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ABSTRACT 
 

Interactive exploration of multidimensional data sets is challenging because: (1) it is difficult to 
comprehend patterns in more than three dimensions, and (2) current systems often are a 
patchwork of graphical and statistical methods leaving many researchers uncertain about how to 
explore their data in an orderly manner. We offer a set of principles and a novel rank-by-feature 
framework that could enable users to better understand distributions in one (1D) or two 
dimensions (2D), and then discover relationships, clusters, gaps, outliers, and other features.  
Users of our framework can view graphical presentations (histograms, boxplots, and 
scatterplots), and then choose a feature detection criterion to rank 1D or 2D axis-parallel 
projections.  By combining information visualization techniques (overview, coordination, and 
dynamic query) with summaries and statistical methods users can systematically examine the 
most important 1D and 2D axis-parallel projections.  We summarize our Graphics, Ranking, and 
Interaction for Discovery (GRID) principles as: (1) study 1D, study 2d, then find features (2) 
ranking guides insight, statistics confirm. We implemented the rank-by-feature framework in the 
Hierarchical Clustering Explorer, but the same data exploration principles could enable users to 
organize their discovery process so as to produce more thorough analyses and extract deeper 
insights in any multidimensional data application, such as spreadsheets, statistical packages, or 
information visualization tools. 

 
Keywords: rank-by-feature framework, information visualization, exploratory data analysis, 
dynamic query, feature detection/selection, graphical displays, summaries, statistical tests.
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1  INTRODUCTION 
 

Multidimensional or multivariate data sets are common in data analysis applications; e.g., 
microarray gene expression, demographics, and economics.  A data set that can be represented in 
a spreadsheet where there are more than three columns can be thought of as multidimensional.  
Without losing generality, we can assume that each column is a dimension (or a variable), and 
each row is a data item.  Dealing with multidimensionality has been challenging to researchers in 
many disciplines due to the difficulty in comprehending more than three dimensions to discover 
relationships, outliers, clusters, and gaps. This difficulty is so well recognized that it has a 
provocative name: “the curse of high dimensionality.” 

 
One of the commonly used methods to cope with multidimensionality is to use low-

dimensional projections.  Since human eyes and minds are effective in understanding one-
dimensional (1D) histograms, two-dimensional (2D) scatterplots, and three-dimensional (3D) 
scatterplots, these representations are often used as a starting point.  Users can begin by 
understanding the meaning of each dimension (since names can help dramatically, they should 
be readily accessible) and by examining the range and distribution (normal, uniform, erratic, etc.) 
of values in a histogram. Then experienced analysts suggest applying an orderly process to note 
exceptional features such as outliers, gaps, or clusters.   

 
Next, users can explore two-dimensional relationships by studying 2D scatterplots and again 

use an orderly process to note exceptional features.  Since computer displays are intrinsically 
two-dimensional, collections of 2D projections have been widely used as representations of the 
original multidimensional data.  This is imperfect since some features will be hidden, but at least 
users can understand what they are seeing and come away with some insights.   

 
Advocates of 3D scatterplots argue that since the natural world is three dimensional, users can 

readily grasp 3D representations.  However, there is substantial empirical evidence that for 
multidimensional ordinal data (rather than 3D real objects such as chairs or skeletons), users 
struggle with occlusion and the cognitive burden of navigation as they try to find desired 
viewpoints.  Advocates of higher dimensional displays have demonstrated attractive possibilities, 
but their strategies are still difficult to grasp for most users.   

 
Since two-dimensional presentations offer ample power while maintaining comprehensibility, 

many variations have been proposed. We distinguish the three categories of two-dimensional 
presentations by the way axes are composed: (1) Non axis-parallel projection methods use a 
(linear/nonlinear) combination of two or more dimensions for an axis of the projection plane.  
Principal component analysis (PCA) is a well-established technique in this category, (2) Axis 
parallel projection methods use existing dimensions as axes of the projection plane.  One of the 
existing dimensions is selected as the horizontal axis, and another as the vertical axis, to make a 
familiar and comprehensible presentation.  Sometimes, other dimensions can be mapped as 
color, size, length, angle, etc., (3) Novel methods use axes that are not directly derived from any 
combination of dimensions.  For example, the parallel coordinate presentation is a powerful 
concept in which dimensions are aligned sequentially and presented perpendicular to a horizontal 
axis [19]. 
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Although presentations in category (1), non-axis-parallel, can show all possible 2D projections 
of a multidimensional data set, they suffer from users’ difficulty in interpreting 2D projections 
whose axes are linear/nonlinear combination of two or more dimensions.  For example, even 
though users may find a strong linear correlation on a projection where the horizontal axis is 
3.7*body weight - 2.3*height and the vertical axis is waist size + 2.6*chest size, the finding is not 
so useful because it is difficult to understand the meaning of such projections. 

 
Techniques in category (2), axis-parallel, have a limitation that features can be detected in only 

the two selected dimensions.  However, since it is familiar and comprehensible for users to 
interpret the meaning of the projection, these projections have been widely used and 
implemented in visualization tools.  A problem with these category (2) presentations is how to 
deal with the large number of possible low-dimensional projections.  If we have an m-
dimensional data set, we can generate m*(m-1)/2 2D projections using the category (2) 
techniques. We believe that our work offers an attractive solution to coping with the large 
numbers of low-dimensional projections and that it provides practical assistance in finding 
features in multidimensional data.   

 
 Techniques in category (3) remain important, because many relationships and features are 

visible and meaningful only in higher dimensional presentations. Our principles could be applied 
to support these techniques as well, but that subject is beyond this paper’s scope. 

 
There have been many commercial packages and research projects that utilize low-dimensional 

projections for exploratory data analysis, including spreadsheets, statistical packages, and 
information visualization tools. However, users have to develop their own strategies to discover 
which projections are interesting and to display them.  We believe that existing packages and 
projects, especially information visualization tools for exploratory data analysis, can be 
improved by enabling users to systematically examine low-dimensional projections. 

 
  In this paper, we present a conceptual framework for interactive feature detection named 

rank-by-feature framework to address these issues.  In the rank-by-feature framework (the rank-
by-feature interface for 2D scatterplots is shown at the bottom half of Figure 1), users can select 
an interesting ranking criterion, and then all possible axis-parallel projections of a 
multidimensional data set are ranked by the selected ranking criterion.  Available ranking criteria 
are explained in section 3.1 and 3.2.  The ranking result is visually presented in a color-coded 
grid (“Score Overview”), as well as a tabular display (“Ordered List”) where each row represents 
a projection and is color-coded by the ranking score.  With these presentations users can easily 
perceive the most interesting projections, and also grasp the overall ranking score distribution. 
Users can manually browse projections by rapidly changing the dimension for an axis using the 
item slider attached to the corresponding axis of the projection view (histogram and boxplot for 
1D, and scatterplot for 2D). 

 
For example, let’s assume that users analyze the US counties data set with 17 demographical 

and economical statistics available for each county.  The data set can be thought of as a 17 
dimensional data set. Users can choose “Pearson correlation coefficient” as a ranking criterion at 
the rank-by-feature framework if they are interested in linear relationships between dimensions.  
Then, the rank-by-feature framework calculates “scores” (in this case, Pearson correlation 
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coefficient) for all possible pair of dimensions, and ranks all pairs according to the score values.  
Users could easily identify that there is a negative correlation between poverty level and the 
percentage of high school graduates after users skim through the score overview (a color-coded 
grid display at the lower left corner of Figure 1), where each cell represents the scatterplot for a 
pair of dimensions and it is color-coded by the score value for the scatterplot.  All possible pairs 
are also shown in the ordered list (a list control right next to the score overview at Figure 1) 
together with the numerical score values in a column. The scatterplot is shown at the lower right 
corner of Figure 1. More details on the rank-by-feature framework are explained in section 3.  
More details on the application example of the rank-by-feature framework with the US counties 
data set are explained in section 5. 

 

 
Figure 1. The Hierarchical Clustering Explorer (HCE) with a US counties statistics data set.  The interactively coordinated 
displays in HCE 3.0 include: dendrogram view, histogram views, scatterplot views, details view at the top, and 7 tabs (Color Mosaic, 
Table View, Histogram Ordering, Scatterplot Ordering, Profile Search, Gene Ontology, and K-means) at the bottom (Scatterplot 
Ordering tab is selected in this figure). The dendrogram view at the top left corner visualizes the hierarchical clustering result of a 
US counties statistics data set enabling users to interactively explore the clustering result [26].  Among the 7 tabs, Histogram 
Ordering and Scatterplot Ordering implement the rank-by-feature framework interface for 1D and 2D respectively. Two histograms 
and two scatterplots are selected through the rank-by-feature interfaces and are shown as separate child windows to the right of the 
dendrogram view. Four selected US counties are listed in the top half of the details view and the statistics for one of the counties are 
shown at the bottom half. A 2D scatterplot ordering result using “Pearson correlation coefficient” as the ranking criterion is shown in 
the Scatterplot Ordering tab. Four counties that are poor and have a medium number of high school graduates are selected in the 
scatterplot browser and they are all highlighted in other views with triangles. 

 
We implemented the rank-by-feature framework in our interactive exploration tool for 

multidimensional data, the Hierarchical Clustering Explorer (HCE) [26] (Figure 1) as two new 
tab windows (“Histogram Ordering” for 1D projections, and “Scatterplot Ordering” for 2D 
projections).  By using the rank-by-feature framework, users can easily find interesting 
histograms and scatterplots, and generate separate windows to visualize those plots.  All these 
plots are interactively coordinated with other views (e.g. dendrogram and color mosaic view, 
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tabular view, parallel coordinate view) in HCE.  If users select a group of items in any view, they 
can see the selected items highlighted in all other views.  Thus, it is possible to comprehend the 
data from various perspectives to get more meaningful insights. 

 
This paper is an extended version of our paper for the Information Visualization Conference, 

Austin Texas, 2004 [27].We extend the two basic statistical principles for exploratory data 
analysis to encompass the interactive visualizations and user interactions, and we present our 
principles for interactive multidimensional data exploration - Graphics, Ranking, and Interaction 
for Discovery (GRID) principles.  We improve the color coding scheme for the rank-by-feature 
framework by using three different colors and we overhaul the visualization of features in 1D 
and 2D projections by highlighting key features appropriately.  More ranking criteria are 
implemented in HCE and all ranking criteria are discussed in more detail in terms of why they 
are important and how to detect them. We also discuss the issues of transformation and other 
potential ranking criteria.  

 
Section 2 introduces related work, and section 3 makes the case for the GRID principles and 

the rank-by-feature framework for axis-parallel 1D and 2D projections.  Potentially interesting 
ranking criteria and transformations are discussed in section 4.  An application example is 
presented in section 5.  Discussion and future work are in section 6.  We conclude the paper in 
section 7. 

 
 

2  RELATED WORK 
 
Two-dimensional projections have been utilized in many visualization tools and graphical 
statistics tools for multidimensional data analysis.  Projection techniques such as PCA, 
multidimensional scaling (MDS), and parallel coordinates [19] are used to find informative two-
dimensional projections of multidimensional data sets.  Self-organizing maps (SOM) [20] can 
also be thought of as a projection technique.  Taking a look at only a single projection for a 
multidimensional data set is not enough to discover all the interesting features in the original data 
since any one projection may obscure some features [12].  Thus it is inevitable that users must 
scrutinize a series of projections to reveal the features of the data set. 

 
Projection methods belonging to category (1), non-axis-parallel, were developed by 

statisticians.  The idea of projection pursuit [13] is to find the most interesting low-dimensional 
projections to identify interesting features in the multidimensional data set.  An automatic 
projection pursuit method, known as the grand tour [5], is a method for viewing 
multidimensional data via orthogonal projection onto a sequence of two-dimensional subspaces.  
It changes the viewing direction, generating a movie-like animation that makes a complete 
search of the original space.  However, it might take several hours to complete a reasonably 
complete visual search in four dimensions [18].  An exhaustive visual search is out of the 
question as the number of dimensions grows. 

 
Friedman and Tukey [12] devised a method to automate the task of projection pursuit.  They 

defined interesting projections as ones deviating from the normal distribution, and provide a 
numerical index to indicate the interestingness of the projection.  When an interesting projection 
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is found, the features on the projection are extracted and projection pursuit is continued until 
there is no remaining feature found.  XGobi [9] is a widely-used graphical tool that implemented 
both the grand tour and the projection pursuit, but not the ranking that we propose. There are 
clustering methods that utilize a series of low-dimensional projections in category (1).  Among 
them, HD-Eye system by Hinneburg et al. [17] implements an interactive divisive hierarchical 
clustering algorithm built on a partitioning clustering algorithm, or OptiGrid.  They show 
projections using glyphs, color or curve-based density displays to users so that users can visually 
determine low-dimensional projections where well-separated clusters are and then users can 
define separators on the projections. 

 
These automatic projection pursuit methods made impressive gains in the problem of 

multidimensional data analysis, but they have limitations.  One of the most important problems is 
the difficulty in interpreting the solutions from the automatic projection pursuit.  Since the axes 
are the linear combination of the variables (or dimensions) of the original data, it is hard to 
determine what the projection actually means to users.  Conversely, this is one of the reasons that 
axis-parallel projections (projection methods in category (2)) are used in many multidimensional 
analysis tools [15][25][29]. 

 
Projection methods belonging to category (2), axis-parallel, have been applied by researchers 

in machine learning, data mining, and information visualization.  In machine learning and data 
mining, ample research has been conducted to address the problems of using projections.  Most 
work focuses on the detection of dimensions that are most useful for a certain application, for 
example, supervised classification.  In this area, the term “feature selection” is a process that 
chooses an optimal subset of features according to a certain criterion [22], where a feature simply 
means dimension.  Basically, the goal is to find a good subset of dimensions (or features) that 
contribute to the construction of a good classifier.  Unsupervised feature selection methods are 
also studied in close relation with unsupervised clustering algorithms. In this case, the goal is to 
find an optimal subset of features with which clusters are well identified [1][2][15][16].  In 
pattern recognition, researchers want to find a subset of dimensions with which they can better 
detect specific patterns in a data set.  In subspace-based clustering analysis, researchers want to 
find projections where it is easy to naturally partition the data set.   

 
In the information visualization field, about 30 years ago, Jacques Bertin presented a 

visualization method called the Permutation Matrix [6]. It is a reorderable matrix where a 
numerical value in each cell are represented as a graphical object whose size is proportional to 
the numerical value, and where users can rearrange rows and columns to get more homogeneous 
structure.  This idea seems trivial, but it is a powerful way to observe meaningful patterns after 
rearranging the order of the data presentation.  Since then, other researchers have also tried to 
optimally arrange dimensions so that similar or correlated dimensions are put close to each other.  
This helps users to find interesting patterns in multidimensional data [4][14][30].  Yang et al. 
[30] proposed innovative dimension ordering methods to improve the effectiveness of 
visualization techniques including the parallel coordinates view in category (3). They rearrange 
dimensions within a single display according to similarities between dimensions or relative 
importance defined by users. Our work is to rank all dimensions or all pairs of dimensions whose 
visualization contains desired features. Since our work can provide a framework where statistical 
tools and algorithmic methods can be incorporated into the analysis process as ranking criteria, 
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we think our work contributes to the advance of information visualization systems by bridging 
the analytic gaps that were recently discussed by Amar and Stasko [3]. 

 
In early 1980’s, Tukey who was one of the prominent statisticians who foresaw the utility of 

computers in exploratory data analysis envisioned a concept of “scagnostics” (a special case of 
“cognostics” – computer guiding diagnostics) [28]. With high dimensional data, it is necessary to 
use computers to rank the relative interest of different scatterplots, or the relative importance of 
showing them and sort out such scatterplots for human analyses. He emphasized the need for 
better ideas on “what to compute” and “how” as well as “why.” He proposed several scagnostic 
indices such as the projection-pursuit clottedness and the difference between the classical 
correlation coefficient and a robust correlation. We brought his concept to reality with the rank-
by-feature framework in the Hierarchical Clustering Explorer where we create interface controls, 
design practical displays, and implement more ranking ideas.  There are also some research tools 
and commercial products for helping users to find more informative visualizations.  Spotfire [25] 
has a guidance tool called “View Tip” for rapid assessment of potentially interesting scatterplots, 
which shows an ordered list of all possible scatterplots from the one with highest correlation to 
the one with lowest correlation.  Guo et al. [15][16] also evaluated all possible axis-parallel 2D 
projections according to the maximum conditional entropy to identify ones that are most useful 
to find clusters.  They visualized the entropy values in a matrix display called the entropy matrix 
[23].  Our work takes these nascent ideas with the goal of developing a potent framework for 
discovery. 

 
 
3  RANK-BY-FEATURE FRAMEWORK 

 
A playful analogy may help clarify our goals. Imagine you are dropped by parachute into an 
unfamiliar place – it could be a forest, prairie, or mountainous area.  You could set out in a 
random direction to see what is nearby and then decide where to turn next. Or you might go 
towards peaks or valleys. You might notice interesting rocks, turbulent streams, scented flowers, 
tall trees, attractive ferns, colorful birds, graceful impalas, and so on.  Wandering around might 
be greatly satisfying if you had no specific goals, but if you needed to survey the land to find 
your way to safety, catalog the plants to locate candidate pharmaceuticals, or develop a wildlife 
management strategy, you would need to be more systematic.  Of course, each profession that 
deals with the multi-faceted richness of natural landscapes has developed orderly strategies to 
guide novices, to ensure thorough analyses, to promote comprehensive and consistent reporting, 
and to facilitate cooperation among professionals.   

 
Our principles for exploratory analysis of multidimensional data sets have similar goals. 

Instead of wandering, analysts should clarify their goals and use appropriate techniques to ensure 
a comprehensive analysis. A good starting point is the set of principles put forth by Moore and 
McCabe, who recommended that statistical tools should (1) enable users to examine each 
dimension first and then explore relationships among dimensions, and (2) offer graphical 
displays first and then provide numerical summaries [24].  We extend Moore and McCabe’s 
principles to include ranking the projections to guide discovery of desired features, and realize 
this idea with overviews to see the range of possibilities and coordination to see multiple 
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presentations.  An orderly process of exploration is vital, even though there will inevitably be 
excursions, iterations, and shifts of attention from details to overviews and back.   

 
 The rank-by-feature framework is especially potent for interactive feature detection in 

multidimensional data.  We use the term, “features” to include relationships between dimensions 
(or variables) but also interesting characteristics (patterns, clusters, gaps, outliers, or items) of the 
data set.  To promote comprehensibility, we concentrate on axis-parallel projections; however, 
the rank-by-feature framework can be used with general geometric projections.  Although 3D 
projections are sometimes useful to reveal hidden features, they suffer from occlusion and the 
disorientation brought on by the cognitive burden of navigation.  On the other hand, 2D 
projections are widely understood by users, allowing them to concentrate on the data itself rather 
than being distracted by navigation controls. 

 
Detecting interesting features in low dimensions (1D or 2D) by utilizing powerful human 

perceptual abilities is crucial to understand the original multidimensional data set.  Familiar 
graphical displays such as histograms, scatterplots, and other well-known 2D plots are effective 
to reveal features including basic summary statistics, and even unexpected features in the data 
set.  There are also many algorithmic or statistical techniques that are especially effective in low-
dimensional spaces.  While there have been many approaches utilizing such visual displays and 
low-dimensional techniques, most of them lack a systematic framework that organizes such 
functionalities to help analysts in their feature detection tasks. 

 
Our Graphics, Ranking, and Interaction for Discovery (GRID) principles are designed to 

enable users to better understand distributions in one (1D) or two dimensions (2D), and then 
discover relationships, clusters, gaps, outliers, and other features.  Users work by viewing 
graphical presentations (histograms, boxplots, and scatterplots), and then choose a feature 
detection criterion to rank 1D or 2D axis-parallel projections.  By combining information 
visualization techniques (overview, coordination, and dynamic query) with ranking, summaries 
and statistical methods users can systematically examine the most important 1D and 2D axis-
parallel projections.  We summarize the GRID principles as:  
 

(1) study 1D, study 2D, then find features  
(2) ranking guides insight, statistics confirm. 
 
 Abiding by these principles, the rank-by-feature framework has an interface for 1D 

projections and a separate one for 2D projections.  Users can begin their exploration with the 
main graphical display - histograms for 1D and scatterplots for 2D - and they can also study 
numerical summaries for more detail. 

 
The rank-by-feature framework helps users systematically examine low-dimensional (1D or 

2D) projections to maximize the benefit of exploratory tools.  In this framework, users can select 
an interesting ranking criterion.  Users can rank low-dimensional projections (1D or 2D) of the 
multidimensional data set according to the strength of the selected feature in the projection.  
When there are many dimensions, the number of possible projections is too large to investigate 
by looking for interesting features.  The rank-by-feature framework relieves users from such 
burdens by recommending projections to users in an ordered manner defined by a ranking 
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criterion that users selected.  This framework has been implemented in our interactive 
visualization tool, HCE 3.0 (www.cs.umd.edu/hcil/hce/) [26].  
 
 
3.1 1D HISTOGRAM ORDERING 

 
Users begin the exploratory analysis of a multidimensional data set by scrutinizing each 
dimension (or variable) one by one.  Just looking at the distribution of values of a dimension 
gives them useful insight into the dimension.  The most familiar graphical display tools for 1D 
data are histograms and boxplots.  Histograms graphically reveal the scale and skewness of the 
data, the number of modes, gaps, and outliers in the data.  Boxplots are also excellent tools for 
understanding the distribution within a dimension.  They graphically show the five-number 
summary (the minimum, the first quartile, the median, the third quartile, and the maximum). 
These numbers provide users with an informative summary of a dimension’s center and spread, 
and they are the foundation of multidimensional data analysis for deriving a model for the data or 
for selecting dimensions for effective visualization.  

 
The main display for the rank-by-feature framework for 1D projections shows a combined 

histogram and boxplot (Figure 2).  The interface consists of four coordinated parts: control 
panel, score overview, ordered list, and histogram browser.  Users can select a ranking criterion 
from a combo box in the control panel, and then they see the overview of scores for all 
dimensions in the score overview according to the selected ranking criterion.  All dimensions are 
aligned from top to bottom in the original order, and each dimension is color-coded by the score 
value.  By default, cells of high value have bright blue green colors and cells of low value have 
bright brown colors.  The cell of middle value has the white color.  As a value gets closer to the 
middle value, the color intensity attenuates. Users can change the colors for minimum, middle, 
and maximum values.  The color scale and mapping are shown at the top right corner of the 
overview (B).  Users can easily see the overall pattern of the score distribution, and more 
importantly they can preattentively identify the dimension of the highest/lowest score in this 
overview.  Once they identify an interesting row on the score overview, they can just mouse over 
the row to view the numerical score value and the name of the dimension is shown in a tooltip 
window (Figure 2).  

 

 
       A              B                                                   C                                                                                   D 

Figure 2. Rank-by-feature framework interface for histograms (1D).  All 1D histograms are ordered according to the current 
order criterion (A) in the ordered list (C).  The score overview (B) shows an overview of scores of all histograms.  A mouseover 
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event activates a cell in the score overview, highlights the corresponding item in the ordered list (C) and shows the corresponding 
histogram in the histogram browser (D) simultaneously.  A click on a cell selects the cell and the selection is fixed until another click 
event occurs in the score overview or another selection event occurs in other views.  A selected histogram is shown in the histogram 
browser (D), where users can easily traverse histogram space by changing the dimension for the histogram using item slider.  A 
boxplot is also displayed above the histogram to show the graphical summary of the distribution of the dimension.  (Data shown is 
from a gene expression data set from a melanoma study (3614 genes x 38 samples)). 

 
The mouseover event is also instantaneously relayed to the ordered list and the histogram 

browser, so that the corresponding list item is highlighted in the ordered list and the 
corresponding histogram and boxplot are shown in the histogram browser.  The score overview, 
the ordered list, and the histogram browser are interactively coordinated according to the change 
of the dimension in focus.  In other words, a change of dimension in focus in one of the three 
components leads to the instantaneous change of dimension in focus in the other two components.  

 
In the ordered list, users can see the numerical detail about the distribution of each dimension 

in an orderly manner.  The numerical detail includes the five-number summary of each 
dimension and the mean and the standard deviation.  The numerical score values are also shown 
at the third column whose background is color-coded using the same color-mapping as in the 
score overview.  While numerical summaries of distributions are very useful, sometimes they are 
misleading.  For example, when there are two peaks in a distribution, neither the median nor the 
mean explains the center of the distribution.  This is one of the cases for which a graphical 
representation of a distribution (e.g., a histogram) works better.  In the histogram browser, users 
can see the visual representation of the distribution of a dimension at a time.  A boxplot is a good 
graphical representation of the five-number summary, which together with a histogram provides 
an informative visual description of a dimension’s distribution.  It is possible to interactively 
change the dimension in focus just by dragging the item slider attached to the bottom of the 
histogram. 

 
Since different users may be interested in different features in the data sets, it is desirable to 

allow users to customize the available set of ranking criteria.  However, we have chosen the 
following ranking criteria that we think fundamental and common for histograms as a starting 
point, and we have implemented them in HCE: 
 
(1) Normality of the distribution (0 to inf): 

Many statistical analysis methods such as t-test, ANOVA are based on the assumption that the 
data set is sampled from a Gaussian normal distribution.  Therefore, it is useful to know the 
normality of the data set.  Since a distribution can be nonnormal due to many different reasons, 
there are at least ten statistical tests for normality including Shapiro-Wilk test and Kolmogorov-
Smirnov test.  We used the omnibus moments test for normality in the current implementation.  
The test returns two values, skewness (s) and kurtosis (k).  Since s is 0 and k is 3 for a standard 
normal distribution, we calculate |s|+|k-3| to measure how the distribution deviates from the 
normal distribution and rank variables according to the measure.  Users can confirm the ranking 
result using the histogram browser to gain an understanding of how the distribution shape 
deviates from the familiar bell-shaped normal curve. 
 
(2) Uniformity of the distribution (0 to inf): 

For the uniformity test, we used an information-based measure called entropy.  Given k bins in 
a histogram, the entropy of a histogram H is entropy , where p∑

=

−=
k

i

p
i

ipH
1

2log)( i is the probability 
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that an item belongs to the i-th bin.  High entropy means that values of the dimension are from a 
uniform distribution and the histogram for the dimension tends to be flat.  While knowing a 
distribution is uniform is helpful to understand the data set, it is sometime more informative to 
know how far a distribution deviates from uniform distribution since a biased distribution 
sometimes reveals interesting outliers. 
 
(3) The number of potential outliers (0 to n): 

To count outliers in a distribution, we used the 1.5*IQR (Interquartile range: the difference 
between the first quartile (Q1) and the third quartile (Q3)) criterion that is the basis of a rule of 
thumb in statistics for identifying suspected outliers [24].  An item of value d is considered as a 
suspected (mild) outlier if d > (Q3+1.5*IQR) or d < (Q1-1.5*IQR).  To get more restricted 
outliers (or extreme outliers), 3*IQR range can be used.  It is also possible to use an outlier 
detection algorithm developed in the data mining.  Outliers are one of the most important 
features not only as noisy signals to be filtered but also as a truly unusual response to a medical 
treatment worth further investigation or as an indicator of credit card fraud. 
 
(4) The number of unique values (0 to n): 

At the beginning of the data analysis, it is useful to know how many unique values are in the 
data.  Only small number of unique values in a large set may indicate problems in sampling or 
data collection or transcription.  Sometime it may also indicate that the data is a categorical value 
or the data was quantized.  Special treatment may be necessary to deal with categorical or 
quantized variables. 
 
(5) Size of the biggest gap (0 to max range of dimensions): 

Gap is an important feature that can reveal separation of data items and modality of the 
distribution.  Let t be a tolerance value, n be the number of bins, and mf be the maximum 
frequency.  We define a gap as a set of contiguous bins {bk} where bk (k=0 to n) has less than 
t*mf items.  The procedure sequentially visits each bin and merges the satisfying bins to form a 
bigger set of such bins.  It is a simple and fast procedure.  Among all gaps in the data, we rank 
histograms by the biggest gap in each histogram.  Since we use equal-sized bins, the biggest gap 
has the most bins satisfying the tolerance value t.    

 
For some of the ranking criteria for histogram ordering such as normality, there are many 

available statistical tests to choose from.  We envision that many researchers could contribute 
statistical tests that could be easily incorporated into the rank-by-feature framework as plug-ins.  
For example, since outlier detection is a rich research area, novel statistical tests or new data 
mining algorithms are likely to be proposed in the coming years, and they could be made 
available as plug-ins. 

 
 

3.2 2D SCATTERPLOT ORDERING 
 
According to our fundamental principles for improving exploration of multidimensional data, 
after scrutinizing 1D projections, it is natural to move on to 2D projections where pair-wise 
relationships will be identified.  Relationships between two dimensions (or variables) are 
conveniently visualized in a scatterplot.  The values of one dimension are aligned on the 
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horizontal axis, and the values of the other dimension are aligned on the vertical axis.  Each data 
item in the data set is shown as a point in the scatterplot whose position is determined by the 
values at the two dimensions.  A scatterplot graphically reveals the form (e.g., linear or curved), 
direction (e.g., positive or negative), and strength (e.g., weak or strong) of relationships between 
two dimensions.  It is also easy to identify outlying items in a scatterplot, but it can suffer from 
overplotting in which many items are densely packed in one area making it difficult to gauge the 
density. 
 

 
            A                                  B                                                        C                                                                  D 
Figure 3. Rank-by-feature framework interface for scatterplots (2D).  All 2D scatterplots are ordered according to the current 
ordering criterion (A) in the ordered list (C).   Users can select multiple scatterplots at the same time and generate separate 
scatterplot windows for them to compare them in a screen.  The score overview (B) shows an overview of scores of all scatterplots.  
A mouseover event activates a cell in the score overview, highlights the corresponding item in the ordered list (C) and shows the 
corresponding scatterplot in the scatterplot browser (D) simultaneously.  A click on a cell selects the cell and the selection is fixed 
until another click event occurs in the score overview or another selection event occurs in other views.  A selected scatterplot is 
shown in the scatterplot browser (D), where it is also easy to traverse scatterplot space by changing X or Y axis using item sliders 
on the horizontal or vertical axis.  (A demographic and health related statistics for 3138 U.S. counties with 17 attributes.) 
 

We used scatterplots as the main display for the rank-by-feature framework for 2D projections.  
Figure 3 shows the interactive interface design for the rank-by-feature framework for 2D 
projections.  Analogous to the interface for 1D projections, the interface consists of four 
coordinated components: control panel, score overview, ordered list, and scatterplot browser.  
Users select an ordering criterion in the control panel on the left, and then they see the complete 
ordering of all possible 2D projections according to the selected ordering criterion (Figure 3A).  
The ordered list shows the result of ordering sorted by the ranking (or scores) with scores color-
coded on the background.  Users can click on any column header to sort the list by the column.  
Users can easily find scatterplots of the highest/lowest score by changing the sort order to 
ascending or descending order of score (or rank).  It is also easy to examine the scores of all 
scatterplots with a certain variable for horizontal or vertical axis after sorting the list according to 
X or Y column by clicking the corresponding column header.  

 
However, users cannot see the overview of entire relationships between variables at a glance in 

the ordered list.  Overviews are important because they can show the whole distribution and 
reveal interesting parts of data.  We have implemented a new version of the score overview for 
2D projections.  It is an m-by-m grid view where all dimensions are aligned in the rows and 
columns.  Each cell of the score overview represents a scatterplot whose horizontal and vertical 
axes are dimensions at the corresponding column and row respectively.  Since this table is 
symmetric, we used only the lower-triangular part for showing scores and the diagonal cells for 
showing the dimension names as shown in Figure 3B.  Each cell is color-coded by its score value 
using the same mapping scheme as in 1D ordering.  As users move the mouse over a cell, the 
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scatterplot corresponding to the cell is shown in the scatterplot browser simultaneously, and the 
corresponding item is highlighted in the ordered list (Figure 3C).  Score overview, ordered list, 
and scatterplot browser are interactively coordinated according to the change of the dimension in 
focus as in the 1D interface. 

 
In the score overview, users can preattentively detect the highest/lowest scored combinations 

of dimensions thanks to the linear color-coding scheme and the intuitive grid display.  
Sometimes, users can also easily find a dimension that is the least or most correlated to most of 
other dimensions by just locating a whole row or column where all cells are the mostly bright 
brown or bright blue green.  It is also possible to find an outlying scatterplot whose cell has 
distinctive color intensity compared to the rest of the same row or column.  After locating an 
interesting cell, users can click on the cell to select, and then they can scrutinize it on the 
scatterplot browser and on other tightly coordinated views in HCE. 

 
While the ordered list shows the numerical score values of relationships between two 

dimensions, the interactive scatterplot browser best displays the relationship graphically.  In the 
scatterplot browser, users can quickly take a look at scatterplots by using item sliders attached to 
the scatterplot view.  Simply by dragging the vertical or horizontal item slider bar, users can 
change the dimension for the horizontal or vertical axis.  With the current version implemented 
in HCE, users can investigate multiple scatterplots at the same time.  They can select several 
scatterplots in the ordered list by clicking on them with the control key pressed.  Then, click 
“Make Views” button on the top of the ordered list, and each selected scatterplot is shown in a 
separate child window.  Users can select a group of items by dragging a rubber rectangle over a 
scatterplot, and the items within the rubber rectangle are highlighted in all other views.  On some 
scatterplots they might gather tightly together, while on other scatterplots they scatter around. 

 
Again interesting ranking criteria might be different from user to user, or from application to 

application.  Initially, we have chosen the following six ranking criteria that we think are 
fundamental and common for scatterplots, and we have implemented them in HCE. The first 
three criteria are useful to reveal statistical (linear or quadratic) relationships between two 
dimensions (or variables), and the next three are useful to find scatterplots of interesting 
distributions.  

 
(1) Correlation coefficient (-1 to 1):  
For the first criterion, we use Pearson's correlation coefficient (r) for a scatterplot (S) with n 

points defined as 
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Pearson’s r is a number between -1 and 1.  The sign tells us direction of the relationship and 
the magnitude tells us the strength of the linear relationship.  The magnitude of r increases as the 
points lie closer to the straight line.  Linear relationships are particularly important because 
straight line patterns are common and simple to understand.  Even though a strong correlation 
between two variables doesn’t always mean that one variable causes the other, it can provide a 
good clue to the true cause, which could be another variable.  Moreover, dimensionality can be 
reduced by combining two strongly correlated dimensions, and visualization can be improved by 
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juxtaposing correlated dimensions. As a visual representation of the linear relationship between 
two variables, the line of best fit or the regression line is drawn over scatterplots. 

 
(2) Least square error for curvilinear regression (0 to 1) 
This criterion is to sort scatterplots in terms of least-square errors from the optimal quadratic 

curve fit so that users can easily isolate ones where all points are closely/loosely arranged along a 
quadratic curve.  Users are often interested to find nonlinear relationships in the data set in 
addition to linear relationship.  For example, economists might expect that there is a negative 
linear relationship between county income and poverty, which is easily confirmed by correlation 
ranking.  However, they might be intrigued to discover that there is a quadratic relationship 
between the two, which can be easily revealed using this criterion. 

 
(3) Quadracity (0 to inf) 
If two variables show a strong linear relationship, they also produce small error for curvilinear 

regression because the linear relationship is special cases of the quadratic relationship, where the 
coefficient of the highest degree term (x2) equals zero.  To emphasize the real quadratic 
relationships, we add “Quadracity” criterion.  It ranks scatterplots according to the coefficient of 
the highest degree term, so that users can easily identify ones that are more quadratic than others.  
Of course, the least square error criterion should be considered to find more meaningful 
quadratic relationships, but users can easily see the error by viewing the fitting curve and points 
at the scatterplot browser. 

 
(4) The number of potential outliers (0 to n) 
Even though there is a simple statistical rule of thumb for identifying suspected outliers in 1D, 

there is no simple counterpart for 2D cases.  Instead, there are many outlier detection algorithms 
developed by data mining and database researchers.  Among them, distance-based outlier 
detection methods such as DB-out [11] define an object as an outlier if at least a fraction p of the 
objects in the data set are apart from the object more than at a distance greater than a threshold 
value.   Density-based outlier detection methods such as LOF-based method [7] define an object 
as an outlier if the relative density in the local neighborhood of the object is less than a threshold, 
in other words the local outlier factor (LOF) of the object is greater than a threshold.  Since the 
LOF-based method is more flexible and dynamic in terms of the outlier definition and detection, 
we included the LOF-based method in the current implementation. 

 
(5) The number of items in the region of interest (0 to n) 
This criterion is the most interactive since it requires users to specify a (rectangular, elliptical, 

or free-formed) region of interest by dragging left mouse button on the scatterplot browser.  Then 
the algorithm uses the number of items in the region to order all scatterplots so that users can 
easily find ones with most/least number of items in the given 2D region.  An interesting 
application of this ranking criterion is when a user specifies an upper left or lower right corner of 
the scatterplot.  Users can easily identify scatterplots where most/least items have low value for 
one variable (e.g. salary of a baseball player) and high value for the other variable (e.g. the 
batting average).  

 
(6) Uniformity of scatterplots (0 to inf) 
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For this criterion, we calculate the entropy in the same way as we did for histograms, but this 
time we divide the two-dimensional space into regular grid cells and then use each cell as a bin.  
For example, if we have generated k-by-k grid, the entropy of a scatterplot S is 
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4  TRANSFORMATIONS AND POTENTIAL RANKING CRITERIA 

 
Users sometimes want to transform the variable to get a better result.  For example, log 
transformations convert exponential relationships to linear relationships, straighten skewed 
distributions, and reduce the variance.  If variables have differing ranges, then comparisons must 
be done carefully to prevent misleading results, e.g. a gap in a variable whose range is 0~1000 is 
not usually comparable to a gap in a variable whose range is 2~6. Therefore transformations, 
such as standardization to common scales, are helpful to ensure that the ranking results are 
useful.  In the current rank-by-feature framework, users can perform 5 transformations (natural 
log, standardization, normalization to the first column or to median, and linear scaling to a 
certain range) over each column or row of the data set when loading the data set.  Then when 
they use the rank-by-feature framework, the results will apply to the transformed values.  An 
improvement to the rank-by-feature framework would allow users to apply transformations 
during their analyses, not only at the data loading time.  More transformations, such as 
polynomial or sinusoidal functions, would also be useful. 
 

We have implemented only a small fraction of possible ranking criteria in the current 
implementation.  Among the many useful ranking criteria, we suggest 3 interesting and potent 
ones. 

 
4.1  MODALITY 

If a distribution is normal, there should be one peak in a histogram. But sometimes there are 
several peaks.  In those cases, different analysis methods (such as sinusoidal fitting) should be 
applied to the variable, or the dimension should be partitioned to separate each peak (bell-shaped 
curve).  In this sense, the modality is also an important feature.  One possible score for the 
detection of multi-modality could be the change of sign of the first derivative of the histogram 
curve.  If there is one peak, there should be no change at the sign of the first derivative.  If there 
are two peaks, the sign should change once. 

 
4.2  OUTLIERNESS 

The number of outliers can be one of the informative features that contribute to making a 
better sense of underlying data sets.  However, sometimes “outlierness,” the strength of the 
outliers in a projection is more informative feature than the number of outliers.  The strongest 
outlier by itself can be a very important signal to users, and at the same time the axes of the 
projection where the outlier turns out to be a strong outlier can also be informative features 
because variables for those axes can give an explanation of the outlier’s strength.  One possible 
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score for the outlierness could be the maximum value of the local outlier factor (LOF) on a 
projection. 

 
4.3  GAPS IN 2D 

As we already saw in the 1D ordering cases, gaps are an informative feature in the data set.  
Several researchers in other fields also have studied related problems such as the largest empty 
rectangle problem [8][10] and the hole detection [21].  The largest empty rectangle problem is 
defined as follows: Given a 2D rectangular space and points inside it, find the largest axis 
parallel subrectangle that lies within the rectangle and contains no points inside it.   The hole 
detection problem is to find informative empty regions in a multidimensional space.  The time 
complexity of the current implementations prevents exploratory data analysis.  A more rapid 
algorithm could apply the grid-based approach that was effective in the uniformity criteria.   The 
projection plane can be divided into a relatively small number of grid cells (say 100 by 100), so 
that it becomes easy to find the biggest gap, similar to the method used for ranking 1D histogram 
gaps. 

 
 
5  APPLICATION EXAMPLE 

 
5.1 U.S. COUNTIES DATA SET 

We show an application example of the rank-by-feature framework with a collection of county 
information data set.  The data set has 3139 rows (U.S. counties) and 17 columns (attributes).  17 
attributes are the following: 

 
Variable Name Description 
1 HomeValue2000 median value of owner-occupied housing value, 2000 
2 Income1999 per capita money income, 1999 
3 Poverty1999 percent below poverty level, 1999 
4 PopDensity2000 population, 2000 
5 PopChange population percent change, 4/1/2000~7/1/2001 
6 Prcnt65+ population 65 years old and over, 2000 
7 Below18 person under 18 years old, 2000 
8 PrcntFemale2000 percent of female persons, 2000 
9 PrcntHSgrads2000 percent of high school graduates age 25+, 2000 
10 PrcntCollege2000 percent of college graduates or higher age 25+, 2000 
11 Unemployed person unemployed, 1999 
12 PrcntBelow18 percent under 18 years old, 2000 
12 LifeExpectancy life expectancy, 1997 
14 FarmAcres farm land (acres), 1997 
15 LungCancer lung cancer mortality rate per 100,000, 1997 
16 ColonCancer colon cancer rate per 100,000, 1997 
17 BreastCancer breast cancer per 100,000 white female, 1994~1997 

 
Users first select the “Uniformity” for 1D ranking, and can preattentively identify the three 

dimensions (“population,” “percent under 18 years old,” and “person unemployed”) that have 
low values in the score overview as shown in Figure 4a.  This means the distribution of values of 
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these dimensions is biased to a small range as shown in Figure 5d.  The county with the extreme 
value (highlighted in red at the right most bin of the histogram) on all three low-scored 
dimensions is “Los Angeles, CA.”  In the histogram for “percent of high school graduates” that 
has a high score (Figure 5a), LA is mapped to a bin below the first quartile on the histogram 
(also highlighted in red), which means there are relatively lower percentage of high school 
graduates in LA. 

 

         
(a) Uniformity                  (b) Correlation                                         (c) Quadracity                       (d) Quadracity (in gray scale) 
Figure 4.  The score overviews for U.S. county data.  Bright blue green indicates high value and bright brown indicates low value.  
White is assigned to the value in the middle.  When the value varies from negative to positive, white is assigned to the value 0 as in 
(b). Users who have color deficiencies or who desire different color palettes for their monitors/projectors can change color settings 
by right clicking on the color scale bar and choosing different colors (d). 
 
 

  

LA 
LA LA

LA

                          (a) 6.7                                          (b) 6.1                                            (c) 4.5                                            (d) 1.5  
Figure 5. Four selected histograms ranging from high uniformity (a) to low uniformity (d). The bar for Los Angeles, CA (LA) is 
highlighted in red in each figure.  In 5d the distribution is concentrated on the far left and LA appears as an outlier at the far right. 

 
Figures 6 shows 4 histograms ranked by the biggest gap size.  Gap detection was performed 

with standardized values (i.e. in this case all dimensions are transformed to a distribution whose 
mean is 0 and the standard deviation is 1).  As discussed in section 4 (opening paragraph), the 
gap ranking criterion is affected by whether the original or transformed values are used for 
ranking.  Ranking computations based on the original values (values before transformation), 
produce a different ranking result since the range of the values may change due to the 
transformation.  The biggest gap is highlighted as a peach rectangle on each histogram. The bar 
to the right of the gap on (a) is for Los Angeles, CA, which confirms the previous ranking result 
(Figure 5d). The bar to the right of the gap on (b) is for Coconino, AZ, which means that 
Coconino County has exceptionally broad farm lands. 
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                          (a) 21.0                                          (b) 5.77                                    (c) 0.38                                      (d) 0.24  
Figure 6. Four selected histograms ranging from big gap (a) to small gap (d).  Gap detection was performed after 
standardizing each variable.  The biggest gap is highlighted as a peach rectangle on each histogram. The bar to the right of the gap 
on (a) is for LA, and the bar to the right of the gap on (b) is for Coconino, AZ. 

 
Next, if users move on to the rank-by-feature framework for 2D projections, they can choose 

“Correlation coefficient” as the ranking criterion.  And again they preattentively identify three 
very bright blue green cells and two very bright brown cells in the score overview (Figure 4b).  
The scatterplot for one of the high-scored cells is shown in Figure 7a, where LA is highlighted 
with an orange triangle in a circle at the top right corner.  Interestingly, the three bright cells are 
composed by the three dimensions that have very low scores in 1D ranking by “Uniformity.”  
LA is also a distinctive outlier in all three high scored scatterplots.  Users can confirm a trivial 
relationship between poverty and income, i.e. poor counties have less income (Figure 7c). The 
scatterplot for one of the two bright brown cells is shown in Figure 7d, revealing that counties 
with high percentages of high school graduates are particularly free from poverty. 

 

    
(a) 0.96                                       (b) 0.77                                       (c) -0.69                                  (d) -0.71 

Figure 7. Four selected scatterplots ordered by correlation coefficient. The line of best fit is drawn as a blue line. 
 
User can then run the ranking by quadracity to identify strong quadratic relationships, 

producing 4 interesting scatterplots. Figures 8 (a) and (d) show weak quadratic relationships.  It 
is interesting to know that they showed strong linear relationships according to the correlation 
coefficient ranking, but each pair of variables in (a) and (d) actually have some weak quadratic 
relationship.  (b) and (c) show almost no quadracity. The fitting errors should be considered by 
looking into the regression curve and points distribution before confirming the relationships. 
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(a) 0.2                                       (b) 0.07                                       (c) -0.02                                  (d) -0.17 

Figure 8. Quadracity (The coefficient of x2 term).  The regression curve is drawn as a blue parabola. 
 

Figure 9 shows the ranking result using LOF-based outlier detection method.  Since the current 
implementation doesn’t take into account the number of items mapped to the same coordinate, 
the result is not so accurate, but it still makes sense at most cases.  In this ranking result, while it 
is interesting to know which one has the most outliers, sometimes strong outliers can be found on 
a scatterplot with the fewest outliers.  Future implementations of “outlierness” could play a better 
role for this case, for example, figure 9d has one strong outlier, Union, FL, where there are a 
distinctively large number of lung cancer cases and the county is relatively poor. 

 

  
(a) 14                                        (b) 12                                          (c) 6                                           (d) 1 

Figure 9. The number of outliers. Outliers whose LOF is greater than (minimum LOF + maximum LOF)/2 are highlighted as 
triangles. 

 
The rank-by-feature framework is to HCE users what maps are to the explorer of unknown 

areas.  It helps users get some idea about where to turn for the next step of their exploratory 
analysis of a multidimensional data set.  The rank-by-feature framework in HCE 3.0 can handle 
much larger data sets with many more dimensions than this application example.  More columns 
with environmental, educational, demographic, and medical statistics can be added to this 
example data set to discover interesting relationships among attributes across many knowledge 
domains. 

 
5.2 A MICROARRAY DATA SET 

The microarray technology is actively used these days to study gene products. Biologists take 
samples and hybridize them in gene chips (or microarrays) to measure the activity of genes in the 
samples. A microarray chip can measure several thousands to tens of thousands of genes. A 
microarray data set consists of tens or hundreds of microarray chip measurements, so microarray 
data sets are usually multidimensional. In this section, we show an application example of the 
rank-by-feature framework with a microarray data set. A group of biologists in the Children’s 
National Medical Center injected a toxic material to a murine muscle to examine the process of 

 20



muscle regeneration process. They took samples from the area where a toxin was injected at 27 
different time points and measured the activities of about 12000 genes. 

 
The biologists start exploring the data set by looking at all 1D projections (or histograms).  

They can quickly browse all histograms by dragging the item slider in the histogram browser. 
They easily get to know that all dimensions have a similar distribution that looks like Figure 10. 
In an attempt to rank histograms by the size of the biggest gap, the sample taken at the 16th day 
(labeled 16D in Figure 10) has the biggest gap. These users can select the bar to the right of the 
gap and learn that the gene name belonging to the bar is “Troponin T3.” Troponin T3 is related 
to the muscle contraction. Using the profile search tab in HCE, it turns out that Troponin T3 
shows a temporal pattern almost opposite to a candidate gene (MyoD) that is well-known to be 
related to the muscle regeneration process. These data indicate that further examination of 
Troponin T3 is warranted to understand how it is related to the muscle regeneration process. 

 

         
Figure 10. The ranking result by the size of the biggest gap.  The score overview and the top ranked histogram. 

 
Users move on to the scatterplot ordering tab and try a ranking by correlation coefficient since 

it is one of the most fundamental and important binary relationships. Figure 11 shows the score 
overview and two scatterplots. The time points are arranged in the sequential order from left to 
right and from top to bottom in the score overview. By the triangle-shaped blue green squares 
group (highlighted with a black triangle) in the middle of the overview, users can preattentively 
perceive that most of time points in the middle are highly correlated to each other as shown in 
the scatterplot next to the score overview. Similarly, by the rectangular brown squares group 
(highlighted with a black rectangle) at the bottom left corner, it is easy to know that day 1 (1D) 
through day 4 (4D) samples don’t correlated to the time points at the end (day 16 through day 
40).  At the same time the brown stripe (highlighted with a black rectangle) at the first column 
shows that the day 1 through day 4 samples are not correlated to the beginning time point.  
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Figure 11. The ranking result by correlation coefficient.  The score overview and the top- and bottom-ranked scatterplots. 

 
The rank-by-feature framework saves biostatisticians a significant amount of time to explore 

the data set by providing efficient graphical summaries and by enabling them to interactively 
traverse numerous low-dimensional projections. The rank-by-feature framework sometimes 
leads users to unexpected finding such as distinctive outliers. 
 
6 DISCUSSION 

 
In spite of their limitations, low-dimensional projections are useful tools for users to understand 
multidimensional data sets.  Since 3D projections have the problem of the cognitive burdens of 
occlusion and navigation controls, we concentrate on 1D and 2D projections.  Since the axis-
parallel projections are much more easily interpreted by users compared to arbitrary 1D or 2D 
projections, we concentrate on axis-parallel 1D and 2D projections. 

 
The rank-by-feature framework supports comprehensive exploration of these axis-parallel 

projections.  Interactive interfaces for the rank-by-feature framework were designed for 1D and 
2D projections.  There are four coordinated components in each interface: control panel, score 
overview, ordered list, and histogram/scatterplot browser.  Users choose a ranking criterion at the 
control panel, and then they can examine the ranked result using the remaining three coordinated 
components.  The score overview enables users to preattentively spot distinctive high and low 
ranked projections due to the consistent layout and linear color-mapping, and it also helps users 
to grasp the overall pattern of the score distribution.  While the ordered list provides users with 
the numerical summary of each projection, the browser enables users to interactively examine 
the graphical representation of a projection (the combination of histogram and boxplot for a 1D 
projection, and scatterplot for a 2D projection).  The item slider attached to histogram/scatterplot 
display facilitates the exploration by allowing the interactive change of the dimension in focus. 

 
When implementing or selecting a new ranking criterion for the rank-by-feature framework, 

implementers should strive to limit the time complexity of ranking criterion.  If there are n data 
items in m-dimensional space, the score function of a 2D projection is calculated m*(m-1)/2 
times.  If the time complexity of the score function is O(n), the total time complexity will be 
O(nm2).  Reasonable response times are achievable if there are efficient algorithms for 
computing scores for a ranking criterion. Otherwise, it is necessary to develop a quickly-
computable approximate measure in order to cut down the processing time.  A grid cell based 
approach can reduce the response time by running the algorithm on a smaller number of cells 
instead of actual data points. The following table shows the amount of CPU time (in seconds) to 
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complete 2D rankings for four data sets of various sizes (# of items by # of dimensions) with our 
current implementation on a Intel Pentium 4.(2.53GHz, 1GB memory) PC running a Windows 
XP Professional operating system. 

 
criterion 

size 
correlation curvilinear regression 

& quadracity 
uniformity number of 

outliers (LOF)
3138 x 17 .05 .2 .2 4.1

3614 x 38 .1  .8 1.6 39.0

11704 x 105 2.6 17.4 38.6 810.2

22283 x 105 4.9  33.1 72.5 1660.0

 
In terms of scalability, the score overview is certainly better than the scatterplot matrix where a 

small thumbnail of the actual scatterplot is shown in each cell. However, when there are many 
dimensions, the score overview will become so crowded that it will be difficult to view and to 
read the labels. Since the screen space should be shared with other views, the score overview 
becomes unacceptably overcrowded in a general PC environment when the dimensionality is 
greater than about 130. In that case, a filtering or grouping mechanism will be necessary.  A 
range slider to the right side of the score overview might control the upper and lower bound of 
scores displayed.  If the score of a cell doesn’t satisfy the thresholds, the cell will be grayed out.  
If an entire row or column is grayed out, the row or column can be filtered out so that remaining 
rows and columns will occupy more screen space.  Implementers can also utilize the dimension 
clustering result that is in HCE to rank clusters of dimensions instead of individual dimensions. 

 
7  CONCLUSION 

 
The take-away message from the natural landscape analogy in section 3 is that guiding principles 
can produce an orderly and comprehensive strategy with clear goals. Even when researchers are 
doing exploratory data analysis, they are more likely to make valuable insights if they have some 
notion of what they are looking for.  There are lots of creatures (and features) hiding in high 
dimensional spaces, so researchers and data analysts will do better if they decide whether they 
are looking for birds, cats, or fish. 
 

We believe that our proposed strategy for multidimensional data exploration with room for 
iteration and rapid shifts of attention enables novices and experts to make discoveries more 
reliably. The Graphics, Ranking and Interaction for Discovery (GRID) principles are:  
 

(1) study 1D, study 2D, then find features  
(2) ranking guides insight, statistics confirm. 
 
The rank-by-feature framework enables users to apply a systematic approach to understanding 

the dimensions and finding important features using axis-parallel 1D and 2D projections of 
multidimensional data sets.  Users begin by selecting a ranking criterion and then can see the 
ranking for all 1D or 2D projections.  They can select high or low ranked projections and view 
them rapidly, or sweep through a group of projections in an ordered manner. The score overview 
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provides a visual summary that helps users identify extreme values of criteria such as correlation 
coefficients or uniformity measures.  Information visualization principles and techniques such as 
dynamic query by item sliders, combined with traditional graphical displays such as histograms, 
boxplots, and scatterplots play a major role in the rank-by-feature framework.   

 
As future work, various statistical tools and data mining algorithms, including ones presented 

at section 4, can be incorporated into our rank-by-feature framework as new ranking criteria.   
Just as geologists, naturalists, and botanists depend on many kinds of maps, compasses, 
binoculars, or Global Positioning Systems, dozens of criteria seem useful in our projects.  It 
seems likely that specialized criteria will be developed by experts in knowledge domains such as 
genomics, demographics, and finance. Other directions for future work include extending the 
rank-by-feature framework to accommodate 3D projections and generalizing to categorical and 
binary data. 

 
We recognize that the concepts in the rank-by-feature framework and the current user interface 

will be difficult for many data analysts to master.  However, our experience in gene expression 
data analysis tasks and with a dozen biologists is giving us a better understanding of what 
training methods to use.  Of particular importance is the development of meaningful examples 
based on comprehensible data sets that demonstrate the power of each ranking criterion.  Screen 
space is a scarce resource in these information abundant interfaces, so higher resolution displays 
(we use 3800 x 2480 pixel display whenever possible) or multiple display are helpful, as are 
efficient screen management strategies. 

 
User studies may help us improve the user interface, but the central contributions of this paper 

are the potent concepts in the rank-by-feature framework.  We hope they will be implemented by 
others with varied interfaces for spreadsheets, statistical packages, or information visualization 
tools.  We believe that the GRID principles and the rank-by-feature framework will effectively 
guide users to understand dimensions, identify relationships, and discover interesting features. 
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