s || ¢, are defined by
mutual recursion as below,

lI>

elle 2 € coec = ¢

b
sm,y et

smly ||t 2 (s]|tym’; sl py ot 2 (set), (5\ nlist(s.-1))
smi(o)ot £ g/

b z
smp etmp

smly |[tmf 2 (s || tym; sl om0y 2 (set), (5 nlist(s.1))

SmEB(0)°tm53(p) £ (seot),(¢\ nlist(t.-1))

. e
setmg

(sl t)yme

s || tmg sotmg(P) £ (set),(C\ nlist(t.-1))

A o)
= C

se tmg(0)
where ¥/ is the name-list of m A(0) s justifier inside s || ¢, and similarly for ¢”.
The composite of s and t is

sit = (s|t) | AC .

The set of interaction sequences of A, B, C is defined by:

ISeq(A, B,C) = {s||t|s€ Pap ANt € Pg_c A sx=t}.

Our aim now is to show that the composite of plays is still a play. The following lemma
examines the behaviour of name-lists in interactions of plays. In particular, it shows that
condition (NC1) is preserved and that there is no loss of names by composition: although
certain moves may be hidden in composition, their fresh names are propagated inside the
name-lists. Note below that a generalised P-move in an interaction sequence of A, B, C' is
either a P-move in AC or amove in B.

Lemma 3.13 Let s < t withs € Pya_pandt € Pg_c.

(a) If s ||t ends in a generalised P-move m? then b contains as a prefix the name-list of (s || t).-2. It
possibly contains some other names, all of which are fresh for (s || t)~.

(b) If s;t ends in a P-move m® then b contains as a prefix the name-list of (s;t).-2. It possibly
contains some other names, all of which are fresh for (s ;t)~.

(¢) Ifs || tendsinamove m? then b contains as a prefix the name-list of the move explicitly justifying

mb.

(d) Ifs:s’mgendsinAandtinBthengj set,

ifs:s’mbandt:t’ma’endinBthenl;j setand < set,
if sendsin Bandt =t'm®in C then ¢ < set.

(€) S(s)US(t) =S(s||t) = S(s;t) US(set).

Proof: Part (a) follows from definitions of s || ¢ and s < ¢, and then part (b) easily follows.
For (c) we do induction on |s || t|; the base case is trivial. Moreover, if s || t ends in an O-move
in AC then the claim trivially holds, by definition of play-composition. So assume that s || ¢

46 CHAPTER 3. NOMINAL GAMES

ends in a P-move in AB, consider (s || t) | AB"and take two consecutive moves zy in it. If y
is a P-move in AB then zy are consecutive in (s || ¢) [AB and, by switching condition, they
are also consecutive in s || ¢; hence, by part (b) we have that nlist(x) < nlist(y). If y is an O-
move in AB and particularly in A then nlist(z) = nlist(y), as « justifies y. Otherwise, y is in B
and justified by x, and, since s || t ends in a P-move in AB, we can apply the IH on s<, || t<,
and obtain nlist(x) < nlist(y). Therefore, in any subsequence of moves in "(s|/¢) | AB" the
name-list of the last move contains that of the initial move as a prefix. By visibility of s,
the move z justifying (s || ¢).-1 appears in (s ||t) | AB", hence nlist(z) < nlist((s]|t).-1), as
required. The case of s ||t ending in a P-move in BC is entirely symmetrical.

For (d) we do induction on |s || {|. The base case is encompassed in ¢ being empty, which is
trivial. Now assume s = s'm® ends in A and ¢ ends in B. If m is an O-move then the claim
follows from the IH applied to s<, , where z is the justifier of m® in s, and the corresponding
subsequence of ¢, and part (c). If m is a P-move then

- - IH -
b=nlist(s".-1), (b \ nlist(s’.-1)) =< s’ et,(b\ nlist(s’.-1)) = set.

The case of ¢ = ¢'m? ending in C is proved similarly. Now, if s = s'm® and ¢ = #'m¢ both
end in B and m a P-move in AB then, reasoning exactly as above, we have that b < set. If
m is non-initial in B then m*** is justified by some ndin s |l ¢, and then, by IH, ¢ < d ,and,
by (c), d < s et, which imply & < s e t. The case of m being a P-move in ¢ is proved similarly.
Now, for (e) we note that the following straightforwardly hold

S(s|t) CS(s)us(t), S(s;t)Us(set) CS(s|t).

Moreover, by (d) we obtain S(s) U S(t) C S(s||t). Finally, we show that S(s||¢) C S(s;t) U
S(set) by induction on |s||t|. The base case is encompassed in ¢t being empty, which is
trivial. Otherwise, if s = s'm® ends in A and ¢ ends in B then

—

*

S(s||) = S(s' [)US(m**") '€ S(s':)US(s' e)US(m**1) C S(s': 1)US(s @)US(m** ") = (s :1)

~

where (x) holds because if m is a P-move then, by (a), s’ et < s e, while if m is an O-move
then S(s’ et) C S(s’;t). Similarly for the case of ¢ ending in C. For the case of both s = s'm?
and t = t'm® ending in B assume wlog that m® is a P-move in s. Then

-,

S(m) C S(mg) Cs(s)yus(b) Cs(s'||t')US(set)
and hence
S(s[|#) = S(s' | #) US(m) US(set) C S(s' ||) US(set) C (s’ ') US(s' @ #') US(set)

&) S(s’;t')US(set) =S(s;t)US(set)

as required.]

We can now prove the following.

Proposition 3.14 (Plays compose) If s € P4_.p andt € Pp_,c withs <t,then s;t € Ps_.c.

Proof: We skip visibility and well-bracketing, as these follow from ordinary CBV game anal-
ysis. It remains to show that the name change conditions hold for s;t. (NC3) clearly does
by definition, while (NC1) is part (b) of previous lemma.

For (NC2), let s ; ¢ end in some P-move m*** and suppose a € S(m***) and a # (s;t)”. Sup-
pose wlog that s = s'mb, and so (s;t)~ = s';t. Now, if a # s’ e ¢ then, by part (e) of previous
lemma, a # s/, t and therefore a € b, by (NC2) of s. By part (d) then, a € set. Otherwise,
a € s’ ot and hence, by part (a), a € set. u

We now proceed to composition of strategies. Note that we write ¢ : A — Bif o is a
strategy on the prearena A — B.

3.1. THE BASIC CATEGORY G OF NOMINAL GAMES 47

Definition 3.15 (Strategy composition) For strategies 0 : A — B and 7 : B — C, their
composition is defined as

o7 2 {[s;t]|[s]€on[tjeTAs=<t}. N
Note that, for any sequence w, if [u] € ;7 then u = mwo(s;t) = (wos);(mot) for some
[s] € o,[t] € 7,5 < t and 7. Therefore, we can always assume u = s;t with [s] € o, [t] € 7
and s < t.
Our next aim is to show that composites of strategies are strategies themselves. We
proceed by first giving two technical lemmata.

Lemma 3.16 For plays s1 < t1 and sq < to, if s1 || t1 = s2|| te then s1 = sg and t1 = to. Hence,
lfSl || tl S So || t2 then S1 S So and tl S tQ .

Proof: The first part by easy induction on |s1 || 1] = |s2 || t2|- The second part follows. |

Lemma 3.17 Let 0 : A — Band 7 : B — C be strategies with [s1], [s2] € o and [t1], [t2] € 7. If
|s1]]t1] < |s2 || t2| and [s1;t1] = [s2;t2] then there exists some 7 such that 7wo(sq1 || t1) < s2 || to.

Proof: By induction on |s; || £1]. The base case is encompassed in ¢; being empty. In this case,
by switching condition and determinacy of o, [s1] = [s1;t1] = [s2; 2] implies that so = s5s5
with [s1] = [s5]. Hence, 7o 51 = s < s || t2, for some permutation 7, as required.

Now assume that s1,¢; both end in B, say s1 = s’lml{1 and t; = t’lmfl. Then, [s1;t1] =
[s1:t1] = [s2;t2] so, by IH, there exists some 7 such that 7o s} = s5 and 7ot = t,, with
59 = shsy and ty = thty. Moreover, sy, t4 are in B and non-empty; let s5.1 = m5 and
th.1 = m§2 and assume wlog that mo is a P-move in B — C, so the same holds for m;. Then,
by prefix closure, | Lm$?] € 7, and, as [t}] = [th], we have | Im$] = [thm$?], so 7' o tym$ =
sms° for some 7. Now, by (C2) we have that (S(m;*) \ S(¢;)) N S(s;) = @, therefore, by
Strong Support Lemma, there exists some 7" such that 7" om(* = mg?, 7" ot} = t;, and

7" o8 = sb. Moreover, /o s} = s4 and 7 om; = my imply that 7 o(s{m5") = shmb?.

Hence, 7”7 o(s1 || 1) < s2 || t2, as required.
by

Now assume s; ends in A and ¢; in B, say s1 = simy'. Then, [s1;t1] = [s2;t2] implies
that s, = shmb2sy and to = thtY with [sy ;1] = [shmb? ;th], mo in A and s4, 4 in B. Then,
[s]:t1] = [sh;t5], and, by IH, there exists a 7 such that m o 8] = s5;, mot1 = th;, sh = sh185,,

! ! / ! / :
5 = thithy and sho, thy in B.
If m; is an O-move then, by switching condition, s} ends in A, and so does s5. Hence,

She = thy = eand thus mos) = s, moty = t,. Now, from [s1;t1] = [S’QmE2 ; th] we have
7' o(s15t1) = s’ng2 ;th, some 7', Taking " = 7~ o 7/ we have that 7"/ (s} ;t1) = s}t
and therefore, by strong support, 7" fixes all elements in S(s] ;1) m bl S(s}) US(t1), thus
7esl =s), . wes) =mes] = s}, and similarly 7’ ot; = t,. Hence, 7’ o(s1]| t1) =
wosy |1 oty = shmb? ||ty < 52| ta.

If my is a P-move then, by prefix-closure, Lsﬁmlfl], [5’21(3’22m§2).1] € o and [s] = [s51], thus,

by determinacy of o, [s\m5] = [sh, (shemb?).1] 50 shy = thy = € and 7’ o(s,mb") = shymb?,

some 7’. Because of (C1), we can now apply the Strong Support Lemma and obtain a 7"

such that 77 o(sy || t1) = shmb? || th < s2 || L2
The case of s; ending in B and ¢; in C is entirely symmetrical. [|

Proposition 3.18 (Strategies compose) If o : A — Band T : B — C are strategies then so is
o;T.

Proof: By definition and proposition B14 o ;7 contains equivalence classes of plays. We
need also check the following.

e Prefix-closure: Assume [um’] € o ;7. Then, by prefix closure of o, 7, there exist s, ¢ not

48 CHAPTER 3. NOMINAL GAMES

both ending in B and such that s;t = umb, [s] € o, [t] € T. Now, assume wlog that m is in
C,sot=t'm" and s;t = (s;t')mP. By prefix-closure of 7, [t'] € 7, . [s;t'] € ;7.

e Contingency completeness: Assume [u] € o ;7 is even-length and um? a play. Then
u = s;t, some [s] € o,[t] € 7. Suppose wlog that m is in A. As it is an O-move, u is either
empty or it ends in a P-move in A. The former case is trivial. In the latter case, taking b’ to

be the name-list of m’s justifier inside s, sm® is a play: visibility and well-bracketing follow
from ordinary CBV-game analysisﬂwhile name change conditions clearly hold. Moreover,

[sm? ;1] = [um?] € o ; 7, as required.

e Determinacy: Assume even-length [uiz1], [uszs] € o ;7 with [uq] = [u2], say wx; = s;;t;,
[s;] € o and [t;] € 7,7 = 1,2. By prefix-closure of o, 7 we may assume that s;, ¢, don’t both
end in B, fori =1, 2.

If s; end in A then s, = s;nlz and s;;t; = (sg;ti)n?;, i = 1,2. Now, [s];t1] = [u1] =
[ug] = [sh;ts], so, by lemma BIZ and assuming wlog that |s} || t1| < |s | t2|, we have

mo(sh|t1) < (shlte), ... mosy < sy, say sy = sysh’ with s§ = mos) and s4’ in B. Then

[s4] = [s)], . [s4(sy'n%?).1] = [s’lnj{l], by determinacy of ¢, and hence [s5'] =0, sh =mes)

and ty = 7 ot . Moreover, 7’ o sjn}' = s4n5?, some permutation 7. Now we can apply the

Strong Support Lemma, as (C1) implies (S(n") \ S(s})) N S(t;) = @. Hence, there exists a
permutation 7/ such that 7”7 o s; = sp and 7" o t; = ty, .. [s1;t1] = [s2;t2], as required.

If s; end in B and ¢; in C, then work similarly as above. These are, in fact, the only cases we
need to check. Because if, say, s2,t1 end in B, s1 in A and ¢3 in C then 1, s2 end in P-moves
and [s] ;t1] = [s2;t,] implies that s, ¢, end in O-moves in B. If, say, [s7 || t1] < |s2 || ¢5]
then we have, by lemma mos; < sy, some permutation w. So if mos; = s and
so = shsy, determinacy of o dictates that s5.1 be in A, & to |s1;t1] = |s2;t2| and sg ;t2 end-
ingin C.]

In the following remark we examine the previous proof closer in order to identify where
exactly strong support is needed. This analysis provides a view on the reasons for which
the nominal games model of [AGMT04] is flawed. In fact, we provide specific counterex-
amples for needed properties which fail in that model.

Remark 3.19 (The need for strong support) The nominal games presented here differ from
those of [AGM™04] crucially in one aspect: the requirement for strong support. In [AGM 04
plays are weakly supported since local state is modelled by finite sets of names, so a move-
with-names is a move attached with a finite set of names (hence, no strong support), and
other definitions differ accordingly. The problem is that thus determinacy is not preserved
by strategy composition: information separating freshly created names may be hidden by
composition and hence a composite strategy may break determinacy by distinguishing be-
tween composite plays that are equivalent.

In particular, in the proof of determinacy above we first derived from [s] ; t1] = [s5;t2]
that there exists some 7 so that mo s} = sy and 7oty = t3, by appealing to lemma in
the proof of that lemma, the Strong Support Lemma needs to be used several times. In fact,
the statement

Ish 1 ta] = [s5 [ta] A [sh5ta] = [sh5te] = Fmmosy =shAmoty =ty

does not hold in a weak support setting such as that of [AGM™04]. For take some i € w and

2Visibility holds because 8, = . For well-bracketing, if m is an Answer then its justifier, say n, is in A, and n
is the pending Question of u. Now, because u [A = s | A, if the pending-Q of s is in A then it is n. Otherwise, the
pending-Q of s is some n’ in B, and s = s1nsan’s3. Since s satisfies well-bracketing all Answers in s3 are justified
by Q’s within s3, and since n’ is the pending-Q all Q’s in s3 are answered. Hence, s3 is even-length and n’ is a
P-move. Moreover, all A’s in s3 [A are justified within s3 | A, so s3 | A is also even-length, !7 to the switching
condition

3.1. THE BASIC CATEGORY G OF NOMINAL GAMES 49

consider the following AGMOS-strategies.

oc:l—A, & {[*a{a’b}]|a7éb€Ai},
TiA— A=A £ {[ax*cal|aceh;}.

GI%A)

Then
[al®h g % b] = [x s L0} b{a’b}] =[x s L0} a{“’b}] =[x al®bh g % al,

yet for no 7 do we have 7 o(x a{®t}) = x a{®*} and 7 o (a* b) = ax a. Asaresult, determinacy
fails for o ; 7 since both [x x{®:b} plabglabl] [y s {ab} glabtglabl) ¢ 5. 7,

Another point where we used the Strong Support Lemma in the proof of determinacy
was in showing (the dual of):

I, 7. wo(s1,t)) = (s2,t5) A 7’ otllnlfl = tén% = I 7" 0(51,t'1n§1) = (SQ,tIQTLgQ)

e [s1,85] = [s2,t5] A [Bn]] = [thn3] = [0, 1] = [sa, thm}?].
The above statement does not hold for AGMOS-games. To show this, we need to introduceﬁ
the flat arena A; © A; with My ca, £ Py(A;) (the set of 2-element subsets of A;). This is not a

legal arena in our setting, since its moves are not strongly supported, but it is in the AGMOS
setting. Consider the following strategies.

oA A — A OA = {[(a,b){a,b}]|aFbc A}

TiAOA— A = {[{a,bla]|a#beEA;} GI38)

We have that [(a,b) {a, b}, {a,b}] = [(a,b) {a, b}, {a, b}] and [{a, b} a] = [{a, b} 1], yet

[(a,0) {a, b}, {a,b} a] # [(a,b) {a, b}, {a, b} b].

In fact, determinacy is broken since [(a, b) a], [(a,b) b] € o; 7.

Our final task in this section is to show that composition of strategies is associative. Note
first that by lemma B3 part (a), if s < ¢ then the name-list of (s || ¢).-1 contains as a prefix
that of (s;¢).-1. This allows for the following definition.

Definition 3.20 Lets € Py_p,t € Pg_.c with s < t. If s;t ends in a move m?, define
sot £ set \ 5,
thatis, set =b,sot. A

Note in particular that if s;¢ and s || ¢ end in the same move then sot = ¢. Now we extend
parallel interaction to triples of plays.

Definition 3.21 Let s € P4_.p,t € Pg_,c and u € Po_p with (s;t) < vand s < (t;u).

3In the AGMOS setting, plays with non-empty initial local state are allowed. Hence, we could have used to the
same effect the {a, b}-strategies:

oih @A —1 2 {[(@b)ileM]) il 2 {[*{“’b}a{a’b}}{a,b}}.

50 CHAPTER 3. NOMINAL GAMES

Define s ||t || uw and s et e u as follows,

ellelle = e cecec = ¢

(1>

omby |t u 2 (s]|t] wmimacten smlypyoteou £ (seteu), (5 nlist(s.1))

smi(o) eteu 2 Y

lI>

smgB | tm% ||u 2 (s||t]u)m smB etmf eu SmEB(P) otm%(o) eu £ (seteu), (b\ nlist(s.-1))
SmgB(O) .tm%(P) ou 2 (seteu), (¢\ nlist(t.-1))

(HtHU) sotmcoumc

(1>

s || tm&, ||umg sotmg(P)oum‘g(o) 2 (seteu), (¢\ nlist(t.-1))

sotmg(o) oumg(P) 2 (seteu), (d\ nlist(u.-1))

- d -
s|t]umb 2 (s|t||u)ymp seteump sotoum%(P) 2 (seteu),(d\ nlist(u.-1))
sotoumED(O) 2 q
where ' is the name-list of m A(0)’s justifier inside s || ¢ || u, and similarly for d. A

Note that the conditions s < t,t < u, (s;t) < vwand s < (t;u) in the above definition indeed
imply that exactly one of the following is the case: s endsin A, or s,t end in B, or ¢, u end in
C, or u ends in D. We can now show the following,.

Lemma3.22 If s; € Pa,4,, S2 € Pa,—a, and ss € Pa,_ 4, With (s1;s2) < sz and s; <
(82 ;83) then
(s1382)583 = (51 s2 | s3) [A1ds = s13(s2583),

(81;82) ®83,51 082 = S1®52053 = 51 8(S2;53),82083.
Proof: By induction on k = |s1 || s2 || s3]- The case of k = 0 is trivial; otherwise:

p IH

S (slmil :89) ;83 = ((81582); 53)mA1 = ((s1] s2 | 53)7”,41) | Ay Ay, wherel/ = (slmil 2) @ S3.

Thus, it suffices to show that (slmljxl 59) @83 = slmf4 * 52053, Since slmf4 089 = ¢, that
would also imply SlmA 05,053 = (slmA1 ;82) @83, slmA1 oss. Now, if my4, an O-move
then the assertion holds by definition. On the other hand, if m4, a P-move then v o=
(s1:52)®s3,(b" \ nlist((s;s2).-1)) and b = 51 @55 ,(b\ nlist(s1.-1)), while slmil ® 53053 =
(s1 @52 @53) ,(5\ nlist(s1.-1)). By IH, s; @ sy # 53 = (51 ;52) @ 53,51 052, thus

s1;82)ss, (b \ nlist((s1:2).-1))
e s3,((s1@82,(b\ nlist(sy.-1))) \ nlist((sy ; s2).-1))
e s3,(s1 055\ nlist((s1;52).-1)),(b \ nlist(s1.-1))

$1;82)®53,81 08 (b\ nlist(s1.-1)) = slmil ®5,053.

51582

= ()
= ()
= (s1;52)
= ()

y IH

Also, slmil i(s2583) = (s15(s2583))m%y, = ((s1] 52 s3 mAl) I A Ay, with b = slm% o(s2;83).

Note that s; || s3 necessarily ends in a P-move in A, and therefore s; 0 s3 = e. Now, it suf-
ficesqto show that sym% e(s2;s3) = sym’, e s2 @ s3; that would also imply s1m¥ e sy es5 =
slmlj41 o(s2;83),820s3. If ma, an O-move then the assertion holds by definition. If a P-
move then I/ = s o(s3; s3) ,(b \ nlist(s1.-1)), which is what required, because of the IH.

I

n = IH n =
G (symby, 559mG,) 583 = ((s1352)183) = (s1 sz s3) [A1As = (s15(s2353)) = (s1mly, s(samG ;

83)).

3.1. THE BASIC CATEGORY G OF NOMINAL GAMES 51

If m4, is a P-move in A; — A, then s3 || s3 ends in a P-move in Az, so s3 0 s3 = ¢, and

slm§42 0s9mf, = slmiz o som, \ nIist((slmg2 s s9mf,).-1)

— (51 059,(b\ nlist(s1.-1))) \ nlist((s1 ; s2).-1)
(s1@82 \ nlist((s1;s2).-1)) (b \ nlist(s1.-1))
s1089,(b\ nlist((s; ; 59).-1)),

(s1mby, ;ssz:h) o s3,(s1ml, OSQmZZ) = (51;52) ®53,51082,(b\ nlist(sy.-1))

2 51 e syess,(b\ nlist(sy.-1)) = symby, e sym%, 53
simby, o(sam%, ;83), 52m%, 083 = symy, e(sa; 53)mi2 = s10(s2553) (b \ nlist(s1.-1))
IH

= s espes3,(b\ nlist(s;.-1)) :Slmiz.sgmi2.53.
S 0 S3=€

The case of m 4, being a P-move in A, — Aj is entirely symmetrical.
% The other cases are shown similarly. |
The two conditions in the previous lemma are sometimes equivalent.

Lemma 3.23 If s1 € Pa,—a,, 52 € Pay,—a,, 53 € Pay_.a, and either sy ends in Ay or s3 in Ay
then
(81;82) X 83 <= $1 =< (82;53)

Proof: We show only the left-to-right implication; the other is shown similarly. Note that
we may use lemma BT3 without further mention.

Assume (s1;52) < s3. Itis easy to see that s; < sy — s3, so, using the assumption for
Ay Ay, not both s, s2 end in Az nor both sg, s3 end in Az . Now let s; < s and s} < s3 with
sh~ sh . If s.-1 introduces o (and s§ ends in A3) then, if this introduction occurs in A then
(81 ;s5).-1 introduces a, for relevant s} < s1, so a # sy . If the introduction occurs in Ay
then there exist least prefixes s < s; and s5 < s§ < s, such that |s{;s| = |s];s5] + 1 and
(s!;s4).-1introduces a. Hence, a # s . On the other hand, if s;.-1 introduces a and s} ends
in As then, taking relevant s < s;, either a # s/ ; s, or a # (s} ; s5)~, according to whether
a being introduced in A4 or in A3, which implies a # s, or a # s5 . Hence, so < s3.

It is not difficult to see that s; ~ (s2;s3). Now let s} <s;,i=1,2,3, with s} « (s};s%) and
s5, s5 not both ending in As, so (s7;s5) « s4 and thus (s] ;s5) < s5. Assume s}.-1 intro-
duces a name a and s} ; s§ ends in As . If the introduction occurs in A; then (s ; s5).-1 also
introduces a, so a # s5,s5, . a# (sh;ss). If it occurs in A, then there exist least prefixes
s] < s < s1and s) < s < s9 such that |s] ;5] = |s];s5] + 1 and (s];s5).-1 introduces
a. Hence, a # s and, as a # sy, a # (sh ;s5)~. Now assume (s} ; s4)-1 introduces a and s}
ends in A, . If the introduction occurs in A, then a is introduced by s5.-1, some relevant
sy < sh,or by s4.-1, some relevant s < s} . In the former case, s =< s, implies a # s7. In
the latter, a is introduced in A3 by s4.-1 and, taking s < s, with s§ =< s, we have s~ =< s/
and a # (s]”;s4)7, so a # s, . If the introduction occurs in A4 then we follow a similar
reasoning.]

With the results we have gathered we obtain a category of nominal games.

Proposition 3.24 Foranyo : A— B, idy;0 =0 =0;idp.
Moreover, forany o1 : A’ — Aand 03 : B— B’, (01;0);03 = 01;(0;03).

Proof: The first part is straightforward. For the second part, take some [u] € (01 ;0);03. By
prefix-closure we may assume that © = s;s3 with s and s3 not both ending in B, and that

52 CHAPTER 3. NOMINAL GAMES

s = s1; 52 with s and s, not both ending in 4, so

u={(s1;52);83 A [s1] €01 A [s2] €0 A [s3] €03 A (51;82) < s3
L u=51;(82;83) A [s1] €1 A [s2] €0 A [s3] €03 A s1 < (82;83)

. [u] € o1;(0;038)

Thus (01 ;02) ;03 C 01 ;(02 ; 03) and similarly the other inclusion. [|

Definition 3.25 (Category of nominal games) G is the category having nominal arenas as
objects and nominal strategies as arrows. A

3.1.3 Arena and strategy orders in §

G is the raw material from which several subcategories of nominal games will emerge. Still
though there is structure in G which will be inherited to the refined subcategories we will
consider later on. In particular, we will consider orderings for arenas and strategies, the
latter enriching G over Cpo

Strategies are (nominal) sets and hence ordered by the subset relation.

Definition 3.26 (Strategy order) For any arenas A, B and each o, 7 € G(A, B) define:
cCT £ o Cr.
For each C-increasing sequence (o5);c., take | |, o; £ U, o A

It is easy to see that each such a | |; 0; is indeed a strategy: prefix closure, contingency
completeness and determinacy easily follow from the fact that the sequences we consider
are C-increasing. Hence, each G(A, B) is a cpo with least element the empty strategy (i.e. the
strategy containing only [¢] and [i4]’s). More than that, these cpo’s enrich G.

Proposition 3.27 G is Cpo-enriched wrt C.
Proof: Enrichment amounts to showing the following straightforward assertions.
cCodANTCET = o;7C 0 ;7
(04)icw an w-chain = (|_| 0;);TC |_| (0;;7)

S €W
(Ti)icw an w-chain = a;(|_| ;i) C |_|(O‘;Ti)
i€w 1€Ew u
On the other hand, arenas are tuples and hence also ordered by a ‘subset relation’.
Definition 3.28 (Arena order) For any A, B € Ob(G) define
AdB < MAsCMgpANIsCIg AXAaC A AFACFhp,
and for any <-increasing sequence (4;);c., define
| |4 = JA.
IS 1EW
If A < B then we can define an embedding-projection pair of arrows by setting
inclap:A— B = {[s]| s € Pa_p A ([s] € ida V (odd(|s|) A [s7] € ida))},
projp o B—A = {[s]|s € Pp_a A([s] € ida V (odd(|s]) A[s7] € ida))}.
A

4By cpo we mean a partially ordered set with least element and least upper bounds for increasing w-sequences.
Cpo is the category of cpos and continuous functions.

3.2. INNOCENCE 53

It is straightforward to see that | |;.,, A; is well-defined, and that < forms a cpo on Ob(G)
with least element the empty arena 0. By incla p and projp 4 being an embedding-
projection pair we mean that

inclA_,B;projBA:idA N projB,A;inclAyggidB.

Note that in essence both incl 4 g and proj B, are equal to idy4, the latter seen as a partially
defined strategy on prearenas A — B and B — A. Finally, it is easy to show the following.

A<dBAC = incly p;inclp o =incly ¢ (TRN)

3.2 Innocence

In game semantics for pure functional languages, the absence of computational effects cor-
responds to innocence in the strategies. Here, although our aim is to model languages with
effects, our models will be constructed by use of innocent strategies: the effects will still be
achieved, by using monads.

Innocence is the condition stipulating that strategies be completely determined by their
behaviour on P-views. In our current setting the manipulation of P-views presents some
difficulties since P-views of plays need not be plays themselves. For example, the P-view
of the following play (where curved lines stand for justification pointers) is * (*, *) * a and
violates (NC2).

1——=1,® (7)1
* oQ

*

(
/
|

,

%@

)
* oQ
‘

We rectify these problems by explicitly imposing innocence on plays too.

3.2.1 The subcategory V

Definition 3.29 A play s is innocent if, for any ¢ < s, ' is a play. The set of innocent plays
of Ais denoted by Pj. A

The explicit condition of the above definition can be replaced by a more familiar-looking
Name-Condition.

Proposition 3.30 A legal sequence s is an innocent play iff s.1 has empty name-list and s satisfies
(NC1), (NC3) and the following condition.

(NC2') Any name in the support of a P-move x in s that is fresh for "s.," is contained in the
name-list of x.

Proof: If s is an innocent play then it satisfies (NC1,3). Moreover, if a € S(z) and a# s, ' =
fs<s'_, for some P-move x in s, then "s<, " being a play implies that a € nlist(z).

Conversely, if s satisfies (NC1,3) and (NC2’) then it clearly is a play. Take now some ¢ <
s; we need to show that ' is a play. By ordinary game-semantics analysis, "¢ is a legal
sequence. Moreover, (NC3) is inherited from ¢. For (NC1), let = be a P-move in "¢" and let y
be the move preceding it. yx are consecutive in ¢ and hence nlist(y) < nlist(z). Moreover, if
a € nlist(z) and a # nlist(y) then a # t<, and thus a # "<, . Finally, (NC2) for ¢ is derived

54 CHAPTER 3. NOMINAL GAMES

from (NC2’) for t. []

Summarising:

A legal sequence s is an innocent play if s.1 has empty name-list and s also satisfies
the following Name Change Conditions:

(NC1) The name-list of a P-move z in s contains as a prefix the name-list of the
move preceding it. It possibly contains some other names, all of which are
fresh for s,.

(NC2') Any name in the support of a P-move z in s that is fresh for "s.," is con-
tained in the name-list of .

(NC3) The name-list of a non-initial O-move in s is that of the P-move explicitly
justifying it.

Figure 3.2: Definition of innocent play.

We can obtain the following characterisation of name-introduction in innocent plays.

Proposition 3.31 (Name-introduction) Let s be an innocent play. A name a is introduced by
Player in s iff there exists a P-move x in s such that a € S(x) and a # "s<y .

Proof: If a is introduced by a P-move z in s then a € nlist(z) and a # nlist(s<,.-1), hence, by
(NC1),a# s<ps0a# "s<y .

Conversely, if a € S(z) and a # "s<,' then by (NC2’) we get a € nlist(z), while a # "s<,"
implies a # nlist(s<z.-1).]

We proceed to show that innocent plays are closed under composition. First, we define
P-views of interaction sequences. Recall that in an interaction sequence of A, B, C' a move
is a generalised P-move if it is either a P-move in AC or a move in B. The component of a
generalised P-move x is AB if = represents a P-move in component AB, otherwise it is BC.
Similar things apply for generalised O-moves.

Definition 3.32 Let w € 1Seq(A4, B, C) . Define its P-view "w' by recursion as follows.

62 ¢
A if an initial move in A4,
Twa) & "Wl if z a generalised P-move,
Twaw'y! £ "wlzy if y an O-move in AC justified by x.

We will need the following results, which are taken verbatim from [McC00].

Lemma 3.33

(@) Let s be a legal sequence and y be a P-move. If "sy is legal then sy is.

(b) Let w € 1Seq(A, B, C) and let = be a generalised O-move of w with component X. If x is not
initial in X, write y for its justifier and y' for the move immediately before y. Then,

(1) If x is not initial in X then y' is a generalised O-move with component X.
(2) If x is not initial in X and appears in "w" then both y and y' appear in "w™.
(3) If z appears in "w then Tw'<, [X7 = "w<, [X]

3.2. INNOCENCE 55

We will also need the following lemmata. Note thatif zisamoveinsand s ||t = (s« || ')Zw
then we say that « appears in s || t as Z.

Lemma 3.34 If s1,s2 € Pa_.p, t1,t2 € Pg_c and s; || t; end in a generalised O-move x,

(@) if x has component AB then "(s1||t1) | AB'=(s2]|t2) | AB' = s1'="s5",
(b) if x has component BC then (s1||t1) | BC" = T(s2||t2) | BC' = "t ="ty

Proof: We show (a) by induction on |s;| > 1, and (b) is proved similarly. If |s;| = 1 then

|s2| = 1 and, clearly, s; = so. If 57 = s’lnbls’l’mb1 with m an O-move in A]ustlﬁed by
n, then sy = shnb2simb>. Moreover, t; = tit/, i = 1,2, and s; |[t; = (s, ||t})nbiuzm?:,

with b, = (s} et})(b; \ nlist(s].-1)), and hence (s | t1) | AF "(s2|lt2) | AB implies that
(sh|t) [ABT = (SQHt/ | AB, s} ot} = sy ethand b = bl,. By IH, s} = "s} and by = by,
as b; = nlist(s}.-)(b’ \ nllst(s1 ot.)). Thus, sy’ = Tsg .

If s, = s’lngl mb, with m an O-move in B justified by n, then sy = s} ' nP2s2mb2, and we

work similarly to the previous case. u

Lemma 3.35 Let s € Pa_,g,t € Pg_c be innocent and s < t. Then,

(@) there exist innocent s' € Py_,p,t' € Pp_.c with ' <t' such that "s || ' =" || ¢/,

(b) S("s||t") =8("s;E)US(set),

(c) if s||tends ina generalised O-move in AB and x appears in "s’ then = appears in "s || £ as some
z; similarly for BC and t.

Proof: For (a), we do induction on |s || ¢| > 1. The base case is trivial. Otherwise, let s || t be

ending in an O-move in AC, say wlog in a move z in A. Then s = s150x and t = ¢y, with

x justified by s1.-1, so "s || £' = Ts1 || t1"2’. By IH, there exist s’,t’ such that "sy || {17 = s || t".

Now, it is easy to see that s’z is a play and that "s || ' = s’z || t’.

If s || t ends in a P-move in AC, say wloginamovezin A, thens = s"xand s ||t = (s~ || t)2’

By IH, "s— || ' = §'||t/, some s',t'. Since s~ ||t ends in a generalised O-move, we have

that (s~ ||t) | ABY = s~ ||[{' | AB" = (¢’ ||t/) | ABY, so "s™' = Ts"\. Hence, "s"'z is a

play. We have that s’z is a legal sequence and also that it satisfies (NC2'-3). For (NC1), if
b € (nlist(z) \ nlist(s’.-1)) then b € (nlist(x) \ nlist(s~.-1)),s0b# s~ ,t, .. b# s~ || £ =5 || ¥,
. b# . Hence, Ts||{' = s’z || t.

If s|| t ends in a B-move then we combine the treatments of the two cases above.

For (b), we have that S("s || {") = S(s' || ') = S(s' ;') U S(s’ ot') =5S("s;t") US(set).

For (c), we have that "s || {' = &' ||t and « appears in s, as (s||t) [AB" = Ts||{' | AB" =
)T ABY, - Tst=Ts". N

Now we can show the following.

Proposition 3.36 If s € Py_.p,t € Pp_.c are innocent and s < t then s ;t is innocent.

Proof: Suppose s;t is not innocent and let u be its least prefix manifesting this, so "u" is not
a play. Then "u" doesn’t satisfy (NC2). By leastness, u = v’ m?, m a P-move and there exists
some a such that a € S(m), a € S(u) but a # b, u".

Suppose misin A,so s = s'm? s, t=tt"andu =s";t'. V' is contained in b, s0 @ +# b and

hence a € $("s"), since s is innocent. Now, s’ || ' O-ends in AB and b contains s e t/, so
S(TsM) Cs((s"||[t)) | ABT) = (TS ||t [ABT) Cs("s" || ¢ | AB) C s("s || ")
= () US(s et!) CS() US(D).

Thus, a € S("s';t") ora € b, b. Similarly if m isin C. |

We move on to innocent strategies.

56 CHAPTER 3. NOMINAL GAMES

Definition 3.37 A strategy o is innocent if [s] € o implies that s is innocent, and if even-
length [s121] € o and odd-length [s2] € o have ["s17] = [7s27] then there exists 3 such that
[s2x2] € o and ["s1217] = [s222] . A

Some nice properties of innocent strategies are the following.

Lemma 3.38 Let o be an innocent strategy.

(1) If[s] € othen[s] € o.

(2) If sy is an even-length innocent play and [s], ["sy"] € o then [sy] € o.

(B) IfTsy'is even-length with nlist(y) = nlist(s.-1) and [s], ["sy"] € o then [sy] € o.

(4) If s is an even-length innocent play and, for any even-length prefix s’ of s, ["s"] € o then [s] € o.

Proof: For (1) we do induction on |s|. The base case is trivial. Now, if s = s’y with y a
P-move then "s' = "s"'y and ["s""] € o by prefix closure and IH. By innocence, there exists

y’ such that [s"'y'] € o and [sy'] = [sy], so done. If s = s;ysaz and = an O-move
justified by y then ["s1y"] € o by prefix closure and IH, hence ["s1y"z] € o by contingency
completeness.

For (2) note that by innocence we have [sy’] € ¢ for some 3’ such that ["sy"] = ["sy""]. Then,
syl =Ly A [Tshs] = [8] A (8(y) \ 8("s) NS(s) = (S(y) \S("s7)) NS(s) =@

Thus we can apply the strong support lemma and get [sy] = [sy'], as required.

For (3) it suffices to show that sy is an innocent play. As s,"s'y are plays, it suffices to show
that sy satisfies the name conditions at y. (NC3) and (NC2’) hold because "sy" a play. (NC1)
also holds, as y is non-introducing.

For (4) we do induction on |s|. The base case is encompassed in "s' = s, which is trivial. For
the inductive step, let s = s~2 with "s" # s. By IH and contingency completeness we have
[s7] € 0, and since ["s] € o, by (2), [s] € 0.]

We now want to show that innocent strategies are closed with respect to composition. We
will need the following technical lemmata.

Lemma 3.39 Leto : A — B, 7 : B — C beinnocent strategies and let [s;] € o, [t;] € T, s; = s/

1917
t; =tht!, s; < ti,s_;’ = t_;’in B,i=1,2,and also |s}| = |s4|. Then
@ [s1 ([t =[Sty = ["s1llta7] = ["s2 [27,

(b) ('_S/l || t/l—l = I_S/Q || tlzj /\81 .tl = S9 .tg) — I_Sl H tl—l = ’_82 || t2—|.

Proof: (a) is proved by induction on k = |s//| = |t/|, using also lemma B34
For (b), if Ts} || t1" = "sh || ¢4 then wo sy ||t = Tso || t2! for some wod = @, by (a). Then,
m must be fixing s} || ¢]7, and if s ety = sy ety then = fixes also s; e¢;. Now, using

lemma B35
S("s1|ti") =S("s1sti) US(s1ety) =S(Tsy5t7) US(s1ety) CS(sy|[t77) US(s1ety).
Hence, S("s1 || 1) = S("s7 || t1") U S(s1 ®t1). Therefore, fixes "s1 || t17, as required.]

Lemma 3.40 Let 0 : A — B, 7: B — C be innocent strategies and let [s;] € o, [t;] € T and s; ;t;
be O-ending plays, i = 1,2. Then

Ts1 ;1511 =gy ;1521 — sy || t1' = "so H to!.

3.2. INNOCENCE 57

Proof: By induction on k = |s1 || t1| > 1. Lets;;t; be (s};t))m bIfk=1 _then ok.

Otherwise, m is not initial, so let n® be the (common) move justifying m b inside siit;,and x

be the move immediately preceding n” . Then, (s} || t/)m® = (s; || t;)<ow;nbw/m® with w; in

B, and, by IH and assumption, "(s1 || t1)<z ' = "(s2 || t2)<a -
So, we need only show "(s1 || t1)<zw1' = "(s2 || t2)<zwa'. Let's say (s; || ti)<zwi = wiu] || v;v]
with (Sl || ti)gz = U; || Vi and u_; = ’U_é,i = 1, 2.

If [un | < fus|, letuh = up uby and vy = vy vy, With |uf| = Jug, [= [vy; | = [vi]. As [Tuy [|or7] =
[Fuz || v2], by previous lemma we get [Tuiu} | v1v]] = [Tugub, || vovd, 7] . If, say, these O-end
in AB then [uju}"] = [Tugub, |, by lemma B34} so, because of innocence and prefix-closure
of 0, uh,.1 is in the same arena as n, which is not B (and similarly if they O-end in BC).
Hence, u5, = vhy = € and [uqu] || v1v]7] = [Fugub || v2vy], as required. |

Lemma 3.41 Let s € Pa_p,t € Pp_c with s < t. If s is O-ending and sx € Pa_,p, for some x
in B, then there exists x’ in B such that tx' € Pp_,c and sx — tx'. Moreover, if S(z) C S(s) then
sr = ta'.

Similarly if t is O-ending and tx € Pp_.c.

Proof: We only show the sz case; the other one i is shown similarly Lety = m’ be z’s justifier
inside sz. Then y appears in t as some y' = m” . If z = n® then we claim that tnt' € Pp_c.
Since tn° clearly satisfies the name-conditions (NC1-3), it suffices to show that tn is legal,
that is, it suffices to show that tn is legal. Now, tn is a justified sequence of moves, so we
need only show it satisfies Visibility and Well-Bracketing.

As sz is legal, sn is legal and therefore, by results for ordinary game semantics (e.g. [HOOQO,
prop. 4.4] or [HY99, prop. A.9]), (s.1)(sn | B) is legal. Therefore, y appearsin s | B' = t,,
and thus y’ appears in ¢, showing visibility. For well-bracketing, we need only consider
the case of n being an answer. In this case, y is the pending questionof s | B =t [B, and
therefore £ has a pending question. In fact, its pending question is y": had some question z
int [C been left unanswered, the last switch-move w from C to B would have necessarily
been a P-question. But ¢, is odd-length, so there must either be a pending-Q in it —can’t
happen as z is the pending-Q — or an externally justified answer — which would violate
well-bracketing. Thus, tn is legal, and hence t2’ is a play.

Finally, if S(x) C S(s) then C1 and C2 are also satisfied. |

The main lemma is the following, from which we prove that innocent strategies are closed
under composition.

Lemma 3.42 Let 0 : A — B, 7: B — C be innocent strategies and [s;] € o, [t;] € T with s; < t,,
= 1, 2, and [’_81 || tlj] = [I_SQ H tQ—I] .

@ If [s18] € o, [tith] € T for sequences s},t| in B such that s1s} = tit}, then there exist
sequences sh,th in B such that sosh < toth, [s2sh] € o, [tath] € 7 and [Ts18) || t1t]] =
["sas5 || 2257

(b) If [slm’}] € o for some P-move m in A such that slmli1 = ty then there exists m§2 such that
Sng = tg, [52m2 | € oand [rslml1 [17 = [Tsam || 7).

© If [tmll] er for some P-move n in C such that t1n1 < sy then there exists n§2 such that

tonb? < s, [tan?] € 7 and [Tsy || 1P = [Tso || tan27).

Proof: We only show (a), by induction on k = |s}| = [t||; (b) and (c) are shown as the
induction step in (a) Fork =10 ok

Now let s} = s/m® and t| = tmS* and assume, wlog, that m, a P-move in AB, so

[s1s) || £08)7] = [Ts1s” || 4187 mP] with dy = s157 e t1¢7, (b1 \ nlist(s18}.-1)).

58 CHAPTER 3. NOMINAL GAMES

Then, by IH, there exist s5,t5 in B such that [sys5] € o, [tat5] € 7 and [Ts1s] || t1t]7] =
[Csosh || taty].

Let’s say 7o Tsys] || t1t]" = Tsash || tath, some 7, so, by lemma B34, 7 o 51577 = Tsas45 " and

hence [s1817] = [Ts2857. Since [slslmlil] € o and ¢ innocent, there exists m5? such that
[5252m2] € o and [s1sY ml{”] = [FSQSmez—l]

In fact, we can choose m2 so that all its names that are fresh for so s} are also fresh for tot} .

by

Thus if & is the name-list of the justifier of my in t9t5, determmed by my*’s]ust1f1er in sosh,

then, by first part of lemma BAT] totym3* € Pp_c and sasym3® < totim3* . As m3 is an
O-move, tathms? is 1nnocent 50 [tatm$?] € .

We also have that (S(m%") \ S("s1s7M) NS(Ts187 || t1t7) = @, by NC1 and C2. Moreover, by
choice of by we have (S(m52) \ S("s2s47)) N S(Tsasy || taty) = 2.
by b.

Hence, we can apply lemma 1] so there exists 7’ such that 7’ e mj* = mg?, 7’05187 =
Fsosytand 7' o Tsy sy || 61t = Tsasy || t2ty . Thus,

m . sosl e tatl (Ba\nlist(sasy .~ 1))
== m2

5252m22 | tatsm Csash || taty !

’ " " T : "o
_ (ﬁ/ o rsls/ll || tltllh)(ﬁ/ o ml)ﬂ- o(s1sy et1ty), 7" o(b1\nlist(s1s].—1))

— o r818 H tlt/h 5151 ot it 7(bl\nllst(sls1 -1)) c1n

=70 rslslml1 || t1t)mS
as required.]

Proposition 3.43 Ifo : A — B, 7 : B — C are innocent strategies then so is o ; T.

Proof: o ;7 is a strategy. Moreover, if [s;t] € o;7 for some [s] € o, [{] € 7, then, by
proposition B38, s ;¢ is innocent. Now let [u;nS'], [ug] € o ;7 be even- and odd- length re-
spectively, with [Tu,] = [’_ ']. By definition and prefix closure uz = Sa;ty and uini' =
(1845 t1th)nSt = (s1;t1)nS* with [s181], [s2] € o, [t1t)], [t2] € T and s; || t; O-ending in AC.
Hence, by lemma B40, [rsl [t = [Ts2 || t2] -

By previous lemma then, there exist s5, t in B such that [sqs5] € o, [tath] € Tand [s]s1 || t1t]7] =

["s5s2 || t2t5]

Suppose now n; is in A and u;n$' = slsml1 | 127 . By previous lemma, there exists n2
such that [525271;] € o and | slsln:l [tty] = [5252n22 | tath] = [(sash || tath)nS?T],
[M(s1;t1)n57) = [(s2;t2)nS?7 and [(s2 ;t2)nS?] € 057, as required. Similarly if 7, isin C. m

Hence, and since identities are innocent, we obtain a subcategory of innocent strategies.

Definition 3.44 V is the lluf subcategory of G of innocent (nominal) strategies. A

Henceforth, we will assume plays and strategies as being innocent unless stated otherwise.
It is easy to see that V inherits Cpo-enrichment from G by the subset ordering C of defini-

tion

Proposition 3.45 V is Cpo-enriched by C.]

3.2.2 Viewfunctions

We argued previously that innocent strategies are specified by their behaviour on P-views.
We formalise this argument by representing innocent strategies by viewfunctions.

Definition 3.46 Let A be a prearena. A viewfunction f on A is a set of equivalence classes
of innocent plays of A which are even-length P-views, satisfying:

¢ Even-prefix closure: If [s] € f and ¢ is an even-length prefix of s then [t] € f.

o Single-valuedness: If [81$1], [SQZEQ] € f and [51] = [82] then [811'1] = [SQ$2].

3.2. INNOCENCE 59

Let o be an innocent strategy. Its viewfunction is given by:
viewf(o) £ {[s] € o ||s|even ATs' = s}.

Conversely, if f is a viewfunction on a prearena A then its strategy is given by:

strat(f) = Un strat,(f),
where strato(f) £ {[¢]} and

strato,1(f) = {[sz] | sz € P A[s] € strata,(f)}

stratonio(f) £ {[sy] | sy € PiA[s] € straton1(f) A[sy] € f}.
A

Note in the above definition that, for any even-length s, [s] € strat(f) implies ["s7] € f.
We first show that the conversion functions above are well-defined, and then that they are
inverses.

Lemma 3.47 For any innocent strateQy o, viewf (o) is a viewfunction.

Proof: Since o is innocent, elements in viewf(c) are by definition equivalence classes of
innocent plays that are even-length P-views. Moreover, if [s] € viewf(c) and ¢ < s is even-
length then [t] € 0. But s being a P-view implies ¢ is a P-view, so [¢] € viewf(c). Finally, let
[s121], [s222] € viewE(o) and [s1] = [s2]. By determinacy of o, [s121] = [s222], as required. m

Lemma 3.48 For any viewfunction f, strat(f) is an innocent strategy.

Proof: By definition, strat(f) contains innocent plays and satisfies prefix-closure. For con-
tingency completeness note that if [s] € stratg,(f) and sz € P4 then necessarily sx € Pj,
as z an O-move, so [sz]| € stratan+1(f).

Now, for determinacy suppose that even-length [szy], [¢'2'y'] € strat(f) and [sz] = [¢'2/].
Then, ["sx'y],[¢zy'] € f and ["sz'] = [s'z"7, so by single-valuedness of f, [sa'y] =
["s’z"y']. But now the three previous equalities suffice for applying the strong support
lemma and obtain [szy]| = [s'2y/].

For innocence, let [s1z1y1], [sex2] € strat(f) with ["s1z17] = ["sez2] being odd-length, say
T = Tsxy!. Letys £ mon’ oy, , where 7’/ simply swaps names introduced by
in syz1y; with completely fresh ones, i.e. fresh for siz1, sax2,y1, 7. Since siz1y; is a le-
gal sequence, so is saxays: Vvisibility is obvious and well-bracketing follows from the fact
that the (possible) pending question of spx5 is the same as that of "sazo” (see e.g. [McCO0,
lemma 2.1]). Moreover, saz2y2 obviously satisfies NC3, and "sazays' = mo(Ts121" 7' oy1) =
mon’ o s1wyy;! implies NC2'. For NC1, if a € S(y2) and a#nlist(z2) then 7= (a) € S(7’ o y1)
and 7~ (a) # nlist(z1). But then 7! (a) is one of the completely fresh names, so 77! (a) = a
and a # sex2. Hence, sax2ys an innocent play. Since [soxz2] € strat(f) and [Tsazays'| =
[Fs121917] € [, [sawayz] € strat(f). n

molsixy

Proposition 3.49 For any viewfunction f and innocent strategy o,
f =viewf(strat(f)) A o = strat(viewf(o)).

Proof: For the first part, we show first [s] € f = [s] € strat(f). We do induction on
even |s|. The base case is obvious. For the inductive step, if [szy] € f then, by IH and prefix
closure of f, we have that [s] € strat(f), and thus [szy] € strat(f) as ["szy] = [szy] € f.
Clearly then f C viewf(strat(f)).

Conversely, we show that [s] € viewf(strat(f)) = [s] € f. Now, [s] € viewf(strat(f))
implies that [s] € strat(f) and "s'=s,s0[s] =[s] € f.

For the second part, we show that, for each n, S, £ strat,(viewf(o)) C o, by induction

60 CHAPTER 3. NOMINAL GAMES

on n. The base case is obvious. Now, for odd n + 1, if [sz] € S,41 then [s] € S,,, s0 [s] € o by
IH, and [sz] € o by contingency completeness. For even n + 1, if [sy] € S,41 then [s] € S,
and ["sy'] € viewf(o) C o, so by IH and lemmaB38 we have [sy] € o.

Conversely, let S £ strat(viewf(c)). We show by induction on the length of plays in o
that ¢ C S. The base case is trivial. Now, if odd-length [sz] € o then [s] € S, because of
prefix closure of o and IH, and thus, clearly, [sz] € S. If even-length [sy] € o then, again,
[s] € S,and [sy] € S because ["sy"| € viewf(c) by lemma B33]

A direct consequence is the following.

Corollary 3.50 For any viewfunctions f, g and innocent strategies o, T,

1. f Cstrat(f),

2. 0 C7 < viewf(o) Cviewf(r) and [fCg < strat(f)C strat(g),
3. viewf(o) C 7 A viewf(r) Co = o=1.

Moreover, C yields a cpo on viewfunctions, and viewf, strat are continuous wrt C.

Proof: For 1 we have: f = viewf(strat(f)) C strat(f).

For 2, because of previous proposition, it suffices to show only the “ = ” directions. For
the first conjunct we simply use the definition of viewf. For the latter we can show that, for
eachn € w, f C g = strat,(f) C strat,(g), by straightforward induction on n.

For 3 note that [s] € viewf(o) N7 = [s] € viewf(T), so viewf(o) C 7 A viewf(7) C o
implies that viewf (o) = viewf(7), and hence o = 7.

The fact that viewfunctions form a cpo is straightforward. For continuity of strat and
viewf, because of 2, we need only show that unions of w-chains are preserved. So let (¢;);c.
be an increasing sequence of strategies and let [s] € viewf(|J,, 0i). Then [s] € o;, some
i, and hence [s] € J,c, viewf(o;). Therefore, viewf(|J,., i) € U,c, viewf(o;) and, by
monotonicity, viewf (., 0i) = U,c,, vievwf (o).

On the other hand, viewf being continuous and strat being its inverse imply that strat is
also continuous.]

1EW

3.2.3 Diagrams of viewfunctions

We saw in the previous section that innocent strategies can be represented by their view-
functions. A viewfunction is a set of (equivalence classes of) plays, so the formal way to
express such a construction is explicitly as a set. For example, we have that

viewf(ids) = {[smm]|[s] € viewf(ida) Asm € PAoaA(m €Iy Vs.—-1kam)},

where the last m is justified by s.-2 and the penultimate one by s.-1 (in case m ¢ I4). The
above behaviour is called copycat (v. [A]94]) and is perhaps the most focal notion in game
semantics.

A more convenient way to express viewfunctions is by means of diagrams. For example,
for id4 we can have the following depiction.

idg: A——A
1A oQ

ia PA

The polygonal line in the above depiction stands for a copycat link, meaning that the strat-
egy copycats between the two i 4’s. A more advanced example of this notation is the strategy

3.3. TOTALITY 61

on the left below.

hap: (A= B)©@A—— B, A=EB

(%,44) oQ * PA

* PA ia 0Q
* 0Q

1A

[

PQ

Note first that curved lines (and also the line connecting the two *’s) stand for justification
pointers. Moreover, recall that the arena A = B has the form given on the right above, so
the leftmost i4 (I-i4) in the diagram of h 4 g has two child components, A~ and B. Then,
the copycat links starting from the I-i 4 have the following meaning. h 4 p copycats between
the A~-component of 1-i4 and the other i 4, and copycats also between the B-component of
l-i 4 and the lower x*. That is (modulo prefix-closure),

hap = strat{[(*,ia) * xias]|[iaias] € viewf(ida) V [s] € viewf(idg) }.

Another way to depict h 4, p is by cases, with regard to Opponent’s next move after 1-i 4, as
follows.
hap: (A= B)® A———— B,
(%, 24) 0Q
* PA
¥ 0Q

1A PQ

o0 0/000 00O O0O0OGCEOOONOOONONONGQGROEONONOSNTOOTS

jA oQ
ja Pa
000 000OC|0OCOCEOEOGOEOONONONONONONGQGROIONOEONONOTS

iB OA

Finally, we will sometimes label copycat links by strategies (e.g. in the proof of proposi-
tion B.&T). Labelling a copycat link by a strategy o means that the specified strategy plays
like o between the linked moves, instead of doing copycat. In this sense, ordinary copycat
links can be seen as links labelled with identities.

3.3 Totality

A basic problem with the category V, for our denotational purposes, is its lack of products.
In order to obtain products we restrict ourselves to total strategies.

3.3.1 The subcategory V,

We introduce the notion of total strategies, specifying those strategies which immediately
answer initial questions without introducing fresh names. We extend this type of reasoning
to level-1 moves, yielding several subclasses of innocent strategies. Note that an arena A is
pointed if 14 is singleton.

62 CHAPTER 3. NOMINAL GAMES

Definition 3.51 (V,, V,y, V;.r Vi) Aninnocent strategy o : A — B is total if for any [i4] €
o there exists [i4 ig] € 0. A total strategy 0 : A— Bis:

e [4if whenever [s] € 0 and s.-1 € J4 then |"s'| =4,

o tdifforany [i4ipjB] € o there exists [i4 iBijZ] €o,

e tl4if it is both t4 and 14,

e fttotal if itis t14 and for any [i4 ip jB] € o there exists [i4 i jB ja] € 0.

A total strategy 7: C ® A— Bis:

o 14*if whenever [s] € T and s.-1 € J4 then |s'| =4,

o t4*if for any [(ic,ia)ip jB] € T there exists [(ic,ia)iB jB ji] €T,

e tl4*if it is both t4* and 14%,

o fttotal* if it is t14* and for any [(ic,i4) i jB] € o there exists [(ic,i4) ip jB ja] € 0.

We let V; be the lluf subcategory of V of total strategies, and V., its lluf subcategory of
ttotal strategies. V,, and V,,, are the full subcategories of V, and V,, respectively containing
pointed arenas. A

These subclasses of strategies will be demystified in the sequel. For now, note that 14 stands
for “linear in the 4th move”, and t4 for “total in the 4th move”.

We now proceed to examine properties of V. Eventually, we will see that it contains fi-
nite products and distributive coproducts, that it contains some exponentials, and that lifting
promotes to a functor. Note that in the definitions to follow we will usually define strategies
by means of their viewfunctions modulo even-prefix closure.

3.3.2 Lifting and product

We first upgrade the lifting and tensor arena-constructions of definition to functors.
Eventually, tensor will give us products. In the following definition recall £ from nota-
tionBZand note that we write L(m) # m’ for L(m) NS(m') = @.

Definition 3.52 Let f : A — A’, g : B — B’ be arrows in V,. Define the strategies f ® g :
A®B — A @B and f| : AL — A'| as follows.

f©g = strat{[(ia,ip) (iar,ip)s] | ([iaia s] € viewt(f) Alipin] € g A L(iaia s) #ip)
\Y ([ZB i S] S viewf(g) A\ [iA iA/] eEfA E(iB g S) # iA) }
strat{ [« «" x s] | [s] € viewf(f) }.

fr

A

Note that f, is always ttotal. Let us we give an informal description of the above construc-
tions:

o fi : Al — A initially plays a sequence of asterisks [x ' x'x] and then continues
playing like f.

o f®g: A® B — A’ ® B’ answers initial moves [(i4,ip)] with f’s answer to [i4] and ¢’s
answer to [ip]. Then, according to whether Opponent plays in J4: or in Jp:, Player
plays like f or like g respectively.

We proceed to show that the above yield functors. The following lemma is straightforward
but arises quite often when we are dealing with definitions like that of f ® g.

3.3. TOTALITY 63

Lemma 3.53 Let sqs and sos be legal sequences of moves-with-names on a prearena A which both
satisfy NC3, and sy, sg be P-ending plays such that S(s2) C S(s1), L(s2s) # s1 and sy appears in
Ts18™, forany s' < s. Then, s1s is a play iff s is a play.

Proof: The claim is trivial if |s| = 0, so assume |s| > 0. For the “if”-part, we need to show
NC1-2". So let s’ < s be P-ending sequence. If a € nlist(s’.-1) and a # nlist(s’.-2) then
a # 528~ and a € L(s28), S0 a # $1,828'~, hence a # s15'~. If a € 8(s'.-1) and a # "s18'"
then, since s; appears in "s15", a # "sos’~ " and hence a € nlist(s’.-1).

For the “only if”-part, we again need to show NC1-2'. So let s’ < s be P-ending sequence. If
a € nlist(s’.-1) and a # nlist(s’.-2) then a # s15'~,so a# s28'~. If a € S(s'.-1) and a # a8’
then a € L(s25) so a # "s2s8'7, 51, hence a # "s;s' " and a € nlist(s’.-1). (]

Lemma 3.54 For f, f', g and g’ as above, the following are arrows in V,.
fRg:A9B—-A®B, fL:A — B].
Proof: For f ® g, it suffices to show that ¢ is a viewfunction:

¢ = {[(ia,ip) (iarip)]| ([iaia s] € viewt(f) Alipin] € g A L(iaiar s) #ip)
\Y ([ZB 1B S] S Vive(g) A [iA ’iA/] S f A\ E(’LB B S) +# ’L'A) } .

Elements in ¢ are plays: let [t] € ¢ and suppose wlog that ¢ = (ia,iB) (iar,ip/) s with
[iaia s] € viewf(f), [ipip] € g and L(iaia s) # ip. Then t is legal because i4 74 s is.
Moreover, NC3 trivially holds and therefore, by previous lemma, ¢ is a play.
For even-prefix closure, let ¢ = (ia,iB) (ia’,ip/)szy, [t] € ¢, and suppose, wlog, that
[iaia szy] € viewf(f), [ipip/] € gand L(iaia s) # ip. Then, [iaia s] € viewf(f) and
thus [t~ € ¢.
For single-valuedness, let [t1], [t2] € ¢ and [tf] [t5], say modulo 7 (i.e. t] = mpoty).
If te = (iaw),iB(x)) (1ar(x),iB/(x)), for £ = 1,2, then, by single-valuedness of viewf(f),
['L'A(l)] = [iA(g] imphes [ZA(l) ZA’(l)] = [’LA(Q) 7/A/(2] and 51rn11arly [23(1 'LB’(l)] [23(2 ZB/(Q]
Let’s say the former equality is modulo 71 and the latter ismodulo 2. We now haveiy) =
) O’LA(Q) = Tp©° 7T1 - O’LA(l) ;.. 'LA’(l) = Tp© 7T1 O’LA/(l) because S(ZA/(l)) - S(ZA(l)),
ia(1)ia/(1) = To°%a(2)iar(2) , and similarly for the B-counterpart. Hence, t; = mq ot
as required. If t,, = [(ia(x), iB(x)) (i;x'(n)’ z'jg,(n)) sk, for k = 1,2, then suppose wlog that
[Z.B(n) iB’(m)] € g and [iA(n) iA’(n) s,{x,{] € viewf(f), and ,C(’L'A(,,i) iA’(n) S,{:C,{) # iB(n) . Then

['L'A(l) 'L'A’(l) 81] = [iA(g) iAr(g) 82], SO [iA(l) iA’(l) 81.1'1] = [iA(Q) ’L'Ar(Q) 82,%2]. Now using the
strong support lemma we get [t1] = [t2]. This completes the proof of “¢ is a viewfunction”.
The case of f is similar (and simpler).]

Lemma 3.55 Let A, A’, B, B’ bearenasand ia a g g’ € 1a a,p,p vespectively, and let s 4 and sp
be justified sequences of moves-with-names from I4 U L and I 5 U I s respectively. If f : A— A’
and g: B— B’ inV,, then:

1. [(ia,iB) (iar,ip)sal € f®@g <= liaiasal € f Nlipip] €g N L(iaia sa)#iB,
2. [(iA,iB) (iA/,iB/)SB] €EfRg <— [iAiA/] efA [iBiB/ SB] cgnNn E(iBiB/ SB) #ia,
3. [xxxxsg]€fL < [sa]lef.

Proof: For 1,let s = (ia,iB) (ias,ip/) 54, Sf = tatia sa and s, = ipip . For " =", we
do induction on |s4| > 0; the base case is by definition. If |s4| is odd then, because of the
IH and contingency completeness of f, it suffices to show that sy is a play. But this follows
easily from s and s being plays. If [s4| > 0 is even then, by IH and lemma it suffices
to show that s; a play and that ["s;'] € f. Note that ["s'] € f ® g implies "s;' € f and
L("s;") # ip, and therefore, using also the IH, L(sf) # i 5. Moreover, s is legal and satisfies
NC3 so we can use lemma

For “<=", we do again induction on |s4| > 0, and the base case is by definition. The case

64 CHAPTER 3. NOMINAL GAMES

of |s4| odd is shown using the IH and contingency completeness. If |s4| > 0 is even then,
by IH and lemma it suffices to show that s’ € f ® g and s a play. The former is
straightforward and the latter follows from lemma

This completes the proof of 1. 2 and 3 are proved similarly.]

Proposition 3.56 The following are functors.
R A A 2 A (=)L Ve = Vi

Proof: The above constructions have been shown to be well-defined on objects and arrows,
so we need only show functoriality. For the tensor ®, it is not difficult to see that id4®idp =
idagp. We also need to show that, for any A Y SN A" and B 4> B’ N B,
(fif)@(g9)=(fog9);(f ®g).

Let u = [(ia,iB) (iar,ipr)s] € viewf((f; f') ® (g;¢')) and assume wlog that [ia 14~ 5] €
f;fl, [iB iB//] S g;g' and ﬁ(iA TAM S) #ip. Letthen iqiqans = iaia SI;iA/ 14 8" and
iB iB// = iB iB/ ;iB/ iB// ,With not both S/, s” ending in A’ and [iA iA/ S/] € f, [iA/ iA// SH] S f/,
[ipip/] € g and [ip ips] € g'. Note that L(iaia~ s) # ip implies L(igia s') # ip and
L(igrians") # ip, and from the latter L(i4/i4» s") # ip. By the previous lemma we
have that [(iA,iB) (iA/,iB/)S/] € f X g and [(iA/,iB/) (iA//,iB//)S//] S f/ X g’, and hence
u=[(ia,ip) (iar,ip) s ;(ia,ip) (iav,ipr)s"| € f@g; [@4

Conversely, if u € viewf(f®g; f'®¢’) thenu = [(ia,ip) (iar,ip~) s], where s is (exclusively)
in A — A" orin B — B”, since only O can switch components and u is a P-view. Suppose
wlog that the A — A" case holds. We then have thatu = [(i4,iB) (ta/,ip/) s ;(ta7,i5/) (tar,iB7) "],
with not both ', s ending in A’. Then, by previous lemma, [iaia s'] € f, [ipip] € g and
ﬁ(iA A S”) # B, and [iA/ A S”] (S f/, [iBr iBrr] S g' and ﬁ(iA/ LAY SI) # igr. But now
[iA A s’ STA LAY S”] = [iA LA S] c f; f/ and [iB iB//] S g;g/. Now, (iA,iB) (iA/,iB/) s =
(’iA/,iB/) (iA//,iB//) S” 1mp11es that E((iA/,iB/) (iA//,iB//) S”) # ’L'B , ie. E(’iA/ iA// S”) # iB .
Hence, L(iaiars) = (L(iaiar ') U L(ia iavs")) #ip, and thus, by previous lemma, u €
(f;) @ (9;9").

Finally, the case of lifting (—). is much simpler, and is proved along the same lines. u

Thus, we have shown in full formality that tensor and lifting are functors. Note that in
the sequel we will generally avoid to give proofs of simple facts about strategies at this level
of detail.

We now show that ® yields products, and hence that V) is cartesian.

Proposition 3.57 V), is cartesian: 1 is a terminal object and ® is a product constructor.

Proof: Terminality of 1 is clear. Moreover, it is straightforward to see that ® yields a sym-
metric monoidal structure on V, , with its unit being 1 and its associativity, left-unit, right-
unit and symmetry isomorphisms being the canonical ones. Hence, it suffices to show that
there exists a natural coherent diagonal, that is, a natural transformation A : Idy, —
® o (Idy,,Idy,) (where (Idy, ,Idy,) is the diagonal functor on V,) such that the following
diagrams commute for any 4, B in V..

AwB—"22E (A® A)© (B B) A
< =~ AL =~
(A® B)® (A® B) le Ao Aed g 4el

But it is easy to see there is a canonical choice for A,
Ap:A— AR A 2 strat{[ia (ia,ia)s]|[iaia s] € viewf(ida) },

which makes the above diagrams commute. Naturality follows from the single-threaded
nature of strategies (v. [Har99]). []

3.3. TOTALITY 65

Now that we have defined the diagonal A we can show the following (cf. [[AJMO00Q]). Re-
call tl4* strategies from definition B.511

Lemma 3.58 (Separation of Head Occurrence) Let A be a pointed arena and f : A— Bbea
t4 strategy. Then there exists a ti4* strategqy f : A® A— B such that f = A; f.

Proof: Let us tag the two copies of Ain A ® A as A;, and A, and take
f 2 strat{[(ia,ia)ip jB ja,,] | [iais jBih, 5] Eviewt(f) A Vi.si ¢ Jay,),

where € is the composition of de-indexing from M ,, and M4, to M4 with €. Intuitively,
f plays the first J4-move of f in A ,), and then mimics f until the next J. A—move~of f, which
is played in A,,. All subsequent J4-moves are also played in A,. Clearly, f is tl4* and

f=A5F u
Products in V, are given concretely by triples A <~ A ® B —2> B, where
m = strat{ [(ia,iB)ia s] | [ia ia s| € viewf(ida) },
and m; similarly, while for each A <L ¢ % Bwehave
(f,9) : C— A® B = strat{ [ic (ia,iB)s]| ([ic ia s] € viewE(f) A [ic iB] € viewt(g))
V ([ic ia] € viewf(f) Alic ip s] € viewf(g)) }.

Finally, we need to generalise the tensor product to a version applicable to countably many
arguments. In arenas, the construction comprises of gluing countably many arenas together
at their initial moves. The problem that arises then is that the product of infinitely many
(initial) moves need not have finite support, breaking the arena specifications. Nevertheless,
in case we are interested only in pointed arenas, this is easily bypassed: a pointed arena has
a unique initial move, which is therefore equivariant, and the product of equivariant moves
is of course also equivariant.

Proposition and Definition 3.59 (Big tensor) For pointed arenas {A;}ic., define @), A; by:

Mg a, = {*} +L‘ﬂi I, (&®;A:)
I®iAi £ {*}
A@,4, = [(x = PA),Aa, | La, "))

|_®iAi 2 {(*)JAZ) | (S w} U Ul(l_Al [I_AiQ) :
For {f; : A; — Bi}icw with A;’s and B;’s pointed define:

Q& fi £ strat{[x « 5] | I.[ia, in, 5] € viewt(f)}.
Then @ -: [[V,, —> Vy, isa functor. |

The proof is similar to that of the binary tensor. Note that we could proceed and show that
the aforedefined tensor yields general products of pointed objects, but this will not be of use
here and is therefore left to the reader as an exercise.

3.3.3 Partial exponentials

We have seen that the tensor constructor equips V, with products. We now show that the
arrow constructor yields appropriate partial exponentials, which will be sufficient for our
denotational tasks.

Let us introduce the following transformations on strategies.

66 CHAPTER 3. NOMINAL GAMES

Definition 3.60 For all arenas A, B, C' with C pointed, define a bijection
AR o V.(A®B,C)-5 V,(A,B—=0)
by taking, foreachh: AQ B—Cand g : A—>BH®C’E
Af o(h): A— B — C £ strat{ [iaic (ip,jo) s| | [(ia,iB) ic jo s] € viewt(h) },
A M (9): A® B— C £ strat{[(ia,ip) ic jo s |[ia ic (i, jo)s] € viewt(g) }.

Moreover, take evap: (A—=B)®@ A— B = AﬁjggyB(idA%B).
Finally, for each (f, g) : (A, B) — (4’, B’), take

f-eg:A—eB—A-oB 2 AY 5, p(id® fievig).
A

It is not difficult to see that A and A~! are well-defined and mutual inverses. What is more,
they supply us with exponentials.

Proposition 3.61 V, has partial exponentials wrt to ®, in the following sense. For any object B,
the functor — ® B : V, — V), has a partial right adjoint B —e _ : V., — V,, that is, for any object
A and any pointed object C' the bijection

is natural in A.
Proof: It suffices to show that, forany f: A B—Candg: A— B —=C,
A(f)y®id;ev=f, g®id;ev=A"'(g).

The above equalities are straightforward. For example, the viewfunction of A(f) ® id;evis
given by the following diagram,

AeB 2 3 o)eB—2 —(
(ia,iB)
(i}cv iB)
e
je
(i, jc)
i e
which gives also the viewfunction of f. u

A consequence of partial exponentiation is that — naturally upgrades to a functor:
- & (Vt)op X Vt* _>Vt* :

Now, in case g is ttotal, the strategy f =g : A’ -« B — A —» B’ is given concretely by
strat(¢), where

¢ ={lipip (ia,jp) (ia,jB) 8| | ([iaia s] € viewt(f) Alipip jpr jB] € g N L(iaia s)#iB,)
\Y ([’LB B JB' JB S] S Vive(g) N [’iA iA/] S f A\ E(’LB B JB’ JB S)#ZA)}

5Note the reassignment of pointers that takes place implicitly in the definitions of A, A~1, in order e.g. for
(a,iB)ic jo s tobe a play of viewf (h).

3.3. TOTALITY 67

That is, f —® g answers initial moves [ig] like g and then responds to [igip (i4,7p/)] With
f’s answer to [i4] and g’s response to [ig ip’ jp/] (recall g ttotal). It then plays like f or like
g, according to Opponent’s next move. Note that ¢ is a viewfunction even if B, B’ are not
pointed.

A special case of ttotality in the second argument arises in the defined functor:

= (V)P XV, — Ve 2 - = (L)L (3.3)

Remark 3.62 In the work on CBV games of Honda & Yoshida [HY99] the following version
of partial exponentiation is shown.

VA®B,C)=V,(A,B=C) (3.4)

Interestingly, that version can be derived from ours (using also another bijection shown
in [HY99]),

VA®B,C)=2V,(A®B,C1) =V, (A,B—-C,)=V,(A,B=0C).

But also vice versa, if C is pointed then C' = Cy = C}, for some arenas C', C E and
(3] (3]
V,&A@B,CQ?CH) = V(A@B@CQ,Cl) = Vt(A, (B@Cg)icl):Vt(A,B"@(CgiCl)).

3.3.4 Coproducts

We show very briefly that V, has distributive coproducts. In fact, V, is an extensive category
(which subsumes distributivity, v. [CLW93])), but this will not be of real use here.

Definition 3.63 For any arenas A, 3, define the arrows:
11: A—> A+ B & {[iaias]|[iaias] €1ida},
t9: B—> A+ B £ {[igips]|[ipips] € idp}.
Moreover, for any A L, 0<% Btake
[f.9): A+ B—C = {[iaics]|[iaics| € f}U{lizics] |lipics] € g} -
Finally, for each arena A, define the arrow !4 : 0— A £ {[¢]}. A

Note that we use the same symbol, ! 4, both for terminal and initial arrows; this usually does
not cause confusion.

Proposition 3.64 The structure defined above equips V, with finite coproducts. Moreover, for all
arenas A, B, C, the following arrow is an iso.

[ida ® ¢1,ida ® 2]

dst £ A® B+A®C A® (B+0)

6 In fact, for C to be expressed as Cz = C we need a stronger version of condition (f), definition Bl namely:
(f) For each m € My, there exists unique k£ > 0 and a unique sequence z1 ...z, € {Q, A}* such that I4 >
miba -4 mg g m,for somem;’sin M4 with AgA(ml) =uzx.

In such a case, C1 and Cy are given by taking K& £ {m e Mg |3jo.joFe m Ade(m) = PA} and

Mg, 2 K& +{meMg|IkeKi kro---Fom} Mg, 2 I\ Mg,

Ic, & K& Ic, 2 Jo

Fo, & kel (M, x Ic,) Fo, & kel (Mo, % Ic,)

Acy 2 o I Mc, Ay L lic, — PA,m— Ae(m)].

68 CHAPTER 3. NOMINAL GAMES

Proof: It is not difficult to see that the above yield finite coproducts. For distributivity, the
following strategy is an inverse to dst.

AR(B+C)——=ARB+A®C
(ZA7ZB) oQ
(iA,iB) PA

|

(ia,ic) 0Q

3.3.5 Strategy and arena orders

Recall the orders defined for strategies (<) and arenas (<) in section These being
subset orderings are automatically inherited by V,. Moreover, they are very well-behaved
in the following sense.

Proposition 3.65 V, and V., are PreCpo-enriched wrt CH Moreover, the following are locally
continuous functors.

(=)L Ve — Vee, (@) Ve xVy—V,, (®—):HVt*_)Vt*/
(- =) VP X Ve, — Vi, (=) WXV, — Ve, (+2) Vi xV,— V.

Proof: Enrichment follows from enrichment of G; only the least element is lost, since it is
not necessarily total. To show that the defined functors are locally continuous we make use
of corollary B30 For example, given o C ¢’ and 7 C 7/, in order to show thatc @ 7 C o' @ 7’
it suffices to show that viewf(o ® 7) C viewf(o’ ® 7’), which is straightforward from the
definition of tensor. On the other hand, if (0;);c. is an w-chain then, in order to show that
(L;00) ® 7 € (05 ® 7), it suffices to show that viewf((| |, 04) ® 7) C ||, viewf(o; @ 7),
which is straightforward.]

The order on arenas in V, is the same as in G, and therefore Ob(V,) is a cpo with least
element 0. Note though that a requirement needs to be added for projections to be total
strategies.

Definition 3.66 For any A, B € Ob(V,) and k € w define
A<y, B < A<dBA (B|{meMg]|levellm) <k}) <A
If A <; B then we can define a (total) projection arrow

projp 4 : B— A £ strat{[s] | [s] € viewf(ida)}
A

This indexed version of the ordering relation allows us to stipulate totality and ttotality on
projections and inclusions:

A<y B = projp 4 € V(B 4),
A<y B = inclap € V. (4,B).

Moreover, we have the following.

7By precpo we mean a cpo which may not have a least element. PreCpo is the category of precpos and continu-
ous functions.

3.4. A MONAD, AND SOME COMONADS 69

Proposition 3.67 All of the functors of proposition B.6D are continuous wrt <. Moreover,
AJAANBADB

A Sll A/ NB ﬂl B/ — projA/_’A®projB/_’B = projA’@B/,A®B

View. A; < A

I

inclp a/®inclp g/ = inclagB, A0 B’

®Z_ 1nclAi7A; = 1nC1®iAi,®iA§

®i Projas a, = Prolg A/.®,A;

pProj, 4 = inclp pr = incla—B A'=p’

Vi€ w. A; QA
A<t ANBLB
A AANB< B
A<y ANB<, B
A AANB< B

A AANB<L B
A<y ANB< B

inclg,ar = Projp, p = Projs—p a=p
projA,_’A —einclp g = incly «B, A/ =B
incla,ar =8 PTOjp, p = PTOJurop’,A-oB
inclp ar +inclp g = inclayB a/4 B’

PToj 4 T PrOjp g = Projaryp AtB

Frerirr il

Proof: It is not difficult to show <-continuity. Now, all the above clauses are in effect spe-
cial cases of functoriality statements, since the underlying sets of inclusions and projections
correspond to identity strategies. |

3.4 A monad, and some comonads

We now proceed to construct a monad and a family of comonads on V, that will be of use
in later chapters. Specifically, we will upgrade lifting to a monad and introduce a family of
product comonads for initial state.

3.4.1 Lifting monad

It is a more-or-less standard result that the lifting functor induces a monad.

Definition 3.68 (Lifting monad) Define the natural transformations up, dn, st as follows.
upy: A—> A =strat{ [ia* %204 8] |[iaias] € viewf(idy) }
dng:A; | — A = strat{ [x| #, %9 %3 %4 5] | [s] € viewf(ida) }

stap:A®B;, — (A®B), 2 strat{ [(ia,*1) ¥} %5 *2 ip (ia,iB) S]

| [(i4,iB) (ia,iB) s] € viewf(idagR) }

(primed asterisks are used for arenas on the RHS, where necessary). A

Proposition 3.69 The quadruple ((—).,up,dn,st) is a strong monad on V,. Moreover, it yields
monadic exponentials by taking (C'1)® to be B = C, for each B, C.

Proof: It is not difficult to see that ((_),up, dn, st) is a strong monad. Moreover, for each
B, C wehave that B=C = B— (| isa () -exponential, because of exponentiation prop-
erties of —e. |

Although finding a canonical arrow from A to A, is elementary (up,), finding a canoni-
cal arrow in the inverse direction is not always possible. In some cases, e.g. A = A;, there is
no such arrow at all, let alone canonical. An exception occurs when A is pointed.

Definition 3.70 For any pointed arena A define:

puy,: A — A £ strat{ [xiaja * 1ajas]|[iaiajajas] € viewf(ida) }.

70 CHAPTER 3. NOMINAL GAMES

Lemma 3.71 puy, yields a natural transformation pu : (_) (v, y — Idy,, . Moreover, for any
arenas A, B with B pointed,

e up, ;puy = ida,
L4 puAL :dnA/

opquB:A((AH@B)LQ@AL((AwB)@A)LiVéBLN—B>B). .

3.4.2 Initial-state comonads

Our way of modelling terms-in-local-state will be by using initial state comonads, in the
spirit of intensional program modelling of Brookes & Geva [[BG92]. In our setting, the initial
state can be any list @ of distinct names; we define a comonad for each one of those lists.

Definition 3.72 (Initial-state comonads) For each @ € A# define the triple (Q%¢,9) as fol-
lows.

QU: Y, —V, 2N _,
E:Qd—>1dyt L fe): AT A-T2s AY,
§:Q"—(QN2 L [64: N0 A2, NigaTg A},

For each @ C @ define the natural transformation £ : Q% — Q7 by taking,

(
(£): A0 1— A @1 2 {[(@) (@)} N

a

=N

A M@ A— AT AL (L), ®ida,

Qy

Note that Q¢, the comonad for empty initial state, is the identity comonad. Note also that
we have suppressed indices d from transformations ¢, ¢ for notational economy.

From the results in the previous chapter, we know that each triple (Q%¢,4) forms a
product comonad on V,. Moreover, it is straightforward to show the following.

Proposition 3.73 (Chain rule) For each @ C @ € A¥, the transformation %, is a comonad mor-
phism. Moreover, & = ¢ : Q" — Idy, , & = id : Q" — Q% and, foreach @ C @’ C @,

Finally, for each name-type i, we have a name-test arrow:
eq,: A @A —N = {[(a,a)0] }U{[(a,b)1][a#b}
which clearly makes the following diagram commute.

ab ab

Q"1 s A @A, -ebr Q1 (N1)

1 — N — 1
0 1

Remark 3.74 (Why use comonads) We briefly discuss about our use of initial-state comon-
ads for modelling local state, instead of following the more standard method of a local-state
monad. We focus on the sv-calculus. An appropriate local-state monad for this calculus
would be a monad T of the form

TX = AN =A@ X

3.4. A MONAD, AND SOME COMONADS 71

and would entail that each typed term @ | I' = A : A be translated to a morphism [M] :
[T] — A# = (A# @ [A]), or, equivalently,

[M] : A% @ [I] — (A* @ [A]). .

However, the generic treatment of initial state in the above description is inadequate for our
purposes. A% contains all possible initial states, and [M] would have to be specified for
each single one of these — even for irrelevant ones.

What seems more fitting to our nominal framework is a translation to specific initial states,
up to permutation, which concretely means

[M] - A% @ [I] — (A% @ [A])L

in our running example. But since in nominal games all information pertaining fresh names
is embedded in moves (cf. [AGM*04, Ong02]), the appearance of A# in the RHS above is
redundant. Hence, the desired interpretation boils down to

[M] : A% @ [T] — [A]

which is precisely the (underlying) interpretation pursued in the next chapters.

3.4.3 Fresh-name constructors

Combining the monad and comonads of the previous sections we can obtain a monadic-
comonadic setting (V,, (—)1,Q), where by Q we denote the family (Q%)zca#. This setting,
which in fact yields a sound model of the sv-calculus, will be used as the basis of our se-
mantics of nominal computation in the sequel. As discussed in remark B.74, nominal com-
putation of type A, in name-environment @ and variable-environment I', will be translated
in the set of strategies

{o: QT —[A]L }-

The lifting functor, representing the monadic part of our semantical setting, will therefore
incorporate the computational effect of fresh-name creation.

We describe in this section the game-semantical expression of fresh-name creation. Fresh
names are created by means of natural transformations which transform a comonad Q¥ say,
to a monad-comonad composite (Q%_) .

Definition 3.75 Consider the setting (V,, (=) 1,@Q). We define, for each da € A¥, natural
transformations

new®® : in_) (Qda_)L
by:

new;” ® ida

newl® £ A6®A—>(AEG)L®AL(AEG®A)L,

L u
:>®

new(® : A"® 1 — (AT ® 1), £ strat{[(d@,) * * (da, *)"]} .
A

We will usually omit superscripts in new, for economy. That new is a natural transformation
is straightforward: for any f : A — B we can form the following commutative diagram.

/

o newj ®i . st o
Aa ®A d (Aaa)l_ ® A S (Aaa ® A)J_
id®f‘ id®f[(1d®f) 1
A ® B (A%), @ B——— (A% ® B)

new; ®id st/

72 CHAPTER 3. NOMINAL GAMES

Moreover, new is strength-coherent, in the following sense. For any arenas A, B it is easy to
see that the following diagram commutes.

A®QiB——— = Qi(A® B) (3.5)

id®newp newAwB
A® (QUB)L — 7~ (Q™(A® B))L
Finally, we can show the following.

Proposition 3.76 For all @,d'a € A% with @ C @ and any arena A, the following diagrams com-
mute.

N (id,newa) . new?”

QA ———— QA ® (Q™A) Q" A Q7 A) | (N2)

By A

(Q™A) —— (Q"A®Q™A). QIA———— (Q™A),

(22 10,

a

S

Proof: It is easy to see that commutativity of the LHS diagram reduces to commutativity of

(id,newy) -

A? A% @ (A7)

newp [Lst

(Aaa)l — N (A6®AJG)L
<71,id>L

which is straightforward. The RHS diagram is shown similarly. u
The fresh-name constructor allows us to define name-abstraction for strategies.

Definition 3.77 (Name-abstraction, ()) Foranyo : Q% B —s C, where C is pointed, define:

@o £ QB (Qiep), 20y P 0,
A

Name-abstraction can be given an explicit description as follows. For any sequence of
moves-with-names s and any name a # nlist(s), let s* be s with a added in the head of
all of its name-lists. Then, for o as above, we can show that:

viewt(@)o) = { [(@ ip)ic jom™ s | [(da,ig)ic jom®s| € viewt(c) Aa#ig,jc } (3.6)
Thus, for example, for any f, g : Q%1 — B, we have:
f=9 = @f=wyg. (8.7)

We end our discussion on fresh-name constructors with a technical lemma stating that
name-abstraction and currying commute.

Lemma 3.78 Let f : Qda(A ® B) — C, with C a pointed arena. Then

WAL) =M 5@ f): Q°A— B —C.

3.5. NOMINAL GAMES A LA LAIRD 73

Proof: As follows.

@AL' f) = newf s(AL"5)1 spup o = newi' ;(A(L' 3 f)) 1 s Ast sevy s puc)
= A(newza ®idp;(A(L'; f))L ®idp;st';evy ;puy)
= A(newi" ®idp;st’;(A(L; f)®idg) 1 ;evy ;puy)
= A(newy’ ® idp;st’;({'; f) L ipug)
(1\;2) A(Z/;newz%B;fJ_;puc) = A({/,<a>f)
[|

Note that the above result does not imply that v- and A-abstractions commute in our se-
mantics of nominal languages, i.e. that we obtain identifications of the form [ra.\z.M] =
[Az.va.M]. As we will see in the next chapters, A-abstraction is not simply currying: be-
cause of monads, it corresponds to currying and composing with the monadic unit.

Generalised constructors The previous construction can be generalised as follows. For
any @ C d’ define

(7): =@ @8)
from

()1 Q1= (@0 2 (1@« x @17, 39)

where @' \ @ is @ with all names from @ removed. Clearly, this too is strength-preserving and
moreover makes the following diagram commute, for any A.

QA ® (Q7 A), (N2))
<§>A[;
(QTA)L —— (QTA® QT A),

We can now define a generalised name-abstraction constructor for strategies. For any o :
Q% B — C with C pointed,

6
FL

@ayo £ Q°B—% (Q"B), X0, 2 0. (3.10)
The above can be given an explicit description as follows.
viewf((@la'yo) = (3.11)
(@ ip)ic jom @D sT\D]| (@, ip)ic jom®s] € viewt(o) A (@ \ @) # i, jo }

This shows that the constructor (_ |_) indeed generalises (_): taking (@) L @) an)
we have (@) = (@ldd’y. Finally, similarly to lemma we can show that, for any f :
Q% (A ® B) — C with C pointed,

@layne s f) =AM s@ldyf): Q°A— B = C. (3.12)

3.5 Nominal games a la Laird

As aforementioned, there have been two independent original presentations of nominal
games, one due to Abramsky, Ghica, Murawski, Ong and Stark [AGM™04] and another one

74 CHAPTER 3. NOMINAL GAMES

due to Laird [Lai04}, Lai08]. Although Laird’s constructions are not explicitly based on nom-
inal sets (natural numbers are used instead of atoms), they constitute nominal constructions
nonetheless. In this section we highlight the main differences between our nominal games,
which follow [AGM™04], and those of [[Lai04, [Lai08].

Laird’s presentation concerns the v-calculus with pointers, i.e. with references to names.
The main difference in his presentation is in the treatment of name-introduction. In particu-
lar, a name does not appear in a play at the point of evaluation of its v-constructor, but rather
at the point of its first use; let us refer to this condition as name-frugality (cf. [MT09]). An im-
mediate result is that strategies are no longer innocent, as otherwise e.g. va.A\z.a and Az.va.a
would have the same denotationfl More importantly, name-frugality implies that strategies
capture the examined nominal language more accurately: Opponent is not expected to guess
names he is not supposed to know and thus, for example, the denotations of va.skip and
skip are identical. In our setting, Player is not frugal with his names and therefore the two
terms above are identified only at the extensional level (i.e. after quotienting)ﬂ

The major difference between [[Lai04] and [Lai08] lies in the modelling of (ground-type,
name-storing) store. In [Lai04] the store is modelled by attaching to strategies a global, top-
level (non-monadic), store-arena. Then, a good-store-discipline is imposed on strategies via
extra conditions on strategy composition which enforce that hidden store-moves follow the
standard read /write pattern. As a result (and in contrast to our model), the model relies
heavily on quotienting by the intrinsic preorder in order for the store to work properly.

The added accuracy obtained by using frugality conditions is fully exploited in [Lai08],
where a carefully formulated setting of moves-with-stord!] allows for an explicit character-
isation result, that is, a semantic characterisation of operational equality at the intensional
level. The contribution of using moves-with-store in that result is that thus the seman-
tics is relieved from the (too revealing) internal workings of store: for example, terms like
(@ :=b); x.'a;0 and (a := b);Az.0 are equated semantically at the intensional level, in
contrast to what happens in our model Note, though, that in a setting with higher-order
store such that of vp, moves-with-store would not be as simple since stores would need to
store higher-order values, that is, strategies.

Laird’s approach is therefore advantageous in its use of name-frugality conditions, which
allow for more accurate models. At the same time, though, frugality conditions are an ex-
tra burden in constructing a model: apart from the fact that they need to be dynamically
preserved in play-composition by garbage collection, they presuppose an appropriately de-
fined notion of name-use. In [Lai04, [Lai08], a name is considered as used in a play if it is
accessible through the store (in a reflexive transitive manner) from a name that has been ex-
plicitly played. This definition, however, does not directly apply to languages with different
nominal effects (e.g. higher-order store). Moreover, frugality alone is not enough for lan-
guages like Reduced ML [Sta94] or the v-calculus: a name may have been used in a play but
may still be inaccessible to some participant (e.g. if it is outside his view [MT09]). On the
other hand, our approach is advantageous in its simplicity and its applicability on a wide
rage of nominal effects, but suffers from the accuracy issues discussed above.

8Non-innocence can be seen as beneficial in terms of simplicity of the model, since strategies then have one
condition less. On the other hand, though, innocent strategies are specified by means of their viewfunctions,
which makes their presentation simpler. Moreover, non-innocence diminishes the power of definability results, as
finitary behaviours are less expressive in the absence of innocence.
9Note here, though, that the semantics being too explicit about the created names can prove beneficial: here
we are able to give a particularly concise proof adequacy for vp (see section EEZ A and compare e.g. with respective
proof in [AHMO98]) by exploiting precisely this extra information!
Onter alia, frugality of names implies that sequences of moves-with-store have strong support even if stores are
represented by sets!
HIn our model they correspond to the strategies (see also section E3):

o1 £ {[(a,0) * ®(x, ®)(n,®) acO]}, o2 2 {[(a,b) * ®(+, ®)(n,®)0]}.

Thus, the inner-workings of the store revealed by o1 (i.e. the moves a c) differentiate it from 2. In fact, in our
attempts to obtain an explicit characterisation result from our model, we found store-related inaccuracies to be the
most stubborn ones.

Chapter 4

Nominal References

In this chapter we construct in nominal games a fully abstract semantics for a language
with nominal general references called the vp-calculus. General references are references
which can store not only values of ground type (integers, booleans, etc.) but also of higher-
order type (procedures, higher-order functions) or references themselves. They constitute
a very powerful and useful programming construct, allowing for the encoding of a wide
range of computational effects and programming paradigms (e.g. object-oriented program-
ming [JAHMO98, section 2.3] or aspect-oriented programming [SO07]). The denotational
modelling of higher-order references is quite demanding since, on top of phenomena of dy-
namic update and interference, one has to cope with the inherent cyclicity of higher-order
storage.

The vp-calculus is a functional language with dynamically allocated general references,
reference-equality tests and “good variables”, which faithfully reflects the practice of real
programming languages such as ML [MTM97]. In particular, it extends the sv-calculus by
using names for general references. In terms of the What’s new? motto (cf. [PS93]]), names
can be

created with local scope, updated and dereferenced, tested for equality and passed around
via function application, but that is all.

The fully abstract model of vp is the first such for a language with general references and
good variables.

Fully abstract models for general references were given via game semantics in [AHMO98]|
and via abstract categorical semantics (and games) in [[Lai02]. Neither approach used names.
The model of [AHM9§] is based on the idea of relaxing strategy conditions in order to model
computational effects. In particular, it models references as variables of a read /write prod-
uct type and it uses strategies which violate visibility in order to use values assigned to ref-
erences previously in a play. The synchronisation of references is managed by cell strategies
which model fresh-reference creation. Because references are modelled by products, and
in order to produce a fully abstract semantics, the examined language needs to include bad
variables, which in turn yield unwanted behaviours affecting severely the expressivity of the
language, and prohibit the use of equality tests for referencesl| On the other hand, the ap-
proach in [Lai02] bypasses the bad-variables problem by not including types for references
(variables and references of the same type coincide). This contributes new intuitions on se-
quential categorical behaviour (sequoidal category), but we think that is somehow distanced
from the common notion of reference in functional programming.

The full-abstraction problem has also been tackled via trace semantics in [Lai07]. The
language examined is a version of that in [AHM98] without bad variables. The latter are not
needed since the modelling of references is achieved by names pointing to a store (which

1By “bad variables” we mean read/write constructs of reference type which are not references. They are nec-
essary for obtaining full-abstraction in [AHMUY8] since read /write-product semantical objects may not necessarily
denote references.

75

76 CHAPTER 4. NOMINAL REFERENCES

is analogous to our approach). Of relevance is also the fully abstract trace model for a
language with nominal threads and nominal objects presented in [JR02]. An important dif-
ference between trace models and game models is that the former are defined operationally
(i.e. traces are computed by using the operational semantics), whereas game models are de-
fined in a purely compositional manner. Nonetheless, trace models and game models have
many similarities, deriving mainly from their sequential-interactive representation of com-
putation, and in particular there are connections between [Lai07] and the work herein that
should be further examined.

The chapter is structured as follows. In section Bl we introduce the vp-calculus and
define its notion of observational equivalence, which yields the equational theory of the
language. We then proceed to its denotational semantics by first formulating a fully ab-
stract categorical semantics in section The semantics is built in vp-models: these are
categories equipped with a collection of comonads for initial state, and a monad for fresh-
name creation and storage (cf. section [Z37). Finally, in section 23 we construct a concrete
such model in nominal games. Working in the category V, (definition BX), we first ob-
tain a vp-model by using the monadic-comonadic setting of section B4 and attaching to it
a store monad (cf. section ZZ33). For the latter we use a store arena &, which is obtained as
the solution of a recursive Store Equation (EEF). The model in V, is sound but not complete,
because game strategies are allowed a ‘liberal” use of the store. This is resolved by introduc-
ing tidiness conditions for strategies, by which we obtain a subcategory 7 of nominal games
for which we show definability and full abstraction. Note that the whole approach can be
straightforwardly adapted to ground-type references, thus giving e.g. a fully abstract model
for Reduced ML [Sta%94].

4.1 The vp-calculus

The syntax of the language which we now introduce is built inside the category Nom of
nominal sets. Names are used for general references, so we assume that there is a set of
names (atoms) Ag € (A;)icw, for each type A in the language. Types include types for
commands, naturals and references, product types and arrow types.

Definition 4.1 The vp-calculus is a functional calculus of nominal general references. Its
types, terms and values are given as follows.

TY>A,B:=1|N|[A]|A—B|AXxB

TE> M,N =z | XM | MN|(M,N)|fst M |snd N A-calculus

| skip | n | pred M | succ N return/arithmetic

| if0 M then Nj else N if_then_else

| a reference to type A (a € Ay)
| [M = N] name-equality test

| va.M v-abstraction

| M :=N update

| ' M dereferencing

VAV, W =n|skip|al|z|e.M | (V,W)

The typing system involves terms in environments @|I', where @ a list of (distinct) names
and I a finite set of variable-type pairs. Typing rules are given in figure 11 A

Asin the case of the strong v-calculus previously, we note that TE and VA are strong nominal
sets, and that terms are equated up to a-equivalence. The operational semantics of the
calculus naturally involves computation in some store environment where created names

4.1. THE vp-CALCULUS 77

allFn:N all,z:AkFx: A all F skip:1

dallFM:AxB iallFM:AxB allFM:A illFN:B
alTkHfstM: A @l FsndM:B all'+{(M,N): Ax B

all'=M:N gl FM:N alTFM:N @ITHFN,Ny: A

alT FpredM : N alTl FsuccM:N alT Fif0 M then Ny else Ny: A

all,z:A+M:B alTHFM:A— B dalTEFN:A
all+-X.M:A—B all' WMN:B

a€ha da|ITFM:B all+M:[A alT F N:[4]
alTkFa:[A"" 2) ~ — .
alT FvaM:B alTF[M=N]:N

GIT F M:[A GITHFM:[A] GITFN:A
all+-!M:A all'-M:=N:1

Figure 4.1: The vp-calculus: typing rules.

have their values stored. Formally, we define store environments .S to be lists of the form:
Su=c¢€la,S|a=V,S. (4.1)

Observe that the store may include names that have been created but remain as yet unas-
signed a value. For each store environment .S we define its domain to be the name-list given

by:
dom(e) = ¢, dom(a,S) = a,dom(S), dom(a::V,S) £ a,dom(S). 4.2)

We only consider environments whose domains are lists of distinct names. We write S Fr 4
M, or simply S = M, only if dom(S) | T' = M : Aisvalid (i.e. derivable).

Definition 4.2 The operational semantics is given in terms of a small-step reduction rela-
tion, the rules of which are given in figure Evaluation contexts E are of the forms:

(M.N)_, _N, fst_,snd_, (_,N), (V,_), if0 _ then N; else Ny,

pred_,succ_, [=N|,[a=_],!-, - :=N,a:=_.
A

We can see that 1p is not strongly normalising with the following example. Recall the stan-
dard CBV encoding of sequencing:

M:N 2 (\z.N)M (4.3)
with z ¢ £v(N).
Example 4.3 For each type 4, take
stop, = vb.(b:= \v.(!b)skip);(!b)skip
with b € A;_, 4. We can see that stop, diverges, since:

E stop, — b: Ax.(lb)skip F (1b)skip
— b Azx.(1b)skip E (Az.(!1b)skip)skip
— b Ax.(Ib)skip F (Ib)skip.

78 CHAPTER 4. NOMINAL REFERENCES

NEW ats suc
SkEFvaM — S,akF M S F succn — S E n+l
E n=0if a=b PRD
QSI=[a:b]—>Si=n":11f‘l7éb S Fpred0 — S F O
IFO g=1ifn=0" ppp
S k ifOn then N; else Ny — S F N; j=2ifn>0 Sk pred(nt+l) — S En

urp S,a(: W), 8" Fa:=V — Sa:V,S F skip BT g Ffst(V,W) — S EV

PR S,a:V,8 Fla — Sa:V,8 EV SNDSI=snd<V,VV> — S EW

LAM ooy SEM — S"EM
Sk AM)V — S F M{V/z} S FE[M] — S F E[M]

Figure 4.2: The vp-calculus: reduction rules.

Moreover, taking a € A4 we have
Evala — aFEla

and no further reductions are possible. In section 3.8 we will show that va.!a and stop,
are observationally equivalent (definition E7). Note, though, that the two terms correspond
to different kinds of divergence, which are indistinguishable in vp: while va.!a stands for
deadlock, stop 4, stands for livelock.]

The great expressive power of general references is seen in the fact that we can encode the
Y combinator. The following example is adapted from [AHM9§].

Example 4.4 Taking a € As_, 4, define:
Y4 & Mfva.(a:=Xe.f(la)z);'a.

Y4 has type (A — A) - A — A) — A — Aand, for any relevant term M and value V, we
have:

E Ay My)XYa(Ay-My))V — a:de.(Ay.My)(la)x E Ay My)(la)V,

EYa(AyMy))V — a:de.Ay.My)(la)z E (la)V
— a = Ax.(dy.My)(la)x B (Az.(Ay.-My)(la)z)V
— azAx.(Ay.My)(la)r E (A\y.My)('a)V. .

Contexts in vp are generally more complicated than the evaluation contexts in the previous
definition. Intuitively, contexts are “terms with a (single) hole”, yet this clause leaves many
details implicit. In particular, contexts transform not only the syntax of the term, but also its
typing environment. We formalise this by use of typed contexts.

Definition 4.5 (Contexts) vp-contexts are defined as follows.

CT5Cu= _ [A.C|CN|MC|[C=N]|[M=C]|[C:=N|M:=C|!C
| if0 C then N; else Ny | if0 M then C else No | if0 M then Nj else C
| (C,N) | {(M,C)|£fstC|sndC |predC |succC|ra.C

4.1. THE vp-CALCULUS

79

A basic context is a context which does not contain a subcontext of the form va.C.

Context types are of the form (@,I", A) —

ments and A, A’ € TY. Typing rules for

aca’
ATCIY

(@, T, A) — (@, T, A)

adlT"+FM:N

C:(aT,A)— (@,1,B)

(@', 1", A"), where @|I',a' |T" are typing environ-
contexts follow those for terms:

C:(ar,A)— (a,T",N) @ |+ Ni,Ny: B
if0 C then N; else Ny : (@,I', A) — (@',1", B)

C_I:"F/'_NQZB

if0 M then C else Ns : (a,I', A) — (a',T", B)

C:(aTI,A)— (@,1",BxC)
fstC: (a,T,A) — (@,T',B)

C:(ar,A)— (a,1,N)
predC: (a,T',A) — (@' ,T",N)

C:(ar,A) — (@, T"w{z:B},C)

C:(a,r,A)— (a,1",B) all'+-N:C
(C,N) :(a,T,A) — (@, T",B xC)

C:(ar,A)w— (a@,1',B—C) alT"+N:B
CN:(a, A~ (a,1",0)

@1T"+M:B—~C C:(@rI,A) — (@.,1,B)

Az.C: (a,T,A) — (@, T",B—C)

C:(a,T,A) — (@a,1I',B)
va.C: (a,I',A) — (a1, B)

C:(a,r,A)— (@, 1",[B])
'C: (a,T,A) — (@,T',B)

(plus omitted counterparts).

MC:(arI,A)w— (@,1,0)

C:(GT,A)— (@ 1,[B) &@I|T'FN:|[B
[C=N]:(@Gr,A) — (@,I',N)

C:(a,r,A) — (a,1",[B]) all'+-N:B
C:=N:(arT,A)— (@, 1,1)

A

Holes in contexts are denoted by “_.” (elsewhere, they are usually denoted by “[_]”). In a
context of type (a,I', A) — (a’,I", A’) the type of its hole is (,I', A), and (a’,I", A’) is the
resulting type. The first typing rule above states that if _ has type (a,I', A) then the type
of the context _ may have more names or more variables. This allows us to consider typed
terms @ | I' = M : A in all compatible contexts. Finally, note that contexts are not equated
up to a-equivalence.

We now proceed to context-instantiations. Note below that by M+(@\@ we mean the
typedterma’ | T' = M : A.

Definition 4.6 If I - M : Aatyped termand C : (@,I', A) — (a’,I', A’) then we define
the instantiation C[M] by induction as follows.

LM & MHED
(va.C)[M] £ va.C[M]
(CN)[M] & C[M]N
(Az.C)[M] £ \z.C[M]

A

The type of observables can be any base type; here we take it to be N, as the latter is present
in all the languages we examine. Around observable terms we build the notion of obser-
vational equivalence: two terms are equivalent if, whenever they are put inside a variable-
and name-closing context of resulting type N, usually called a program context, they reduce
to the same observable term.

Definition 4.7 For typed termsd | T' =M : Aand @ | I' = N : A, define
dlTFMZN < VC.(35. FCM] — S F0) = (39". FC[N] — S" F0)

where C : (@,T, A) — (¢, @,N). Moreover, & £ $N . A

80 CHAPTER 4. NOMINAL REFERENCES

Usually we omit @ and I" and write simply M < N.

Let us examine some examples in observational equivalence which are suggestive of the
expressivity of the vp-calculus. Let us introduce the following abbreviation which compares
two terms of type N as booleans. For any pair of terms M, N : N take

[M < N] £ if0 M then N else (ifO N then 1 else0).

Then, taking
M; 2 \f.0: (1] - N) =N
My 2 Nf.vavb.[fa < fb]: ([1] = N) - N
M3z = Mf.va.[fa < fa]: ([1] - N) =N (4.4)
My 2 Nf.stop: (1 —1) —1
Ms 2 \f. fskip;stop: (1 — 1) —1

we have the following equivalences and inequivalences.

My 2 M, 4.5)
My % M3 (4.6)
My = Msy (4.7)

#D) will be established by semantical means is section E3.8 For @3) we can use a con-
text that is sensitive to the fact that f has been applied to an argument. This can be easily
achieved by supplying an f that updates the store, as e.g. in

C £ vee:=2;_(\r.c:=pred!c;lc).

However, the intention behind the comparison of the two terms was to establish whether f
could distinguish between the two fresh names, or it would return the same result in both
cases; in this sense, the choice of M, is not adequate in a calculus with side-effects. More to
the point is the comparison between M5 an M3. It turns out that vp can distinguish between
them, e.g. by taking

C 2 vevde:=d;_(\r.if0 [z =!c] then0 elsec:=z;1)

where ¢ € Ajjjand d € A;. We can see that the context can remember the fresh name a after
the first time it encounters it, so in particular it can distinguish it from the fresh b.
Regarding the comparison to the sv-calculus, we note that both @3) and @.8) are equiv-
alences in sv (and @2 is irrelevant because of termination). The former can be shown
using logical relations [Sta94, Chapter 4 while the latter is established for the ve-calculus

in section 5.2.8

4.2 Semantics

We now examine sufficient conditions for a fully abstract semantics of vp in an abstract cat-
egorical setting. Our aim is to construct fully abstract models in an appropriate categorical
setting, pinpointing the parts of structure needed for such a task. In section .3 we will
apply this knowledge in constructing a concrete such model in nominal games.

Translating each term M into an object [M] and assuming a preorder “<” in the seman-
tics, full-abstraction amounts to the assertion:

MZIN < [M] S [N]. (FA)

Notice that this formulation does not coincide with the full-abstraction specification given
previously in the introduction, i.e. with

M=N < [M]=][N]. (4.8)

2Note that My = M5 is not the “hard” equivalence proven in [Stad4) BKOS]: Af.0 = va.vb.Af.[fa < fb].

4.2. SEMANTICS 81

Nevertheless, once we achieve (FA) we can construct an extensional model, via a quotient-
ing construction, for which @3J) holds. Being a quotiented structure, the extensional model
does not have an explicit, simple description, and for this reason we prefer working with
the intensional model (i.e. the unquotiented one). Of course, an intensional model satisfy-
ing &) would be preferred but this cannot be achieved in our nominal games. Therefore,
our categorical models will be guided by the (FA) formulation.

4.2.1 Soundness

We proceed to present categorical models for the vp-calculus. The approach we take is
monadic and comonadic, over a computational monad 7" and a family of local-state comon-
ads Q = (Q%gep#, so that the morphism related to each @ | ' = M : A is of the form
[M] : QF[I'] —> T[A]. Computation in vp is store-update and fresh-name creation, so 7" is
a store monad, while (initial) local state is given by product comonads.

Definition 4.8 A vp-model M is a structure (M, T, Q) such that:

I. M is a category with finite products, with 1 being the terminal object and A x B the
product of A and B.

II. T isastrong monad (T, n, u, 7) with exponentials.

ITI. M contains a natural numbers object N equipped with successor/predecessor arrows
and n : 1 — N, each n € N. Moreover, for each object A, there is an appropriate arrow
for zero-equality tests cndg : N x TA x TA—TA.

IV. Q is a family of product comonads (Q%, ¢, d, {)zea# on M such that:

(a) the basis of Q¢ is 1, and Q% = Q% whenever [a] = [@],

: Q% — Q7 such that

oo

(b) if @ C d then there exists a comonad morphism
= id and, whenever d’ C @’ C d,

= =c
a’ ’
a
a

a da
=0 o
a//

/!
U

SR

a

(c) foreach d@a € A¥ there exists a natural transformation nu® : Q% —s T'Q% which is
strength-coherent and, for each A € Ob(M) and d@a C @’a, the following diagrams

commute.
. id,nu N . q, nudla q,
QGA#)QGAXTQMA QaA—A>TQaaA (N2)
4 e
TQ¥ A ———=T(Q%A x Q™A) QA ——— TQ%"A
T(F 1d) nuj’

V. Setting Ay £ (1, foreacha € Ay, thereisa name-equality arrow eq, : Ay xAqg —> N
in M such that, for any distinct a, b € A 4, the following diagram commutes.

ab ab
Q1 —2 s Ay x Ay <210 ety (N1)
ll/ le% l'

1 N 1

82 CHAPTER 4. NOMINAL REFERENCES

VL Setting [1] 2 1, [N] 2 N, [[A]] £ A4, [A— B] 2 T[B]], [A x B] 2 [A] x[B],
M contains, for each A € TY, arrows
drfy : As —T[A] and wupd,:As x [A] —T1
such that the following diagrams commute,

(id,upd 4) ;75 T(miidrta)ip
Ap x [A] ——2"—=T (A x [A]) T _=T[A4]

-_ =
Two
(idx71;upd 4 ,idX T25upd 4) l’g\
A x [A] x [A] TIxT1__ > T1 (NR)
ab ab P
(7 X713upd 4,7~ Xw2iupdg)
Q1 x [A] x [B] 20 STIxTI___ =TI
U
and, moreover,
(nu" X updp) ;¢ = (nu’ x updp) ;¢ (SNR)
i.e. updates and fresh names are independent effects. A

Strength-coherence for nu means that, for any pair of objects A, B, the following diagram
commutes (note that we systematically avoid writing superscripts of nu).

Ax QIB——— = Qi(Ax B)

ianuBl/ lnquB

AxTQ™B TQ™(A x B)

T;T¢
The above essentially states that, for each object A, nus can be expressed as:
QA= Q71 x A2 XL TRl x A TS T(Q%1 x A) > TQ™A

It is evident that the role reserved for nu in our semantics is fresh-name creation. Accordingly,
nu gives rise to a categorical name-abstraction operation: for any arrow f : Q%A — TBin
M, we define

@f 2 QiA-=a, pgiag g LR (4.9)

The (NR) diagrams give the basic equations for dereferencings and updates (cf. condi-
tions on categorical models of Reduced ML [Sta94, section 5.8] and commutative diagrams
of [[PP02, definition 1]). The first diagram stipulates that by dereferencing an updated refer-
ence we get the value of the update. The second diagram ensures that the value of a refer-
ence is that of the last update: doing two consecutive updates to the same reference is the
same as doing only the last one. The last diagram states that updates of distinct references
are independent effects.
Let us now proceed with the semantics of vp in vp-models.

Definition 4.9 Let (M, T, Q) be a vp-model. Recall the type translation:
[£] 21, [N 2N, [A4]] 2 Ax, [A—B] 2 T[B]M], [AxB] 2 [A] x[B].
Atypedtermisd | ' = M : A translated to an arrow
[M] 1 : QIT] — T(A]

in M, which we write simply as [M] : QT — T'A4, as in figure L3 A

4.2. SEMANTICS

83

[n] 3Q5F—Q'1!—>Q61—%—>1i>NL)TN
[«] :Q(iFQ—aw>QaA—%—>AL>TA

ay

[[a]] 5Q5F_Q—>Q61—%—>AAL)TAA

[M] : QYT x A) — TB

a AT [M])
Qar\ TBA

o= = n
DM~ ~ N \L
T(TB4)

[M] : QT — TN
. M
Qar = lI]] TN

- T'succ
[succ MT ~ _ l
TN

[M] : QT — TA

) : @7 20, 7

[M] : QT — T(TB*)
[N]: QT —TA

. M],[N
QGF%T(TBA) « TA
N
h N P
N
S T((TB4) x A)
/ A TevT
[MN] N
S, T°B
N
N 1
A
TB

[[]\/[]] :QEF_>TAA
|IN]] :QEF_)TAA

oir —BND

~ lw
T(AA X AA)

N lTeq
N

TN

[M] :Qal—‘—)TAA

G [M]
QT ——————=Thy

h \LTdrf A

T?A

[M] : QT — T(A x B)

Qr — -~ 7(4x B)

Dy - Tmy
[£st M)~ ~ _
N
TA

[[]\/[]] : QEF _>TAA
[N]: QT —TA

. M],[N
Q“FM>TAA><TA

N "
A T(As x A)
Tupd 4
h N T2
AN 1

T1

[M] : Q°T — TN
[N;] : QT —TA

[M]: QT —TA
[N]: QT —TB

. M],[N
QaFwTAxTB

[MNT ~ o l‘”
T(Ax B)

L (M, [N.D N2
QT TN x T A

N -

N
N
N T(h\l X TAQ)
AN
AN
[if0 M then N; else No] N . Tcnda
N 2

N T=A
AN
N 12
§
TA

Figure 4.3: The semantic translation of vp.

84 CHAPTER 4. NOMINAL REFERENCES

Note that the translation of values follows a common pattern: forany a | I' = V : A we have
[Vl =|V|;n, where

ooy

|z| & QﬁrﬁL QTA—> A n| 2 QT -, Qi1 1 i,

a

la] & QT AR Q% % Ay |skip|

. T
aM| & Qip A LMD,

(1>

0T -2, 971 1 (4.10)
Qir VLD,

Some first lemmas we can show are the following. The proofs are not difficult, and are
deferred to the appendix.

>

TBA [(V,W)] AxB.

Lemma 4.10 Foranyda |T' = M : Aand @ C @,

/

Qllax

[M]ar TA

[M]ar = QFT —— QT
Moreover, if T' = x1: By, ...,xn:Bpand @ | T - M : A and @ | T+ V; : B, are derivable, then

<id,|V1‘ 7|V ‘ Qar 1—1 Z Q 2 QaF HMH TA

[M{V/#}] = QT

Lemma 4.11 For any relevant f, g,

da
a

(@ <QEGA VF59, 7B TC -4 T(B x C)) Qia@L9 e Y T(B % C),

(@ (QEGA S Lo, 01 TC) — QA 2L, 7 T, 0 s TC
| |

Lemma4.12 Letd IT = M : Aand @ | T F E[M] : B be derivable, with E being an evaluation
context. Then [E[M]] is equal to:

(4, [M]) T[E]

Qi M, 0ap « TA T T(QT x A) 5 TQUT x A) 2L, 25, .

[
We write S = M —— S’ E M’ withr € {LAM,NEW,IFO,...PRD,UPD,DRF} if the last non-
CTX rule in the related derivation is r. Also, to any store S, we relate a term S of type 1 by
setting:

A

skip, a,S =S5, axV,S £ (a:=V;9).

€
We can show the following.
Proposition 4.13 (Correctness) For any typedterm a | T' = M : A, and S with dom(S) = a, and
r as above,
1. ifr ¢ {NEW,UPD,DRF}then S F M —— S F M' = [M]=[M'],
2. ifr € {UPD,DRF} then S M — S'F M' = [S;M]=1[5";M"],

3.6 by NEW

Sia bk M — [§:M]=@][S:M].
Therefore, S = M — S E M' = [S;M] = @)[S"; M'], with dom(S") = aa’.

Proof: The last assertion follows easily from 1-3. For 1-3 we do induction on the size of the
reduction’s derivation. The base case follows from the specifications of definition .8 and

4.2. SEMANTICS 85

the penultimate lemma. For the inductive step we have that, for any S, M, E, the following
diagram commutes.

N ;T o T{i4,[M]);TT N T4 ; [Elz
QT x T1 © L poap T8I o gap 4) DD

(i4,[5; M) lu MQM
o T(¢'; [El«]])

QT x TA———T(QT x A) ————=1T12B

AT(C';HE[IM lT(AT@';nE[meid) lu

Tev® ;pn

= (14,[S])
—_—>

QT

(AT (5 [El=]]) ;.18 s M]) 5 ¢

By the previous lemma, the upper path is equal to (id, [S]);7;7 {’; T[E[M]] ; # and there-
fore to [S; E[M]]. Hence, we can immediately show the inductive steps of 1-2. For 3, as-
suming S F E[M] Y S o F E[M'] and [S; M] = () [S; M'], we have, using also
lemmasET0and EETT]

[]]) s [Ss MT) 9" s Tev™ s)

[2]]) s, [M) s ¢") s Tev™ s

)im, ay [Ss M) 54" s Tev” s

)i, [S5 M]) ;¢ s Tev™ s =[S E[M]] .

Our next target is to show soundness of the translation. Having proved correctness we only
need computational adequacy, which we add explicitly as a specification to our models.

Definition 4.14 Let M be a vp-model and [_] the respective translation of vp. M is ade-
quate if, for any typed termd | @ - M :N,

38,6 [M] = ®[S;0] = 38 G F M — S FO.

Assume now our running M is an adequate vp-model.

Proposition 4.15 (Equational Soundness) Fortermsa |T' = M, N : A,
[M]=[N] = MZN.

Proof: Assume [M] = [N] and = C[M] — S’ F 0. Then, by correctness, [C[M]] =
@y [S’;0], where @ = dom(S’). But [M] = [N] implies [C[M]] = [C[N]]. Hence, by
adequacy, there exists S” such that = C[N] — 5" F 0. n

4.2.2 Completeness

The semantics needs to be equipped with a preorder to match the observational approxi-
mation preorder as in (EA). The chosen preorder is the intrinsic preorder with regard to
some collection of observable arrows in the biKleisli monadic-comonadic setting (cf. defini-
tion Z34). In particular, since we have a collection of monad-comonad pairs, we also need
a collection of sets of observable arrows. Note that the observability conditions stipulated
below are quite syntactic.

Definition 4.16 An adequate vp-model M = (M, T, Q) is observational if, for all a:
e there exists O C M(Q%1,TN) such that, forall@ | @ - M:N,

[M]€O% «— 35,b.[M] = & [S:0],

86 CHAPTER 4. NOMINAL REFERENCES

e the induced intrinsic preorder < £ (<%)gca#, defined on arrows in M(Q%A, T B) by

J57g € p: QUTBA) —TN.(A%(f);p € OF = A(g);p € O,
with A%(f) £ AQE7T(f), satisfies, for all relevant a, d’, f, f/,
[= @fsf@f N FSTf = T ST LS
We write M as (M, T,Q,0). R

Recurring to our definition of AQ™T from chapter D], we have that A%(f) is the arrow:

. R AT (¢ .
Q1 - QAT L), oirp Ay, (4.11)
Hence, O contains those arrows that have a specific observable behaviour in the model, and
the semantic preorder is built around this notion. In particular, terms that yield 0 have
observable behaviour.

In order to make good use of the semantic preorder we need it to be a congruence with

regard to the semantic translation. This is formalised as follows.

Definition 4.17 Let M be a vp-model and let [_] be its semantic translation. For any @, a
preorder
RiC |J M(QATB)
A,BEObB(M)

is called a congruence if, for all basic contexts C : (@,I',A) — (@,I',A’) and all terms
@lT - MN: A,

[M] B* [N] = [C[M]] R* [C[N]] -
A family R = (R%) ;5% of congruences is itself a congruence if, forall terms @ | I' = M, N : A
and all contexts C: (a,T', A) — (@', T, A),

[M] BT [N] = [C[M]] R¥ [C[N]] . N

Observing how the semantic interpretation is constructed, we can derive a set of sufficient
conditions for congruences.

Lemma 4.18 Let M be a vp-model and let RI°C |, 5 M(Q7A, T B)? be a preorder, for some a. If,
for all relevant f, f’ and h, whenever f R® f' holds then the following diagrams hold,

g Qdﬂ‘l — — AT(,; /)
QA x1) QA QA TB¢
Q%l RE lf’ AT f)l R% l"

Q%A —— 1B TBC T(TB)

~ ! ~ A ~ .
QA TB QA Q%A x Q%A
fl Rfi lTh;,u Al Rd lf’xid;‘r/
TB——F—=TC QA X QIA ———>T(B x Q7A)

then R% is a congruence.
Moreover, a family R = (R®)zca# 0f congruences is a congruence if, for all relevant f, f'.d, a,d’,

FRUOf = @fR@f AN fRIf = T,fRY T.f.

Proof: We first note that the diagrams imply that if f R? f’ and g R? ¢’ then:

4.2. SEMANTICS 87

o [in=(AAT(;Q%; f);n) x id; 7 T(iax!sev™sm) ;) R (f'5m).
fih=(f;n;Th;p) RT (f';h).

(f,9):0 = (A; fxid; 75T (id x g57) ;1) R ((f',9) 5 9).

(f'9) 50 = (A9 xid; 7 T(Ad x f); T Tma, m) s 1) BT ((f9')59).
(f,9);7=(F3m9):0) BT ((f',9) ;7).

o (f.9);7 = ((frg:m);0) RY ((f',g'); 7).

It then follows that % is a congruence, by induction on contexts. Finally, in order to show
that R is a congruence it suffices to show that forall@ | I' = M, N : A, [M] R® [N] implies:

o [M]ar R? [N]ar, forany @ C @,
e [va.M] R% [va.N], whenever @ = @ a.

But, using also lemma ELT0, we see that these conditions precisely correspond to the condi-
tions for congruences. n

It is now straightforward to show that the semantic preorder is a congruence.

Corollary 4.19 Let (M, T, Q% O) be an observational vp-model. Then, (S%)zea# is a congruence.

~

Proof: We need only show the four diagrams of the previous lemma, and these are easily ob-
tained from the enrichment properties of the semantic preorder, proven in proposition 2353
For example, for the first diagram and for general h : A’ — A, we have:

Qi f=0:Q%;Q; Q% ;T fn
which falls within the first claim of that proposition. u

Assume now that we translate vp in an observational vp-model. Then, one direction of (FA)
follows immediately form the definition.

Lemma 4.20 (Inequational Soundness) Forterms @ | T' = M, N : A,
[M] S [N] = MSN.

Proof: Assume [M] <% [N] and F C[M] — S k 0, so [C[M]] = @)[S’;0] with
a = dom(S"). [M] < [N] implies [C[M]] < [C[N]], and hence [C[N]] € O¢. Thus, by
observationality and adequacy, there exists S” such that = C[N] —» S” k0. n

In order to achieve completeness, and hence full-abstraction, we need our semantic transla-
tion to satisfy some definability requirement with regard to the intrinsic preorder.

Definition 4.21 Let (M, T, Q, O) be an observational vp-model and let [_] be the semantic
translation of vp to M. M satisfies ip-definability if, for all @, A, B, there exists D 5 C
M(Q[A], T[B]) such that:

e foreach f € D} p there exists term M such that [M] = f,
e foreach f,g € M(Q?[A],T[B]),

fSPg <= Vpe DY _pn-(A(f);p€ 0F = A%g);p e O%).

We write M as (M, T,Q,0,D). A

88 CHAPTER 4. NOMINAL REFERENCES

For such a model M we achieve full abstraction.

Proposition 4.22 (FA) Fortermsa |T' = M, N : A,
[M] S[N] < MZN.

Proof: Soundness is by previous lemma. For completeness (<=), we do induction on the
size of I.

For the base case suppose @ | @ = M < N and takeany p € D 1,4 n such that A%([M]);p €
O%. Let p=[dly:1— AL L:NJ,someL,so A%([M]);p is

AT(IMT)[Z] = 8 Q7Ir=.M]; [L] = [(w.L) (A= M)]

for some z:1. The latter being in o? implies that it equals <(l;> [S;0], some S. Now, M <N
implies (A\y.L)(Az.M) < (A\y.L)(Az.N), hence vb.(5;0) < (Ay.L)(Az.N) , by soundness. But
this implies that @ = (A\y.L)(Az.N) — S’ F 0, s0 [(A\y.L)(A2.N)] € O%, by correctness.
Hence, A%([N]);p € 0%, so [M] <@ [N], by ip-definability.

For the inductive step, if I' = 2: B, " then

GITFMIN = @l FA M S N 22 a.M] <7 [\z.N]

(*)
— [M] = [M)a] $° [(heN)a] = [N]

where (x) follows from corollary EET9 |

4.3 The nominal games model

We embark on the adventure of modelling vp in a category of nominal arenas and strategies.
Our starting point is the category V, of nominal arenas and total strategies (definition B.5T).
Recall that V, is constructed within the category Nom of nominal sets so, for each type A4,
we have an arena A 4 for references to type A. Explicitly, A4 is the flat arena A®, witha € A4,
defined in @GI).

The semantics is monadic in a store monad built around a store arena &, and comonadic
in an initial state comonad. The store monad is defined on top of the lifting monad (see
definition B.68) by use of the side-effect constructor described in section that is,

TA2 (A28, (ie.TA=E¢=ARY).

Now, ¢ contains the values assigned to each name (reference), and thus it is of the form

® oy (h = [4]

where [A] is the translation of each type A. Thus, a recursive definition of the type-translation
is not possible because of the following cyclicity.

[4— B] = [4] = (¢ = [B] @)
6= (ha=[4])

Rather, both £ and the type-translation have to be computed as the least solution to the above
domain equation. By the way, observe that [A — B] = [A] ® { = [B] ®¢.

(SE)

4.3.1 Solving the Store Equation
The full form of the store equation (GE) is the following.
[1)=1, [N[=N, [lA]=244, [AxB]=[A]e[B],

[A— Bl =[A] = (= [B] @), §=Qaha=[A]).

4.3. THE NOMINAL GAMES MODEL 89

This can be solved either as a fixpoint equation in the cpo of nominal arenas or as a domain
equation in the PreCpo-enriched category V,. We follow the latter approach, which provides
the most general notion of canonical solution (and which incorporates the solution in the cpo
of nominal arenas, analogously to [McCO00Q]). It uses the categorical constructions of [SP82,
Fre90] for solving recursive domain equations, as adapted to games in [McCOQ].

Definition 4.23 Define the category

C 2V x H V,
A€ETY

with objects D of the form (D¢, D4 A€TY) and arrows f of the form (f¢, fa 4€TY).
Now take F' : C°? x C — C to be defined on objects by:

F(D,E) £ (¢p.5, [Alp g *€™),
where
15 5 21 [Ax B]p g = [Alp s @[Blp ks Al p & 2 Aa
[Nlpg =N| [A—=Blpp 2 Da—=(ep=>Es®&r)| épr 2 Qscry(ha= Ea)
and similarly for arrows, with F(f,g) 2 (&5,4,[A];, ™). A

Now (BB) has been reduced to:
D = F(D, D) (SE*)

where F is a locally continuous functor wrt the strategy ordering (proposition B.65), and
continuous wrt the arena ordering (proposition B.67). The solution to GE7) is given via a
local bilimit construction to the following w-chain in C A

Definition 4.24 In C form the sequence (D;);c., taking Dy as below and D;;1 £ F(D;, Dy).

Do1 £ 1 Doy £ N Do ja] £ Aa

&) (a4 =0)

lI>

Doap =1 Do axp = Doa® Do.p Do
Moreover, define arrows e; : D; —> D;1 and e® : D,y — D; by:

A R A : A R R 2 R
eo = inclpy,,p,, €y = PTO])p,,Dy > Cit1 = F(ei 1€ s €ir1 = F(eivei)-

The above inclusion and projection arrows are defined componentwise. In fact, there is a
hidden lemma in the definition which allows us to define the projection arrow, namely that
Dy <1 Dy (which means Dy ¢ <y Dy ¢ and Dy 4 <1 Dy 4 for all A).

Thus, we have formed the w-chain A:

€o €1 €2 €3

Dy D,

D Ds (A)
We now show that A is a J-increasing sequence of objects and embeddings, and proceed to

the main result.

3Recall that we call an arrow e : A —> B an embedding if there exists efl . B— Asuch that

e;eR:idA A eR;eE idp .
Given an w-chain A = (D, e;)ie. of objects and embeddings, a cone for A is an object D together with a family
(n: : Di — D)jc., of embeddings such that, for all ¢ € w, n; = e; ;ni+1. Such a cone is a local bilimit for A if,
foralli € w,

nfim Coflyinigr A |_|Z.€w(mR§m) =idp.

90 CHAPTER 4. NOMINAL REFERENCES

Lemma 4.25 For (e;, e?);c,, as above and any i € w,
. — incl A el = i
€; = 1nc D;,D;41 61 = prOJDi+17Di .

Proof: Doing induction on ¢ we can show that D; <; D;14, all i € w, and that the above
equalities hold. The base case is true by definition; the inductive step follows from proposi-
tion]

Theorem 4.26 We obtain a local bilimit (D*,n; <) for A by taking:
D* £ |_|.Di; i = inclp, p= (each i € w).

Hence, idp+ : F(D*, D*) — D* is a minimal invariant for F.

Proof: First, note that Dy <; D;, for all i € w, implies that all D;’s share the same initial
moves, and hence D; <I; D*. Thus, for each i € w, we can define n/* £ proj D*.D; 7 and
hence each 7; is an embedding. We now need to show the following.

1. (D*,n; *¢¥) is a cone for A,
2. foralli € w, nffim C 0l i1,
3. Liew(nftsm:) = idp-.

For 1, we nts that, for any i, inclp, p~ = inclp, p,,,;inclp,,, p~, which follows from
(TRN). For 2 we essentially nts that idp, C idp and for 3 that | J, idp, = idp- ; these are
both straightforward.

From the local bilimit (D*, 7; ““) we obtain a minimal invariant « : F(D*, D*) — D* by
taking (see e.g. [Abr(07]):

i+17

N s p Ry . prop-B8A incl
w2 Lo o ® Faon® me " pros, o inclo, o

Moreover, D* = F(D*, D*) by the Tarski-Knaster theorem, and therefore o; = nﬁrl i1,
which implies o = idp-.]

Thus, D* is the canonical solution to D = F(D, D), and in particular it solves:

Dyp =Dy (D¢= Dp ® D¢)
Dg = ®A(AA = DA).

Definition 4.27 (¢, ® and [A]) Let D* be as in the previous theorem. Define the store arena
& and, for each type A, the translation [A] of A by:

¢ £ Dg, [A] = Dj. .

The arena ¢ and the translation of compound types are given explicitly in the following
figure. ¢ is depicted by means of unfolding it to & ,(A4 = [A]): it consists of an initial
move ® which justifies each name-question a € Ay, all types A, with the answer to the
latter being the denotation of A (and modelling the stored value of a). Note that we reserve
the symbol “®” for the initial move of £&. ®-moves in type-translations can be seen as opening
a new store.

4.3. THE NOMINAL GAMES MODEL 91

13 [A x B] [A — B]
® PA (ifay,ify) PA * PA
41> *[B] PR

a 0Q (ipay, ®) 0Q

(a € Aa)
\ ’ (if], ®) P4

\ \ 4
[Al"\ /18]

[B]

Figure 4.4: The store arena ¢ and the translation of vp-types.

4.3.2 The store monad T

In section 233 we described the general construction of a monad of ¢'-side-effects starting
from a given monad 7”. Applying the construction to the lifting monad and the store arena
&, as below, we obtain a store monad (T, 1, j1,7) on V..

T:C—C 2= (L®E)

CA—> L AN
ma:A—sTA A(A®€ (A®£)L) (4.12)
pa i TPA—TA 2 A(T2A@ =5 (TAQ D)L = (A0)11 2> (A0 ¢).)

Tap AOTB—T(A9B) 2 A (Ao TBo¢ 2% As (Bog) (A Bag))

A concrete description of the store monad is given in figure The diagram of T'A gives a
depiction of the arena as a levelled tree. On the other hand, the diagrams of strategies depict
their viewfunctions, as described in section For the particular case of ®-moves which
appear as second moves in T'A’s, let us recall the convention we are following. Looking
at the diagram for T'A (figure E5), we see that @ justifies a copy of £~ (left) and a copy of
A ® & (right). Thus, a copycat link connecting to the lower-left of a ® expresses a copycat
concerning the £~ justified by ® (e.g. the link between the first two ®-moves in the diagram
for 114), and similarly for copycat links connecting to the lower-right of a ®. Thus, for
example, ;14 is given by:

pa =strat({ [x**® ®s] | [® ® s] € viewf(ide) }
U{[x*®® (x,®) ® s] | [® & s] € viewf(ide) V [s] € viewf(idage) }).

By proposition 23, and because lifting is a strong monad with exponentials (proposi-
tionB.A9), T is a strong monad with exponentials. Moreover, for each arena A we can define
an arrow

aq 2 A A (pay, BiraL g (4.13)

The transformation pu was introduced in section B4l From that section, recall also the fact
that, for any pointed B, pu,_, 5 is A(st’;ev, ;pup), and thus, taking also into account that
pug, = dnc,

pups = A((TA)L 0625 (TA0E), b (Ang) L - (408,). @19

By proposition ZZ3 we then have that « : (_); — 7' is a monad morphism, and that

aa = A(stl). (4.15)

92 CHAPTER 4. NOMINAL REFERENCES

TA
* PA HA T2A——=TA

— * 0Q
® oe o PA
(ia,®) PA ® 0Q
® PQ
(*, ®) 0A

—
® PQ

na—

* oQ

* PA)
/ ® 00 B AQTE—=T(A® B)
® PQ (ia,%) oQ
— E PA
(14, ®) 0A ® oQ
i
(ip,®) 0A
NA:A—>TA ‘ (ia,iB,®) PA
|
A oQ # f
¥ PA
® 0Q
(ia,®) PA
— |

Figure 4.5: The store monad (7', n, u, 7) for vp.

4.3.3 Obtaining the vp-model

Let us recapitulate the structure we have constructed thus far to the effect of obtaining a
vp-model in V,. Our numbering below follows that of definition &8

L.V, is a category with finite products (proposition B57).
II. The store monad 7' is a strong monad with exponentials.
III. V, contains adequate structure for numerals.

IV. There is a family (Q%¢,,{)zca# of product comonads, with each Q% having basis A%
(see section B42), which fulfills specifications (a,b). There are also fresh-name construc-
tors,

newfia . in_) (Qda)L ,

given in section B.A3, which satisfy (N2).

V. There are name-equality arrows, eq, for each type A, making the (N1) diagram com-
mute (section B.Z2).

From new we can obtain a fresh-name transformation for the store monad.
Definition 4.28 For each da € A#, define a natural transformation nu® : Q% — TQ% by:

e £ QAL (QAad), —AL QA

4.3. THE NOMINAL GAMES MODEL 93

Moreover, for each f : Q%A — T'B take

@f 2 Qiaa, pQieg g 1o, TR
Note that, for each f : Q%A —TB,

(=)
@ f=nua;Tf;up =newa;agaan;Tf;up =newa;fL;arp;up = newa; f1;purp

where (x) is a consequence of T4 ETH) and the definition of p. Hence, our definition of
name-abstraction here coincides with that of section B4.3 (definition B.77).

Moreover, noting that for each sequence of moves s and each a # nlist(s) we write s* for
s with a added in the head of all of its name lists, each arrow nu%* is explicitly given by:

nu’® = strat{[(@,is)* ® (da,ia, ®)*s"] | a#iaA([iaias] € viewf(ida)V[®@®s] € views(ide))}

and diagrammatically as follows.

nu : QIA———TQ™A
(5, iA) oQ
(_\j PA
® 0Q
- —
(C_iaa iA7 ®) PA
|

Figure 4.6: The fresh-name natural transformation for vp.

Using the fact that « is a monad morphism it is straightforward to obtain the following.

Proposition 4.29 The nu transformation satisfies the (N2) diagrams of definition |

What we are only missing for a vp-model is update and dereferencing maps. These are
specified as follows.

Definition 4.30 For any type A we define the following arrows in V,,

drf, 2 strat{[a * ®ai[[A]] (’L'[[A]],QB) S] | [@ ® S] S viewf(idg) V [’i[[A]] ’i[[A]] S] S viewf(id[[A]])},

upd, = strat({[(a,ifa)) *® (x,®)bbs] | [® ® bbs] € viewf(ide) Ab# a}
U {[(a, ’i[[A]]) * B (*, @) aiﬂA]] S] | [’i[[A]] ’i[[A]] S] S viewf(id[[A]])}) ,
depicted also in figure B2 A

These strategies work as follows. upd, responds with the answer (x,®) to the initial se-
quence (a,ifa7) * ® and then:

o for any name b # a that is asked by O to (*, ®) (which is a store-opening move), it copies
b under the store ® (opened by O) and establishes a copycat link between the two b’s;

e if O asks a to (x, ®), it answers i 4] and establishes a copycat link between the two i4;’s.

On the other hand, drf4 does not immediately answer to the initial sequence a * ® but
rather asks (the value of) a to ®. Upon receiving O’s answer i[4], it answers (if47, ®) and
establishes two copycat links.

We can show by direct computation that updates and dereferencings work as required,
i.e. make the (NR) diagrams commute. Moreover, these effects are independent from fresh-
name creation, i.e. the (SNR) equation holds.

94 CHAPTER 4. NOMINAL REFERENCES

upd, : Ag®[A] ——T1 drf,: Ay T[A]
(ayigap) 0Q a 0Q
* PA /* PA
- ® 0Q
® oQ {_ o
(x,®) ra N
000000 jp0o000000go000 60000000 ZIIA]] OA
b oQ t (ipag. ®) ra
b PQ I
a oQ
—
i[a] PA
J

Figure 4.7: Update and dereferencing arrows in V.

Proposition 4.31 The (NR) and (SNR) diagrams of definition L8 commute. Appendix®
We have therefore established the following.

Theorem 4.32 (V,, T, Q) is a vp-model.]

We close this section with some examples of translations of vp-terms in V, and a discussion
on how the store-effect is achieved in our innocent setting.

Example 4.33 Consider the typed terms:
el @ Fvaa:=(fst!la,sndla), bl@Fb:=Xx.(1b)skip, bl@F (1b)skip

with a € Ayxy and b € A;_, . Their translations in V, are as follows.

1——=T1 Aﬂ_—)B —T1 A]]_—)B —>T[[Bﬂ
* oQ b oQ b oQ
* PA > A >
- - I PA
® oQ oQ oQ
a PQ PA PQ
(n, OA eceeccoe OA
OQ
4 PQ “ PQ
PQ
(Z’ll)a oA e000ccccopoccccccose
OA
PA b oQ
) \—\ D /
XEXXEXX XXXl * PA A
7
0Q (*, @) 0Q
PQ b PQ
e00cc0cccoco0c0eccccccoce S
* OA
oQ —
(*, ®) PQ

—
(m1)* pa

From the latter two we can compute
[b:= Ax.(!b)skip;(!b)skip] = (id, [b:= Az.(1b)skip]);7;2; T[(!b)skip] ; u

as follows.

4.3. THE NOMINAL GAMES MODEL 95

T[(! b)skip] "

Miop —==Thy g T7B] T[B]
b
*
*
*
’
®
®
®
—
(b, ®)
(x, ®)
®
b
b
b \
N
*
*
*
/
(x, ®) /
®

(*,59)
b

!

b

We observe that the P-view of the interaction that each of the three component strategies
sees after the three b’s of the second dotted line is exactly the same as that seen after the
three b’s of the first dotted line. Hence, the part of the interaction between the two dotted
lines is repeated ad infinitum (infinite chattering). Thus,

[bl @ Fb:=Xx.(1b)skip;(!b)skip] = { [b * ®] }

and therefore
[stopg] : 1 —T[B] ={ [* * ®] }.
On the other hand, for a € Ap, [ra.!a] : 1 — T[B] is given as follows.
[va.la] = ayfa ! @ F la] = (apdrfp

= (@)(strat{ [a*x®aip (ip,®) s] | [(®,iB) (®,ip)s] € Viewf(id§®[[B]]) 1
= strat{ [k x®a"i}(ip, ®)"s"] | [(®,ip) (®,ip) s] € viewf(ideg[p)) }

96 CHAPTER 4. NOMINAL REFERENCES

Remark 4.34 (Innocent store) The approach to the modelling of store which we have pre-
sented differs fundamentally from previous such approaches in game semantics. Those
approaches, be they for basic or higher-order store [AM97, [AHMO8], are based on the fol-
lowing methodology. References are modelled by read/write product types, and fresh-
reference creation is modelled by a “cell” strategy which creates the fresh reference and im-
poses a good read /write discipline on it. In order for a cell to be able to return the last stored
value, innocence has to be broken since each read-request hides previous write-requests
from the P-view. Higher-order cells have to also break visibility in order to establish copy-
cat links between read- and write-requests.

Here instead we have only used innocent strategies and a monad on a store . Because
of the monad, an arena [A] contains several copies of £, and therefore several stores are
opened inside a play. The read/write discipline is then kept in an interactive way: when
a participant asks (the value of) a name q at the last (relevant) storefl the other participant
either answers with a value or asks himself ¢ at the penultimate store, and so on until one of
the participants answers or the first store in the play is reached (e.g. see figure £8). At each
step, a participant answers the question a only if he updated the value of a before opening
the current store (of that step, i.e. the last store in the participant’s view) —note that this
behaviour does not break innocence. If no such update was made by the participant then
he simply passes a to the previous store and establishes a copycat link between the two a’s.
These links ensure that when an answer is eventually obtained then it will be copycatted
all the way to answer the original question a. Thus, we innocently obtain a read/write
discipline: at each question q, the last update of a is returned.

P — What's the value of a?
O — I don’t know, you tell me: what’s the value of a?
P — I don’t know, you tell me: what’s the value of a?

O — I don’t know, you tell me: what’s the value of a?
P — 1 know it, it is v.

O —1Iknow it, it is v.
P —TI know it, it is v.
O — I know it, it is v.

Figure 4.8: A dialogue in innocent store.

434 Adequacy

We proceed to show that V, is adequate (v. definition BET4). First we characterise non-
reducing terms as follows.

Lemma4.35 Let @ | @ = M : A be a typed term. M is a value iff there exists a store S such that

—

Sk M has no reducts and [(@, *) * ® (ia,®)"] € [S; M], for some i, b.
Proof: The “only if”-part is straightforward. For the “if”-part assume that M is a non-value
and take any S such that S F M has no reducts. We show by induction on M that there
exist no i4, b such that [(@,%) * ® (ia,®)"] € [S;M]. The base case follows trivially from
M not being a value. Now, for the inductive step, the specifications of S = M (and M)
imply that either M/ = !a with a not having a value in S, or M = E[K] with E an evaluation
context and K a non-value typed as @ | @ - K: B and such that S = K non-reducing.

In case of M = !a, we have that [(@, *) * ® a] € [S; M], which proves the claim because of

4i.e. at the last store-opening move played by the other participant.

4.3. THE NOMINAL GAMES MODEL 97

determinacy. On the other hand, if M = E[K] then, as in proof of proposition 13 we have
that

[S;M] = (A" [E[=]]), [S; K]) ;75 Tevs p = (id, [S; K]) ;7 T(C 5 [El2]]) s 1

By IH, there are no i, &'such that [(a@,) * ® (ip, ®)°] € [S; K], which implies that there are

no i4, b such that [(@, +) * ® (ix, ®)%] € [S; M]. n

Because of the previous result, in order to show adequacy it will suffice to show that, when-
ever [M] = @) [S; 0], there is no infinite reduction sequence starting from @ = M. We will
carry out the following reasoning.

e Firstly, since the calculus without DRF reductions is strongly normalising — this is in-
herited from strong normalisation of the sv-calculus — it suffices to show there is no
reduction sequence starting from @ = M and containing infinitely many DRF reduc-
tion steps.

e In fact, the problem can be further reduced to showing that, whenever [(a@, *)*® (0, ®)B] €
[M], there is no reduction sequence starting from @ = M and containing infinitely
many NEW reduction steps. But the latter clearly holds, since M cannot create more
than |b| fresh names in that case, because of correctness.

The reduction to this simpler problem is achieved as follows. For each term M, we
construct a term M’ by adding immediately before each dereferencing in M a fresh-
name construction. The result is that, whenever there is a sequence with infinitely
many DRF’s starting from S F M, there is a sequence with infinitely many NEW’s
starting from S = M’. The reduction is completed by finally showing that, whenever

we have [(@, x) * ® (0, ®)E] € [M], we also have [(a@, *) * ® (0, ®)E/] e [M'].

The crucial step in the proof is the reduction to “the simpler problem”, and particularly
showing the connection between [M] and [M’] described above. The latter can be carried
out by using the intrinsic preorder on strategies and showing O-adequacy (lemma E&2):
adequacy can then be derived from O-adequacy. Nevertheless, a direct proof is always useful
(and more fun). We present such a proof in the remainder of this section.

In the following discussion we will be using & for a vp-type. We start with a definition.

Definition 4.36 Let x € TY. For any term M, we define:
K#HM < Ya€A,.a# M.
For k # M, we define (M)® inductively by:
()® 22, (@)® £a, .. (A.N)® 2 \.(N)®, (MN)® £ (M)®(N)®,
and (!N)® £ pc.!(N)®, with ¢ € A,. A

Note that a # M means that a does not appear, neither free nor bound, inside M. Our next
target is to show that if x # M then [(M)®] does not use names of type . What we mean by
“non-usage” of names is defined formally below (recall the /+quantifier from page [and
the notation s = s"%(*) from page E3).

Definition 4.37 Let o be a strategy. We say that the type « is essentially fresh for o, k # o if,
foranya € A,, |
Vs.[s] € 0 = Ub.[s(@ b "list)] ¢ &

For economy, we let
(a b)OS 2 §(a b) o nlist(s))

98 CHAPTER 4. NOMINAL REFERENCES

What the previous definition is essentially saying is that « 4 o iff o does not really use names
of type «, even though it may be introducing them.

There is an alternative definition of essential freshness for strategies, which involves only
viewfunctions.

Proposition 4.38 For any strategy o, k #o iff, forany a € A,,
Vs. [s] € viewf(o) = Wb.[(ab)’s] € 0.

Proof: Suppose the condition holds and let us pick such an a and some [s] € o; we need to
show that Mb. [(a b)°s] € 0. We do induction on |s|, taking as base case |s| = 0 which is trivial.
For the inductive step, let s = s~ z. If z an O-move then Wb. [(a b)°s] € o by contingency
completeness and the IH. On the other hand, if x a P-move and "s" # s then, for any fresh b,
[(ab)*(s7)],[(ab)’s"] € o by IH and the hypothesis. By lemma .38 it suffices to show that
(a b)°s is a play. For the latter, we need only check the Name Conditions. (NC3) and (NC2")
clearly hold, since (a b)°s~,(a b)°s" are plays. For (NC1), if nlist((a b)°x) contains some new
name cand ¢ # b, then c # s~ since sisaplay,soc# (ab)’s~. If c=bthena # s~ since sa
play, .. c¢# (ab)°s™ as b was chosen fresh. u

We can now show the following enrichment properties for essential freshness.

Lemma 4.39 For any relevant o, 1, if k ﬁ o, T then:

ess

e K#o:T,

ess

e K# oy,

ess

e k# A(o),

o k# (0,7).

Proof: For the first claim we have that [s;¢] € o ;7 implies that, for any fresh b, [(a b)°s] € o
and [(a b)°t] € 7. Clearly, (a b)°s — (a b)"t. Moreover, the fresh-name conditions (C1-2)
still hold: the only thing that could go wrong would be b being introduced at some point
in (a b)°s, say, without being fresh at the respective point in ¢, which can’t happen as b is
chosen fresh.

The other claims follow easily from the previous proposition, and the definitions of these
constructions on viewfunctions. u

Corollary 4.40 For any term M,
o k#M = k#[M],
o k#M = k#[(M)®].

Proof: Both claims are proven by induction on M. For the first claim, we simply use the fact

that x # o for any strategy o that does not introduce any names of type .
For the second claim, we also use the previous lemma, yet the case of M = ! N needs some

extra attention. By IH we have that & # [(N)®], while we know that

[(M)®] = nup; T2 ; T[{(N)®] ;

with ¢ € A, and M typed in environment @II". By previous lemma we have that « i
T[(N)®] ; u, and hence it suffices to show that « #ou;T % We have that:

viewf(nu;T%) = {[(@,ir) * ® (@, ir, ®)°s°] | [irir s] € viewf(idr))V[® ® s] € viewf(ide)}

4.3. THE NOMINAL GAMES MODEL 99

From the above we observe that, for any a € A, any [s] € viewf(nu;7%) and any fresh b,
[(ab)°s] € nu;T'%, as required. u

A consequence of essential freshness is that if # o then we can delete all x-name introduc-
tions from o and still have a strategy.

Definition 4.41 For any play s, define s> to be s with all names of type « removed from its
name lists. Take then, for each strategy o,

o 2 {5

[s] € o}.

Lemma 4.42 For any strategy o, if k ;S; o then:
1. if [s] € o then s> is a play,
2. if [s1],[s2] € 0, (8(si) \ S(8:™>)) NS(s;) = @ and [s1>] = [s2>] then [s1] = [s2],
3. o> is a strategy.

Proof: For 1, we only need to check the Name Conditions still hold, and in particular only
(NC?2’), as the other two trivially do. So let 2 be a P-move in s> and let a € S(z) such that
a#"sZ. Ifa ¢ A, then a € nlist(z); the case a € A, is not possible since then we would
have [(a b)°s] € o breaking (NC2’), any fresh b.

For 2, we do induction on |s;| = |s2]; the base case is trivial. For the inductive step, if |s|
is even then, by IH, [s]] = [s5 | and hence, by determinacy, [s1] = [s2]. Finally, if s; = s; x;
with z; an O-move then, by IH, [s7] = [s5]. Now using the condition on supports and the

strong support lemma we obtain [s] z1] = [s; 22| and thus, by (NC3), [s1] = [s2].

We now show o> is a strategy. Prefix closure and contingency completeness are obvious.
For determinacy, take even-length [s1z1], [s2z2] € o> with s;z; = (siz})> and [siz]] €
o, and assume [s1] = [s2]. As k#o0, we can choose s;z; in such a way that the names in
S(sjz;) \ S(s;x;) are fresh for s;x}, and hence, by 2, [s}] = [s5]. Then, by determinacy of o,

1

[siz]] = [shaxb], which implies [s1x1] = [s2x2]. Finally, for innocence, let [s1z1], [s2] € o™
with sjz; = (s12])™, s2 = s4> and [s)z)],[s5] € o, and assume ["s;] = [s2']. Then, as
before, we may assume [s}7] = ["s5] and therefore [s)z5] € o, for some ["s5z5] = [Tsjz]7).
We then have [sox}>] € o> and ["s1217] = [Fs2xh ™).]

We need a last lemma before proving adequacy.

Lemma 4.43 For any term M, if k F M then [M] C [(M)®]>.

Proof: We do induction on M. The base case is encompassed in the case of M = (M)®, in
which case s™ = s for any [s] € [M] and the claim trivially holds. For the inductive step, as
[(M)®] > is a strategy by previous lemma, it suffices to show that

viewf([M]) C {[s™] | [s] € [(M)®]}
We show some characteristic cases:

o M =)Xz.N. Let[s1; s2] € viewf([M]), where [M] = A({';[N]);n, and [s1] € A(L";[N]),
[s2] € m. Since s3™ = s9, it suffices to show that [s1] € A({';[(N)®])>, and because
the latter is a strategy it suffices to consider the case of s; being an even-length P-view
(lemma B38). Then, by definition of A, s; is obtained from some [s}] € viewf([N]) after
a reordering of moves. By IH, s} = t{ > for some [t|] € [(N)®] and hence s; = t;>*, with
t1 being the play in A({’; [(N)®]) obtained by ;.

100 CHAPTER 4. NOMINAL REFERENCES

o M = NiNs. Let [s1;52] € [M] = ([N1], [N2]) ;45 Tev; p, and [s1] € ([N1], [N2]), [s2] €
1 ;Tev; u. As before, it suffices to show that [si] € ([N1], [N2]) >, in the particular case
of s; being an even-length P-view. We have that, wlog, s is obtained from some [s}] €
viewf([N1]) with the addition of [N:]’s initial answer (which is non-introducing). By
IH, s} = ¢}> for [t}] € [(N1)®] and hence we obtain a [¢;] € [((N1)®, (N2)®)] such that
s =1t1".

e M =!N. In this case, assuming M is typed as a@ | I' = M : A,
[M] = [N];Tdrf;p and [(M)®] =nu;T%;T[(N)®];p

with a € A,. Let now [s] € viewf([M]), so s = s1; s2 with [s1] € [N] and [s2] € Tdrf ; .
By IH, s1 = ui™ for [u1] € [(N)®] with u1 =< so. Hence, s = ¢t with [t] = [u1;s2] €
[(V)=].

Now, [[(N)®] = n; T[N(N)®] ; i, hence t = t; ;2 with [t;] € nand [ta] € T[I(N)®] ; p. t
being a P-view implies that

t1 = (@,ir) * ® (d,ip, ®) vy

with v not containing any O-moves justified by the initial (@, ir) * ®. Hence, we can see
that

ty = (dir) x ® (@, ir, ®)" vf
is a play in nu; 7%, for any fresh a € A,. Therefore, [t] ;1] € nu; 7% ; T[{(N)®] ; u, and
hence [s] € [(M)®] .]

We have now gathered all the ingredients for proving the following.

Proposition 4.44 (Adequacy) (V,,T, Q) is adequate: for any typed term d | & = M : N, if there
exists some S such that [M] = () [[S ; 0] then there exists S’ such thata = M — S’ k0.

Proof: By lemma E33 it suffices to show that, for any such M, there is a non-reducing se-
quent S’ F N suchthatd = M — S F N, as then N would be a closed value of type
N such that [S"; N] € O —and therefore N = 0. But then it suffices to show that there is
no infinite reduction sequence starting from @ = M and containing infinitely many DRF re-
duction steps: leaving DRF’s aside we are left with a sv-calculus with a non-recursive effect,
which is strongly normalising for closed terms (cf. theorem 2.T5).

Solet@| @ F M : Nbe a typed term such that [M] = (5 [S;0], for some S, and assume
that @ = M diverges using infinitely many DRF reduction steps. Then, @ = (M)® diverges

using infinitely many NEW reduction steps. Now, we have that [(a,) +*® (0, ®)g] € [M] and
hence, by previous lemma, there exists some b’ = b such that [(a, ¥) * ® (0,®)"] € [(M)®].
However, @ F (M)® can reduce to some S’ F M’ using |5'| + 1 NEW reduction steps, so

[(M)®] = @ [S"; M'] with |e] = || + 1, }. .

Hence, (V,, T, Q) is a sound model for vp and thus, for all terms M, N,

[M]=[N] = MSN.

4.3.5 Tidy strategies

Leaving adequacy behind, the route for obtaining a fully abstract model of vp proceeds to
definability. That is, we aim for a model in which elements with finite descriptions correspond
to translations of vp-terms.

However, V, does not satisfy such a requirement: it includes (finitary) store-related be-
haviours that are disallowed in the operational semantics of vp. In fact, our strategies treat

4.3. THE NOMINAL GAMES MODEL 101

the store ¢ like any other arena, while in vp the treatment of store follows some basic guide-
lines. For example, if a store S is updated to S’ then the original store S is not accessible
any more (irreversibility). In strategies we do not have such a condition: in a play there may
be several {’s opened, yet there is no discipline on which of these are accessible to Player
whenever he makes a move. Another condition involves the fact that a store either “knows’
the value of a name or it doesn’t know it. Hence, when a name is asked, the store either re-
turns its value or it deadlocks: there is no third option. In a play, however, when Opponent
asks the value of some name, Player is free to evade answering and play somewhere else!

To disallow such behaviours we will constrain total strategies with further conditions,
defining thus what we call tidy strategies. But first, let us specify store-related moves inside
type-translating nominal arenas.

Definition 4.45 Consider V,,, the full subcategory of V, with objects given by:
Ob(V,y) 2 A, Bu=1|N|A"| A B|A—=TB.
For each such arena A we define its set of store-Handles, H 4, as follows.
H =Hy=H, £ o,
Hagp = HyUHgp,
Haerp £ {(ia,®2), (ip,®5)} UHA UHp UHe, UHg,, with He £) Hicy;
where we write A e TBas A —e ({4 = B®¢p),and £ as Q@ (Ac = [C]).

In an arena A € Ob(V,,), a store-Handle justifies (all) questions of the form a, which we call
store-Questions. Answers to store-Questions are called store-Answers. A

Note in particular that, for each type 4, we have [A], Q?[A],T[A] € Ob(V,,), assuming
that T'[A] is equated with 1 —e T'[A]. Note also there is a circularity in H4 o7 p in the above
definition. In fact, it suggests a definition by induction: we take H4 = |J,., H’) and,
Hi=H),=H,; =H) £ o,
Hjgp = HyUHg,
Hi rp 2 {(ia,®4), (ip,®5)} UHY UHR UH U HES, with HEP 2 () Hicy .

Intuitively, store-H’s are store-opening moves, while store-Q’s and store-A’s are obtained
from unfolding the store structure. Below we give examples of store-related moves in a
simple arena.

Tl= (=1®¢

/_/—\ o StOre_H,S
store-Q's ———a &)
a7
//V/////V/V/V \'
store-A’s)

Figure 4.9: Store-H’s -Q’s -A’s in arena T'1.

From now on we work in V,,,, unless stated otherwise. A first property we can show is that
a move is exclusively either initial or a store-H -Q -A.

Proposition 4.46 Forany A € Ob(V,,),

My=IpWHsW{m e My |mastore-Q} & {m € M4 | mastore-A} .

102 CHAPTER 4. NOMINAL REFERENCES

Proof: We show that any m € M4 belongs to exactly one of the above sets. We do induction
on the level of m, [(m), inside A and on the size of A, |A|, specified by the inductive defi-
nition of Ob(V,,,). If m is initial then, by definition, it can’t be a store-H. Neither can it be a
store-Q or store-A, as these moves presuppose non-initiality.

Assume [(m) > 0. If Aisbase then trivial, while if A = A; ® A5 then use the IH on (I(m), | A]).
Now, if A = A; —e T' A, then let us write A as A; — (& = Az ® &); we have the following
cases.

o Ifm = (ia,,®1) € H,4 then m a question and not a store-Q, as store-Q’s are simply names.
o Ifm = (ia,, ®2) € Ha then m an answer and not a store-A as its justifier is (i 4,, ®1).
e Ifmisin A; orin A, then use the IH.

e If misin & then it is either some store-Q a to (i4,, ®1) (and hence not a store-H or store-
A), or it is in some [C]. In the latter case, if m initial in [C] then a store-A in [A] and
therefore not a store-H, as m not a store-H in [C] by IH (on I(m)). If m is non-initial in
[C] then use the IH and the fact that store-H’s -Q’s -A’s of [C] are the same in [A].

e Similarly if m is in &;.]

The notion of store-Handles can be straightforwardly extended to prearenas.

Definition 4.47 Let A, B € Ob(V,,,). The set H4_,p of store-Handles in prearena A — B is
H, U Hp. Store-Q’s and store-A’s are defined accordingly. A

Using the previous proposition, we can see that, for any A and B, the set M 4_,p can be
decomposed as:

IZznWIpWHs . pWd{m e Ms_,p|mastore-Q} W {m € Ms_,p | m astore-A} .

We proceed to define tidy strategies. We endorse the following notational convention. Since
stores £ may occur in several places inside a (pre)arena we may use parenthesised indices to
distinguish identical moves from different stores. For example, the same store-Question ¢
may be occasionally denoted g0y or ¢(p), the particular notation denoting the OP-polarity
of the move. Moreover, by O-store-H’s we mean store-H's played by Opponent, etc.

Definition 4.48 A total strategy o is tidy if whenever odd-length [s] € o then:

(TD1) If s endsin a store-Q ¢ then [sz] € o, with x being either a store-A to ¢ introducing
no new names, or a copy of ¢. In particular, if ¢ = a® with a # "s'~ then the latter
case holds.

(TD2) If [sq(ry] € o with g a store-Q then g5, is justified by last O-store-H in "s".

(TD3) If"s'= s'qo)qr)t Yoy With ¢ a store-Q then [sy] € o with y,, justified by "s*.-3.
A

(TD1) states that, whenever Opponent asks the value of a name, Player either immediately
answers with its value or it copycats the question to the previous store-H. The former case
corresponds to Player having updated the given name lastly (i.e. between the previous O-
store-H and the last one). The latter case corresponds to Player not having done so and
hence asking its value to the previous store configuration, starting thus a copycat between
the last and the previous store-H. Hence, the store is, in fact, composed by layers of stores
— one on top of the other —and only when a name has not been updated in the top layer
is Player allowed to search for it in layers underneath. We can say that this is the nominal
games equivalent of a memory cell (cf. remark BE34). (TD3) further guarantees the above-
described behaviour. It states that when Player starts a store-copycat then he must copycat
the store-A and all following moves he receives, unless Opponent chooses to play elsewhere.

4.3. THE NOMINAL GAMES MODEL 103

(TD2) guarantees the multi-layer discipline in the store: Player can see one store at each time,
namely the last played by Opponent in the P-view.

The following straightforward result shows that (TD3), as stated, provides the intended
copycat behaviour.

Proposition 4.49 Let o be a tidy strategy. If [$'q.0,qmt] € o is an even-length P-view and q is a
store-Q then q.o,qpmt is a copycat.

Proof: We do induction on |t|. The base case is straightforward. For the inductive step, let
t = t'zz. Then, by prefix closure, [s'go)qt'x] € o, this latter a P-view. By IH, go,q(t" is
a copycat. Moreover, by (TD3), [s'q0)q t'xz] € o with last z justified by (goyqet'x).-3,
thus s'q.,q(» t'zx a copycat. Now, by determinacy, [s'q.o)qr ' zz] = [$'q(0yq#)t'x2], SO there
exists m such that mex =2 A mox =2, . x = 2, as required. [|

A good store discipline would guarantee that store-Handles OP-alternate in a play. This in-
deed happens in P-views played by tidy strategies. In fact, such P-views have canonical

decompositions, as we show below.

Proposition 4.50 (Tidy Discipline) Let o : A — B be a tidy strategy and [s] € o with"s' = s.
Then, s is decomposed as in the following diagram.

m&

(by CC we mean the state that, when reached by a sequence s = "s", the rest of s is copycat.)

Proof: The first two transitions are clear. After them neither P nor O can play initial moves,
so all remaining moves in s are store-H -Q -A’s. Assume now O has just played a question
xo which is a store-H and the play continues with moves zyz2x3....

x1 cannot be a store-A, as this would not be justified by zo, breaching well-bracketing. If z;
is a store-Q then z, must be a store-A, by P-view. If z; is an answer-store-H then z; is an
0Q), while if z; a question-store-H then z, is either a store-Q or a store-H.

If x5 is a store-Q then, by (TD1), z3 either a store-A or a store-Q, the latter case meaning
transition to the CC state. If x5 is not a store-Q then z3 can’t be a store-A: if x3 were a store-
A justified by ¢ # x then, as ¢ wouldn’t have been immediately answered, s>, would be a
copycat and therefore we would be in the CC state right after playing q.

Finally, if 3 is a store-A then x4 must be justified by it, so it must be a Q-store-H. |

Corollary 4.51 (Good Store Discipline) Let [s] € o with o tidy and "s" = s. Then:
o The subsequence of s containing its store-H’s is OP-alternating and O-starting.

o If s.-1 = q is a P-store-Q then either q is justified by last store-H in s, or s is in copycat mode at
q. |

104 CHAPTER 4. NOMINAL REFERENCES

Our next aim is to show that vp is modelled inside the subcategory of V,,, with tidy strate-
gies. We first need to show that tidy strategies indeed form a subcategory of V,,,, and then
that all the structure necessary for the vp-model is available in tidy strategies. The following
proposition gives equivalent definitions of tidy strategies, which will be of use in the sequel.

Proposition 4.52 Let o be a strategy.

1. o is tidy iff whenever odd-length [s| € o then (TD1,2,3") hold, where:

(TD3") If Ts' = §'qioyqrt Yoy With g a store-Q and g0, ¢t a copycat then [sy] € o
with yp, justified by "s.-3.

2. (a) o is tidy iff whenever odd-length [s] € o with "s' = s then (TD1,2,3) hold,
(b) o is tidy iff whenever odd-length [s] € o with "s' = s then (TD1,2,3') hold.

Proof: For 1, it suffices to show that whenever o satisfies (TD1,2,3') and [s'q0,q»ty] € o is
a P-view and ¢ a store-Q, then ¢o,¢(»)t is a copycat. But this is shown exactly as proposi-
tion replacing “by (TD3)” by “by (TD3’)”.

For 2, we show only the first part, the other part is shown similarly. We need only show the
“if"” direction. So assume the RHS hypothesis and let odd-length [s] € o, so ["s7] € 0.

If s ends in a store-Q ¢, then so does "s", so ["s' z] € o, with z being a store-A not introducing
new names or a copy of ¢. But z non-introducing and [s], ["s'z] € o implies [sz] € o, by
lemma B38 If, in particular, ¢ = a with a# "s"™ then x is a copy of ¢.

If [sq] € o with ¢ a store-Q then [s"¢| € o so ¢ justified by last O-store-H in "s™.

If s7 = §'qoyqpty with ¢ a store-Q then ["s'y] € o with last y justified by "s'.-3. By
lemmaB38 [sy] € o, as required.]

We can now show that strategies which ‘mostly do copycats’ are tidy.

Corollary 4.53 A strategy o is tidy if, for any odd-length [s] € o with™s' = s and |s| > 5:
1. IfVx.[sx] ¢ o then s.-1 is not a store-Q and there are no consecutive store-Q’s ., qp, inside s.
2. If [sx] € o and x # s.-1 then s doesn’t contain any q.o,q», and also:

(a) if s.-1 a store-Q then x is an answer to s.-1 not introducing new names and s.-1 = a% with
a€s(s),

(b) if x a store-Q then it is justified by last O-store-H in s.
3. If [sx] € o and x = s.-1 then one of the following is the case:

(@) s doesn’t contain any q.oyqr), and if « a store-Q then justified by last O-store-H in s;
(b) « is justified by s.-3.

Proof: By proposition it suffices to show that such an s satisfies (TD1,2,3). For (TD1),
if s.-1 a store-Q then |s| > 5 and, by 1, [sz] € o, for some z. If x is not a copy of s.-1 then,
by 2a, s.-1 is not a fresh name and « is a non-intro answer to s.-1, as required. For (TD3), if
s = §'q0)qmt Yo then |s| > 7 and, by 1,2, [sy] € o and, by 3, y is justified by s.-3. Finally,
for (TD2), if [sx] € o with z a store-Q then |s| > 3. If |s|] = 3 then x necessarily justified
by s.-1 and that is the last O-store-H in s, as s.1, 5.2 are initial moves. If |s| > 5 then either
cases 2b,3a apply, or x = s.-1 and z justified by s.-3. In the latter case, s.-1 is an O-store-Q
justified by s.-2, hence s.-3 is the last O-store-H in s, as required.]

Thus, for example, identity arrows are tidy as they fall under case 3b. In fact, as we will
show later, all important structure is tidy. Let us now proceed to closure of tidy strategies
under composition.

4.3. THE NOMINAL GAMES MODEL 105

Lemma 4.54 Let 0 : A— Band 7 : B— C be tidy strategies, and let [s;t] € o ;7, [s] € o and
[t] € 7, with s || £ = s|| t ending in a generalised O-move in AB and x, an O-move, being the last
store-H in "s". Let = appear in s ||t as &. Then, & is the last store-H in s || t and if x is in A then all
moves after T in s ||t are in A. Similarly for BC and t.

Proof: We show the (AB, s) case, the other case being entirely dual. Let s = s;xs2 and let
x appear in s ||t as some Z. If z is in A then we claim that s, is in A. Suppose otherwise,
S0 5 = s12521YS22 With s21 in A and y a P-move in B. Since = appears in "s', the whole
of s1y appears in it, as it is in P-view mode already. Since = is last store-H in "s", sy is
store-H-less. If y a store-Q then it should be justified by last O-store-H in "s,,", that is z,
which is not possible as x is in A. Thus, y must be a store-A, say to some O-store-Q ¢ in B.
Now, since ¢ wasn’t immediately answered by P, tidiness dictates that "s' be a copycat from
move ¢ and on. But then the move following in s must be a copy of in B, %. Hence, s»
is in A and therefore it appears in "s', which implies that it is store-H-less. Thus, is last
store-H in s || t.

If = is in B then we do induction on |s || t|. The base case is encompassed in the case of s,
being empty, which is trivial. So let so = s21ys222 with y justifying z (since « appears in s,
z has to be justified in s3). z is not a store-H and neither is it a store-Q, as then y would be a
store-H after 2 in "s". Thus z a store-A and y a store-Q, the latter justified by last O-store-H in
Fs<y! =s'«,, thatis x, s0 y, z in B. Now, s = s12821yS222 and t = t12'ta1y'te22"; we claim
that so; and t2; are store-H-less. Indeed, s« || t<, ends in a generalised O-move in AB and
x is still the last store-H in "s.,', from which we have, by IH, that Z is the last store-H in
s<y [ty

Thus, s||t = (s1 || t1)Zvguz with v store-H-less. It suffices to show that v is also store-H-
less. In fact, u = §...g Z...Z for some n > 0. Indeed, by tidiness of 7, (t222).1 is either

—
n n

an answer to y’, whence t22 = u = ¢, or a copy of it under the last O-store-H in "t<,". If
the latter is in B then o reacts analogously, and so on, so there is initially a sequence §. .. 7
in u, played in B. As u finite, at some point o (or 7) either answers y (y’) or copycats it in
A (in C). In the latter case, O immediately answers, as s (t) is in P-view mode in A (in C).
Hence, in either cases there is an answer that is copycatted to all open § in v, yielding thus
the required pattern. Therefore, v is store-H-less. u

Lemma 4.55 Let 0 : A — Band 7 : B — C be tidy strategies, and let [s;t] € o;7, [s] € o
and [t] € T, with s || {" = s ||t ending in a generalised O-move. If there exists i > 1 and store-Q'’s
Gy @G with g = ¢, all 1 < j <4,and 1, ...,G;—1 in B and §; in AC and [(s||t)¢1...¢;) € o || 7,
then §; is justified by the last O-store-H in s ;t.

Proof: By induction on |s||¢|. The base case is encompassed in the case of s;¢ containing
at most one O-store-H, which is trivial. Now let wlog (s || t)¢1..-G; = (sq1-.-ai) |(¢tq}-.-gi_1)
with [sg1...q;] € o and [tq)...q;_;] € 7, and let each g; be justified by z; and each ¢ by 2.
Moreover, by hypothesis, z; = 7, for 1 < j < i — 1, and therefore each such pair z;, 2
appears in s || ¢ as some i, the latter justifying g; in s || t.

Now, assume wlog that s || t ends in AB. Then, by tidiness of o and 7 we have that, for each
Jjz1

q25+1 = q25 ql2j = ql2j—1 4= ﬁ

For each j > 1, ¢241 is a P-move of ¢ justified by some store-H, say x2j41. By tidiness of
0, x2j11 is the last O-store-H in "s,. ., ' = "s<g,; ', and therefore x5, is the last store-H
in "s<z,; . Then, by previous lemma, Z;1 is the last store-H in s<a,, || t<ay, = (s[|t)<a,,-
Similarly, Zo; is the last store-H in (s ||) <z,,_, . Hence, the store-H subsequence of (s ||)<z,
ends in &;...71.

Now, by tidiness of o, x; is the last O-store-H in "s". If 2 is also the last store-H in "s" then, by
previous lemma, Z; is the last store-H in s || ¢, hence Z; is the last store-H in s; t. Otherwise,
by corollary EERT], ¢; is a copy of s.-1 = ¢o. If qo is in A then its justifier is s.-2 = z(and,

106 CHAPTER 4. NOMINAL REFERENCES

because of CC-mode, the store-H subsequence of s ||t ends in &;...Z1Z¢, so Z; is the last O-
store-H in s;¢. If gg is in B then we can use the IH on s~ || ¢~ and §o, ¢1, ..., ¢;, and obtain
that ; is the last O-store-H in s~ ;t~ = s 1. [|

Proposition 4.56 If o : A— Band 17 : B—> C are tidy strategies then so is o ; T.

Proof: Take odd-length [s;t] € o ;7 with not both s and ¢ ending in B, "s||{' = st and
|s;t| odd. We need to show that s;¢ satisfies (TD1-3). As (TD2) is a direct consequence of
the previous lemma, we nos the other two conditions. Assume wlog that s;¢ ends in A.
For (TD1), assume s ;¢ ends in a store-Q ¢. Then s ends in some ¢, which is justified by the
P-store-H s.-2 = z (also in A). q is either answered or copied by o ; in particular, if § = a®
with a # "s;t" = s7;t then a # s~,t, so o copies ¢q. If o answers ¢ with z then z doesn’t
introduce new names, so [(s;t)Z] € o ;7 with nlist(Z) = nlist(§) and Z = z, as required.
Otherwise, let o copy ¢ as ¢, say, under last O-store-H in "s", say «;. If z; is in B then, by
lemmaB.41] sq, < tq}, with q1, ¢ in B and ¢] being g1 with name-list that of its justifier, say
z7, where z1 = 2] . Now [tq}] € 7 and it ends in a store-Q, so 7 either answers it or copies
it under last O-store-H in tg}". In particular, if ¢ = a® with a # "s; £ then, as above, a # t
and 7 copies ¢;. This same reasoning can be applied consecutively, with copycats attaching
store-Q’s to store-H’s appearing each time earlier in s and ¢. As the latter are finite and
initial store-H’s are third moves in s and ¢, at some point either o plays ¢; in A or answers it
in B, or 7 plays ¢; in C or answers it in B. If an answer occurs then it doesn’t introduce new
names (by tidiness), so it is copycatted back to ¢ closing all open ¢;’s and ¢;’s. Otherwise,
we need only show that, for each j, G; = ¢, which we do by induction on j: 1 = ¢°** and

Gj+1 = g(sgqj).(tgqg)’e =g, . This proves (TD1).

For (TD3), assume s;t = ugoyqrvy With §oy§»)v a copycat. Then, either both g0y, Gr)
are in A, or one is in A and the other in C. Let’s assume g, in A and ¢, in C'—the
other cases are shown similarly. Then, ¢, her(editarily)-justifies §, and let s.-1 = y be
justified by some z in s. Now, as above, G Gry is witnessed by some §)§i . - - GiGpy In
s||t, with odd ¢ > 1 and all §;’s in B. We show by induction on 1 < k < i that there exist
Ty eeey Thoy By vy Thoy Y1y ooy Yk Y1y - Y IN B such that (sy1...yx | ty) ... y,) € o]/ 7 and, for
each relevantj > 1,

'~

/ / /
=Y > V1 =Y s Y25 = Y2541 5 Y251 = Y25 5 T =Ty

&:

&

with g; her-justifying z; in s and z; justifying y; (and ¢} herjustifying z; in ¢t and 2, justify-
ing y}), and %41, &; consecutive in s || ¢, and Z1, T also consecutive.

For k = 1, let s = $1¢0)q152y. Now, {0, her-justifying § implies that ¢, her-justifies
y, hence it appears in "s". Thus s = s]¢0,q155y, 50, by (original definition of) tidiness,
[sy1] € o with y; = yjustified by z; = "s'.-3 = s.-3. By lemmaBA1] [ty;] € 7 with ¢} = y1.
By proposition 4i0yq15b is a copycat, so ¢, her-justifies 2, and therefore ;,y; in B. Fi-
nally, z = "s'.-2 = s.-2 is a P-move so %1, & are consecutive in s || ¢.

For even k£ > 1 we have, by IH, that (syi...yx—1 ||ty ... y,y) € o 7 with y}_; an O-
move her-justified by ¢},_;, an O-move. Then, ¢;._, appears in ty}...y5. ", s0 ty]..y,_ " =

t1q,_1 a5, t2y),_y, thus (by tidiness) [ty} ...y, y;.] € T withy;, = y._, justified by 2, = "ty|...y;, " .-

Now, q;,_,q;t2 is a copycat so ¢, her-justifies x}. Moreover, x},z)_; are consecutive in 7',
s0, as z},_; a P-move, they are consecutive in ¢, and therefore %, Z;_1 consecutive in s || ¢.
Finally, by lemmaB.Z1] [sy: ... yx—1yx] € 0 with yx = y;.. The case of k odd is entirely dual.

Now, working as above, we can show that there exist 27 |, v/, ; in C such that [ty]...y/y},] €
7 and y;_, justified by 2}, ,, ;. her. justified by ¢, etc. Then [(s;?)7;11] € o;7 with
Zit1, &, ..., T1, & consecutive in s || ¢, s0 ;41 = (s;t).-3. Finally, as above, §;,41 = 3, = g, all
J, as required.]

Hence, we can define our category of nominal arenas and tidy strategies.

Definition 4.57 7 is the lluf subcategory of V,,, of tidy strategies. A

3.

4.3. THE NOMINAL GAMES MODEL 107

We now check that all structure required for a sound vp-model pass from V, to 7.

Proposition 4.58 (7 an adequate model) 7 forms an adequate vp-model by inheriting the nec-
essary structure from V. :

I. Projections and terminal arrows are tidy, and arrow pairing preserves tidiness.
Il na,Ta, pa are tidy, and if h is tidy then so is Th. Moreover, AT preserves and reflects tidiness.

III. Successor, predecessor, numeral and conditional arrows are tidy.

a

IV. €4,04, 4 are tidy, and if h is tidy then so is Qah, for any d. Moreover, (5,)A and nuy are

tidy.
V. Name-equality arrows are tidy.
VI. upd ,,drf 4 are tidy.

Proof: Items III and V involve strategies with plays of length less than 3, hence tidy. The
same holds for terminal arrows in I and (%) | in IV. From corollary .53 we have that pro-
jections in I; na, 74, pa in II; nuy in IV; and upd 4, drf 4 in VI are all tidy.

Nowlet f: A — B, g: A — C be tidy strategies. Then,

viewf((f,9)) ={[ia (iB,ic)s]| ([iaip s] € viewf(f) Aiaic] € g)
V ([iaic s] € viewt(g) Afiaig] € f) }

So let odd-length [s] € (f,g) with "s" = s and |s| > 5, say wlog s = i4 (ip,ic) s = with
[iaips'] € viewf(f) and [iaic] € g. It is not difficult to see then that [s;] € f, for sy =
iaip s’ x. If zis astore-Q then [sy y] € viewf(f) for arelevanty, and so [sy] € viewf((f,g)).
We need only check the case of # = a% with a # s~, which implies a # sy and hence y a
copy of x, as required. Now, if [sy] € viewf((f, g)) with y a store-Q then [s; y] € viewf(f),
so y is justified by last O-store-H in sy, and hence y justified by last O-store-H in s. Fi-
nally, if s = i4 (iB,ic) s"qo) ¢ t o) then sy = s = i4ip s"qo) ¢ t (r), and therefore
[sfx] € viewf(f) with zp, justified by s;.-3 and [s z(r,] € viewf({f,g)), as required. Hence,
(f,g) tidy.

In along the same lines we can prove that T preserves tidiness, and that A7 preserves and
reflects tidiness. Moreover, tidiness of product-related constructs implies tidiness of struc-
tural arrows in the comonads.

Finally, adequacy is clearly inherited from V. u

Henceforth, by strategies we shall mean tidy strategies, unless stated otherwise.

4.3.6 Observationality

Strategy equality is too fine grained to capture contextual equivalence in a complete manner.
For example, even simple contextual equivalences like

skip = va.skip

are not preserved by the semantical translation, since strategies include in their name-lists
all introduced names, even useless ones. For similar reasons, equivalences like

va.vb.M = vb.va. M

are not valid semantically. It is not only because of the treatment of name-creation that
the semantics is not complete. The ‘explicit’ way in which the store works distinguishes
equivalences like

a:=1; x.1a;2 = a:=1; z.2.

108 CHAPTER 4. NOMINAL REFERENCES

Thus, there are many ways in which our semantics is too expressive for our language. We
therefore proceed to apply a quotienting by the intrinsic preorder and prove full-abstraction
in the extensional model.

Following the steps described in section in this section we introduce the intrinsic
preorder on 7 and show that the resulting model is observational. Full-abstraction is then
shown in the following section.

Definition 4.59 Expand 7 to (7, T, Q, O) by setting, for each @ € A¥,
O £ {f e T(QL,TN) | 36.[(d@,%) » ® (0,8)"] € f}.
Then, for each f,g € T(Q%A, TB), f <% gif

Vp: QA = TB) —TN. (A%(f);p € OF — A%(g):p € OF). K
Thus, the observability predicate O is a family (O%)zc#, and the intrinsic preorder < is a
family (<%)zcu# - Recall that by A%(f) we mean AQ"7(f), that is,
QA5 f)

AY(f) = Q1% QUQL QYA —TB).

In particular, if f C g then A%(f) C A%(g) and therefore A%(f); p C A%(g) ; p, which implies:
fEg = f<%g (4.16)

The intrinsic preorder is defined by use of test arrows p, which stand for possible program
contexts. As the following result shows, not all such tests are necessary.

Lenhma 4.60 (t14 tests suffice) Let f,g € T (Q1, B) with B pointed. The following are equiva-
lent

I. Vp:Q%B—TN. 6:Q%%:pc 0% = 6;Q%;pec O%.
IL Vp:QiB——TN. pistld — (5;Q7f;pe 0F — §;Q0g:p e OF).
Hence, for each @ and f,g € T(Q%A,TB), f <% g iff

Vp: QYA —-TB)—TN. pistld = (A%(f);pec 0% = A%g);pec 0%).

Proof: 1= 1II is trivial. Now assume II holds and let p : Q?B — TN be any strategy
such that 0;Q% ;p € O% Then, there exist [s] € §;Q%f and [t] € p such that [s;t] =
(@) = ® (0, ®)g] € (§;Q%); p. We show by induction on the number of .Jz-moves ap-
pearing in s || ¢ that 0 ; Q%g; p € O°.

If no such moves appear thent = (a,ig) * ® (0, ®)E, so done. If n+1 such moves appear then
p is necessarily t4, as B is pointed, so by lemmaB.58 there exists tl4* strategy 5 such that p =
A; p. It is not difficult to see that p being tidy implies that p is tidy. Moreover, § ; Q% ip=
§;Q7fA;p=16;Q%f:(id, Q™5 6;Qf);p = 0;Q%f; o', with p/ being (id, Q%!;6;Q%f) ; p.
Now, by definition of g, [(a@,*) x* @(0,@)’;] = [¢;¥'] € 6;Q% ;p with s'||#' containing
n Jg-moves so, by IH, §;Q%;p’ € O%. But§;Q%;p = §;Q%;(id,Q™;;Qf);p =
§;Qf{(QU;6;Q%,id);p = 6;Q%f;p”, with p being (Q%;6;Q%,id);p. But p” is tl4,
thus, by hypothesis, 0% 3 §; Q% ; p” = §;Q%; p, as required. n

We can now prove the second half of observationality.

SRecall, from definition B3] that a total strategy o : A — B is:
e /4if whenever [s] € o and s.—1 € J4 then |Ts7| =4,

e t4ifforany [iaip jp| € o thereexists [ia ip jB ji} € o,
e tl4if it is both t4 and 14,

e ttotal if itis tl4 and for any [i4 ip jp] € o thereexists [i4 ig jBja] € 0.

4.3. THE NOMINAL GAMES MODEL 109

Lemma 4.61 For any f : Q%1 —> B and any t14 morphism p : Q°B — TN, with B pointed and
aca

5;Q7@ldy fipe 0% < 6:Q"f;%;pe 0.
Moreover, for all relevant f,gand @ C d"’ C d',

f57 g = @ayf 5t @ladrg,
1579 = T i
L. f<T g = @ayf<t@ldyg.
In particular, f <% g = (@) f < da)g.
Proof: For the first part, p being tl4 and B being pointed imply that there exists some b # @
and a ttotal strategy p’ such that p = @ p'. Now let §;Q% @\ f;p € OF, so there exists
[s;t] = [(@,*) = ®(b(d/\“)? € (6;:Q7@l\dy f);p, and let s = (@,%)(a@,ig) jp m@\Deg
andt = (@,ip)*®j% t'. Letting s/~ be ¢/"'*(* @D e can see that [(@,) ip jp mSs' 2] €
fandthus[& [(@,%) (@ i) jpms ™ €6;Q7 f; % . Hence, [s" ;1] = [(@,)+ ® (0,®)%) €
§:Q% [; % ; p, as required. The converse is shown similarly.
For the second part, suppose f <% g : Q¥ A — TB and take any tl4 morphism p :
Q%A —TB) — TN. Then,
A (@@ f)ip e OF = 6;Q7NL;@aYf);ipe 0F BB §:Q7@aY AL s f)):pe O

= QA5 f); % pe OF

S 5;@‘7//\({’;9);% p€O7 = A%(@\d'yg);p e O%.
For the next claim, it is easy to see that, forany h : Q71— TN, h € O iff (g/) :h, ;pu € O°.

Hence, if f <% g then we have:
§:QTAL L f);pe 07 = §5;Q7L QTN f)ipe OF
= (2);0;Q7L QA5 f);p)1;puc O
N2) a a a
& 5,QNC)i () iprspue0
<a - o ~ ~ —
=05, QN 59)5(8)spLipu €07 = §;QTAL;L9);p€O%.
For the last claim, if % . f <% g then <6|6’>(g;/l, f) <% @ld'yg, so it suffices to show
<6|6’>(g—,l, ; f) = <@ld@’y f. Now, observing that, for any A : Qa”l — TN, h € O iff
& . h € O7, we have:
5 QA @aNE f)ipe0F BB 5:QT@aVAL E f)ipeOF
= QML) ~,p€O“
= T5QTANL) L pe 07 = §;QTALf); L pe O
= 5:Q7@ANAL f):pe 07 BB 5.Q7A @ f)ip € OF,

gl|Dl

as required. u

In order to prove that 7 is observational, we are only left to show that
[M] € OF < 3b,5.[M] = & [S;0]

forany a | @ = M : N. The “<=" direction is trivial. For the converse, because of correct-
ness, it suffices to show the following generalisation of adequacyﬂ

6 At this point, notice that the proof of adequacy (proposition EEZ4) is, in fact, a proof of O-adequacy. As we find
both proofs interesting, we present them both regardless of the redundancy.

110 CHAPTER 4. NOMINAL REFERENCES

Lemma 4.62 (O-Adequacy) Let @ | @ = M : N be a typed term. If [M] € O€ then there exists
some S such thatd = M — S F 0.

Proof: The idea behind the proof is the same as that of the proof of adequacy (v. sec-
tion 3.4). It suffices to show that, for any such M, there is a non-reducing sequent S = N
such thatd = M —» S F N; therefore, because of Strong Normalisation in the sv-
calculus, it suffices to show that there is no infinite reduction sequence starting from @ = M
and containing infinitely many DRF reduction steps.

To show the latter we will use an operation on terms adding new-name constructors just
before dereferencings. The operation yields, for each term 1M, a term (M)° the semantics of
which is equivalent to that of M. On the other hand, @ = (M)’ cannot perform infinitely
many DRF reduction steps without creating infinitely many new names. For each term M,
define (M)° by induction as:

@ 2a, @2z, .. MM 2 x.(M®, (MNf2MJNY,

and (! N)° £ va.!(N)°, some a ¢ £n(N).

We show that [(M)°] = [M], by induction on M; the base cases are trivial. The induction
step follows immediately from the IH and the fact that « is a congruence, in all cases except
for M being ! N. In the latter case we have that [(M)7] = (@)(%;[/(N)7]), while the TH
implies that [M] = [/(N)7]. Hence, it sts that for each f : QA — TB we have f =
<a>(% ; f) . Indeed, for any relevant p which is tl4,

A (@)%)i pe OF BB QUA(L 25) %25 p e O
= 0;QT L L QN f);p € O
= L N(f);pe 0™ = A(f);peO”.
Now, take any @ | @ = M : N and assume [M] € O% and that @ = M diverges us-
ing infinitely many DRF reduction steps. Then, @ = (M)° diverges using infinitely many
NEW reduction steps. However, since [(M)7] = [M], we have [(M)°] € O% and therefore

[(@,%) * ®(0,®)°] € [(M)] for some b. However, @ k= (M)° reduces to some S = M’ us-
ing |b|+1 NEW reduction steps, so [(M)°] = & [S; M'] with |¢] = |b|+1, Y to determinacy.m

We have therefore shown observationality.

Proposition 4.63 (Observationality) (7,7, Q, O) is observational.]

4.3.7 Definability and full-abstraction

We now proceed to show definability in our model 7, and through it ip-definability. Ac-
cording to the results of section this will suffice for full abstraction.

We first make precise the notion of finitary strategy, that is, of strategy with finite descrip-
tion, by introducing truncation functions that remove inessential branches from a strategy’s
description.

Definition 4.64 Let 0 : A — B in 7 and let [s] € viewf(o) be of even length. Define
trunc(s) and trunc’(s) by induction as follows.

trunc(e) = trunc’(e) £ €
€ ,if x = y are store-Q’s

/ A
trunc(z o) Yrs) = ,
xytrunc(s’) ,o0.w.

€ ,if x = y are store-Q’s
, oA)€ ,if store-Q, y a store-A and s’ = ¢
trunc’(zo)Yrys') = : ,
€ Jifxely,yelpands =¢

zytrunc’(s’) ,o.w.

4.3. THE NOMINAL GAMES MODEL 111

Moreover, say o is finitary if trunc(o) is finite, where
trunc(o) £ {[trunc(s)] | [s] € viewf(a) A |s| > 3}.
Finally, for any [t] € o define:

o<t = strat{[s] € viewf(o) |3t < t. trunc(s) = 7}.
A

Hence, finitary are those strategies whose viewfunctions become finite if we delete all the
store-copycats and all default initial answers — the latter dictated by totality. Moreover,
the strategy o< is the strategy we are left with if we truncate viewf(c) by removing all its
branches of size greater than 3 that are not contained in ¢, except for the store-copycats which
are left intact and for the store-A’s branches which are truncated to the point of leaving solely
the store-A, so that we retain tidiness.

Note that, in general, trunc’(s) < trunc(s) < s. We can then show the following.

Proposition 4.65 If o is a strategy and [t] € o is even-length then o<, is a finitary strategy with
[t] € o<t and o<4 C 0.

Proof: To show that o<; is an innocent strategy we need to show that
f = {[s] € viewf(o) | 3t < t. trunc'(s) = 7}

is a viewfunction. For even-prefix closure, if s = s'zy and [s] € f then [s] € viewf(c) and
trunc’(s) = 7, some t' < ¢. We have that trunc’(s’) < trunc/(s) so trunc’(s’) = "7, some
t" <t <t 5s0[s'] € f. Single-valuedness is clear, as f C viewf(c). The latter shows also
that o<; C 0.

Totality is obvious. For tidiness, let odd-length [s| € o<; with s’ = s. (TD2) clearly
holds. For (TD1), if s ends in a store-Q then there exists [sz] € ¢ satisfying (TD1) and,
as trunc/(s™) = trunc’(sz), we have [sz] € f. The same reasoning resolves (TD3).

We now show trunc(f) is finite. Each [s'] € trunc(f) is [trunc(s)] for some [s] € viewf(o)
and ¢’ < t such that |s| > 3 and trunc/(s) = . The cases of [trunc(s)] = [trunc/(s)] are
finitely many, as ¢ is of finite length. For the rest, trunc(s) = trunc’(s)zy, « a store-Q a with
a € S(trunc/(s)) and y a store-A. Hence, for each ¢’ < t there are not more than |S(¢)|-
many elements added in trunc(f). Thus, o<, is finitary.

Finally, for any even-length ¢’ < t, we have that trunc’ (") < ", so there exists some ¢/ <t
such that trunc’ (") = " and hence [t""] € o<;. Then, by lemmaB38 we have [t] € 0<;.®

We proceed to show definability. The proof is facilitated by the following lemma. Note
that for economy we define strategies by means of their viewfunctions modulo totality and
even-prefix closure. Moreover, we write o | ¢ for the (total) restriction of a strategy o to an

initial move ¢, and s P for s with b removed from all of its name-lists.

Lemma 4.66 (Decomposition Lemma) Let o : Q%[A] — T[B] be a strategy. We can decom-
pose o as follows.

1. If there exists an i (o) such that 3. [(@,i4(0)) * ® x0] € o then

(lz £ iaq)], (90,0"))

o =QA] N® (T[B])* =% T[5]

where:
o £ i) QTIA] —N 2 {[(@ia) 01} U{[(@ i) 1] | [(@ ia)] # [(@iae)]}
00 : Q[A] — T[B] £ strat{ [(a, i) 8] € viewf(o) },
o' QUA] — T[B] £ strat{ [(@,ia)s] € viewt(o) | [(@,ia)] # [(@, ia0))] }-

112 CHAPTER 4. NOMINAL REFERENCES
2. If there exists an i 5oy such that Via. (3xg. [(@,ia) * ®@x0] € 0) <= [(@,ia)] = [(@,ia(0))],
then o = <5> oy, where:

o : QP[A] — T[B] 2 strat{ [(@b,ia0))* ®mos]| [(@, i) *®mbs| € viewt(o) }.

3. If there exist i (o), mo such that Via, x.[(d,ia) * ®z] € 0 <= [(d,i4)x] = [(@,14(0)) M0],
then one of the following is the case.

(@) mo = a, a store-Q of type C under ®, in which case we have o = o' | (d@,i(0)), where:

/
g

lI>

QA] =2 Q4] & T[C] = TQ([A] © [C]) 2> TB] - T[],
strat{ [(d,ia(0),ic) * ®s]|[(d,ia00)) * ®aics] € viewt(o) },

Qal;g;drfc ,if a € 8(a)

Qaﬁj;g;drfc Jifa#a.

lI>

¢: QA] —T[C] £ {

(b) mo = jaVmo = (ip, ®), astore-H, in which case if [(@,i4(0)) * ® mo aic] € o, for some
store-Q a and store-A ic, then

o = QA] =27 Q7[A] Q7[A] @ T[C] TTEEEE 1Q 4] ST 78]

where:

0q : QU[A] — T[C] £ strat{ (@, ia0)) * ® (ic,®)s] | [(@,ia0) ¥ ®moaics| € viewf(o)

VI[® ® s] € viewt(ide) },
o' : QU[A] — T[B] £ strat({[(a, ia)) * ®moys| € viewf(o) |y #a}
U{[(@ iaq0)) * ®moas]|[® ® as| € viewf(ide)}),

a A J QU5 E)®@idjey;upde , ifa € S(d)
: Al Q[C] —T1 = e,
oredeld {(Qaﬂj;%)®id[[011;updc Jifa#a.

In both cases above, we take j = min{j | (ia(0)); = a}.

Proof: 1 is straightforward: we just partition o into o9 and ¢’ and recover it by use of

[x L 4(0y] and cnd. For 2, we just use the definition of name-abstraction for strategies and
the condition on o.
For 3, it is clear that my is either a store-Q a under ®, or a store-H j4, or a store-H (i g, ®).

A

In case mo = a with a € A¢, we define 0, : Q¥[A] ® [C]) — T[B] = strat(f.),
where

fa = {1(@ i), ic) * ®s]|[(@ia0) * ®aics] € viewt(o) }.

To see that f, is a viewfunction it suffices to show that its elements are plays, and for that it
suffices to show that they are legal. Now, for any [(@,i4(0),ic) * ®s] € fq with [(d@,i4(0)) *
®aic s| € viewt(o), (@,ia(0),ic) * ® s is a justified sequence and satisfies well-bracketing,
as its open Q’s outside s are the same as those in (@, i A(o)) x ®aics,ie. ®. Moreover,
visibility is obvious. Hence, f, is a viewfunction, and it inherits tidiness from o. Moreover,

4.3. THE NOMINAL GAMES MODEL 113

we have the following diagram.

QFA] 2T 1 o0d([A] © [C]) —— 2 T B] ——~ T(B]
(@,74(0))
/ b
®
®
® i
a (J(‘ /
\ a
N
ic
io ‘
ic
(aa iA(O)'a iCa ®) \
| (+,®)
®

Because of the copycat links, we see that

viewf((id,¢) ;7T ;Toa;p) [(A iaw)) = {[(@ ia) * ®aics]|[(d i) ic) * ®s] € vieut(oa)}
=viewf(o),
as required. Note that the restriction to initial moves [d@,i ()] taken above is necessary in

case ¢ contains a projection (in which case it may also answer other initial moves).
In case mg = ja (so mg a store-H) and [(@,74(0)) * ® mo aic] € o, we have that

o=strat(fo U(f'\ fl)),

where f,, f’ are viewfunctions of type Q?[A] — T[B], so that f, determines ¢’s behaviour
if O plays a at the given point, and f"\ f; determines o’s behaviour if O plays something
else. That s,

fo & {1(@ ia0)) * ®jaaics| € viewf(o) }
fo 2 {(@ia0) * ®jaas]|[® ® as] € viewf(ide) }
2 fou{l(@iae) * ®jays) € viewt(o) |y #a}.

lI>

f' differs from viewf(o) solely in the fact that it doesn’t answer a but copycats it instead;
it is a version of viewf(o) which has forgotten the name-update of a. On the other hand,
fa contains exactly the information for this update. It is not difficult to see that f’, f, are
indeed viewfunctions. We now define

fa - QIAl —TICT £ { @ ia@) * @ (ic,®)] | [(@ ia@) * ®jaaics] € fa
VI[® ® s] € viewf(ide) }

(1>

oq: Q°[A] — T[C]
o' : Q[A] — T[B]
o : QUA] — T[B]

strat(f)

lI>

strat(f’)
(A,0a) ;7 T(1d®¢;7) s 3= To" s .

lI>

114 CHAPTER 4. NOMINAL REFERENCES

We can see that ¢’ is a tidy strategy. For o, it suffices to show that f’ is a viewfunction, since
tidiness is straightforward. For that, we note that even-prefix closure and single-valuedness
are clear, so it suffices to show that the elements of f; are plays.

So let [(@,ia(0)) * ® (ic,®)s] € f, with [(@,ia(0)) * ®jaaics| € viewf(o). We have that
(@,i4(0)) * ® (ic, ®) s is a justified sequence, because s does not contain any moves justified
by ja or a. In the former case this holds because we have a P-view, and in the latter because
a is a closed (answered) Q. Note also that there is no move in s justified by ®: such a move
(ip,®) would be an A ruining well-bracketing as j4 is an open Q, while a store-Q under
® is disallowed by tidiness as s.1 is an O-store-H. Finally, well-bracketing and visibility are
clear, while NC’s follow from lemma

We now proceed to show that ¢ = ¢”. By the previous analysis on f; we have that o, =
o, ;1 (modulo totality) where ¢, is the possibly non-total strategy

o+ QA] — [C] £ strat{ [(@,iaw))ics] | (@ ia) * ®jaaic] € fu},

and hence o” [(d@,i4(0)) = (A, 0y,);1d®¢;7;2;T0’; u. We have the following diagram.

_ (Aol) _ 1d®¢ ;75 " o’
Q[A] — Q4] ® Q“[A] ® [C] ——— TQ"[A] i TB] —— T[B]
(@,ia0))
(@, 74(0), @5 %4(0)s%C)
‘ *
*
X
®
&®
®
(67 iA(0)7 ®)
|
o
®\
ja

ja

e

ic

T

)
|

|

Following the copycat paths and observing that the response of ¢” to inputs different than

4.3. THE NOMINAL GAMES MODEL 115

[d@, 7 4(0] is merely the initial answer * imposed by totality, we obtain:

viewf(o”) = { [(@,ia(0)) * ®jaas],[(@ ia) * ®jays| € viewt(c") |y #a}
={[(d ia@) * ®jaaics]|[(d i) * ®(ic,®)s] € fi/ Nsle ey}
U{ (@ iaq)) * ®jaysle f' ly#a}
= faU(f'\ fa) = vieut(o)

as required.
In case x = (i, ®) we work similarly as above.]

The proof of definability is a nominal version of standard definability results in game se-
mantics. In fact, using the Decomposition Lemma we reduce the problem of definability of
a finitary strategy o to that of definability of a finitary strategy og of equal length, with o
having no initial effects (i.e. fresh-name creation, name-update or name-dereferencing). On
oo we then apply almost verbatim the methodology of [HY99] — itself based on previous
proofs of definability.

Theorem 4.67 (Definability) Let A, B be types and o : Q%[A] — T[B] be finitary. Then o is
definable.

Proof: We do induction on (|trunc(c)|,||c||), where welet ||| = max{|L(s)||[s] € viewt(d)},
i.e. the maximum number of names introduced in any play of trunc(o). If [trunc(c)| = 0
then 0 = [stopy]; otherwise, there exist xo,74(0) such that [(@,i4¢0)) * ®x¢] € 0. By
Decomposition Lemma,

o = ([xr = i), (00,0")); cnd
with |trunc(o’)| < [trunc(c)| and (0,0) < (Jtrunc(oy)l,||ool]) < ([trunc(o)l,|lo||), so by
IH there exists term M’ such that [M'] = o’. Hence, if there exist terms My, Ny with
[Mo] | (@, ia(0)) = 0o and [No] = [z = i4(0)]; n, then we can see that

o = [if0 Ny then M, else M'].

We first construct Ny . Assume that A = 4; x Az x - - - x A, with 4;’s non-products, and sim-
ilarly B = B; X - -+ x Bp,. Moreover, assume wlog that A is segmented in four parts: each of
Al, ey Ak is N,' each of Ak+1, ceny Ak-i—i; vy Ak-‘,—k’ is [A;”],‘ each of Ak+k’+17 ceny Ak—i—k’-{-i; vy Ak+k’+k”
is A} — AY; and the rest are all 1. Take Z, 2", 2", 2" to be variable-lists of respective types.
Define ¢, ¢ by:

G0 = K1, ..., Kk, With (k1, ..., k;) being the initial N-segment of 1A(0) 5

(ia))k+i if ({a(0))k+i € S(a)
¢y = KY,..., K}y , witheach k] 2 € a0 #d
0 = 1oy KEr s P = . . i i . .
Aj=min{j <i|(ia@))k+i = ({a0))k+s}

fresh(i) ,otherwise.

fresh(i) is a meta-constant denoting that Opponent has played a fresh name in Ay4,. If
the same fresh name is played in several places inside i4(p) then we regard its leftmost
occurrence as introducing it — this explains the second item in the cases-definition above.
Now, define:

5
|

£ [(2,7) = (¢0, ¢p)], where
[21:H1]A..-A[zk:,‘ik]/\[zizﬁll]/\.../\[z;cl:K;C,],
z/:fresh(i)] £ [Z/#al]/\"'/\[Zl?éa\a\]/\[ZI%Zﬂ/\"'/\[ZI#le],

-
2y
Y
=
I
—~
ED
=N
=
(1>

with the logical connectives A and — defined using i£0’s, and [z; = ;] using pred’s, in the

standard way. It is not difficult to show that indeed [Ny] Z [z =ia0));7n-

116 CHAPTER 4. NOMINAL REFERENCES

We proceed to find M. By second part of Decomposition Lemma, oy = <5> oy with
b = nlist(zo), [trunc(oy)| = |trunc(oy)| and |log]| = [loo|| — [b]. If [B] > O then, by IH, there
exists term M such that [M;] = o3, so taking

My 2 vb.M;

we have og = [My] .
Assume now |b] = 0, so z9 = my. op satisfies the hypotheses of the third part of the
Decomposition Lemma. Hence, if m¢ = a, a store-Q of type C' under ®, then

oo = ((id,¢); 7T s Toq ;) | (@,ia(0))

with trunc(o,) < trunc(og). Then, by IH, there exists @ I T,y : C' - M, : B such that
0o = [M,], and taking

[N {(Ay.Ma)(!a) ,if a € 8(@)
T Ow M) (2 ifa#an =min{j|a= (iao))i}

we have og = [Mo] | (@,i4(0))-
Otherwise, mg = ja V mo = (ip,®), a store-H. If there exists an a € A¢ such that oy
answers to [i4 gy * ® mg a] then, by Decomposition Lemma,

00 =(A,04);7;T(1d® ¢;7) ;T 5

with [trunc(o,)|, [trunc(c’)| < |trunc(oy)|. By IH, thereexistd | I' - M, : Cand & | T' - M’ :
B such that 0, = [M,] and ¢’ = [M’]. Taking

M A (a:=M,);M" ,ifa € 8(a)
0 = . S s .
(2 = M,); M" ,ifa4dAj=min{j|a= (is0))k+j}

we obtain oy = [Mo] . Note here that o, blocks initial moves [@,i4] # [d@,i4(0)] and hence
we do not need the restriction.

We are left with the case of mg being as above and oy not answering to any store-Q,
which corresponds to the case of Player not updating any names before playing my.

If mg = (ip,®) then we need to derive a value term (V1,...,V,;,) (as B = By X --- X Bp,).
For each p, if B), is a base or reference type then we can choose a V,, canonically so that its
denotation be i, (the only interesting such case is this of i, being a name a # @, where
we take V;, to be 27, for j = min{j | @ = (ia(0))k+;})- Otherwise, B, = B;, — B, and from
o we obtain the (tidy) viewfunction f : Q%([A] ® [B,]) — T[B;/] by:

f 2@ ia©)isy) * ®s]|[(@ia@) * ® (5, ®) (ip,,®) 5] € viewt(oo)}.

Note that, for any [(d@,ia) * ® (ip,®) (ip,,®) s| € viewf(oo), s cannot contain store-Q’s
justified by @, as these would break (TD2). Hence, f fully describes oy after (ip;,®). By
IH, there exists @ | T,y : B, = N : B such that [N] = strat(f); take then V,, £ X\y.N.
Hence, taking

My £ (Vi,..., Vin)

we obtain oo = [Mo] I (d@,i4(0))-
If mg = ja, played in some Ay ;i = A; — Af, then mg = (ia;, ®). Assume that A} =
Alq x - x Al with A} ’s being non-products. Now, O can either ask some name «

(which would lead to a store-CC), or answer at A, or play at some A; , of arrow type, say
A;,=Cip — Cj,. Hence,

viewf(og) = fa U U:;1 fp

4.3. THE NOMINAL GAMES MODEL 117

where:
fa & fou{l@ia) * ®(ia, ®) (iar, ®) s] € viewt (o) }
fo = foU{l(@iaq) * ®(ia;, ®) (ic, . ®) s] € viewt(oo) }
fo £ {l(@ia0)) * ®(ia,®)s] | [® ® s] € viewf(ide) }

(1>

and where we assume f, £ fo if A} , is not an arrow type. It is not difficult to see that
fa, fp are viewfunctions. Now, from f4 we obtain:

fa: QUIAI®[AT]) — TIB] £ {[(@ ia),iay)* ®]| [(@ i) *® (ia,®) (iay, ®) s] € fa}

It is not difficult to see that f/, is indeed a viewfunction (note that P cannot play a store-
Q under ® on the RHS once (iar,®) is played, by tidiness). By IH, there exists some
alT,y: Al F M4 : Bsuch that [M4] = strat(f/,).

From each f, # fo we obtain a viewfunction f; : Q*([4] @ [C;,]) — ¢ ,] by:

Iy 2 {[@.iawysic.,) « @8] [@iaw) * ® (ia; ®) (e,) 5] € fy}

By IH, there exists some @ | I,y : C; , = M), : C] , such that [M,] = strat(f,), so take
V, £ M\y/.M,. For each A, of non-arrow type, the behaviour of g at A} , is fully de-
scribed by (ia:),, so we choose V), canonically as previously. (Vi,..., Vi,,) is now of type
A’ and describes 0(’s behaviour in A}.
Now, taking

Mo £ (Ay.-Ma)(z (Vi, .o, Via,))

we obtain o = [Mo] I (a@,i4(0))- "

Finally, using the definability result and proposition E.65l we can now show the following.

Corollary 4.68 7 = (7,T, Q, O) satisfies ip-definability.
Proof: For each @, A, B, define D £ {f : Q°[A] — T[B] | f is finitary} . By definability,
every f € DZ, p is definable. We need also show:

(Vp € Di_pn-AT(f);p € 0T = A%(g);p€0”) = [57yg.

Assume the LHS assertion holds and let A%(f);p € O%, some p : Q%([A] —= T[B]) — TN.
Then, let [s;t] = [(a@, *) * ® (0, ®)E] € A(f);p, [s] € A%(f) and [t] € p. By proposition EL65,
[t] € p<t,50 A%(f); p<¢ € OF. Moreover, p<; € Di_,BN, so A%(g) ; p<; € O%, by hypothesis.
Finally, p<; C p implies A%(g) ; p<; C A%(g) ; p, hence the latter observable, so f <% g. [

Hence, we have shown full abstraction.

Theorem 4.69 7 = (7,T,Q, O) is a fully abstract model of vp.]

4.3.8 Equivalences established semantically

In this last section we prove several equivalences using the full-abstraction result. We first
consider
stopgp R va.la (4.17)

with a € A, for any type B. By full-abstraction it suffices to show [stopg] « [ra.!a], and
for the latter it suffices to show

[va.la] < [stopg],

118 CHAPTER 4. NOMINAL REFERENCES

since the other direction is implied from the fact that [stopg] C [ra.!a]. So take some t14
strategy p : T[B] — TN and consider any [s;t] € [va.!a];p with |s;¢] > 3. We know
(example E33) that [va.!d] is given by

strat{ [x x ®a®i% (ip,®)* s | [(®,iB) (®,ip) 5] € viewf(id5®[[3]]) 1,

s0 s = x x ®a®s’, while p being tl4 and s < ¢ imply that t = * * ® @b ab t/, for some b # a.
Since p is tidy and a” is a fresh store-Q, #’.1 = a” and therefore s ; starts with the sequence
*+ ®a’. Hence, [ra.!a] ;p ¢ O and therefore [va.!a] < [stopg].
We now show equivalence 7) of pageB0 Recall that

My 2 Af.stop: (1 — 1) -1, Ms = \f. fskip;stop: (1 —1)—1,

and that we need to show My = M5 . By full-abstraction, it suffices to show [M4] « [Ms],
where the latter are given as follows.

[M4] [Ms]

14>T((1H®T1)H®T1) 14>T((1H®T1)H®T1)
* 0Q * 0Q
* PA * PA
/ /
® 0Q ® 0Q
— _
(*, ®) 4 PA (*, ®)) PA

(x,®)

@ oQ

(%, ®) (s PQ

Bottom links stand for deadlocks: if Opponent plays a move (x, ®),, under the last x in [M4]
(providing thus the function f) then Player must play [stop], i.e. remain idle. Similarly for
[Ms]: if Opponent gives an answer to (x, ®) s, (providing thus the outcome of fskip) then
Player deadlocks the play.

Observe that [M4] C [Ms5], so we need only show [M;s] < [Ma] . Suppose p : T((1 —=
T1)—T1) — TNis a tl4 tidy strategy such that [x * ® (0,®)%] € [M5] ; p for some @. Then,
because of the form of [M5], p can only play initial moves up to (x, ®),), then possibly ask
some names to (x, ®),, and finally play (0,®)% Crucially, p cannot play (x, ®)., under
*: this would introduce a question that could never be answered by [M5], and therefore p
would not be able to play (0, ®)? without breaking well-bracketing. Hence, [M,] and p can
simulate the whole interaction and therefore [x ® (0,®)%] € [M4] ; p.

Finally, we show the equivalences DROP and SWAP of [Sta94]. Assuming typed terms
alT F M:Aand dab | T' F N: A (note that the latter implies dba | I' - N : A is also a typed
term, by lemma [Z17), these are formulated as follows.

@17 FvaM=~M (DROP)
@|T F vab.N = vba.N (SWAP)

Arguing semantically, and recalling lemmaELT0) it suffices to show that, for any f : QT —
B and any g : Q9* — B with B pointed,

Fo @y (% f) (DROP)
(aby g =7 pay(2a ; g). (SWAP)

Observe now that both of the above follow from lemma E&T1

Chapter 5

Nominal Exceptions

In this chapter we examine extensions of the sv-calculus in which names can be raised and
handled as exceptions. Exceptions are a prevalent feature of programming languages for
raising and handling eccentric program behaviour, and more generally for manipulating
the flow of control. It is a key feature, for example, of ML, Java and C++. The raising
of an exception forces a program to escape out of its context and to the nearest available
exception-handler. Thus, exceptions provide a means of (an effect for) overriding nested
behaviour of functional programs.

We start with a simple extension of the sv-calculus, the ve-calculus, of which we briefly
examine the syntax and abstract categorical semantics. The main focus, though, is on the
vep-calculus, the extension of vp with nominal exceptions. For vep we carry out a simi-
lar analysis as with 1p in the previous chapter (factoring out material covered previously
where possible), and thus construct a fully abstract semantics in nominal games. The con-
struction combines elegantly the use of an exception monad with the nominal games setting
where atoms are used (also) for exception names. We obtain a model of vep in (innocent,
well-bracketed) nominal games, which we then restrict to strategies with “disciplined” ex-
ceptional behaviour (x-tidy strategies) to the effect of obtaining a fully abstract model.

A fully abstract model for a language with exceptions and ground-type references was
constructed in [Lai0T]. In rough terms, the model of [Lai01l] allows for jumps in the prece-
dence with which a program answers questions posed by the environment (i.e. it mildens
the well-bracketing condition), thus translating in the semantical universe the override of
nested behaviour. This yields a description of the exception effect that is both accurate and
intuitive. However, the modelling of exceptions themselves is not nominal but rather based
on the ‘object-oriented” approach which encodes exceptions as products of raise/handle
type. Therefore, “bad” constructors are included in the syntax, that is, the language exam-
ined includes bad exceptions (and also bad variables). Another point of difference between
the two languages is that the one of [Lai01l], being an extension of Idealized Algol [Rey81]],
is call-by-name with block-structured exceptions and references.

5.1 The ve-calculus

Exceptions are a mechanism allowing program control to jump out of the current context
and to the nearest handler. In the calculus we examine now, exceptions are terms of type E.
These can be raised and handled, and their closed values are given by names. The latter are
taken from a set of atoms

Ae € (Ai)iEw

and hence the calculus is an extension of sv with names used for exceptions.

Definition 5.1 The ve-calculus is a functional calculus of nominal exceptions. Its types,

119

120 CHAPTER 5. NOMINAL EXCEPTIONS

terms and values are given as follows.

TY> A, B:=N|A—-B|AxB|E
TE> M,N = x| Xe. M | MN |{(M,N)|fst M |snd N A-calculus

| n| pred M | succ N arithmetic

| if0 M then Nj else N if_then_else
|a|va.M | [M = N] v-calculus (a € A.)

| raise M raise exception

| try Ni handle M => Ny try/handle exception

VASV,W:u=z|n|a| x.M|(V,W)

The typing system involves (as before) terms in environments @|I'; the main typing rules
are the following.

. dalT'-M:B alTFM:E AalTFN:E
all'Fa:E ilT FvaM:B GITF[M=N]:N
aAlT FraiseM: A @l F try Ny handle M => Ny : A

A

Observe that TE and VA are strong nominal sets. Regarding bound names and variables,
the same definitions and conventions as in the case of the sv-calculus are in effect. Note that
raised exceptions can have any type — even exception-type. Thus, for example, both the
following terms can have type E,

A A .
My = a, My = raisea,

but they are quite different: the former is a value of exception-type, while the latter is clearly
non-value.

The operational semantics is defined by means of a small-step reduction relation, where
terms reduce in name-list environments containing the names created thus far in the com-
putation.

Definition 5.2 Reduction in the re-calculus involves sv-calculus reduction rules and rules
for exceptions. The latter set of rules is given below.

HL
d F try (raisea) handlea=>N — ad E N

VHL = -
d E tryVhandlea=>N — akEV

NHL = — a#b
d E try (raiseb) handlea => N — d F raiseb

XPN — . — .
d F Z[raisea] — @ F raisea

- akEM — adakE=M
i F EM] — d@ F E[M]

C

Unhandled evaluation contexts Z are of the forms:

(M.N)_, _N,{(_,Ny, (V,_), fst_, snd_, if0 _ then N; else Ny,

succ_, pred_, [= NJ], [a=_], raise _, try N; handle _ => N,.

5.1. THE ve-CALCULUS 121

General evaluation contexts E are of the forms:

Z, try — handlea => N.
A

The ve-calculus is an extension of the sv-calculus without recursive effects, and hence it is
strongly normalising. Observational approximation is defined as usually: a term M obser-
vationally approximates a term N if, for any program context C, if C[M] reduces to 0 then
so does C[N]. Now, taking

M; 2 A\f.0:(E—N)—N
My &2 Nf.vavb.[fa < fb]: (E—N) - N (5.1)
M3z 2 Mf.va.[fa < fa]: (E— N) - N

we have the following equivalences/inequivalences in ve.

M, % M> (5.2)
My = Ms (5.3)

M; and M, which are equivalent in sv, can be distinguished by a context that raises an
exception as soon as f is used, e.g. the context

C £ _(\r.raiseva.a).

On the other hand, the equivalence of M, and M3 (which is invalid in vp) is given in
section B.2.f semantically, after we introduce a fully abstract game semantics for the vep-
calculus. We will also see that references and exceptions are more expressive than references
alone.

We move on to sound categorical semantics for the ve-calculus. We follow the same
recipe as in the case of the vp-calculus, that is, we work in a monadic-comonadic setting
for names and on top of it we require structure for modelling exceptions. In the categorical
semantics of vp we used a single monad T for encapsulating both fresh-names and store.
As we saw in the concrete game semantics, this was achieved by first constructing a fresh-
names monad (lifting) and then, by use of a store-arena, deriving a store-monad 7" which
embedded lifting. This methodology heavily uses the fact that the store-monad uses expo-
nentials, and that lifting has such exponentials. Therefore, it is not relevant in the case of
exceptions; the standard practice for exceptions is monad composition.

Since our model analysis is an extensional (macroscopical) one, we find more useful
(and concise) the description of our monad T as separable into two components, rather
than a compound monad over a distributive law ¢ (definition ZZ26). We therefore introduce
precompound monads.

5.1.1 Precompound monads

As discussed above, the computational monad 7" for the ve-calculus contains a component
for exceptions and another one for fresh names. The two-component nature of 7" does not
need the full specifications of a compound monad for its description.

Definition 5.3 A strong monad (T, n, i, 7) is precompound if there exists a natural transfor-
mation 6 : ' —> T such that the following diagrams commute.

TA—Aw g2y g <A oy OTA L sy AxTB—22 ~ T(Ax B)

HA nra;bra na;0a T(pa;0a) idx0g Oaxn

TA T34 T2A T3A A xT2B————T¥A x B)
A

Tpa pra TA,TB;TTA B

122 CHAPTER 5. NOMINAL EXCEPTIONS

Moreover, each 74 is an inner- and outer-component arrow, where an arrow f : A — T'B
is said to be:

e an inner-component arrow if ;05 = f;nrE,
e an outer-component arrow if f;0p = f;Tnp.
We write T as (T, 0). A
In essence, 0 is separating the two components in 7', with each morphism
0s:TA—T,T,A

sending the outer T-component of T'A to T,,, and its inner T-component to 7,. From
this viewpoint, outer-component arrows can be seen as involving computation in the outer
component of T', and similarly for inner-component arrows.

Arrows in each component form distinct Kleisli categories: n-arrows are in both compo-
nents and Kleisli-composition in the same component is a closed operation, as it is shown
in the following diagrams.

A—T srp—" gy A— 1" 1
N e
T°C B .\ T T mB—1C
L \ - L ’ L N LTW
TC T°C <~ T%C ro | Sro—— 1%
N N
%0 ~——TC e p——

Figure 5.1: Kleisli-composition for inner- and outer-component arrows.

Every monad T is trivially precompound, by simply taking 6 to be n (empty outer com-
ponent) or T'n (empty inner component). More generally, compound monads are precom-
pound.

Lemma 5.4 Let T be a compound monad (TT', (). T is precompound with 6 defined by:

HA:TA—>T2A = T77TA7TT77TA

5.1.2 Sound categorical semantics

We now proceed to formulate an abstract categorical semantics for the ve-calculus. The
semantics is based on ve-models, which resemble vp-models of the previous chapter.

Definition 5.5 A ve-model M is a structure (M, T, Q) such that:

I. M is a category with finite products, with 1 being the terminal object and A x B the
product of A and B.

II. T isastrong monad (7, n, i, 7) with exponentials.

ITI. M contains a natural numbers object N equipped with successor/predecessor arrows
and n : 1 — N, eachn € N. Moreover, for each object A, there is an appropriate arrow
for zero-equality tests cndg : N x TA x TA—TA.

5.1. THE ve-CALCULUS 123

IV. Q is a family of product comonads (Q%,¢, 6, {)zea# on M such that:

(a) the basis of Q¢ is 1, and Q% = Q% whenever [a] = [@],

(b) if @ C d then there exists a comonad morphism d.i/ : Q7 — Q7 such that % =g,
4 = id and, whenever @’ C d@" C a,

a a
v =
a// ! a/

(c) for each Ga € A¥ there exists a strength-coherent (v. 33), page[Z2) natural trans-
formation nu® : Q% — T'Q such that, for each A € Ob(M) and da C @a, the
following diagrams commute.

~/
a'a

. id,nua o o _ nu 4 o/
QaA % QGA X TQGGA Qa A———> TQ‘“ZA (NZ)
nuAi lT %l lT%—ls
TQ™A ————— T(Q%A x Q9 A) QA———=TQ¥"A
T (% id) nuy®

V. Setting A, £ 21, fora € A,, thereis a name-equality arrow eq, : A, X Ac — Nin M
such that, for any distinct a, b € A, the following diagram commutes.

ab ab
Qal % A, X A, <L Qabl (Nl)
T
1 _ N _ 1
0 1

VI. M contains a natural transformation inx : K, — T for exception-raising, where K,
is the constant-A. functor, such that the following diagrams commute.

Ax h, —B A TB A, —TE rop (NE1)
ﬂ'zl l‘r \ ‘/“
inxp
he ——T(Ax B) TB
inxAx B

Moreover, for each object A, an arrow hdly : A. x TA x TA — T A for exception-
handling such that the following diagram commutes.

ab ab

. <?7_'>><id i
Qi1 x TA——" > A, x by x TA<—"20 5 xTA (NE2)
idXinxAXidL %
m;"’Tf’ A, xTAxTA txapid A, x AxTA
hdlAl //
T1251M
Ae TA

inx g

Finally, T is precompound, (7, §), with nu being in the outer component and inx in the

inner one.
A

124 CHAPTER 5. NOMINAL EXCEPTIONS

We observe that items I-1V appear verbatim in the definition of a vp-model, while V presents
the same property applied to different objects of names. The reason is simple: these are the
sv-calculus specifications of the model, and the sv-calculus is the common denominator of
ve and vp. On the other hand, item VI gives the specifications for exceptions.

We now proceed with the modelling of the ve-calculus in a ve-model.

Definition 5.6 Let (M, T, Q) be a ve-model. ve-types are translated in M as follows.
IN] £ N, [AxB] £ [A] x[B], [A— B] £ T[B], [E] £ A..

A typed term @ | T' M : A is mapped to an arrow [M].|: Q7[I] — T[A] in M, which
we write simply as [M] : QT — T A, by use of the following rules,

[M] : QT — TA, [M] : QT — TA, [N;]:QT —TA
, . M], [N1]:6, [NV

or— M _7p, gir IO TN) ey A

\\\ \LTinxA \\\ lwxid;rl

[raise JV;]]\ ~ A [try N1 handle M => N;]} ~ T(Ae x TAx T'A)

N i# > lThdlA ”
N ~ o
TA TA
and relevant rules of figure 3 p. A

The fact that the translation of the ve-calculus into a ve-model follows closely that of vp
into a vp-model allows us to easily prove correctness of the translation for non-exceptional
behaviour. The exceptional cases are then attacked as in the case of vep in the next section.

Proposition 5.7 (Correctness (vc)) Forany typed term @ | T F M : A and any r # NEW,
1L.aFM — ak M = [M]=[M],

NEW

2.8k M da b M = [M]=[va.MT].

Therefore, & & M — ad' F M' = [M] =[vd'.M'].]

We close this section by giving adequacy specifications for ve-models. We do not proceed to
full-abstraction specifications, neither to concrete models in game semantics; these are seen
in detail in the next language we examine, the vep-calculus.

Definition 5.8 Let M be a ve-model and [_ | be the respective translation of the ve-calculus.
M is adequate if, for any pair of states @, @', any n # 0 and any a € A,

[vd.raise a] # [vad'.0] # [vd.n] .
A

The above condition for adequacy is a simplified version of the respective condition for
vp, given that the calculus we are now examining is strongly normalising. It can also be
seen as an extended version of the mono requirement of computational models presented by
Moggi [Mog89].

Assuming M is an adequate ve-model we can show the following.

Proposition 5.9 (Equational Soundness (v¢))

[M]=[N] = MSN

5.2. THE vep-CALCULUS 125

5.2 The vep-calculus

We combine nominal general references and nominal exceptions to a new language, the vep-
calculus, extending both vp and ve. Names in vep are created with local scope, can be tested
for equality and can be passed around via function application. Moreover, some names
(reference names) can be dereferenced or updated, while others (exception names) can be raised
or handled. The syntax is built in nominal sets by assuming a set of atoms A, € (A;);e,, for
exception names and a set of atoms Ay € (A;);c., for reference names of type A, for each
type A in the language.

Notation 5.10 As before, (general) names are denoted by a, b, c and variants. Note, though,
that we use different notations for exception and reference names. In particular, we use
a, b, ¢ and variants for exception names; and 4, b, ¢ and variants for reference names.

Definition 5.11 The vep-calculus is a functional calculus of nominal references and excep-
tions. Its types, terms and values are given as follows.

TY>AB:=1|N|AxB|A— B|[A]|E
TE> M,N = x| XM |MN|(M,N)|fst M |sndN A-calculus

| skip | n | pred M | succ N return/ arithmetic

| if0 M then N; else Ny if_then_else
|a|va.M|[M = N] v-calculus

| raise M | try N7 handle M => N, raise/ handle
|M:=N|!M update/ dereferencing

VASV,W:u=z|skip|n|a|Xe.M | (V,W)

The main typing rules are the following.

dalT'-M:B alT+-M:A, alTFN:A,
- A, € {E} U {[A]| A € TY}
all FvaM:B all'H[M=N]:N
aca all'FM:E alTFM:E 6|F|_N1,N22A
N . ANac€h,
allka:E GIT Fraise M:A @lT b try Ny handle M => Ny : A
aca allTFM:[A] all M :[A] alTFN:A

N ANGEA A
all Fa:[A] alTHIM:A @lTFM:=N:1
A

The operational semantics is defined in mixed environments P containing information both
about the (general) names created and about the values stored in those of them that denote
references:

P:=¢|a,P|la:V,P. (5.4)

The domain of a mixed environment P is the list of names it enlists:
dom(e¢) £ ¢, dom(a,P) £ a,dom(P), dom(d::V,P) = i, dom(P), (5.5)
and must be a list of distinct names.

Definition 5.12 Reduction in the vep-calculus invokes sv-calculus reduction rules and rules

126 CHAPTER 5. NOMINAL EXCEPTIONS

from vp and ve. The latter two sets are given below.

DRF
Pai:V,PE'4a — Pa:V,PEV

UPD
Pa(zW), P Fi:=V — Pi:V,P F skip

HL
P I try(raised) handle¢=>N — P E N

VHL .
P F tryVhandlea=>N — P FV

a#b

NHL . ;
P I try (raiseb) handlea¢ => N — P F raiseb

XPN
P | Z[raised] — P F raisea

_PFM — P M
P F E[M] — P’ F E[M']

CT

Unhandled evaluation contexts Z are of the forms:

(M.N)_, _N,{(_,Ny, (V,_), fst_, snd_, if0 _ then N; else No, succ_, pred_,
[=N], [a=_], raise _, try Ny handle _ => Ny, !, _ =N, d:=_.

General evaluation contexts E are of the forms:

Z, try — handleg => N.
A

Contexts in vep extend vp-contexts in a straightforward manner, so contexts have types of the
form (@, T, A) — (@', 17, A’) (see definition EB). A program context is a name- and variable-
closing context yielding N, that is, a context of type (a,I', A) — (e, @,N). For typed terms
dlTFM:Aandd|T F N : A, wesay that M observationally approximates N, written
alT F M Z N orsimply M < N, if, for any program context C,

(IP'. FCM] —» P'F0) = (3FP". EC[N] — P" FO0).

Observational equivalence, =, is the symmetric closure of 5 .
Let us examine briefly the expressivity of the vep-calculus in relation to the expressivity
of the nominal calculi examined previously. Takinﬁ

M; 2 A\f.0:(E—N)—N

My & \f.vavb.[fa < fb]: (E—N) — N

M3z 2 Mf.va.[fa < fa]: (E— N) - N (5.6)
My 2 Af.stop: (1 —1) -1

Ms & \f. fskip;stop: (1 — 1) — 1

we have the following inequivalences.

My % M (5.7)
My % M; (5.8)
My % Ms (5.9)

IRecall stop 2 wb.(b:= Az.(!b)skip);(! b)skip, [M < N] £ if0 M then N else (if0O N then 1 else 0).

5.2. THE vep-CALCULUS 127

E2) and E3) are inherited from vp, while M, and M5 (which are equivalent in vp) can be
distinguished by use of exceptions, e.g. by the context

C = vatry (_(\y.raise @));0 handled => 0.

The equivalences and inequivalences of the above terms in the calculi we examine in this
thesis are summarised in figureB.2] where A, is E in the case of ve, and [1] in all other cases.

My =M, | My = Ms | My= Ms My)\fO(AVHN)HN

a
sV 0 O — My & Mf.vavb.[fa < fb]: (A, — N) = N
vp 0 g g Ms; 2 Mf.va.[fa < fa]: (A, — N) =N
Ve d a - My 2 Af.stop: (1 —1) —1

Vep d O d Ms £ \f. fskip;stop: (1 — 1) —1

Figure 5.2: Equivalences separating our nominal calculi.

5.2.1 Categorical semantics

We examine categorical semantics of vep in the familiar monadic-comonadic setting. vep
extending ve and vp means that a model of vep ‘incorporates” a model of ve and a model of
vp, so the computational monad 7" we are after should incorporate a monad for exceptions
and a monad for storage.

Compound monads are such a solution, but there is a subtlety here: we cannot achieve
T by simply composing a monad 7" of ve with a monad 7" of vp, and therefore neither can we
compose a ve-model with a vp-model. The reason for this complication is that storage in 7
would be higher-order and therefore would need to include functions returning exceptions,
a specification of 7',

We therefore consider a monad 1" with separate components for storage and exceptions
which yields itself (rather than each of its components separately) both a ve-model and a
vp-model. As done previously in ve, the compoundness of the monad is expressed exten-
sionally via precompoundness.

Definition 5.13 A vep-model M is a structure (M, T, Q) such that:

A. M is both a ve-model and a vp-model (with common structure for items I-IV of defini-

tions 5.5 £8).
B. T is a precompound monad (7',), such that

e all arrows inx4 are inner-component,

e all arrows upd 4, and nuy are outer-component. A
We see that the precompound-monad analysis has paid off in conciseness in the above defi-
nition. Taking storage and fresh-names as outer-component and exceptions as inner follows

the common practice when composing exceptions with other effects.
We carry on with the semantical translation of the vep-calculus in a vep-model.

Definition 5.14 Let (M, T, Q) be a vep-model. vep-types are translated in M as:
[1] £ 1, [N] £ N, [Ax B] £ [A]x[B], [A— B] £ T[B]W, [E] £ &, [[A]] £ Aas.

Atyped term @ | I' = M : Ais mapped to an arrow [M], | : Q%[I'] — T[A] in M, which
we write simply as [M] : QT — T'A, by use of the relevant rules of definition E.f and
figure B3 p. A

128

CHAPTER 5. NOMINAL EXCEPTIONS

We reproduce most rules for the semantical translation in figure B3 The interesting part is
the use of 0 in the case of exception-handling. Its function is to separate the two components
of T'A yielded by [N:], so that the inner-component is passed on to hdl and the outer-
component is passed to the output of the computation. This allows us to disregard the

outer-component of T'A when applying hdl.

Correctness is now proved along the same lines as in vp. To any store P, we relate the

term P of type 1 as:

a,P & P,

€ £ skip,

The following lemma is needed.

a:V,P = (a:=V;P).

ol

[n] : Q7T —°5 Q71 —=» 1 -5 N -5 TN

o ey

[o] : QT -7 QA S A" T4

=

[4] : QT —% Q71— Ay —5> Tihy

Q

ey

[a] : QT 5 Q71 -5 A, -1 T,

[M] : Q%T x A) — TB

" AT 5 [M])
QIr - TBA
-~ . ln
[Ae. M)~ ~ o
T(TB4)

[M] : QT — T(A —=TB)
[N]: QT —TA

. M],[N
gir — D rpay T4
\\\ b VT'
[MNT = < _ lu’Te s
~TB

[M] : QT — Th,

= [M]
QI ——————>Thy
\|I‘ Xﬂ]\ - lerfA o
TA

[M] : QT —ThA, [N]:QT —TA

([M],IN])

QT Thy xTA
> ~ ll/)
ﬂM::\Ni ~ T(AA x A)

N lTupdA e
A
T1

[M] : QT —TA

[va.M] : QT WM, 74

[M] : QT — TA; [N]: QT — TA;

gir — D gy
S R \Lw
o YW(Az X Az)
N N \LTeQi
BN

TN

[M]: QT — TN [N;]:QT —TA

~ M],[N1],[N2
gir “LINVIVD o ra < T A

B T(N x TA x TA)

~

~N
[if0 M then N; else Na]
~ \LTcndA T

~
A

TA

[M] : QT — TA,

= [M]
QI ——————TA,

~ Tinxa ;p
[raise M] ~ _
TA

[M] : QT —TA, [N;]:QT —TA

([M], [N1];6, [N=])

QT TA. x T2AxTA
) RN \Lind;T,
[try Ny handle M => Nl T(Ae x TAXxTA)
> ~ lThdlA;'u‘
N
TA

Figure 5.3: The semantic translation of vep-terms.

5.2. THE vep-CALCULUS 129

Lemma 5.15 Forany f : Q%A — TB,
@(f;0p) =<y f;0p.
Proof: Noting that nu; T'f is outer-component, we have:
@(f:0) =nw;Tf;T0;p=nw; Tf ;T T TO; =00 T30 Tps TO; p=nw; Tf 5 s 0
as required. u

Proposition 5.16 (Correctness) Forany typedterm @ | T' = M : A, any P with dom(P) = & and
any transition ruler,

1. ifr ¢ {NEW,UPD,DRF}then P - M —— P+ M' = [M]=[M'],

2. ifr € {UPD,DRF} then P - M —— P'F M' = [P;M] =[P ;M'],

3.PFM Y Puk M = [P;M]=<)y[P;M].

Therefore, P = M — P' F M' = [P;M] = [vad'.(P'; M")], with don(P’) = aa'.

Proof: For 1-3, we do induction on the derivation of the reduction. Because of proposi-
tion T3 we need only show the base case of 1 for exceptions, and the inductive step of 1-3
for the case of contexts involving exceptions. In fact, by similarity to other casesfl it suffices
to consider only handled evaluation contexts at the inductive step.

The base case follows from the specifications of vep-models. We consider only the most
interesting case, that of XPN:

P I Z[raisea] — P F raiseaq.
Similarly to lemma we can show that, for any unhandled evaluation context Z,
[Z[M]] = (id, [M]);7: T T[Z[]] 5 1, (5.10)
and hence the following diagram commutes, as required.

T(¢"5[Z[=]])

R (id,[raise a])

QT Qi x TA———T(QT x A) T2B
(a3} idxinxAT :LnXQdeAT / lu
QT x A, p A, p— TB

For the inductive step, take E £ try _ handle @ => N. From the following diagram,

s (IP30) R - s TUaLIMI56,INT))
QT ————T1 x QT — > TQT —————= T(Ac x T?A x TA)

<<[[Pﬂ,id>,id>l idx<[[M]1;e,m>J/ f’;mdxw,uM lT(Txid;T/)

T1 x QT? —> T1 x T?A x QT =25 T34 x QT THhe x TA?) 22 73y

idXx ([M];0) xid
TlXidl/ #Xidl Hl H;H(\LT;L;;L

~ o __ (TO;p)xid i
TQ x Q°T T2A x QT ———> T?A x QT T(Ae x TA?) ——> TA

_—
B 73 T(iax (|l [N]) 5 2) Thal ;

(5 0)xid

e
T[M] xid

we have that [P;E[M]] = ([P;M];0,id) ;7" ;T(id x (|a|,[N]) ;=) ;Thdl;u, from which
the inductive step for 1-3 follows, with the aid of lemmas BT5 BTl Note that () follows
from the fact that f = ([P],id);7";T[M] is outer-component (which follows from [P]
being outer-component) by: f;7T0;u= f;Tn;Tp;T0;p=f;0;Tuw;T0;pn=fi;p;60. =m

From correctness, we can obtain soundness by adding a further specification on adequacy.

2In particular, raise _ is treated exactly like ! _,and try N; handle - => N3 like if0 _ then Ni else Na.

130 CHAPTER 5. NOMINAL EXCEPTIONS

Definition 5.17 Let M be a vep-model and [_] the respective translation of vep. M is ade-
quate if, for any typed term @ | @ - M :N, if [M] = [vb.P;0], some P,b, then there exists
P’suchthatd F M — P’ k0. A

Proposition 5.18 (Equational Soundness) Translating vep into an adequate vep-model M we
obtain:
[M]=[N] = MZN.

5.2.2 Full abstraction

Normally we would expect to obtain full-abstraction from soundness by adding further
specifications to vep-models, and perhaps doing some quotienting, but this is not the case
here. For full-abstraction the model needs to satisfy definability, at least for the arrows
defining the semantical preorder. However, ¢ is clearly not definable — there is no context
separating the computational effects in the manner § does—and its presence affects the
semantical preorder in a substantial way. For the latter, note for example that the terms

d:=0;raiseva.a and d:=1;raiseva.a

are observationally equivalent in the language, but their translations can be distinguished
by use of #: simply discard their inner-component computations by composing them with
0;T!, and then return the value of d.

Since it is unreasonable to ask definability with 6, we will remove it from our models and
thus work in vep-submodels, that is, submodels of vep-models that contain the translations of
all vep-terms but not problematic arrows like 6.

Definition 5.19 Let M = (M, T, Q) be an adequate vep-model and let [_] be the semantic
translation of vep into M. A vep-submodel is a structure (M’, T”, Q") such that:

e M’ isalluf subcategory of M, and 7", Q" are restrictions of T, Q in M’.
o (M, T’,Q’) satisfies items I-IV of definitions
o [M] e M(QP[I], T'[A]), for each typed term @ | ' - M : A. A

By a slight abuse of notation, we denote M’ by (M’, T, Q). Evidently, a vep-submodel M’
is an adequate model of vep. Regarding observationality, since the intrinsic preorder cannot
be shown to be a congruence (the semantic translation comes from M as a black box), it is
stipulated to be so.

Definition 5.20 A vep-submodel M’ = (M’, T, Q) is observational if:
e for all @, there exists 0% C M’(Q%1,TN) such that, forall @ | @ - M:N,
[M] €07 < 3P,b.[M] = [vb.P;0],
e the induced intrinsic preorder <= (<%);cu#, defined on arrows in M'(Q%A, T B) by
f5Tg <= Yp: QUTBA) —TN.(A%(f);p € O = A%(g); p € O7),
with AZ(f) £ AQ"T(f), is a congruence.
We write M" as (M, T,Q,0). A

Recall from definition EETZlthat < being a congruence means that, for any pair M, N of terms
and any relevant context C,

[M] < [N] = [ClM]] < [CIN]]-

We can now prove the following.

5.2. THE vep-CALCULUS 131

Lemma 5.21 (Inequational Soundness) Translating vep into an observational vep-submodel M’
we obtain:
[M]S[N] = MZN. .

The final step is full-abstraction, which passes through definability for the intrinsic preorder.

Definition 5.22 Let (M’ T, @, O) be an observational vep-submodel and let [_] be the se-
mantic translation of vep into M'. M’ satisfies ip-definability if, for any d, A, B, there exists
DY p € M'(Q[A], T[B]) such that:

e foreach f € D} 5 there exists a term M such that [M] = f,
e foreach f,g € M'(Q%[A],T[B]),
f<Pg <= VpeDi_pn (A (f);pe0F = A(g);pec07).
We write M’ as (M',T,Q,0, D). A

Proposition 5.23 (FA) Translating vep into an ip-definable vep-submodel M’ we obtain:

[M] <[N] < MSN.

5.2.3 The nominal games model

We proceed to construct a fully abstract model of the vep-calculus, that is, an ip-definable
vep-submodel, in a category of nominal games. Our basis is the category V, of section B3
which contains amongst others:

e an arena A, for exceptions and, for each type A, an arena A 4 for references to type A,
e finite products, distributive coproducts, partial exponentials, big tensors.

The modelling of storage is monadic by means of a store-monad 7" built around a store-arena
2Ry cry(Aa = [A]), while exceptions are modelled by use of the coproduct monad 7’
of the exception-arena A.. These specifications lead to the following domain equation.

[4— B] = [4] —= (€= ([B] +A) © &)
£=® (A= [4])

The full form of the store-equation (SEJ) is the following.

(SE’)

=1, [N=N, [Al=As [El=A, [AxB]=[A]e[B],
[4— B] = [A] - (¢ = (IB] + A) ®6), €= ®(ha = [A]).

This is solved in the same way the store-equation for vp was solved, that is, by expressing
it as a fixpoint functorial equation and finding its minimal invariant. We avoid doing the
computations again, as they are almost identical to those for vp. Explicitly, the solution is
depicted in figure 5.4

132 CHAPTER 5. NOMINAL EXCEPTIONS

3 [A x B] [A — BJ

PA

(i[[A]],i[[B]]) PA

0Q
(@ €Aa)

A\ /IB1-

=

Figure 5.4: The store arena & and the translation of vep-types.

The monads 7" and 7 needed for the semantics are already present inBE1 In particular, their
functors are given by:
T:V,—V, & _ +A
. (5.11)
T:V,—V, £=_®E€.

From the above we obtain the exception-monad (7', 7, ji, 7) and the store-monad (7', #}, ji, 7')
following the constructions of sections 33 and 33 Composing them (see proposi-
tion Z27) we obtain a computational monad (7', 7, u, 7) for vep, that is, T is a strong monad
with exponentials, defined as follows and depicted in figure BH (recall diagrammatic con-
ventions of section BZ3).

TA2TT
g & AAL Ty
a2 24 L papag Pama ey iy (5.12)
TaB = AX TR AT, T(A x TB) 222, T(4 x B)
04 2 TFA Ll o g

Moreover, there is a natural transformation 5 : (), — T given by:
Ba: A, <G5 falia,py (5.13)
where @ : (=) — T is the monad morphism defined in section that is,
g = AL~ Ay, PaL g

By proposition 17 is also a monad morphism, and therefore 3 is a monad morphism
from (_); toT.

5.2. THE vep-CALCULUS 133

TA

o A T24 ———TA
0Q
()(2 k PA

—
oy ® 0Q
r PQ
OA
(a,®) ra
|
OA
Tf:TA TB PQ
* 0Q

* PA
P,
® 0Q

PQ

TAB' AQTB——T(A® B)

(ia,%) 0oQ
PA
* PA
2
o0 00O OO ® ()(2
0A PQ
I)"\ o0 00O OOS o000 0O0OOOS

OA

Figure 5.5: The compound monad (T, 7, i, 7) for vep.

5.2.4 The sound model

Regarding the construction of a vep-model in V, the situation is as follows (notation follows
definition BT and definitions BE5 E.J).

A. THIL

Iv.

VL,

Ve

V, is a category with finite products and an adequate object for natural numbers,
and T is a strong monad with exponentials.

There is a family (Q% ¢,6,0)gear of product comonads, with each Q° having
basis A? (see section B.Z2), which fulfills specifications (a,b). There are also fresh-
name constructors,

newllll . Q(l N (Qaa)i ,
given in section which satisfy (N2).
There are name equality arrows, eq, and eq, for each type A, making the (N1)
diagram commute (section B.4.7).

There are update and dereferencing arrows, upd , and drf 4 for each type A, over
the store-arena 7'. These are given as in definition E30

There are distributive coproducts and arrows eq,, which essentially carry all the
structure that we need.

134 CHAPTER 5. NOMINAL EXCEPTIONS

B. BylemmaE3 T is precompound. 6 is depicted in figure 5.8

We therefore need only do some work on items IV and VI. For the former, the transition
from new to nu is by use of the monad morphism taking us from (_), to T

Definition 5.24 For each Ga € A%, define a natural transformation nu? : Q% — TQ% by:
a a new a Bqia a
nu%a é QaA A (QaaA)J_ QI A TQaaA .

Each arrow nu%’ is explicitly given as follows, and diagrammatically in figure B8

nu® = strat{ [(@,ia) * ® (@a,is,®)?s%] | a#ia A ([iains] € viewf(idy)

(5.14)
V[®®s| € viewf(idg)) }

Because (3 is a monad morphism, nu satisfies the (N2) diagrams.

0a: TA———T24 nu?® : QA TQ™ A
* oQ (6,@',4) 0Q
¥ a * PA
/ ® 0Q - 00
¢ | Tainer r
(afia,®) 0A — |
‘ (%, ®) PA
® 0oQ
WA,®) PA

Figure 5.6: Natural transformations ¢ and nu for vep.

Regarding update and dereferencings, we have the following arrows,
upd : Ay @ [A] —T1, drf:Ay—T[A],

given as in definition (modulo the use of a different store). From these, we obtain
arrows upd and drf via a monad morphism.

Definition 5.25 For any type A, define the strategies:
e upd, : Ay ® [A] BN LN LY
drfa Ty
e drfy : Ay — = T[A] —> T[4] . A
The fact that the above strategies factor through the monad transformation 77 implies that
these are outer-component arrows, as required. Now, as we can see in the following figure,
the strategies work exactly as in the case of 1p, except for the fact that the copycat links may

also carry raised exceptions. It is therefore not difficult to show that the (NR) diagrams are
satisfied.

5.2. THE vep-CALCULUS 135

upd, @ ApQ[A] ————1T1 drfs: Ay —T[4]

(a,z[[A]]) oQ a oQ

5 O
Q
— oo
~.
= o
e 7)
2
@\
*
o -
O v
N
= O

b 0Q t (ifa],®) Pra

PQ

a oQ
%
1141 PA
J

Figure 5.7: Update and dereferencing arrows in V;.

Finally, we need to provide the structure necessary for exceptions. This is essentially given
by the coproducts and the exception-equality arrows.

Definition 5.26 For each object A, define the strategies:
e inxy = A, 2> TA, TA,
A Fid; 7 p : Thdly ¢ ji
e hdly 2 A QTARTA————TA.RTARTA) —2>TTA——TA,

e hdly: A QTARTA—TA 2 {[(a,ia,*)s]|[ias] €na YU {[(@ a,%)s]|[*s] € idpa }
U{[(a,b,%)s]|[bs] € inxa Ab#a}. A

We give a depiction of hdl 4 in figure Note also that inx, a composite of natural trans-
formations, is a natural transformation. Moreover, we can show the following.

Proposition 5.27 The above defined arrows make the (NE) diagrams commute.

Proof: The proof is straightforward, by showing the following diagrams.
ab ab, .
4@ . . Co e A®id
AQAe.———> AR TB Q1 RTA—> A QA QTA<~————A.QTA

ML ‘/+ id®LA®idL %

r a . 1id®n®id
Ae —p>T(A®B) =¥ he @TAQTA<———— A @ A®TA
Li g L \ hdl 4 l /
‘B T12;M
™B————> 1B Ae _ TA
I inx A

[

We have therefore shown the following.
Theorem 5.28 (V,, T, Q) is a vep-model. []

We proceed to show that V, is adequate. This is achieved via O-adequacy (lemma B39),
which is proven independently, and the following lemma (proven similarly to lemma E35).

136 CHAPTER 5. NOMINAL EXCEPTIONS

hdly: Ao@TARTA——TA

0Q
* PA
0Q

PQ

OA

PQ

(14, ®) oA

(ta,®) PA

Figure 5.8: Exception-handling in V.

Lemma 5.29 Let @ | @ - M : A be a typed term. For any store P, if P &= M is non-reducing then
L. if M is not a value then for no b, i 4 do we have [(@,+) * ® (i, ®)g] € [P;M],
II. if M is not a raised exception then for no b, a do we have [(@,) * ® (a, ®)g] c[P;M]. =

Proposition 5.30 (Adequacy) V, is adequate: for any typed term @ | @ = M : N, if [M] =
[vb.P:;0], for some P, then there exists P’ such thatd = M — P’ F 0. [}

5.2.5 Full abstraction

As expected, although V, is a sound vep-model for vep, it is not fully abstract due to its
strategies not satisfying tidiness conditions (v. section LZ35). But even with tidiness our
strategies are still missing discipline, this time related to exception-handling. In particular,
strategies may well handle fresh (unknown) exceptions, in contrast to what is possible in
the operational semantics. Hence, in addition to the tidiness conditions (TD1-3) familiar
from the model of vp, we impose on strategies x-tidiness conditions which ensure a certain
fresh-exception-discipline.

We start by restricting our attention to arenas appearing as type-translations, and classify
their moves with regard to their store-behaviour and exception-behaviour (note there is a
circularity in Hs_.7p and X 47 p; what is meant actually is an inductive definition).

Definition 5.31 Consider V,.,, the full subcategory of V; with objects defined as follows.
Ob(Vyep) A, Bu=1|N|A" | A® B|A—=TB

For each such arena A we define its set of store-Handles, H 4, and its set of exception-raisers,

5.2. THE vep-CALCULUS 137

X 4, as follows.

H =Hy=Hy: £ @,
Hpigp 2 HyUHp,
Haorp 2{(ia,®4),(i5,®5), (a,®p)} UHA UHp U He, UHe, , with He £ |, Hcp;
Xi=Xy=Xpu 2 @,
Xaon 2 XAUXp,
Xaors £{(4,®p)} UX4UXpUXe, UXe,, with Xe £ o X[ep;
where we write A —«TBas A — ({4 = (B+ Ac) ®€p), and £ as @ (Ac = [C]).

In an arena A, a store-Handle justifies (all) Questions of the form d, which we call store-
Questions. Answers to store-Questions are called store-Answers. A

The classification of moves relatively to the store is familiar from vp. Regarding exceptions,
it is obvious that X-raisers are moves that raise an exception —note here that exception
names may also appear in a play as values (i.e. not inside X-raisers). We observe that X-
raisers are by definition A-store-H’s, justified by Q-store-H’s, and that every Q-store-H jus-
tifies X-raisers. An example of how the above classes of moves are related is given in the
next figure.

E= (14 2g)®E

lpB <1’ic

store-H's: o store-Q’s: =
store-A’s: < X-raisers: =

Figure 5.9: Store-H’s -Q’s -A’s and X-raisers in arena 7'1.

From now on we work in V,, , unless stated otherwise. The above notions can be straight-
forwardly extended to prearenas, by setting

Hy.p 2 HyUHp, Xai.p 2 XaUXp, (5.15)

and similarly for store-Q’s and store-A’s. As in section 3.5 we can show that a move is
exclusively either initial or a store-H or a store-Q or a store-A.

Proposition 5.32 For any type A € Ob(V,e,),

My=IpWHsW{m e My |mastore-Q} & {m € M4 | mastore-A} .
[

Around these notions we define x-tidy strategies. Note that we endorse again the following
notational convention. Since stores £ may occur in several places inside a (pre)arena we may
use parenthesised indices to distinguish identical moves from different stores. For example,
the same store-question ¢ may be occasionally denoted g(o) or g(p), the particular notation
denoting the OP-polarity of the moves.

138 CHAPTER 5. NOMINAL EXCEPTIONS

Definition 5.33 A total strategy o is x-tidy if whenever odd-length [s] € o then:

(TD1) If s endsin a store-Q ¢ then [sz] € o, with x being either a store-A to ¢ introducing
no new names, or a copy of ¢. In particular, if ¢ = % with @ # "s'~ then the latter
case holds.

(TD2) If [sqry] € o with g a store-Q then g5, is justified by the last O-store-H in "s.
(TD3) If"s'= s'qo)qrt Yoy With g a store-Q then [s y)] € o with y,,, justified by "s".-3.
(xTD1) If s ends in an X-raiser (a, ®)% with a # "s'~ then [s(@, ®)7] € 0.

(XTD3) Ifs' = s'(a, ®)%, (4, ®)%, qo, with g a store-Q, (4, ®) o, an X-raiser and a # s', then
[sqm] € 0. A

The (TD) conditions define tidy strategies as in section EE3.5 imposing thus a certain store-
discipline. The (xITD) conditions provide a fresh-exception-discipline:

When a fresh raised exception is encountered, it is simply copycatted.

In (XTD1), the X-raiser (@, ®)? played by Player is an answer and hence needs to be justified
by the pending question; the following lemma shows that this is always possible.

Lemma 5.34 If odd-length [s] € o ends in an X-raiser (a,®)% then s has a pending-Q which is an
O-store-H, and s(a, ®)% is a play.

Proof: s being odd-length implies that it has a pending question, say ¢. If ¢ were a P-move
then s = s1¢s2 with s1, s2 being odd-length, so an A in s, should be justified by g, !7 . Hence,
g an O-move. Moreover, ¢ cannot be initial, by totality, and neither a store-Q: ¢ being unan-
swered would mean that P copycats after it, so the move following ¢ would be a copy of
it answered by an O-store-A y, say. After y is played, P must answer ¢ with a copy of y,
thus y can only be the last move in s, i.e. (4, ®)7, Y as y a store-A. Hence, ¢ an O-store-H.
Thus, s(@, ®)@ is a justified sequence satisfying well-bracketing, and it clearly satisfies NC's.
Finally, it also satisfies visibility since s and "s' have the same pending-Q (see e.g. [McC9§]).

|

It is easy to see that identity arrows are x-tidy. Moreover, x-tidy strategies compose and thus
we have a category of nominal arenas and x-tidy strategies.

Proposition 5.35 If o : A— Band 7 : B—> C are x-tidy strategies then so is o ; T.

Proof: From propositionEE58we know that o ; 7 satisfies the (TD) conditions. The (xTD) con-
ditions are shown similarly. We only show (xXTD1). So let odd-length [s;t] € o ; T be ending
in an X-raiser (@, ®) with a # "s;£7". Assume, wlog, that 5 ;¢ ends in 4, s0 s.-1 = (a, ®)%,
some @; < d@'. Then, similarly to propositionB38 a#"s'~ so, by x-tidiness, [s(a, ®)%1] € o. If
(a,®)% isin A then we are done. Otherwise, we have that [t(d, ®)%2] € 7 some G2 < @. Ap-
plying the same reasoning consecutively, some (a, ®)%" is played in AC, giving the required
copy of (a,®)7 .]

Definition 5.36 x7 is the lluf subcategory of V,., of x-tidy strategies. A

Many of the strategies we have encountered thus far are x-tidy, but not all of them: 04 is not
x-tidy, for any object A. But this was exactly the reason for introducing vep-submodels in
definition BT9 Thus, we have the following.

Proposition 5.37 x7 forms a vep-submodel of V,z,.

Proof: It is not difficult to show the following (see also proposition ERS).

5.2. THE vep-CALCULUS 139

>Iff:A— B,g: A— C are x-tidy then (f, g) is. Moreover, projections and terminal
arrows are all x-tidy.

D> 74, lta, Ta,p are all x-tidy, and if h is x-tidy then T'h is. Moreover, f : AQB — T'C'is x-tidy
iff AT(f)is.

> £4,64 are x-tidy, and if & is x-tidy then so is Q%h.

> Successor, predecessor and numeral arrows are x-tidy.

a
d’/

> Name-equality arrows are x-tidy. Moreover, (&) 4 and nu%? are x-tidy.

> upd,,drf 4 are x-tidy.

D> inxy4 are x-tidy, and so are the following composite strategies.
A @TAQTAS0A8I,) 024 @A T8, p(p, @ TAgTA) —2RAi, 7y
Hence, x7 is a vep-submodel. [

Henceforth, by strategies we shall mean x-tidy strategies, unless stated otherwise.
We now proceed to add the structure necessary for an observational vep-submodel.

Definition 5.38 Expand x7 to (7, T, Q,O) by setting, for each a,

OF 2 {f e xT(Q71,TN)| 3b.[(@ %) * ® (0,®)] € f}.
A

With the above definition, the semantic preorder is given as follows. For each f, g € 17 (QA, T B),

fSTg <= YpexT (QUA—=TB),TN).(A%(f);p € O = A%(g);p e 07),

where B
QAT f)

AT(f) = AT (f) 2 Q71 L5 QTQM Q(A—=TB).

In order to show observationality we need to show O-adequacy and that the semantical
preorder is a congruence. The former is shown in the next lemma. The latter can be shown
as in the case of vp (section £3.6) and lemma (note that we do not need to consider 6
itself, but rather the x-tidy arrow of proposition B34 which includes it).

Lemma 5.39 (O-Adequacy) Let @ | @ = M : N be a typed term. If [M] € OF then there exists
some P suchthatd E M —» P E 0.

Proof: By lemma it suffices to show that, for any such M, there is a non-reducing se-
quent P = N suchthatd F M —» P F N, asthen N would necessarily be 0. For sake of
contradiction suppose the opposite, that is, that there exists an infinite reduction sequence
starting from @ = M.

The sequence must contain infinitely many reductions from the set {HL, NHL, VHL, XPN},
or otherwise it would end in an infinite reduction sequence in vp, contradicting the lat-
ter’s O-adequacy (lemma E.62). Moreover, if it contained infinitely many reductions from
{NHL, XPN, VHL} but finitely many HL reductions, then it would have either to terminate
at some raised exception or to end in an infinite sequence of reductions in vp +VHL. The lat-
ter would then produce an infinite reduction sequence in vp. We therefore have thata = M
has a reduction sequence containing infinitely many HL reductions.

Now we can apply a similar methodology to lemma Namely, for each term M, define
(M)° by induction as follows.

@ 2a, @2z, ... QM2 (MY, (MNY2 MPNY,

140 CHAPTER 5. NOMINAL EXCEPTIONS

and (try N; handle M => N,)° £ try (N;)"handle (M)’ => va.(N2)°, some a ¢ fn(N>).
We can show that [(M)] = [M], by induction on M.

Now, for the term M we are examining, [M] € O% implies [(M)?] € O%. Moreover, since
d E M diverges using infinitely many HL reduction steps, @ = (M)° diverges using in-
finitely many NEW reduction steps. But the latter contradicts [(M)7] € O%.]

Hence, we can show the following.

Proposition 5.40 (Observationality) 17 is observational.]

Our last task is to show ip-definability. Our methodology follows closely that of section 3.7
and therefore we will be omitting some proofs which are similar to proofs presented therein.

We start by defining truncation functions for x-tidy strategies, the notion of finitary strat-
egy, and a sub-strategy constructor.

Definition 5.41 Let 0 : A — B in a7 and let [s] € viewf(o) be of even length. Define
trunc(s) and trunc’(s) by induction as follows.

trunc(e) = trunc’(e) £

€
€ ,if x = y are store-Q’s
A . .
trunc(zo,yms) =4 € ,if x = y are fresh X-raisers

xytrunc(s’) ,o0.w.

€ ,if x = y are store-Q’s

€ ,if z a store-Q, y a store-Aand s’ = ¢
trunc’ (zoyyms’) = { e Jifrels,yelpands’ =¢

€ ,if x = y are fresh X-raisers

xytrunc'(s’) ,o.w.
Moreover, say o is finitary if trunc(o) is finite, where
trunc(o) £ {[trunc(s)] | [s] € viewf(d) A |s| > 3}.
Finally, for any [t] € o define:

o<t = strat{[s] € viewf(o) | It' < t. trunc/(s) = 17}.
A

Hence, we call finitary those strategies whose viewfunctions become finite if we delete all
the store-copycats, all default initial answers, and all fresh-exception-copycats. On the other
hand, the strategy o< is the strategy we are left with if we truncate viewf(o) by removing
all its branches of length greater than 3 which are not contained in ¢, except for:

o the store-copycats and the fresh-exception-copycats, which are left intact,

e the store-A’s branches which are truncated to the point of leaving solely the store-A,
so that we retain tidiness.

Note that, in general, trunc’(s) < trunc(s) < s. We can now show the following.

Proposition 5.42 If o is an x-tidy strategy and [t| € o is even-length then o< is a finitary x-tidy
strategy with [t| € o<y and o<; C 0. |

The proof of definability is facilitated by the following decomposition lemma (cf. lemma
and its proof).

5.2. THE vep-CALCULUS 141

Lemma 5.43 (Decomposition Lemma) Let o : Q%[A] — T[B] be a strategy. We can decom-
pose o as follows.

1. If there exists an i 5oy such that 3xo. [(@,i4(0)) * ® wo] € 0 then

o — i) Liaol (o0, o (T[B])? =% T[B]
where:
v £ ia@)]: QAl —N £ {[(@ia©) 0} U{[(@ i) 1] | [@i)] # (@ iao)]},
00 : Q[A] — T[B] £ strat{[(@iac)s] € viewt(o) },
o' : QUA] — T[B] £ strat{[(@,ia)s] € viewt(0) | [(@,ia)] # [(@,ia))] } -

—

2. If there exists an i 5oy such that Via. (3xo. [(d,ia) * ®x0] € 0) <= [(@,ia)] = [(@,ia(0))],
then o = <5> oy, where:

>

oy Qag[[A]] — T[B] £ strat{|[(ab, i4(0))* ®mo s\g] | [(@,3.400)) * ®mg s] € viewf(o) }.

3. Ifthere exist i (o), mo such that Via,x.[(d,ia) * ®2z] € 0 <= [(d,ia)] = [(@,ia(0)) Mo],
then one of the following is the case.

(@ mo = d, a store-Q of type C under ®, in which case we have o = o' | (d,i (o)), where:

o £ QA] 42 Q7[4] @ T[C] T TQ([A] @ [C]) 225 T[B] - T[B],
os £ strat{ [(@,i0), ic) * ®s]|[(@,ia(0) * ®iics] € viewt(o) },

Q¢ drfe ,ifd € 8(d)

¢: QA —Tie] = {Q“ﬂj,e,drfc Jifa#a.

(b) mo = ja Vmo = (ip/a,®), a store-H, in which case if [(d,i4(0)) * ®modic] € o, for
some store-Q a and store-A ic, then

o= Q[A] -2 TR, TQU|A] T T[B]

where:

Q[A] ® Q[A] ® T[C]

0s: QUA] — T[C] £ strat{[(a, iag0)) * ® (ic,®)s] | [(@,i400)) * ®modics| € viewt(o)
V(® ® s] € viewf(ide) },
o Qa[[A]] — T[B] £ strat({[(a, Z'A(O)) * ®moys| € viewf(o) |y #a}
U{[(d@ ia0)) * ®moads] | [® ® ds] € viewf(ide)}),
Q™ %) ®1idjcy;upde , if d € S(a)

QA @ [C] —T1 & ;
¢ Q[[]] [[]] {(Qa))®ld[[c]] updc ,zfa#&

In both cases above, we take j = min{j | (i4(0)); = d}. |

Theorem 5.44 (Definability) Let A, B be types and o : Q%[A] — T[B] be finitary. Then o is
definable.

Proof: The proof follows the same route as the proof of definability in vp (theorem E.67). We
only show the parts where there is some extra work needed.

The proof is by induction on (|trunc(o)l, ||o|]). Using the Decomposition Lemma, we
reduce the inductive step to showing that for any oo : Q%[A] — T[B] with (0,0) <
(Jtrunc(oo)|, looll) < ([trunc(o)l, ||o||) and such that, for some i 4(g), ™m0,

Via,x.[(d,ia) * ®2] € 09 <= [(@,ia)x] = [(@,74(0)) M0],

142 CHAPTER 5. NOMINAL EXCEPTIONS

with mg a store-H and with oy not updating any names before playing m, there exists a
term My with o9 = [Mo] [(@, i40)). The case of mg = (ip,®) is treated exactly as in
theorem L7l We need also check the cases my = (@, ®) and mg = j 4.

If mo = (a,®) then og = [Mo] [(@,1i4(0)) by taking

M, & {raise a ,ifa € s(a)

raisez; ,ifa#dAj=min{i|a= (is0))ri}-

If mo = ja, played in some Agypy; = A, — A}, then mo = (iA;, ®). Assume that
Al = Al x - x A with A} s being non-products. Now, O can either ask some name

i (which would lead to a store-CC), or answer at A”, or raise a known exception b, or raise
some fresh exception a (which would lead to an exception-CC), or play at some A; , of arrow

type, say A; , = C;, — C| ,. Hence, taking S £ $(d@,i()) we have:

viewf(og) = fa U Ubes fiy U Up; o
where:

fa
i
o
fo

~.

fou{l(@ia)) * ®(ia,®) (iay,®)s] € viewt(op) }
fou{l(@ iag)) * (M,@)()]Eviewf(ao)}
®)
[®

||l>

~— —

(1>

(ic,, . ®)s] € viewf(og) }
® s] € viewf(idg)
V(sl=(a,® ANa¢SAls] € viewt(ida,g¢)) }

fou{l(@ ia)) * ® (ia;,
{ (@A) * ® (ia;,®) 5] |

lI>

and where we assume f, £ fo if Aj , is not an arrow type. It is not difficult to see that
fa, f;, fp are viewfunctions. Now, from fa we obtain f/, : Q%([A] ® [A/]) — T'[B] by:

Fa 2 {{@iaoyiag) * ®s]| (@iaw) * © (iag, ®) (a7, ®) 5] € fa).

It is not difficult to see that f/, is indeed an (x-tidy) viewfunction. By IH, there exists some
a@|T,y:A! b My : Bsuch that [M4] = strat(f}).
From each f, # fo we obtain a viewfunction [} : Q%([A] ® [C;,]) — TC;,] by:

fy 2 Al(@ a0y ic,,) * @8] | (@ ia@) * ® (ia,®) (ic,,, ®) s] € fp}.

By IH, there exists some @ | I',y" : C; , = M), : C} , such that [M,] = strat(f,), so take
V, £ \y'.M,,. For each A} , of non-arrow type, the behaviour of o¢ at 4] , is fully described
by (ia:)p, so we take V), to be the denotation of (ia/),. (Vi,...,Vy,) is now of type A} and
describes oy’s behaviour in A.

Finally, from each f; we obtain a viewfunction:

£} QA — T[B] £ {[(@ia@) * ® 5] | [(@ i) * ®(ia,®) (b,®)s] € f}.

By IH, there exists some @ | I' = M, : B such that [M;] = strat(f;).
Now, taking for each known exception-name b

N 2 b ,ift} € s(a) .
b # ifb#ang =min{i| b= (ii0))kri},
and
A ’ YN/ ~ Y .
My = (try (Aa" Az.(A\y.Ma) 2") (2 (V1, ..., Vpr,)) handle N; => Az.M;) skip,

for some x, 2" not free in M4, M;’s, we obtain oo = [Mo] | (@,74(0))-]

5.2. THE vep-CALCULUS 143

Corollary 5.45 (ip-Definability) 17 = (x7,T,Q, O) is an ip-definable vep-submodel.

Proof: For each @, A, B, define DZ, 5 = {f: QA] — T[B] | f is finitary} . By definability,
every f € DY 5 is definable. We need also show:

(VpeDi_pn-A(f);pe 0 = A¥g);pe0%) = f<Tg.

Assume the LHS assertion holds and let A%(f); p € O%, some p : Q¥([A] — T[B]) — TN.
Then, let [s;#] = [(@,%) * ®(0,®)"] € A%(f):p, [s] € A%(f) and [t] € p. Then, by proposi-
tionBA2, [t] € p<¢, so A%(f); p<i € O. Moreover, p<; € D4_ 5y, 50 A%(g); p<¢ € O%, by
hypothesis. Finally, p<; T p implies A%(g); p<t C A%(g) ; p, hence the latter observable, so

f<tg m
Hence, we have finally shown the following.

Theorem 5.46 7 = (x7,T,Q, O) is a fully abstract model of vep.]

5.2.6 Equivalences established semantically

Reasoning as in section E3.8 we can show that, for any B € TY and taking ¢ € Ap, we
have vi.!d = stopy in the vep-calculus. Moreover, using the fact that vep-environments are
x-tidy we can also show in a similar way that

stopp ® va.raisea. (5.16)
This implies that va.raisea < M forany e | @ = M : B, in vep and in ve.

Let us now prove equivalence (E3) in the ve-calculus using the full-abstraction result for
vep. Recall that

My 2 Mf.vawb.[fa < fb]: (E—N) =N, Ms 2 \wa[fas fd]: (E—N)—N,

and that we need to show M, = Ms. By full-abstraction of vep (in fact, by correctness and
adequacy), it suffices to show that, for any p : T'((A. — TN) —» N) — T'N which is t14 and
does not use the store,

[M2]5p € O° <= [M3];p € O". (5.17)

In fact, it suffices to assume p does not use the store for dereferencings, i.e. it does not
ask store-Q’s unless in a copycat. The viewfunctions of [M5] and [M3] are given below.
Note that we have omitted store-copycat links (as we won’t be using the store) and also the

exception-copycat that occurs if Opponent plays an exception under (b, ®)?f) /(a, @)%, .

144 CHAPTER 5. NOMINAL EXCEPTIONS

[M2] [M3]

1——=T((A. = TN) = TN) 1——=T((A. = TN) —TN)
* 0Q * oQ
PA * PA
/
oQ ® oQ
—
PA (%, ®) 1y PA
0Q (*,@)(2) 0Q
PQ PQ

OA

OA

PQ

OA

(n < m, ®)ai) A

We show only one direction of the equivalence; the other is shown by a similar argument.
Let [+ * ® (0,®)% € [Maz];p, some p,d with p being tl4 and not asking store-Q’s. Then,
the interaction witnessing this sequence starts with [« * * & ®E], some b introduced by p,
to which [M:] plays (x, @)?1). At this point, p can either play (0, ®)? or ask some (x, ®)§21).
In the latter case, [M;] plays (a1, @)%fhi’l and now p has three choices: either play some
(n, ®)51d1i’15, or ask again some (x, @)?22), or play some exception (¢, @)El"lli’lg. In the latter
case, [M.] responds by also playing (¢, ®)b13101¢, Note that ¢ cannot be b; as then x-tidiness
of p would copycat the exception to the output giving [+ * & (¢, ®)51‘i1515] € [M:] ; p. Hence,
the interaction can be simulated (modulo _ %) by [M3] ; p. At this point, p can play either
(%, ®)§§) or (0,®)?. In the former case, [Ms] will play (a2, ®)§§)"’2i’2 with a1 # ag. Up to now,
the interaction can be simulated by [M3] ; p, as the b;’s have not played any part.

So suppose that, after some rounds of Opponent answering to (a;, ®)%%" with excep-

tions or with fresh openings of (x, ®)’3, Opponent plays some (n, ®)?@:b+%, At this point,
[Ms] plays (by., ®)% "+ and the play continues. But now (b, ®)?f)d"b"5 has hidden ay, from
the P-view of p and therefore, because of innocence, the latter will play in the same way as if

(ak, @)Z’)k % had been played. Hence, [M3] ; p can simulate this appearance of b Using the
precisely the same argument for all appearances of b;’s, we have that [Ms] ; p can simulate
the whole interaction.

Chapter 6

Conclusion

E quindi uscimmo a riveder le stelle.

Dante, La Divina Commedia, Inferno.

Summary

In this thesis we have examined the semantics of nominal computation, that is, of computa-
tion capable of creating fresh names, comparing them and passing them around. Following
the work on the v-calculus, a characteristic feature of our approach is the stipulation of
names being constants rather than variables. We find this more adequate not only for de-
notational reasons (absence of ‘bad’” constructors) but also because it seems more intuitive:
names are just like integers, but can only be compared for equality.

The constants-as-names rationale allows for a simple —syntactic and denotational —
modelling of names once an adequate framework for such constants has been laid down.
The chosen relevant framework is that of nominal sets, that is, sets supplied with atoms and
atom-permutation technology, which provide an elegant foundational mathematical theory
for reasoning with names (by atoms). The whole discussion — of nominal computation and
its semantics — was made inside the universe of nominal sets.

Our denotational models were built in game semantics, and in particular in nominal
games. The latter are stateful, call-by-value games built inside nominal sets: names appear
as constants inside games, and states contain precisely the names created along a compu-
tation. We have examined names for general references and exceptions. The methodol-
ogy followed was that of establishing a basic category of games corresponding to a basic
nominal calculus, and from that obtain models of the additional nominal computational
effects by means of computational monads. Thus, our models differ importantly from pre-
vious models of general references and exceptions. While in those models names were se-
mantically modelled as compound objects encapsulating the structure necessary for name-
manipulation (i.e. read /write or raise/handle methods), in our models names are elemen-
tary objects manipulated by computational monads. This feature allowed us to obtain fully
complete models without the need to add ‘bad” constructors in the language.

Further directions

This thesis has taken some basic steps in the modelling of nominal computation which can
serve as a stable platform for further research on names. A first further direction is that of
characterising the nominal effect—i.e. the computational effect that arises from the use of
names — in abstract categorical terms. Here we have pursued this task to some extent by
introducing the monadic-comonadic description of nominal computation, but it is evident
that the description needs further investigation. We see that there are more monad-comonad

145

146 CHAPTER 6. CONCLUSION

connections to be revealed, which will simplify and further substantiate the presentation.
The work of Schopp which examines categories with names [Sch(6] seems to be particularly
helpful in this direction.

A second direction, which has not been pursued here, is that of decidability of obser-
vational equivalence in nominal languages. The use of denotational methods, and game
semantics in particular, for attacking the problem has been extremely successful in the ‘non-
nominal’ case, having characterised decidability of (fragments of) Idealized Algol [GMOQ0,
Ong02, Mur(3]. It would therefore be useful to ‘nominalise” that body of work and apply
it to nominal calculi. Already from [Mur(03] we can deduce that nominal languages with
ground store are undecidable, and from [[PS93|] we know that equivalence is decidable for
programs of first-order type in the v-calculus, but otherwise the problem remains open. A
major challenge to be faced is that the fully abstract models we have devised lean heavily
on semantical quotientings and therefore disallow direct reasoning on strategies. To this
end, Laird’s approach to nominal games [[Lai08] seems very relevant. A first step, covering
Reduced ML, has been taken in [MT09].

A third direction would be to examine nominal languages for concurrent computation.
In concurrency, names may also appear in threads, channels etc, and it is therefore natural
to extend nominal games to the concurrent setting. Usually, the passage from sequential
games to concurrent games is achieved by interleaving of sequential plays [GMO04), [Lai05],
an approach that could be tested in the nominal setting. It would also be interesting to
examine formal properties, such as private names and common store, of nominal concurrent
languages. Work in this direction has so far only been conducted by Laird [Lai06].

Finally, it would be interesting to examine AJM-games [A]JM00] under the lens of nomi-
nal sets. A distinctive feature of AJM-games is the use of moves-with-tags inside a play in
order to distinguish between different threads of computation. Evidently, strategies need
only distinguish between different tags and be impervious to permutation of tags. We see
that tags play a role of names and seems therefore natural to use atoms as tags. This ap-
proach seems more natural than the usual naturals-as-tags and would greatly simplify the
presentation of AJM-games allowing also the nominal consideration of issues arising in Lin-
ear Logic and Geometry of Interaction.

Appendix A

Deferred Proofs

Proof of lemma.I% The first part is by induction on M, using substantially (N2). For
the second part we do again induction on M. The base cases are straightforward; for the
induction step we show the following cases:

> If M = va.N then, assuming a # @,

[M{V/#}] = va.N{V/Z}] = nur; TIN{V /&}] ;

= nup; T((id, % V)5 Q% s [N]) s o

(nur, id) ;7' T(id x [V[); T s TQ™my s T[N ; o
= (nur,id) ;7 T¢; TQ™(id x [V];m) s T[N]
= Agar 1 ¢ inupygor s TQ™(id x |V ma) ; T[N 5 p
= AQaF;Z/;Q’i(id X |‘7| ;7o) snup; T[N] 5 p
= Agap;id x [V];7';Q %y ;nup s T[N 5 1.

> If M = A\z.N then,

[M{V/7}] = P (N{V, 2/Z,2})] = AT(C' [N{V, 2/, 2}]) 10
= AT (14, V], J2l) 15 Q7 s [NT) 5
AT((14, [V]) 1d5 ¢’ Q%ma s [N]) 3 m
AT((id,|V]) x id; ¢ x id; Q%ry x id; ¢ [N]):n
(14, [V]); ¢ Q% s AT(L';[N]) 1

~

> The case of M = N K is paradigmatic for all other cases:

[M{V/z}] = [N{V/z} K{V/&}] = (IN{V/Z}], [K{V/Z}]);¢; Tev" ; p
V)¢5 Q2 [N], (14, [V]) 1 U5 Qs [K]) s 3 Tev s o

= (14, [V]); ¢/ Q%o s([N], [K]) ;9 ; Tev s

Proof of lemma BTTk The equalities are shown by the following diagrams.

@ (nu,id) da a Tfxg 2 pxid
QiA —=2 s poie y Qia — 2 s g 7o —22 S~ TB X TC

g | | T

TQ™A——=T(Q™A x QA) T(TB x TC) ——= TYB x C) ——=T(B x C)

_—
T(10,%2) T(fxg)

147

APPENDIX A. DEFERRED PROOFS

148
_ n ~ Tf T2
QA ——=TQ%"A B T3C
x l 2 12 \(‘ l T
TB s TC m TC

Proof of lemmalI% We show the following paradigmatic cases.
[[M=N]]

N]xid 4
QT x Thy —E % p sy Thy — = T(hg % M) e TN
m2,7T1) ;€
Tl l‘r #T 'UIT
/ T3((ma,m1) s 0q)
2B

i =————
@ (ia,[M])

. T([N] xi .
T(QGFXAA)) T(TAAXAA)T4>T2(AAXAA)
: TTG[N]HID
T
TQUT x Ay)
[[a=M]]
le—‘WQ FXTAA%AAXTAA%TAAXAA) Teq TN
' T(|a|xid
m
T(n;Teq

TQUT x Ay) ————> T?B

QaF X AA Tla=z]
[if0 M then N; else N3]
; p (IN:],[Va]) x4)
Qr T QT x TN (TA)? x TN TA
T(([N1],[N2]) xid) T'({m2,m1) ; cnd)

T(QT x N) : T((TA)? x N) T24

T’ ; T[if0 = then N; else Ns]

[(Ay.N) M]
. ~ [Ay.N] xid r
QT =gy~ QT xTA——— (TBA) x TA————=T((TB*) x A) TB
T(QT x A TQUI x A oo
[M N]
Eré EF TTBA %TAXT(TBA) TRB
Q (id,[M]) Q7 % J/() l
~ T([N]x1i
Q7T x (TBA)) — VD oy g (7B 4 p
T{/\L TT';,LL;T(ﬂ'g.jrl)l
N T{|z|,[N Tev”
i P AL —
Tz NJ]
|

Proof of propositionE3Tt Commutativity of the (NR) diagrams is shown by direct compu-
tation. For example, for the first diagram, the viewfunction of (71, upd) ; 7;=;T'drf 4 ; 4]

149

is computed in the following figure, from which we see that it equals (72, upd 4) ; 7; .

Pa® [A] ATy T gy MO T[A]

(aa iA)

® —
/ \“i
o—__
@

—~

_*
/@\@)
s
®
N\
/@\@)

1A
1A
1A
(ia,®)
(ia,®)
|
a
1A

We now show the (SNR) equation holds. We observe that (note we omit superscripts and
subscripts for economy)

A_l(upd) = A_l(upd) ipusup A QA @E— (1® &)1

and hence upd = A(A~!(upd);pu;up) = f;A(ev;up), with f = A(A~!(upd);pu). Thus,

nuxupd;z/J:newxf;axA(ev;up);z/J(;)newxf;axA(ev;up);z//:nuxupd;w',

150 APPENDIX A. DEFERRED PROOFS

where () is proven as follows.

ax Aleviup);v =ax Alevyup) ;7 ;T u=1id x Alev;up);st’ ;7 ;a5
= A((id x A(ev;up);st’;7.;a) X id;ev;ev, ;dn)

(id x A(ev;u
(id x A(ev;u
(1d><A(ev up);st’) x id;st’;(id x ev;st), ;dn)

st’;71) x id;st’;ev) ;dn)

p);
p);st’) x id;st’;(7 x id), ;ev, ;dn)
);s

st’;(id x A(ev;up) x id), ;(id x ev;st), ;dn)
st’;(id x (ev;up);st), ;dn) = A(st’;(id x ev))

(
A(
A(
A(
A(
A(

o x A(ev;up) ;1

X Alevi;up);7;T7 5 u=1id x Alev;up);7;Tst’;Ta;p

(id x A(ev; up) 7;Tst';Ta) x id;ev;ev) ;dn)

(i ();7;Tst') x idjev;(a x id), ;ev, ;dn)
(id x A(ev;up);7;Tst’) x id;ev;st’ ;dn)

(id x A(ev;up);7) X id;ev;(st’ x id), ; st/ ;dn)
(id x A(ev;up);7) x id;ev;st’ ;dn)

«
A
A
A
=A
A
A(id x A(ev;up) x id;id x ev;st;st’, ;dn)
A

(
(
(
(
(
(
(

id x (ev;up);st;st’ ;dn) = A(id x ev;st’)

Bibliography

[Abr00]

[Abr07]

Samson Abramsky, Axioms for definability and full completeness, Proof, Language,
and Interaction: essays in honour of Robin Milner, MIT Press, 2000, pp. 55-75.

, Domain theory, Lecture Notes, Oxford University Computing Labora-
tory, 2007.

[AGM'04] Samson Abramsky, Dan Ghica, Andrzej Murawski, Luke Ong, and Ian Stark,

[AHMO8]

[A]J94]

[ATMO0]

[AM97]

[AM98]

[AM99]

[Bar84]

[BDE97]

[Bec69]

Nominal games and full abstraction for the nu-calculus, LICS "04: Proceedings of the
19th Annual IEEE Symposium on Logic in Computer Science (Turku, Finland),
IEEE Computer Society Press, 2004, pp. 150-159.

Samson Abramsky, Kohei Honda, and Guy McCusker, A fully abstract game se-
mantics for general references, LICS '98: Proceedings of the 13th Annual IEEE Sym-
posium on Logic in Computer Science (Indianapolis, USA), IEEE Computer So-
ciety Press, 1998, pp. 334-344.

Samson Abramsky and Radha Jagadeesan, Games and full completeness for multi-
plicative linear logic, Journal of Symbolic Logic 59 (1994), no. 2, 543-574.

Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria, Full abstraction
for PCF, Information and Computation 163 (2000), no. 2, 409-470, results first
published in TACS "94: Proceedings of International Symposium on Theoretical As-
pects of Computer Software (Sendai, Japan, 1994).

Samson Abramsky and Guy McCusker, Linearity, Sharing and State: a fully ab-
stract game semantics for Idealized Algol, Algol-like languages (Peter O'Hearn and
Robert D. Tennent, eds.), vol. 2, Birkh&duser, 1997, 297-329, results first published
in Proceedings of Linear Logic 96 Tokyo Meeting (Tokyo, Japan, 1996).

, Call-by-value games, CSL "97: Proceedings of the 11th International Work-
shop on Computer Science Logic (Aarhus, Denmark), Lecture Notes in Com-
puter Science, vol. 1414, Springer-Verlag, 1998, pp. 1-17.

, Game semantics, Computational Logic: Proceedings of the 1997 Mark-
toberdorf Summer School (H. Schwichtenberg and U. Berger, eds.), Springer-
Verlag, 1999, pp. 1-56.

Hendrik P. Barendregt, The lambda calculus. Its syntax and semantics, Studies in
Logic and the Foundations of Mathematics, vol. 103, North-Holland, 1984.

Patrick Baillot, Vincent Danos, and Thomas Ehrhard, Believe it or not, AJM’s games
model is a model of classical linear logic, LICS '97: Proceedings of the 12th Annual
IEEE Symposium on Logic in Computer Science (Warsaw, Poland), IEEE Com-
puter Society Press, 1997, pp. 68-75.

Jon Beck, Distributive laws, Seminar on Triples and Categorical Homology The-
ory, ETH, Ziirich, 1966/67 (B. Eckmann, ed.), Lecture Notes in Mathematics,
vol. 80, Springer-Verlag, 1969, pp. 119-140.

151

152

[BG92]

[BKO8]

[BvS93]

[BWS5]

[BW99]

[BW02]

[Che04]

[Che05]
[CLW93]

[Fil99]

[Fre90]

[Gab00]

[Gab02]

[GMO0]

[GMO04]

[GP02]

[Har99]

BIBLIOGRAPHY

Stephen Brookes and Shai Geva, Computational comonads and intensional semantics,
Applications of Categories in Computer Science: Proceedings LMS Symposium
(Durham, UK, 1991), London Mathematical Society Lecture Note Series, vol. 177,
Cambridge University Press, 1992, pp. 1-44.

Nick Benton and Vasileios Koutavas, A mechanized bisimulation for the nu-calculus,
Tech. Report MSR-TR-2008-129, Microsoft Research, September 2008.

Stephen Brookes and Kathryn van Stone, Monads and comonads in intensional se-
mantics, Tech. Report CMU-CS-93-140, Carnegie Mellon University, 1993.

Michael Barr and Charles Wells, Toposes, triples and theories, Grundlehren der
mathematischen Wissenschaften, vol. 278, Springer-Verlag, 1985.

, Category theory for computing science, third ed., Les Publications CRM,

1999.

, Toposes, triples and theories, revised version 1.1 of [BW85], available at
http://ww. cw u. edu/ artsci/math/well s/ pub/ttt. nhtm, November
2002.

James Cheney, Nominal logic programming, Phd thesis, Cornell University, August
2004.

, Nominal logic and abstract syntax, SIGACT News 36 (2005), no. 4, 47-69.

Aurelio Carboni, Steve Lack, and Robert Walters, Introduction to extensive and
distributive categories, Journal of Pure and Applied Algebra 84 (1993), 145-158.

Andrzej Filinski, Representing layered monads, POPL '99: Proceedings of the 26th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages
(San Antonio, USA), ACM Press, 1999, pp. 175-188.

Peter J. Freyd, Recursive types reduced to inductive types, LICS '90: Proceedings of
the 5th Annual IEEE Symposium on Logic in Computer Science (Philadelphia,
USA), IEEE Computer Society Press, 1990, pp. 498-507.

Murdoch J. Gabbay, A theory of inductive definitions with c-equivalence: Seman-
tics, implementation, programming language, DPhil thesis, University of Cambridge
Computing Laboratory, 2000.

, FM-HOL, a higher-order theory of names, 35 Years of Automath (F. Ka-
mareddine, ed.), Heriot-Watt University, Edinburgh, Scotland, April 2002.

Dan R. Ghica and Guy McCusker, Reasoning about Idealized Algol using reqular lan-
guages, ICALP "00: Proceedings of 27th International Colloquium on Automata,
Languages and Programming (Geneva, Switzerland), LNCS, vol. 1853, Springer-
Verlag, 2000, pp. 103-116.

Dan R. Ghica and Andrzej S. Murawski, Angelic semantics of fine-grained concur-
rency, FoSSaCS "04: Proceedings of the 7th International Conference on Founda-
tions of Software Science and Computation Structures (Barcelona, Spain), Lec-
ture Notes in Computer Science, vol. 2987, Springer, 2004, pp. 211-225.

Murdoch J. Gabbay and Andrew M. Pitts, A new approach to abstract syntax with
variable binding, Formal Aspects of Computing 13 (2002), 341-363, results first
published in LICS "99: Proceedings of the 14th Annual IEEE Symposium on Logic in
Computer Science (Trento, Italy, 1999).

Russell Harmer, Games and full abstraction for nondeterministic languages, DPhil
thesis, University of London, 1999.

http://www.cwru.edu/artsci/math/wells/pub/ttt.html

BIBLIOGRAPHY 153

[HM99]

[HOO00]

[Hug97]

[Hug00]

[HY99]

[Jec73]

[Jon03]

[JRO2]

[Kie99]
[Kri90]
[Lai97]

[Laio8]
[Lai01]

[Lai02]

[Lai04]

[Lai05]

Russell Harmer and Guy McCusker, A fully abstract game semantics for finite non-
determinism, LICS "99: Proceedings of the 14th Annual IEEE Symposium on Logic
in Computer Science (Trento, Italy), IEEE Computer Society Press, 1999, pp. 422-
430.

J. Martin E. Hyland and C.-H. Luke Ong, On full abstraction for PCF: I, II, III,
Information and Computation 163 (2000), no. 2, 285-408, first written in 1994
and published in the authors” domain.

Dominic J. D. Hughes, Games and definability for system F, LICS "97: Proceedings
of the 12th Annual IEEE Symposium on Logic in Computer Science (Warsaw,
Poland), IEEE Computer Society Press, 1997, pp. 76-87.

, Hypergame semantics: Full completeness for system F, DPhil thesis, Univer-
sity of Oxford, 2000.

Kohei Honda and Nobuko Yoshida, Game-theoretic analysis of call-by-value com-
putation, Theoretical Computer Science 221 (1999), no. 1-2, 393-456, results first
published in ICALP "97: Proceedings of the 24th International Colloquium on Au-
tomata, Languages and Programming (Bologna, Italy, 1997).

Thomas J. Jech, The axiom of choice, Studies in Logic and the Foundations of Math-
ematics, vol. 75, North-Holland, Amsterdam, 1973.

Simon P. Jones, Haskell 98 language and libraries: The revised report, Cambridge
University Press, May 2003.

Alan Jeffrey and Julian Rathke, A fully abstract may testing semantics for concurrent
objects, LICS ’02: Proceedings of the 17th Annual IEEE Symposium on Logic in
Computer Science (Copenhagen, Denmark), IEEE Computer Society Press, 2002,
pp. 101-112.

Richard Kieburtz, Codata and comonads in Haskell, unpublished manuscript, 1999.
Jean-Louis Krivine, Lambda-calcul, types et modeles, Masson, 1990.

James Laird, Full abstraction for functional languages with control, LICS "97: Pro-
ceeding of the 12th Annual IEEE Symposium on Logic in Computer Science
(Warsaw, Poland), IEEE Computer Society Press, 1997, pp. 58-67.

, A semantic analysis of control, DPhil thesis, University of Edinburgh, 1998.

, A fully abstract game semantics of local exceptions, LICS '01: Proceedings of
the 16th Annual IEEE Symposium on Logic in Computer Science (Boston, USA),
IEEE Computer Society Press, 2001, pp. 105-114.

, A categorical semantics of higher order store, CTCS "02: Category Theory
and Computer Science (Ottawa, Canada), Electronic Notes in Theoretical Com-
puter Science, vol. 69, Elsevier, 2002, pp. 209-226.

, A game semantics of local names and good variables, FoSSaCS "04: Proceed-
ings of the 7th International Conference on Foundations of Software Science and
Computation Structures (Barcelona, Spain), Lecture Notes in Computer Science,
vol. 2987, Springer, 2004, pp. 289-303.

, A game semantics of the asynchronous pi-calculus, CONCUR ’05: 16th In-
ternational Conference on Concurrency Theory (San Francisco, USA), Lecture
Notes in Computer Science, vol. 3653, Springer, 2005, pp. 51-65.

154

[Lai06]

[Lai07]

[Lai08]

[Loa01]

[LSLMO0]

[Mac98]

[McC96]

[McC98]

[McCO0]

[Mog88]

[Mog89]

[Mog91]

[MTO09]

[MTM97]

[Mur03]

[Nee93]

BIBLIOGRAPHY

, Game semantics for higher-order concurrency, FSTTCS '06: Proceedings of
the 26th International Conference on Foundations of Software Technology and
Theoretical Computer Science (Kolkata, India), Lecture Notes in Computer Sci-
ence, vol. 4337, Springer, 2006, pp. 417-428.

, A fully abstract trace semantics for general references, ICALP '07: Proceed-
ings of the 34th International Colloquium on Automata, Languages and Pro-
gramming (Wroclaw, Poland), Lecture Notes in Computer Science, vol. 4596,
Springer-Verlag, 2007, pp. 667-679.

, A game semantics of names and pointers, Annals of Pure and Applied Logic
151 (2008), 151-169, GaLoP "05: First Games for Logic and Programming Lan-
guages Workshop (post-proceedings).

Ralph Loader, Finitary PCF is not decidable, Theoretical Computer Science 266
(2001), no. 1-2, 341-364.

Jeffrey R. Lewis, Mark Shields, John Launchbury, and Erik Meijer, Implicit param-
eters: Dynamic scoping with static types, POPL '00: Symposium on Principles of
Programming Languages (Boston, USA), 2000, pp. 108-118.

Saunders Mac Lane, Categories for the working mathematician, second ed., Gradu-
ate texts in mathematics, vol. 5, Springer Verlag, 1998.

Guy McCusker, Games and full abstraction for FPC, LICS '96: Proceeding of the
11th Annual IEEE Symposium on Logic in Computer Science (New Brunswick,
USA), IEEE Computer Society Press, 1996, pp. 174-183.

, Games and full abstraction for a functional metalanguage with recursive types,
Distinguished Dissertations, Springer-Verlag, London, 1998.

, Games and full abstraction for FPC, Information and Computation 160
(2000), no. 1-2, 1-61.

Eugenio Moggi, Computational lambda calculus and monads, Tech. Report ECS-
LFCS-88-86, University of Edinburgh, 1988.

, Computational lambda-calculus and monads, LICS "89: Proceedings of 4th
Annual IEEE Symposium on Logic in Computer Science (Pacific Grove, USA),
IEEE Computer Society Press, 1989, pp. 14-23.

, Notions of computation and monads, Information and Computation 93
(1991), no. 1, 55-92.

Andrzej S. Murawski and Nikos Tzevelekos, Full abstraction for Reduced ML, FoS-
5aCS ’09: Proceedings of the 12th International Conference on Foundations of
Software Science and Computation Structures (York, United Kingdom), Lecture
Notes in Computer Science, vol. 5504, Springer, 2009, pp. 32-47.

Robin Milner, Mads Tofte, and David Macqueen, The definition of Standard ML,
MIT Press, 1997.

Andrzej S. Murawski, On program equivalence in languages with ground-type refer-
ences, LICS '03: Proceedings of the 18th IEEE Symposium on Logic in Computer
Science (Ottawa, Canada), IEEE Computer Society Press, 2003, pp. 108-117.

Roger M. Needham, Names, Distributed systems, ACM Press/Addison-Wesley
Publishing Co., 1993, 2nd edition (1st edition 1989), pp. 315-327.

BIBLIOGRAPHY 155

[Nic96]

[Ong02]

[OT97]

[PGOO]

[Pit03]

[Pit06]

[Plo77]

[Pow00]

[PP02]

[PRY7]

[PS93]

[PW02]

[Rey81]

[Scho6]

[Sco70]

Hanno Nickau, Hereditarily sequential functionals: A game-theoretic approach to se-
quentiality, Ph.D. thesis, Universitdt Gesamthochschule Siegen, 1996, results re-
sults first published in LFCS "94: Proceedings of the 3rd Symposium on Logical Foun-
dations of Computer Science (St. Petersburg, Russia, 1994).

C.-H. Luke Ong, Observational equivalence of third-order Idealized Algol is decid-
able, LICS "02: Proceedings of the 17th Annual IEEE Symposium on Logic in
Computer Science (Copenhagen, Denmark), IEEE Computer Society Press, 2002,
Pp. 245-256.

Peter W. O'Hearn and Robert D. Tennent (eds.), ALGOL-like languages,
Birkh&duser, 1997.

Andrew M. Pitts and Murdoch J. Gabbay, A metalanguage for programming with
bound names modulo renaming, MPC2000: Proceedings of 5th International Con-
ference on Mathematics of Program Construction (R. Backhouse and J. N.
Oliveira, eds.), Lecture Notes in Computer Science, vol. 1837, Springer-Verlag,
2000, pp- 230-255.

Andrew M. Pitts, Nominal logic, a first order theory of names and binding, Informa-
tion and Computation 186 (2003), 165-193.

, Alpha-structural recursion and induction, Journal of the ACM 53 (2006),
459-506.

Gordon D. Plotkin, LCF considered as a programming language, Theoretical Com-
puter Science 5 (1977), 223-255.

John Power, Models for the computational lambda-calculus, MFCSIT2000: Proceed-
ings of First Irish Conference on the Mathematical Foundations of Computer
Science and Information Technology (Cork, Ireland), Electronic Notes in Theo-
retical Computer Science, vol. 40, Elsevier, 2000, pp. 288-301.

Gordon D. Plotkin and John Power, Notions of computation determine monads,
FoSSaCS "02: Proceedings of the 5th International Conference on Foundations
of Software Science and Computation Structures (Grenoble, France), Springer-
Verlag, 2002, pp. 342-356.

John Power and Edmund Robinson, Premonoidal categories and notions of compu-
tation, Mathematical Structures in Computer Science 7 (1997), no. 5, 453—468.

Andrew M. Pitts and Ian D. B. Stark, Observable properties of higher order functions
that dynamically create local names, or: What's new?, MFCS "93: Proceedings of 18th
International Symposium on Mathematical Foundations of Computer Science
(Gdansk, Poland), Lecture Notes in Computer Science, vol. 711, Springer-Verlag,
1993, pp. 122-141.

John Power and Hiroshi Watanabe, Combining a monad and a comonad, Theoretical
Computer Science 280 (2002), no. 1-2, 137-162.

John C. Reynolds, The essence of Algol, Proceedings of the International Sym-
posium on Algorithmic Languages (Amsterdam, Netherlands), North-Holland,
1981, Reprinted in [OT97, vol. 1, pages 67-88], pp. 345-372.

Ulrich Schopp, Names and binding in type theory, DPhil thesis, University of Edin-
burgh, 2006.

Dana S. Scott, Outline of a mathematical theory of computation, Technical Mono-
graph PRG-2, Oxford University Computing Laboratory, Oxford, England,
November 1970.

156

[Sco93]

[Shi05a]

[ShiO5b]

[SO07]

[SP82]

[Sta94]

[Sta96]

[Sta97]

[Str66]

[SWO01]

[Tze07]

[Tze08]

[UV05]

[Wad92]

[Wad95]

[ZNO03]

BIBLIOGRAPHY

, A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical Com-
puter Science 121 (1993), no. 1-2, 411-440, First written in 1969 and circulated
privately.

Mark Shinwell, The fresh approach: functional programming with names and binders,
DPhil thesis, University of Cambridge Computing Laboratory, February 2005,
Available also in a more compact form as [Shi05b]].

, The fresh approach: functional programming with names and binders, Tech.
Report UCAM-CL-TR-618, University of Cambridge, UK, February 2005.

Sam B. Sanjabi and C.-H. Luke Ong, Fully abstract semantics of additive aspects by
translation, AOSD ’07: Proceedings of the 6th international conference on Aspect-
oriented software development (Vancouver, Canada), ACM, 2007, pp. 135-148.

Michael B. Smyth and Gordon D. Plotkin, The category-theoretic solution of recur-
sive domain equations, SIAM Journal on Computing 11 (1982), no. 4, 761-783.

Ian D. B. Stark, Names and higher-order functions, Ph.D. thesis, University of Cam-
bridge, December 1994, Also available as Technical Report 363, University of
Cambridge Computer Laboratory.

, Categorical models for local names, Lisp and Symbolic Computation 9
(1996), no. 1, 77-107.

, Names, equations, relations: Practical ways to reason about new, TLCA "97:
Proceedings of the Third International Conference on Typed Lambda Calculi
and Applications (Nancy, France), Lecture Notes in Computer Science, no. 1210,
Springer-Verlag, 1997, pp. 336-353.

Christopher Strachey, Towards a formal semantics, IFIP '64: TC2 Working Confer-
ence on Formal Language Description Languages for Computer Programming
(Amsterdam), North-Holland, 1966, pp. 198-220.

Davide Sangiorgi and David Walker, The n-calculus: a theory of mobile processes,
Cambridge University Press, 2001.

Nikos Tzevelekos, Full abstraction for nominal general references, LICS '07: Pro-
ceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science
(Wroclaw, Poland), IEEE Computer Society Press, 2007, pp. 399-410.

, Full abstraction for nominal exceptions and general references, GaLoP '08:
Games for Logic and Programming Languages (Budapest, Hungary), 2008, full
version available as Tech. Report PRG-RR-07-08, Oxford University Computing Lab-
oratory (October 2007, updated December 2009).

Tarmo Uustalu and Varmo Vene, Signals and comonads, Journal of Universal Com-
puter Science 11 (2005), no. 7, 1310-1326.

Philip Wadler, The essence of functional programming, POPL ’92: Conference
Record of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (Albuquerque, USA), 1992, pp. 1-14.

, Monads for functional programming, First International Spring School on
Advanced Functional Programming Techniques, Tutorial Text (Bdstad, Sweden),
Lecture Notes in Computer Science, vol. 925, Springer, 1995, pp. 24-52.

Yu Zhang and David Nowak, Logical relations for dynamic name creation, CSL "03:
Proceedings of the 12th Annual Conference of the European Association for
Computer Science Logic (Vienna, Austria), Lecture Notes in Computer Science,
vol. 2803, Springer-Verlag, 2003, pp. 575-588.

Index

Symbols
(freshness relation),Td
W (fresh quantifier), 7

ess

#,04

(a b),Id
=on, B
:av,
M ;N,[ZA
2],
[2]s, I8
~,[A0124
(ab)°s,04
), 28283 128
1,13
®, 00 M32
(M)®,B2

xz,
Fa, BD
=Tl

<, B2 B8 B4, 108, 130, 139
C,B2

<, B2

<, 68

—, B4

=, 44

(3%

1, BT 62 64

—=,E1] 68

=, Bl k2

+, &

®, H 2 B4

<, IS B2

=,03

c, o3

s|t,E3

s;t,E0

set,HY

o:1,E]

agt,ﬂIllIEI]

o>, B9

s.-1, B2

s.1, 42

s, B2

59,12

SSSH

t\ s B2

A

A (atoms),[H
A, 4023
A% M8
A, M9 @23

A7 (lists of distinct atoms),
A;, I3
A,

Aa, BT

A,

a,

a, 129

abstraction
atom-abstraction,
generalised name-abstraction,
name-abstraction, [72 82] B3]
support abstraction,

adequacy, 102!)
O-adequacy, 10,

AGMOS,

a-equivalence,

answer, Bl

arena, 0
Ay,
3

order (),
atom, 5 P11 145
atom-abstraction,
atom-freshness, [If
atom-permutation, I3
Axiom of Choice, 271 23

B

bad exception,

bad variable, 75,
Barendregt convention,
block-structure,

157

158

C

category
g,
T,
V,
Vuap,
Vup,
Ve, K

carte51an, !

x/

IS

o K
Nom,
x7,M38
biKleisli category, BZ
Cpo,
Cpo-enriched,
distributive,
Freyd category,
Kleisli category,
PreCpo, B8
PreCpo-enriched,
with names, 146

Chain rule, [0 BTl

cnd,

comonad,
comonad morphism, 37
initial-state comonad, [Z0]

~

product comonad,
basis,

strong comonad,
cone, 9
congruence,
constants-as-names, 1459
contingency completeness, B4}
coproducts, B3
copycat,

link,
correctness, [84] 124
cpo,
cumulative hierarchy, 1] 211

D
Dalmm

Decomposition Lemma, [T 1]

definability, [T5 T41]

ip-definability, 87 [[T7 [3T) T43

A,

5,36, 70
determinacy, 2 B4
discipline

fresh-exception discipline, [38

good store discipline, [03
tidy discipline, I03

INDEX

distributive law, B4 B7
drf, 82103 34
dst, B3

dynamic allocation, 75

E

embedding,

environment
domain (dom), [77,
mixed environment,
store environment, [/

e, B8 [0 33
eq, B4 70 BT
equivariance, [

n, B0, 81) B2, 122, 133
0,

ev, 66

evaluation context, D7, [774 120
unhandled, 20
even-prefix closure,

F

fix
fix, [[4
7 fixes S,[[@

fn (free names),

FPC,

Fraenkel-Mostowski (FM), [Tl 211
FM-set,

fresh
a is fresh for z,[Id
essentially fresh,
fresh quantifier, 02
fresh-name constructors, [Z1]

Full Abstraction (FA), B, B0, B 17 311 43
fv (free variables),

G

games
AJM-games, [[26
call-by-value,
hypergames,
nominal, [T0, B9, (43

general references, 73

H

H 4,007 132
H,_p, 002037
hd1, 23 I35

I

I,,E0

I4,E0

¢ (injections),

INDEX

Idealized Algol (IA), [T [19 [44
incl,
inner-component arrow, 122
innocence, [[1],
innocent store,
interaction sequence, B3

P-view, b4
intrinsic preorder, 321 B8,
inx, M35
ISeq, EH

J

Ja, B0

Ja,EQ

justification
justification pointer, E3|
justification relation, B0
justified sequence, E3
s.j (explicitly) justifies s.i, B3

L
A,
A%, B4 87 30, 03T
Aa (labelling function), EQJ
¢,B4 067
A9T BB Bg
AT,
legal sequence, E3
levelled graph, Bl
£(s), 3
local bilimit,
local state,
ordered,
unordered,

M
M4, B0
My, EQ
minimal invariant, [31]
ML,

Reduced ML, [76 [[Z24
model

adequate, 85 MO0 130

categorical,
extensional,

fully abstract, B 88, [12 I31)

intensional,

observational, B3, [0, 30, TZ0

permutation model,

basic Fraenkel model, [TT],

monad,
exception monad, B3,
layering,
lifting monad,

monad composition,

monad morphism, Bl
monadic exponentials, [¢10)
precompound, 021
side-effect monad,
store monad, B8 BT]
strong,
monadic-comonadic setting, BZ
move, @0
generalised P-move, B3
initial, B0l
level of move, EQ
with-names, B3
nlist(z), B3
3
11, 0L BT B2 (22 53
i,
iy

N
(NT1),
(N2),B1 123
name, [0

introduction, B3]
Name Change Conditions, B3
(NC1-3),

(NC2),
(NE1),23
(NE2),23
vep-calculus,
context,

program context,
operational semantics,
typing rules,
vep-model,
vep-submodel, T30},
nlist (name-list), @3
N,
n,
Nom,
nominal arena, B(]
nominal computation, [43
nominal concurrency, [46
nominal effect, [0 T45
nominal games, [0 B9 M43
a la Laird, 73
nominal language, {0
Nominal Logic, 03
nominal relation,
nominal function,
nominal set, [0} 0d
strong,
nominal subset, [7
normal filter,
(NR),

159

160

nu, 81} B2 123, 127 0534
v-calculus, 10,
evaluation context, 27
operational semantics,
typing rules,
ve-calculus,
evaluation context,

unhandled, 120
operational semantics, 120
typing rules,

ve-model,
vp-calculus,

context,
basic,
instantiation,
program context,
typing rules,

evaluation context, 74

operational semantics, [ZZ

typing rules,
vp-model, B1] B4]

O

0,

04,85,

observables, B2]

observational approximation, 29 [79

observational equivalence, 79
decidability, [46

observationality, 85 10 IZa

w-chain,

Opponent, E0
view (O-view), 3
outer-component arrow,
P
P,
Py, B3
Pi,E3
partial exponentials,
P,
PCE,Q I
call-by-value,
PERM, I8
permutation, [[3
action, Td
basic permutation, 6
play, B3
almost composable, 4]
composable, B4l
composite, B3
innocent, B3]
parallel interaction, B3
Player, EO

view (P-view), B3

prearena, &
precpo,

prefix closure, £l
products,
proj,

v, Bl

', B

Q
Q (comonad), B4

(@, T)-exponentials,
Q% [0, 81 123, 27,
question, B0

open, B3

pending, E3

R
Reduced ML, [76 44
reference-equality test, [/3]

S
S, 2
S,
s,Id
semantics
Denotational,
Game Semantics, Bl [Tl
Operational,
semantic cube, [Tl
trace semantics,
Separation of Head Occurrence,
single-valuedness,
(SNR),
sv-calculus,
operational semantics,
typing rules,
soundness
equational, 85| [24]
inequational, 87 [31]
stop, 72
Store Equation
(SE), 31
(SE), B3
store-A, [I01] I374
store-H, [[07] T34
store-Q, M0l 137
strat,
strategy, B4l
! (initial), &2
!5 (terminal), B4l

n, B4
(2).3
6,10
dn,[R9
drf, 03 I34

INDEX

INDEX

drf, 34

dst,

e, 0

eq EA 70

new, [Z11 B2 133

hd1, 33

hd1, I35

idp, E4

L, 64

incl,

inx, [[38

nu, P2 134

T,

=

proj,

pu, 69 BT

st,

6,34

[stop],

upd, B3 [34]

uﬁd, =34

up,

composition, EZ

finitary, [T} 400

gen. name-abstraction (|_)),

innocent,

14,

14%,

name-abstraction (()),[72 B3

order (E),

pairing,

t4,

t4*,

tidy,

tl4,

tl4*,

total,

ttotal,

ttotal*,

x-tidy,
strength-coherence, 72 82, 123
strong support lemma, 20}
support, I8

finite, T8

strong, 20]

support abstraction,

support ideal, [d

S supports z, T8,
switching condition, B3
symmetric premonoidal tensor,

T
T (monad), B0,
T-computation,

161

T-evaluation arrow, Bl
T-exponentials, B{
T-exponentiation functor, Bl

T,

T, B2 272 133

7,

T,

(TD1-3),

(TD3’), 104

¢, 27) 023} 1272 134

trunc, [10 [Z40

trunc’,[10, 20

U
upd, 82 O3 127 34

Vv

viewf,

viewfunction,
diagram,

visibility, [T B3l

\%
well-bracketing, [1] A3
What's new?, 24,73

X

X-raiser, [34
X 4,032
Xa_p, 032
¢80
(XTD1,3), 38

Y
Y, I3

Y4
¢,6a BT (23 133
¢’ cd
¢,64
¢',64
ZFA, 2T
Zipper lemma, 4]

	Introduction
	Background Remarks
	Nominal Languages
	Nominal Sets
	Game Semantics

	Thesis Outline
	Main Contributions

	Names, Nu and Monads
	Nominal Sets
	Definition
	Strong support
	A historical note

	A paradigmatic nominal language
	The nu-calculus
	The snu-calculus

	Monads and Comonads
	Monads
	The Kleisli construction and the intrinsic preorder
	Defining side-effects
	Monad composition
	Defining exceptions
	Comonads
	Monadic-comonadic setting

	Nominal Games
	The basic category G of nominal games
	Nominal arenas and strategies
	Composition
	Arena and strategy orders in G

	Innocence
	The subcategory V
	Viewfunctions
	Diagrams of viewfunctions

	Totality
	The subcategory
	Lifting and product
	Partial exponentials
	Coproducts
	Strategy and arena orders

	A monad, and some comonads
	Lifting monad
	Initial-state comonads
	Fresh-name constructors

	Nominal games à la Laird

	Nominal References
	The nurho-calculus
	Semantics
	Soundness
	Completeness

	The nominal games model
	Solving the Store Equation
	The store monad T
	Obtaining the nurho-model
	Adequacy
	Tidy strategies
	Observationality
	Definability and full-abstraction
	Equivalences established semantically

	Nominal Exceptions
	The nueps-calculus
	Precompound monads
	Sound categorical semantics

	The ner-calculus
	Categorical semantics
	Full abstraction
	The nominal games model
	The sound model
	Full abstraction
	Equivalences established semantically

	Conclusion
	Deferred Proofs
	Bibliography
	Index

