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Abstract

In machines like the Intel iPSC/2 and the BBN Butterfly, local mem-
ory operations are much faster than inter-processor communication. When
writing programs for these machines, programmers must worry about ex-
ploiting spatial locality of reference. This is tedious and reduces the level
of abstraction at the which the programmer works. We are implementing
a parallelizing compiler that will shoulder much of that burden. Given a
sequential, shared memory program and a specification of how data struc-
tures are to be mapped across the processors, our compiler will perform
process decomposition to exploit locality of reference. In this paper, we
discuss some experiments in parallelizing SIMPLE, a large scientific bench-
mark from Los Alamos, for the Intel iPSC/2.
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1 Introduction

In distributed memory machines like the Intel iPSC/2 or the NCube, each
process has its own address space and inter-process communication takes
place through sending and receiving messages. Typically, passing messages
is about 10 to 100 times slower than reads and writes out of local memory.
For example, on the Intel iPSC/2, local memory access takes about a mi-
crosecond but passing a message can take 300 microseconds even if there
is no congestion in the network. From the perspective of the programmer,
this means that a process can access local data items (i.e., data items in
its own address space) very fast, but access to non-local data items, which
must be choreographed through an exchange of messages, can be one or two
orders of magnitude slower. Therefore, it is important to exploit locality of
reference when programming distributed memory machines.

The solution adopted by manufacturers of distributed memory machines
is to provide C or FORTRAN with message-passing extensions. The program-
mer writes CSP-like programs in which he has control over the distribution
of data and code across processes. Unfortunately, this results in a loss of
abstraction in programming. For example, consider a matrix X that is dis-
tributed across the processes by rows or columns to get effective parallel
execution. To access element X[i,j], the programmer cannot just write X[i,j]
as he could in C or FORTRAN on a sequential machine — if it is a local data
element, he can read it directly, but if it is a non-local data item, he must
put in calls for sending and receiving messages. This is a big burden on the
programmer.

As an aside, we note that exploiting spatial locality of reference is im-
portant even on shared-memory machines. In shared-memory machines,
such as the BBN Butterfly and the IBM RP3, there is a single, global
address space that is shared by all processes. Inter-process communica-
tion is accomplished by reading and writing memory locations. The single,
shared address space is usually implemented physically as a number of
processor-memory pairs interconnected through some network. The cost of
accessing a non-local data item (i.e., across the network) can be an order
of magnitude more than accessing local data. Therefore, even in shared-
memory machines, exploiting spatial locality of reference is important for



good performance!. One way to reduce the impact of non-uniformity of

memory access is caching. However, caching in multiprocessors introduces
the problem of cache coherence for which practical, scalable solutions are
not yet known.

Can the problem of exploiting locality of reference be tackled by the
compiler? Most work to date on compiling for multiprocessors focuses
on parallelization of code using techniques like distributing loop iterations
among processors. An example of this approach is the Camp system of
Peir and Gajski[14]. Parallelization is achieved by distributing loop it-
erations among processors; synchronization required for loops with loop-
carried dependencies is implemented through complex bit-masks at each
word of memory. A similar approach is being pursued in the CEDAR sys-
tem at Illinois. We characterize these approaches as ‘code-driven’ because
they pay little attention to data partitioning - a processor may execute an
iteration for which the data is not local.

We are implementing a system in which data partitioning plays a cen-
tral role because it is used to drive the parallelization of code. The intuitive
idea is the following. The programmer writes and debugs his program in a
high-level language using standard high-level abstractions such as loops and
arrays. Once this is accomplished, he specifies the domain decomposition -
that is, how data structures are to be distributed across the multiprocessor.
Given this data decomposition, the compiler performs process decomposi-
tion by analyzing the program and specializing it to the data that resides
at each processor. Thus, our approach to process decomposition is ‘data-
driven’ rather than ‘program-driven’. It is important to understand that
our work is orthogonal to earlier studies on so-called ‘assignment problems’
that have focused on mapping the topology of the problem onto the in-
terconnection topology of the machine[1,2]. These studies assume a model
in which the major factor in the cost of communication is the distance
between the source and destination of messages. This model is valid in
machines like the Intel iPSC/1 in which a message interrupts every proces-
sor on the way from the source to the destination (routing at intermediate
nodes was performed by the processor). In more recent machines like the
Intel iPSC/2, routing of messages at intermediate nodes is handled by com-

1 An exception to this is the Ultracomputer [7] in which all memory is equally far away
from all processors. This uniformity is achieved by making all accesses equally expensive!



munications coprocessors. On the iPSC/2, the cost of start-up and receipt
of the message is about 350 microseconds, while the time per hop is only
about 10-20 microseconds. As mentioned earlier, the cost of a local access
is less than a microsecond. Therefore, for any machine of reasonable size,
there is a big difference between the cost of a local access and the cost of
sending a message, but once a message has to be sent, the distance it has to
travel is relatively unimportant. There are secondary considerations such
as bandwidth - if messages have to travel less on an average, the probability
of saturating the available network bandwidth when a lot of messages are
sent simultaneously is reduced. All things considered, we decided not to
worry about mapping the topology of the problem to the topology of the
machine.

In our opinion, the crux of the problem is to achieve locality of reference
by matching data distribution to executable code in order to reduce the
number of messages sent. However, concerns of locality must be balanced
against the overall goal of achieving parallel execution - after all, a simple
way to minimize the number of messages sent is to map all the code and data
to a single processor! In fact, in some ‘particle-pushing’ codes, it is difficult
to achieve locality of reference and load balancing simultaneously. These
codes simulate the motion of charged particles in a grid. Each processor
is assigned a region of the grid and it keeps track of physical variables
associated with that region. In many of these problems, the particles tend
to move together in a bunch. If each processor is assigned the work of
pushing particles in its region, the computational load will be unbalanced;
if the work of pushing particles is divided equally among all the processors,
a processor may have to push a particle in a region residing on some other
processor, which leads to loss of locality of reference. The code generation
techniques we describe in this paper will work even for such programs but it
is unclear to us that the resulting code will have good performance. In fact,
some researchers have even questioned the suitability of parallel processing
for such codes[17].

In the very large class of ‘continuum’ problems[10], on the other hand,
locality of reference and load balancing are not usually in conflict. SIMPLE
is an example of such a problem. In this paper, we discuss experiments in
using our compiler to parallelize SIMPLE, a large hydrodynamics appli-
cation, which is about a thousand lines of FORTRAN][5]. This program
incorporates many of the computation and communication paradigms typ-
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ical of scientific code; therefore, it is a popular benchmark. There is plenty
of parallelism in SIMPLE, but it is not an ‘embarrassingly parallel’ ap-
plication in the sense that there is a lot of movement of data during the
execution of the problems. These aspects of SIMPLE are discussed in Sec-
tion 2. A simple machine model is presented in Section 3. Section 4 is
a discussion of various methods of distributing data across processors. In
Section 5, we use parts of SIMPLE to explain our compiling techniques.
Some preliminary results were reported in an earlier paper [16]; however,
this paper is self-contained. We also report performance results on the Intel
iPSC/2 (without vector boards). On a 32 processor Intel iPSC/2, we have
obtained about 2MFlops on a 64x64 problem. In Section 6, we present a
simple performance model to explain the observed performance. We con-
clude in Section 7 with a discussion of some extensions to our system.

2 What is SIMPLE?

In this section, we describe SIMPLE and discuss the computation and com-
munication behavior of the various phases in this program. We have fol-
lowed the presentation of Ekanadham and Arvind[6].

2.1 Overview

SIMPLE is a program that simulates the behavior of fluid in a sphere.
The fluid is in motion and the physical phenomena being simulated are
the propagation of shock waves and conduction of heat through the fluid.
By taking advantage of rotational symmetry, we can confine our attention
to a semi-circular annulus divided into zones by radial and axial lines as
shown in Figure 1. The annulus is defined by a minimum radius kmin and
a maximum radius kmaz. Similarly, the radial lines are numbered from
Imin to Imaz. Corners of zones are called nodes. Nodes are referred to
using indices (k,I). The same co-ordinate system is used for zones by giving
the zone the label its leading corner — for example, zone (k1) has corners
labeled (k,1), (k-1,1), (k,l-1) and (k-1,I-1).

To take boundary conditions into account, ghost zones are added on the
periphery of the annulus as shown in Figure 1. Values of physical variables
like temperature, pressure etc. at ghost zones are chosen to simulate desired
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Figure 1: Zones in Semi-circular Cross-section

boundary conditions.
The following physical quantities are computed for each node and zone:

Node: Zone:

Co-ordinates X: (r,z) Area: a

Velocity V: (u,w) Volume: s
Density: p
Artificial viscosity: q
Energy: €

Temperature: 6
Pressure: p

Since the fluid is in motion, the nodal and zonal attributes vary with
time. The massin each zone is fixed, and the co-ordinates of the four corner
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nodes of the zone are updated at each time step to reflect the motion of
the fluid. The main computation of SIMPLE is a loop that involves the
determination of the physical quantities over a number of discrete time
steps where the size of each step is adjusted each time through the loop
to guarantee stability. The steps involved in each iteration of the loop and
the associated data flow is shown in Figure 2.

2.2 Computation and communication in each step

In this subsection, we discuss the dataflow in each step of the main loop of
SIMPLE. At the beginning of the iteration, it is assumed that the values of
the physical quantities at each node and zone and the size of the time step
are given. At the end of the iteration, the new values of these physical quan-
tities have been computed together with a new step step and an estimate
of the error introduced by various approximations in the computation.

Step 1: Newton’s second law of motion is used to compute the acceler-
ation at each node. The forces that act on the fluid mass in a zone are due
to pressure and artificial viscosity. The resulting acceleration at a node is
computed by averaging over effects on the four zones adjacent to the node.
Thus, the acceleration at a node is a function of the pressure, artificial vis-
cosity, density and volume of its adjacent zones and the positions of its four
nearest neighbour nodes. The new velocity is computed from this accelera-
tion and the size of the time step. There are no dependencies between the
velocity computations of different nodes and all these computations can be
done in parallel. The dataflow for this step is shown in Figure 3(a).

Step 2: Given the velocity of a node, its new position at the end of
the time step is computed by adding the product of the velocity and time
step to its position at the start of the time step. This is a simple pointwise
computation at each node. For boundary nodes, the computation is more
complex and requires some communication between adjacent zones.

Step 3: The new area, volume and density of each zone is computed in
this step. Given the positions of the four nodes that form the corners of the
zone, and the density and volume of the zone, the new area, volume and
density of the zone can be computed. The dataflow for this step is shown
in Figure 3(c). There are no dependencies between the computations of
the densities and volumes of different zones and all of them can be done in

parallel.
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Step 4: The new artificial viscosity in a zone is computed from the new
positions and velocities of the corner nodes of the zone, the new density of
the zone as computed in the previous step, and the pressure in the zone.
The data flow in this step is shown in Figure 3(c).

Step 5: The pressure, energy and temperature in each zone are related
by the so-called equations of state. The new energy is first calculated by
taking into account the work done by the fluid in the zone against pressure
and artificial viscosity. This is a pointwise computation. The new pressure
and an interim value for the temperature are obtained by another pointwise
computation which uses two polynomials. The polynomials are piecewise
continuous and their coefficients depend on the density and temperature.
Therefore, the p—6 plane is divided into regions and a table is provided which
has the coefficients for each region. Given the density and temperature,
this table is first indexed by the density and temperature to retrieve the
relevant coefficients of the polynomials which are then used in a pointwise
computation to compute the new energy, new density and an interim value
of the new temperature in the zone. Thus, the computation in this step is
pointwise.

Step 6: In this step, the effect of heat conduction across zones is com-
puted. The inputs to this step are the new volumes and positions as well
as the interim temperature computed in Step 5. The outputs are the new
temperature of the zones and two matrices r-k and r-1 which are used in
Step 7. In the beginning of this step, some pointwise computation is first
performed to compute intermediate values. The crux of the heat conduc-
tion computation involves two ‘sweeps’ called the k-sweep and l-sweep. The
data flow in these sweeps is shown in Figure 3(d). The new temperature
at each zone is computed by a simple recurrence which is a function of
the new temperature in the successor zone and various intermediate values
at the predecessor zone and the adjacent zone. Notice that there are two
sweeps in this step - one in the k direction and one in the 1 direction. Be-
cause of the recurrences, these computations cannot all be done in parallel.
Notice that values in the new temperature matrix are being used to com-
pute other values in the same matrix. This requires the use of non-strict
array constructors which are not supported in some functional languages
like SISAL([8]. In spite of the recurrence, there is parallelism that can be
exploited during the sweeps - during the k and 1 sweeps, each column and
each row can be computed in parallel respectively.
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Step 7: This step involves some book-keeping to check the balance of
energy of the internal and kinetic energies in the interior zones and the work
done and heat lost at the boundaries. At each step, the energy balance is
computed to ensure that the error is within tolerance limits. The internal
energy computation involves pointwise computations of internal energies
at each node and then a global accumulation to add all the contributions.
The dataflow of the global accumulation is shown in Figure 3(b). Kinetic
energy requires values from the four adjacent zones of a node followed by
a global accumulation. The dataflow in this step is like that of Figure
3(a) followed by Figure 3(b). Boundary heat and boundary work require
a global accumulation of values computed for nodes at the boundary. A
small amount of communication between adjacent nodes is also required.

Step 8: The value of the time step for the next iteration is com-
puted. The computation involves checking that the Courant condition is
met (sound should not cross any zone in a single time step) and that the
time increment should not exceed the relative temperature change in any
zone. The dataflow for checking the Courant condition requires a dataflow
like that of Figure 3(c) followed by a global accumulation as in Figure 3(b)
to determine a global minimum. The maximum relative change in tem-
perature is a pointwise computation followed by a global accumulation to
determine the maximum.

2.3 Our Implementation

We started with an implementation of SIMPLE written in Id[12] by K.
Ekanadham(6]. This program makes heavy use of higher-order functions.
Since our compiler does not yet handle such functions, we replaced all
higher-order functions by equivalent non-higher-order code. Also, our com-
piler can handle only flat arrays. The coefficient matrices were implemented
as matrices of matrices. We replaced these with flattened (two-dimensional)
versions.
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3 Machine Model

The examples in later sections assume a very simple machine model. There
are n processors in the model, each of which executes one process?. Each
process has its own address space and all communication is done using
explicit message passing. Also, each process also has a set of mailboxes for
receiving messages. The primitives for message passing are:

e send(Bi, Ai, Si, Pi) - The bytes in memory locations Ai to Ai + Si
- 1 are sent by the process executing this command to mailbox Bi
at process Pi. The sending process does not have to wait for the
receiving process to get the message.

o receive(Bi, Ai, Si) - The process executing this command waits until
it receives a message in box number Bi. The first Si bytes of the
message are stored in locations Ai to Ai + Si - 1. While it is waiting,
messages it may receive that are destined for other mailboxes are
ignored temporarily.

The order that messages arrive at a process is determined by the order
in which they are sent but also on how they collide with other messages in
transit. Mailbox numbers let the receiving process focus its attention on a
message of a particular type from a particular process rather than having
to look at the first message that comes along. Mailbox numbers also make
it easier to reorder sends within a process. As long as two sends have
either different destinations or the same destinations but different mailbox
numbers, they may be reordered. Each textual reference in the program has
a number associated with it and all communication that arises from a given
reference is tagged with a combination of the associated number and the
process name. Therefore messages arising from different array references
can always be reordered.

Long messages are automatically broken into packets by the underlying
implementation. Packet reassembly is handled similarly . In most message
passing systems sending one long message is less expensive than sending
several small ones. We assume this in our model.

2Strictly speaking, the iPSC/2 permits multiple processes to execute on a processor
but we can take that into account simply by increasing the number of processors in our
model. Hereafter, we use the words process and processor interchangeably.
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The examples in the next section are written in C. They were generated
by our compiler and then cleaned-up to make them more readable. The
loops have been un-normalized and the temporary variable names have
been shortened. Mynode() is a system routine that returns the name of
the executing process.

4 Data Distribution

The data distributions supported in our system are a compromise between
generality and regularity. As we discuss in Section 5, we can support very
general, irregular data distributions in the sense that our compiler can
generate correct code regardless of how complex the program or the data
distribution is. However, irregular data distributions are not amenable
to compile time analysis and the performance of the generated code may
leave much to be desired. A regular data distribution offers more opportu-
nities for optimization. Three such distributions for SIMPLE are wrapped
rows/columns and two styles of block distributions.

Given P processes, a wrapped row distribution of the array would assign
the rows of the array to processors in a round-robin way - thus, process 1
would get row 1, (P+1), (2P+1) etc. A wrapped column distribution is
similar except that columns are distributed rather than rows. For a block
distribution, the array is divided into P blocks and each process is assigned
one block. Blocks need not have the same length in every dimension. For
example, one possible block decomposition of a 100 X 100 array among 10
processes is to assign the first 10 rows to process 1, the next 10 rows to
process 2 and so on.

Determining the best data distribution for a given problem is not an ex-
act science but there are some rules of the thumb people use when writing
code for distributed memory machines. For the dataflow patterns of Figure
3(a) and (c), block decompositions are preferred over wrapped row /column
mappings. Since the computations at various points are independent of
each other, either kind of distribution leads to a well-balanced decomposi-
tion (barring edge effects at boundaries). On the other hand, a row/column
distribution can result in more communication than a block decomposition.
This is the familiar boundary length to area argument - for a block decom-
position, values at interior points of a block do not have to be communi-
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cated using messages([9]. Therefore, a block decomposition is preferred over
a row/column distribution for this situation.

The dataflow patterns in SIMPLE are amenable to two kinds of block
decompositions: roughly square and horizontal/vertical strips. A block
decomposition qualifies as roughly square if there are approximately the
same number of blocks in each dimension. Perfectly square blocks are
possible only when the desired number of blocks is a perfect square. A strip
decomposition breaks the matrix into blocks of contiguous rows or columns.
The boundary length argument mentioned earlier dictates that roughly
square blocks incur lower communication overhead. This is certainly true
if each value that flows across a boundary is sent in a separate message.
However, for most of the data flow patterns in SIMPLE, all of the values
from a given matrix can be sent across a boundary in a single message. The
marginal cost for each additional value is much lower than the start-up cost
associated with any message. A strip mapping would have slightly higher
communication overhead but not prohibitively so.

Not all of the computation in SIMPLE follows the dataflow patterns
of Figure 3(a) and (c). The sweep phases use very simple recurrences,
data flows in only one dimension at a time. During k-sweep the data
flows along the columns and during the l-sweep it flows along the rows (see
Figure 3(d). A strip mapping in the appropriate dimension reduces the
communication overhead of such a recurrence to zero. Unfortunately, the
correct dimension for one sweep is not the correct dimension for the other
sweep. The communication costs and the forced idle time would be larger in
the off-dimension sweep than for a roughly square decomposition. Whether
the communication costs saved by the on-dimension sweep outweigh the
extra cost for the off-dimension sweep depends heavily on the computation
done during the sweeps. If the off-dimension computation is very expensive,
it might be worth remapping from one strip dimension to another.

For more complex recurrences, blocks are not the best choice. When
the parallelism in the most expensive part of the computation falls along a
wavefront, wrapped mappings will yield better results.

The above discussion is meant to give the reader a feeling for the trade-
offs involved in choosing a mapping. Without a clear choice, we chose to
follow conventional wisdom and use a roughly square block decomposition
for our final implementation of SIMPLE.
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5 Code Generation

The difficulty of code generation arises from the need to generate code even
for programs that cannot be analyzed well by the compiler such as programs
with complex array subscripts - after all, it is not acceptable for a compiler
to reject a program simply because it is too complex! Just as vector com-
pilers generate scalar code as a fallback position, our compiler must be able
to generate some code that is guaranteed to run correctly, if not at blinding
speed, for any program. When we started this research, it was not imme-
diately obvious that we would be able to do this. In the absence of a single
address space, it is crucial for both the process that needs a data value and
the process that owns that data value to know about each other so that
communication can take place. This information may not be available at
compile-time in programs that are hard to analyze. Once we have such
a fall-back position, we can improve on the quality of code for programs
whose communication-computation patterns can be analyzed by the com-
piler. Three such patterns that programmers use frequently in writing code
are do-across style parallelism, global accumulation and scatter-gather. Us-
ing doacross style parallelism in the presence of a data distribution consists
of laying out the iterations of a loop based on the placement of data and
using data synchronization to satisfy data dependencies across processors.
Global combine is used to apply a commutative and associative operator
(such as sum) to the elements of a matrix. Each process examines its local
data to compute the local contribution and sends that value to a central
location where the final value is computed. The data distribution is what
determines which process will examine a particular element of the matrix.
Scatter-gather is a method that is used when the data dependencies in a
loop can only be determined at run-time. If the dependencies arise from a
matrix that is not updated in the loop, then the loop can be separated into
two pieces. In the first piece, each process determines which elements it
will need and sends requests for those elements to the processes where they
reside. In addition, each process services requests for data from other pro-
cesses. When all of the data has been transferred, the processes synchronize
and perform the second piece of the loop which does the computation. A
compiler must be able to exploit all of these techniques to produce good
code for a distributed memory machine.
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In this section we first discuss run-time resolution which is a simple
but fairly inefficient code generation strategy that is guaranteed to work
for any program, no matter how complex. Next, we show how this code
can be improved by partial evaluation at compile-time - the resulting code
generation strategy is called compile-time resolution. We also point out
some connections between this problem and the problem of code genera-
tion for languages with overloaded operators. Even though the results of
compile-time resolution are superior to those of run-time resolution, there
is still room for improvement. We discuss two extensions, vectorization of
messages and accumulation, that are required to parallelize SIMPLE suc-
cessfully. We motivate both the code generation schemes and the extensions
with examples taken from SIMPLE.

5.1 Run-time Resolution

Our first method, called run-time resolution, produces the same program
for each process. Three simple rules drive code generation:

¢ Every process examines each statement to determine its role (if any)
in the execution of the statement by using the two rules below.

e The process that owns a variable or array element is responsible for
computing its defining expression and recording its value.

o The process that owns a variable or array element must communicate
that value to any process that needs it.

The procedure Make AB North in Figure 4 is part of a routine from the
heat conduction phase of SIMPLE. Notice that all of the arrays are to
be decomposed into four blocks of size 32x32. Three functions are associ-
ated with a block mapping: BM determines the owner of an array element
from the index expressions of the reference, BL computes the offset into
the local portion of an array from the index expressions of the reference,
and BA allocates the local portion of an array. Figure 5.1 contains the
result of applying run-time resolution this procedure. Coerce is a macro
for the reading and transmission of a value (see Figure 6 for its definition).
Run-time resolution produces one program that is executed by all of the
processes. The iterations during which a process has real work to do are
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defconstant kmin = 2
defconstant kmax = 63
defconstant lmin = 2
defconstant lmax = 63
defconstant bsl = 32
defconstant bs2 = 32

def Make_AB_North R_bar:realarray@block(bs1, bs2)
Sigma:realarray@block(bs1, bs2)
a:realarray@block(bsl, bs2)
:void =
{ /* Fill in boundary elements */
call set_boundary_zones A 0.0;
{ for 1 = lmin+1 to lmax do
{ for k = kmin+1 to kmax do
d:real@SameAs(A, (k, 1)) = Sigmalk,]] + Rbar[k-1,1] * (1 - A[k-1, 1));
Alk, ] = R-bar[k ]]/d; } }

Figure 4: Make_AB_North routine from Heat Conduction Phase
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not known at compile-time, therefore every process must participate in ev-
ery iteration of both loops of Make AB North. In each iteration, one process
will own d and A[k, 1]. That process will collect the required values, do
the arithmetic, and perform the assignment. A second process may own
the required values from R_bar, and a and if so, will send those values to
“the process that owns d and Ak, 1]. The rest of the processes will have
nothing to do.

5.2 Compile-time resolution

Run-time resolution generates inefficient code. In our example, a process
will spin through many unnecessary iterations checking for work to no avail.
Techniques similar to those used to resolve overloading in conventional com-
pilers can be used to generate better code. When compiling languages like
Lisp, an overloaded operator like + is usually compiled into a case statement
that tests the type of the arguments and dispatches to the appropriate type
specific addition routine. The naive code generated by this strategy can be
improved considerably if the compiler knows the types of the arguments or
the result (for example, through type declarations) since the case statement
can be replaced by a dispatch to the relevant addition routine. This kind
of code improvement through ‘specialization’ of generic code can be used
profitably in our context as well. The code generated by run-time resolu-
tion is like generic code that can be specialized to each process by using
the mapping information. This approach is called compile-time resolution.

When generating code for each process using compile-time resolution,
the compiler examines each statement to determine the process’s role in
the evaluation of that statement. This is done in two stages. The compiler
uses conventional abstract syntax trees as the internal representation of
programs. In the first stage, the user’s mapping information is propagated
through the program’s abstract syntax tree. In the second stage, this infor-
mation is used to generate code. Each node of the abstract syntax tree has
two attributes named evaluators and participants. The evaluators of a node
in the abstract syntax tree is the set of processes that perform the operation
defined by the node. The participants of a node, n, in the abstract syntax
tree is the set of processes that must participate in the evaluation of some
node in the subtree rooted at the node, i.e. the union of the evaluators of
the nodes in the subtree rooted at n. For lack of space, we do not give the
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Make_AB North(R_bar, Sigma, a)
real_istructure a, Sigma, R_bar;

{int k, I;
double t1, t2, t3, t4, t5, t6;

set_boundary(A, 0.0) ;

{for(1=3;1<=63;1=1+1)
{ double d;
for (k =3;k <=63;k =k + 1)
{ if (Mynode() == BM(k, 1)) {

/* this process owns d — get necessary values and
do computation */

coerce(t1, Sigma[BL(k, 1)], BM(k, 1), BM(k, 1));

coerce(t2, R_bar[BL(k-1, 1)], BM(k-1, 1), BM(k, 1));

coerce(t3, A[BL(k-1, 1)], BM(k-1, 1), BM(k, 1));

t4 = t1 4 t2 * (1 - t3);

d =t4;}

else {

/* this process does not own d — send any values
that are necessary which this process owns */

coerce(tl, Sigma[BL(k, 1)], BM(k, 1), BM(k, 1));

coerce(t2, R_bar[BL(k-1, 1)], BM(k-1, 1), BM(k, 1));

coerce(t3, A[BL(k-1, 1)], BM(k-1, 1), BM(k, 1)); }

if (Mynode() == BM(k, 1)) {
/* this process owns A[k,]] - get necessary values and
do computation */
coerce(t5, R_bar[BL(k, 1)], BM(k, 1), BM(k, 1));
coerce(t6, d, BM(k, 1), BM(k, 1));
A[BL(k, 1)] = t5/t6; }
else {
/* this process does not own A[k,l] — send any values
that are necessary which this process owns */
coerce(t5, R_bar[BL(k, 1)], BM(k, 1), BM(k, 1));
coerce(t6, d, BM(k, 1), BM(k, 1)); }
}}}
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macro coerce(ref, var, owner, eval) =

if ((mynode() == owner) and (mynode() == eval))
var = ref
elseif (mynode() == owner) {
tl = ref;
send(boxnum(ref), &t1, sizeof(typeof(ref)), eval); }
elseif (mynode() == eval)
recv(boxnum(ref), &var, owner);
}

Figure 6: Definition of Coerce

details of the determination of the evaluators and participants attributes.
For the most part, these rules are quite straight-forward; the only compli-
cation is that the set of participants is used to determine the evaluators for
some types of nodes, such as conditionals - the union of the participants of
the then-branch and else-branch defines the evaluators of the boolean test
in a conditional expression.

The information collected in the first phase is used to generate code.
Given a process name and a tree node, the compiler tries to determine if
the process is a member of the evaluators of the node. Three outcomes
are possible: true, false, and inconclusive. True means that the process
must perform the operation defined by the node. False means it need not.
Inconclusive means that run-time resolution must be applied because the
compiler cannot analyze the mappings sufficiently. This evaluation will
require techniques such as subscript analysis that are commonly used in
vectorizing compilers [13]. The code generation phase produces code for
each process by walking the annotated abstract syntax tree while applying
this evaluation scheme at each node.

Figure 7 contains the code that this method generates for our example
for process zero. Notice that the loops are restricted to those iterations in
which process zero needs to be involved. Since process zero owns rows one
to thirty-two and columns one to thirty-two of matrices A, R_bar, and Signa,
it owns the locations to be updated and all the values required for iterations
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(3 <1< 32,3 <k < 32). In addition, process zero owns two values that
are needed iteration 33 of the outer loop. To determine which iterations a
given process must participate in, the set {i|f(:) = p for f eevaluators} is
computed. Computing this inverse is nontrivial; the subset of the evaluators
set that is equal to p for a given iteration, i, is associated with that iteration
and is what determines the work done during that iteration. Also notice
that, the code for process zero contains a call to Set_boundary_zones. The
code for this function is not shown. It just fills in the boundary elements
for the rows and columns that process zero owns.

For details concerning the how loops and procedure calls are handled
and for all of the rules for computing evaluators and participants, we
refer the interested reader to the forthcoming dissertation of one of the
authors[15].

5.3 Message Optimizations

Programmers use many tricks to decrease the cost of messages and increase
parallelism. A compiler must be able to do the same kinds of optimizations
to produce good code. We have implemented two of these optimizations in
our compiler: pipelining and vectorization of messages. Message vectoriza-
tion is crucial for generating good code for SIMPLE.

Using compile-time resolution, the send and receive commands for a
non-local reference are inserted into the generated code where the value
is needed. This is a fine place for the receive but a non-optimal place
for the send. The receiving process can be delayed unnecessarily if the
sending process has the value available at an earlier point but has work to
do between then and when the send is executed. A better scheme would
execute the send as soon as the value is available. The optimization that
moves the send to the earliest possible point in the generated code is called
pipelining. We discuss the need for pipelining in detail in an earlier paper
[16].

Vectorization combines messages with a similar source and destination
into a single message to reduce overhead. Each message sent incurs a fixed
overhead plus a cost per message byte. In most message passing systems
the fixed overhead dominates, making it sensible to try to pack messages
together. The compiler optimization to accomplish this is performed before
code generation and may be thought of as vectorization of a read operation.
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Make_AB_North(R_bar, Sigma, a)
real istructure A, Sigma, R_bar;

{int k, 1;
double 29, t30, t31, t32, t44, t45,
set_boundary_zones(A, 0.0) ;

{ for (1= 3;1<= 32; 1= 1+ 1)
{ double d;
for ( k= 3; k<= 32; k= k+ 1)
{ t29 = Sigma[BL(k, 1)];
t30 = R_bar[BL(k-1, 1)];
t31 = A[BL(k-1, 1)];
d = 29 + t30 * (1 - t31);
t32 = R_bar[BL(k, 1)];
A[BL(k, 1)] = t32 / d);
};
t44 = R_bar[BL(32, 1)];
send (13, &t44, sizeof(double ), BM(33, 1));
t45 = A[BL(32, 1)];
send(16, &t45, sizeof(double ), BM(33, 1));

Figure 7: Compile-time resolution code for Make _AB North.
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Just as with any potentially vectorizable operation, the operands (in this
case, the referenced array element) must be checked to ensure that there is
no cycle of data dependencies within the loop. If no such cycle of depen-
dencies exists, the read may be converted to a vector read. This in turn
will be converted during code generation to block sends and receives or will
be removed by copy elimination, if the process that owns the vector is the
same as the process that needs it.

Most of the data dependencies in SIMPLE are either from one time
step to the next or from one phase in the computation to a later phase
in the computation.® Only in the heat conduction routines are there data
dependencies between array elements of the same matrix in the same time
step. Precomputed values should always be sent as a vector. Our example
illustrates this. The array R-bar is computed by an earlier routine in the
heat conduction phase. By the time Make AB North is called R_bar will
already have been computed. A look back at the compile-time resolution
code shows that one value from the bottom row in the block is sent to
process two in each iteration of the outer loop. A much more sensible
implementation would be to send all of the required R_bar values to process
two in one message.

The code that results from using compile-time resolution augmented
with vectorization can be seen in Figure 8. Notice that the whole last row
of zero’s block of R_bar is packed into a vector and sent to process two .
Also notice that in the situation where process zero owns both A[k, 1]
and R.bar[k-1, 1] nothing has changed from the straight compile-time
resolution code even though this reference arises from the same original
reference as the values being sent.

5.4 Accumulation

The code generation methods presented above implement “do-across” style
parallelism. To generate efficient code for all of SIMPLE, a programming
paradigm known as accumulation or global combine is required.

Consider the function, compute_internal, in Figure 9. Starting from
the code shown, our compiler using just compile-time resolution would gen-

3For example, the new position matrices computed by make_position are used by almost
all of the subsequent phases in a time step.

22



Make_AB_North(R_bar, Sigma, a)

real istructure A, Sigma, R_bar;
{int k, 1, t4;
double 29, t30, t31, t32, t45, T8[30]

for ( t4= 3; t4 <= 32; t4 = t4+ 1)
{ t7= R_bar[BL(32, t4));
T8[VEC_SEND_Local(t4-3)] = t7; };
send(13, T8, 30* sizeof(double), 2);

{for (1=3;1<=32;1=141)
{ double d;
for (k = 3; k<= 32; k = k+ 1)
{ t29 = Sigma[BL(k, 1)];

t30 = R_bar[BL(k-1, 1)];
t31 = A[BL(k-1, 1)];
d = 29 + t30 * (1 - t31);
t32 = R_bar[BL(k, 1)];
A[BL(k, 1)] = t32 / d);
}s
t45 = A[BL(32, 1)];
send(16, &t45, sizeof(double ), BM(33, 1));

Figure 8: Vectorized code for Make_AB_North
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def compute_internal new_alpha:realarray@block(bs1, bs2, sizel , size2)
new_rho:realarray@block(bsl, bs2, sizel, size2)
new_epsilon:realarray@block(bs1, bs2, sizel, size2)
:real@P0 =

{ internal:real@P0 = 0;

{ for k = kmin+1 to kmax do
{ for 1 = Imin+1 to Imax do
templ:real@((k-1) div bs1*nb + (I-1) div bs2) =
(new_rho[k,l] * new_alphalk,l] * new_epsilon[k, 1]);
next internal = internal + templ } }

in internal

}

Figure 9: Accumulation example

erate code that sends all of the values for temp1 to process zero. Recall that
the process, p, that owns the left-hand side of an assignment will perform
the work necessary for the right-hand side as well as the assignment it-
self. All other processes participate by sending any necessary values to
process p. In our example process zero will do all of the work because it
owns internal. The rest of the processes will madly send values to process
zero. A much better scheme would be to recognize that the operation being
performed is commutative and associative and therefore each process can
compute a partial sum and send that value to process zero where the final
sum can be computed. Figure 10 illustrates the difference between the two
implementations. This paradigm known as accumulation or global combine
is well known to programmers of parallel machines.

Fortunately, accumulation fits very nicely into our model. If the partial
values of the circulating (next) variable are not used (ie. the variable is
not live in the body of the loop) and if the operation is commutative and
associative, then a different rule can be used to determine where the work
should be done. Instead of assuming that the owner of the left-hand side

24



\N
N >

W27
M,

Figure 10: Two methods for computing an accumulation

should do the work for an assignment, the work and the assignment are
assigned to the process that appears most often in the participants set of
the right-hand side. In addition, the loop is tagged to indicate that the
partial values collected by each process should be accumulated at end of
the loop. This accumulation can be pushed out to the outermost loop in
which the variable is not live to further reduce message traffic. Accumula-
tion has been incorporated into the compiler. Figure 11 contains the code
generated for compute_internal using code generation augmented to rec-
ognize opportunities for accumulation. For larger number of processes, a
fan-in of the partially accumulated values would be beneficial.

5.5 Scatter-gather

The coefficient tables used by the pressure/temperature/energy computa-
tion are accessed through another table. This raises a subtle issue regarding
the distribution of the coefficient table. If the table is large in size, it may
have to be distributed across the processes. If so, it will not be possible
to predict precisely which processes will need access to which coefficients.
This means that send/receive pairs cannot be programmed into the code
and it is necessary to simulate shared memory. Since the table is read-only,
a second possibility is to give a copy of the table to each process. This is
particularly useful when the table is small, which is the case in SIMPLE
(12x15). We chose this solution in our implementation.

A second possibility is to perform a gather phase in which processes

25



double compute_internal(new_alpha, new_rho, new_epsilon)
real istructure new_epsilon, new_rho, new_alpha;

{int k, I;
double internal, t12, t13, t14, t17;

internal = 0;

/* accumulate local contribution for internal */
{for (k=3;k <=32;k =k+ 1)
{ double templ;
for 1=1;1<=30;1=1+1)
{ t12 = new_rho[BL(k, 1)];
t13 = new_alpha[BL(k, 1)];
t14 = new_epsilon[BL(k, 1)];
templ = t12 * t13 * t14;
internal = internal + templ; } } }

/* collect other contributions to the final value for internal */
recv(319, &t17, sizeof(double));

internal = internal + t17;

recv(219, &t17, sizeof(double));

internal = internal + t17;

recv(119, &t17, sizeof(double));

internal = internal + t17; }

return(internal);

Figure 11: Code generated by compile-time resolution with accumulators
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send requests for the coefficients they want to appropriate processes and
respond to requests from other processes for the coefficients they happen
to own. It is necessary for processes to synchronize before entering and
leaving the gather phase.

5.6 Discussion

We have presented two code generation methods. Run-time resolution pro-
duces inefficient code but guarantees that we can generate code for any
program. Compile-time resolution uses partial evaluation to produce more
efficient code. A natural question is, “Are there any places in SIMPLE
where run-time resolution is needed?” The answer is no. The reason is that
except in a few limited situations the array subscripts are very simple. Only
the accesses to the coefficient tables in the pressure/temperature/energy
computation are too complex for the compiler to analyze. Fortunately,
these tables are small enough to place a copy on each process which solves
the problem.

The computation of the boundary elements is another issue that might
cause concern. The program we started with separated the boundary ele-
ment computations from the interior element computations. The result was
more straightforward inner loops. The quality of the input code definitely
effects the quality of the generated code.

6 Results and Analysis

Carefully tuned, handwritten programs provide the best comparison for
any parallelizing compiler. Unfortunately, we have been unable to locate a
handwritten implementation of SIMPLE for the Intel iPSC/2. This is not
surprising; decomposing SIMPLE by hand would be a tedious process. The
next best alternative is to develop a model estimates the behavior of a good
handwritten program. In this section we present our experimental results,
a model for a handwritten implementation, and a comparison of the two.
We ran a set of experiments using an implementation of one iteration of
SIMPLE for a 64x64 grid. With the exception of the coefficient matrices,
all of the matrices in the program were decomposed into roughly square

27



12
Time
(sec.) 87
4-
0 L | L I T LI B LI | L | L | LI LI | LI T ‘l
0 4 8 12 16 20 24 28 32

Number of Processes

Figure 12: Running times for Simple on a 64 x 64 grid

blocks. Our compiler generates C code? for the Intel iPSC/2.

The graph in figure 12 displays the timing results from our experiments.
The implementation for the one process case was obtained by mapping of
each matrix into a single block of size 64x64. The resulting program has
no communication statements and looks quite like the original sequential
program.

6.1 Model of a handwritten implementation

How do we model the total amount of work done by a parallel system? The
total parallel time can be represented by the formula

TPT = Z; Tc'omp + Z Trl;ug + Zl T:yatem + Z i‘;ﬂe
1= 1=1 1=

=1

where T,fomp is the computation time for the 7th process, T,';”g is the time
spent by process ¢ in sending/receiving messages, T,"ystem is the time spent
by process ¢ doing system chores like paging and context switching, and

T}y is the time process i spends waiting for messages. Some of these

4The C programs were compiled using the -O option of the Greenhills C compiler.
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quantities are difficult to obtain because of the primitive nature the time
measurement tools on the iPSC/2. Our goal is to develop a model that
estimates the running time of a hand-written program. With this goal in
mind we can safely ignore the two parameters that are hardest to measure,
namely system time and idle time. The resulting model is still valid being
on the conservative side of less accurate.

For our particular problem, "% , T(fomp can be estimated by the number
of floating point operations® necessary times the cost of an average floating
point operation, Y, T,fomp = 1,552,883 * C. About one third of the oper-
ations are multiplies, the rest are adds, compares etc. We estimate the cost
of a floating point operation as C = .33 * 8.52 + .66 * 6.64. The operation
costs used are the costs reported for a the multiplication/addition of two
double length floating point numbers[3]. This estimate of the floating point
work does not taken into account pipelining.

Communication overhead must be measured with respect to a particular
mapping. To estimate this overhead, we counted the number of messages
and the size of each message in a four process system. The cost of message
that is of length k*4 bytes is defined by the following equation:

cost(k) = toartup + k * toena

For the iPSC/2, t,artup = 350pus and t,eng = 0.8us for message under 100
bytes and ¢,tartup = 66043 and t,eng = 1.44ps for longer messages[3]. From
this we can extrapolate to estimate the communication cost for larger num-
bers of processes. The following table

N bst bs2 Y1, T,';,,g Per process cost
4 32 32 207.305 51.826
8 32 16  421.858 52.732
16 16 16 675.932 42.245
32 16 8 1,307.099 40.846

displays the projected communication costs (in milliseconds) for the config-
urations in question. The four process estimate assumes that a value is sent
from a one process to another process at most once and the all the values

5The count of the number of floating point operations was obtained by Jamey Hicks
using the MIT Gita dataflow simulator.
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Figure 13: Projected running times for Simple

from a row/column of a matrix are transmitted as one message (except in
the sweep phases). Values from different arrays are assumed to be sent in
separate messages.

System costs are not completely unmeasurable. We can measure the
cost of allocating space for arrays. Many functions return arrays as result,
so the matrices are stored on the heap instead of the stack. To reduce
the cost of allocation, a large chunk of space is allocated at the beginning.
Each individual array allocation requires only a few pointer operations. The
following table lists the values we measured for the per process allocation
costs.

N bs! bs2 Per process allocation cost

4 32 32 482
8 32 16 269
16 16 16 161
32 16 8 108

The allocation costs do not decrease linearly because a few of the arrays
are replicated, i.e. each process has a copy.
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Once we have an estimate for the total work done in the system, it is easy
to model parallel time and expected speedup. The best possible situation
would result in a perfect division of the work. Parallel time is therefore
estimated as PT = TPT/N where N is the number of processes. The graph
in figure 13 shows the projected running times for both decompositions.
Speedup is sequential time divided by parallel time:

speedup = (1,552,883 x C' + 1760)/ PT

Sequential time is the cost of the floating point operations plus the alloca-
tion cost. The graph in figure 14 displays three curves: perfect speedup,
the speedup projected by the model, and our speedup using the roughly
square block decomposition.

6.2 Comparison of the Results

There is a substantial gap between the speed-up projected by the model
and the speed-up obtained by the programs the compiler generates. Three
factors account for the discrepancy. First, our programs send more mes-
sages that the projected number. We do not do interprocedural common
subexpression elimination to determine when to combine sends of the same
value from different procedures. Second, the model assumes that the work-
load is perfectly balanced. It is not, so all of the processes slow down to the
wait for the one with the most work. The blocks on the perimeter have less
work than internal blocks because in most cases the work associated with
the boundaries is trivial. Also, the southern and western perimeter blocks
have more work than the northern and eastern blocks because of the way
nodes and zones fit into a matrix. The third factor comes from idle time
introduced by the sweep phases in heat conduction. This is unavoidable
and is not factored into the model.

Preliminary experiments indicate that using a strip decomposition rather
than a roughly square decomposition for the matrices in SIMPLE produces
similar results to those reported above.
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7 Summary

Our experiments with SIMPLE have been very beneficial. Our basic meth-
ods have been validated on a large program and we have gained insight into
how to expand our system to generate better code. The paradigms that
programmers employ by hand such as accumulation and scatter-gather are
quite useful. As we discussed, accumulation fits quite naturally into our
scheme. We have not yet implemented scatter-gather as we do not yet un-
derstand where the cross-over point between replicating arrays and using
scatter-gather lies.

We have implemented some techniques that reduce the number of mes-
sages in the system. Vectorization of messages is the most notable for
SIMPLE. Reducing the number of messages sent still requires work. A
handwritten program would send fewer messages than code we currently
generate. Programmers easily recognize that if a value is used by a process
in several different procedures it need only be transmitted once. A com-
piler must perform interprocedural common subexpression recognition to
be able to come the same conclusion.

As we have seen, the heat conduction routines throw a wrench into
the nice regular pattern of most of SIMPLE. The amount of work done
in this phase is small enough that we decided not to try to shuffle the
data around to get better performance. However, it is not hard to imagine
cases where the work load involved would be large enough that the cost of
data movement would be worth the gain in efficiency. Efficient remapping
routines need to be added to our system.

Three other groups have taken similar approaches to the problem of
compiling for locality. Koelbel and Mehrotra [11] at Purdue are translat-
ing Blaze, a functional language with a forall construct, into an extension
of Blaze that includes constructs for explicit process creation, data stor-
age layout, and interprocessor communication and synchronization. They
use programmer supplied data decomposition information to schedule forall
loops to exploit spatial locality. A group led by Kennedy and Zima at Rice
University are studying similar techniques for compiling a version of FOR-
TRAN 77 that includes annotations for specifying a data decomposition,
for the Intel iPSC/2. [4] describes a method quite similar to our run-time
resolution. They also discuss how existing transformations may be used to
improve their generated code. Our methods are equally applicable to FOR-
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TRAN. Tseng [18] takes an approach that requires more information from
the programmer. In addition to a domain decomposition, the programmer
must describe the portion of data that is needed by one process but resides
on another process. The basic method uses this information to decide what
data to send and when. When the data dependencies in a program can not
be sufficiently analyzed by the compiler, the fallback position is to err on
the side of sending the data. The advantage to this is that all values can
be sent as soon as they become available. This disadvantage is that values
that are not needed may be sent needlessly.
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