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ABSTRACT
The running time of many applications is dominated by the
cost of memory operations. To optimize such applications
for a given platform, it is necessary to have a detailed knowl-
edge of the memory hierarchy parameters of that platform.
In practice, this information is poorly documented if at all.
Moreover, there is growing interest in self-tuning, autonomic
software systems that can optimize themselves for different
platforms; these systems must determine memory hierarchy
parameters automatically without human intervention.

One solution is to use micro-benchmarks to determine the
parameters of the memory hierarchy. In this paper, we argue
that existing micro-benchmarks are inadequate, and present
novel micro-benchmarks for determining parameters of all
levels of the memory hierarchy, including registers, all data
caches and the translation look-aside buffer. We have im-
plemented these micro-benchmarks in a tool called X-Ray
that can be ported easily to new platforms. We present ex-
perimental results that show that X-Ray successfully deter-
mines memory hierarchy parameters on current platforms,
and compare its accuracy with that of existing tools.
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C.4 [Performance of Systems]: Measurement techniques;
D.1 [Programming Techniques]: Automatic Program-
ming
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1. INTRODUCTION
On modern computers, the cost of memory accesses dom-

inates the running time of most applications. To reduce the
running time of a program, its memory access patterns can
be optimized by transformations such as loop tiling and data
reorganization [1]. The implementation of these transforma-
tions requires a detailed knowledge of the memory hierarchy
of the platform on which the program will run. For example,
algorithms for loop tiling use the capacity of the cache to
select the tile size. Some of these algorithms use the cache
block size and associativity as well to make a more accurate
determination of tile size [17].

Traditionally, these kinds of optimizations were imple-
mented either manually or in a compiler. In either case, the
programmer or the compiler writer was assumed to have a
detailed specification of the platform. In practice, cache pa-
rameters are poorly documented, if at all, on most systems.
On some machines, it may be possible to determine some of
this information by reading special registers or records in the
processor or operating system [4]. However, most proces-
sors and operating systems do not support such mechanisms
or provide very limited support. Registers pose a different
problem. The number of architected registers is specified
in the instruction set, but what is relevant to program op-
timization is the number of registers that can be used by
program variables, which may be different. For example,
the SPARC instruction set has 32 architected floating-point
registers, but register 0 is hardwired to 0, so the number of
registers available to the register allocator is only 31. Fur-
thermore, some registers are usually reserved by compilers
for the stack pointer, frame base register, etc. Therefore,
it is useful to have micro-benchmarks to determine memory
hierarchy parameter values relevant to program optimiza-
tion.

The need for such benchmarks is all the more urgent given
the trend towards self-optimizing software systems that can
optimize their own performance without human interven-
tion. Successful systems of this sort include ATLAS [16],
which is a portable system that produces highly tuned lin-
ear algebra libraries, and FFTW [6] and Spiral [13], which
are similar systems for generating digital signal processing
libraries. When installed on a new machine, these systems
execute a set of micro-benchmarks to determine the hard-
ware parameters of the machine, and use these values to
determine optimal values for various software parameters.
Some of these systems, such as ATLAS, use global search,
so they use the hardware parameter values only to guide the
search process. Other systems use model-driven optimiza-
tion to directly estimate optimal values for software parame-
ters, given values of the hardware parameters. Such systems



obviously require very accurate estimates of hardware para-
meter values; in fact, the work reported in this paper was
motivated by the inadequacies of existing micro-benchmarks
for building a model-driven version of ATLAS [17]. There-
fore, accurate micro-benchmarks are key to the success of
self-optimizing software.

In this paper, we present micro-benchmarks for measur-
ing the parameters of the memory hierarchy of a platform,
including registers, all data cache levels, and the TLB. Ex-
isting tools such as lmbench [10] and Calibrator [9] measure
some of these memory hierarchy parameters, but our exper-
iments show that none of them offer the same parameter
coverage or accuracy as our micro-benchmarks. These tools
implement variations of the micro-benchmark developed by
Saavedra [14], which is reproduced by Hennessy and Pat-
terson [7] and is discussed in Section 2 of this paper. This
benchmark, which is a C program, measures the time re-
quired to access a series of array elements with different
strides. The timing results are fairly complex because the
micro-benchmark considers all levels of the memory hier-
archy simultaneously. Therefore, these results are usually
interpreted manually to obtain the memory hierarchy pa-
rameters. Although tools like Calibrator and lmbench can
determine some cache parameters automatically from these
timing results, none of them measures cache associativity,
for example. Moreover, optimizations performed by modern
compilers when compiling the C code can confuse the tim-
ing measurements. Yet another problem is that hardware
pre-fetching on architectures like the IBM Power can com-
promise the timing measurements. Other tools use hardware
performance counters to probe the memory hierarchy [3, 5],
but these tools have portability problems.

The key difference between our approach and previous ap-
proaches is that our micro-benchmarks are designed so that
when the parameters of cache Ci at level i are being mea-
sured, higher level caches C1, C2, . . . , Ci−1 are “transparent”
in the sense that memory accesses relevant to the measure-
ments are guaranteed to miss in those caches. This isolation
permits us to measure the associativity of caches directly,
which existing micro-benchmarks cannot do. This in turn
permits us to measure cache capacity accurately even when
the associativity and therefore the capacity are not powers
of 2 (for example the Itanium L3 cache has an associativ-
ity of 24); in contrast, most existing micro-benchmarks can
only handle cache capacities that are powers of 2.

The rest of this paper is organized as follows. In Section 2,
we discuss existing approaches and their drawbacks. In Sec-
tion 3, we introduce the memory reference patterns used in
our micro-benchmarks, and prove some important proper-
ties of these patterns. In Section 4, we present our micro-
benchmarks for measuring L1 data cache parameters. In
Section 5, we show how to measure the parameters of lower
level caches without interference from higher level caches.
In Sections 6 and 7, we show how to measure some TLB
parameters and the number of registers. We present ex-
perimental results in Section 8 and discuss ongoing work in
Section 9.

2. PREVIOUS APPROACHES
The most widely used micro-benchmark for these mea-

surements is the benchmark of Saavedra [14], a stylized ver-
sion of which is presented in Figure 1. This benchmark
makes fixed-stride accesses to the elements of a large ar-

ray in memory, and measures the average time per access.
These timing results are then interpreted to determine cache
parameters. We make the following observations.

1. The benchmark performs series of experiments for pairs
〈csize, stride〉, where the array size (csize) varies
between CACHE MIN and CACHE MAX and stride varies
between 1 and csize. Both are powers of 2.

2. For each 〈csize, stride〉, the benchmark traverses the
array x with the specified stride SAMPLE× steps times
to ensure that the total time spent is at least 1 sec.

3. The measurement for 〈csize, stride〉 is repeated the
same number of times, replacing references to the array
x with references to a single scalar variable temp.

The benchmark has problems at both the algorithmic and
implementation level, as summarized below.

1. Algorithmic Level

(a) The benchmark does not interpret the timing re-
sults to produce actual memory hierarchy para-
meters itself, but rather produces a set of mea-
surements that need to be interpreted manually.

(b) The benchmark considers all levels of the mem-
ory hierarchy simultaneously, so each timing re-
sult is possibly influenced by several parameters
from different cache levels. Interpretation of the
timing results is complex.

(c) The benchmark uses only array sizes restricted
to powers of 2, which prevents it from measuring
cache capacities that are not powers of 2.

2. Implementation Level

(a) The source code uses a very complex loop struc-
ture, which is the source of substantial loop over-
head. An attempt is made to account for that
overhead by measuring and subtracting the ex-
ecution time of a cloned version the same loop
structure that does not perform any memory ac-
cesses. Unfortunately, there is no control over
the back-end compiler, so different code may be
produced for the two versions, yielding inaccurate
results.

(b) All memory accesses are independent, which al-
lows an aggressive optimizing compiler to sched-
ule them in a way so that some overlap. This
complicates the interpretation of timing results.

(c) The addressing mode used to access array ele-
ments involves both a base address and an offset.
On many RISC architectures, this operation re-
quires an extra address computation instruction
before the actual memory access instruction is
performed.

(d) The source code does not use the values of ac-
cessed array elements (and more importantly, the
value of the temp variable) for producing output,
so a smart optimizing compiler can eliminate por-
tions of the code.



#define SAMPLE (5)
#define CACHE MIN (1024)
#define CACHE MAX (16*1024*1024)

int x[CACHE MAX];

int main ()
{

int temp;
for (int csize = CACHE MIN; csize <= CACHE MAX; csize *= 2)

for (int stride = 1; stride <= csize / 2; stride *= 2)
{

double time = 0.0;
int steps = 0, tsteps = 0, limit = csize - stride + 1;
do
{

double time0 = get time();
for (int i = SAMPLE * stride; i != 0; --i)

for (int index = 0; index < limit; index += stride)
x[index]++;

steps++;
time += get time() - time0;

} while (time < 1.0);
do
{

double time0 = get time();
for (int i = SAMPLE * stride; i != 0; --i)

for (int index = 0; index < limit; index += stride)
temp += index;

tsteps++;
time -= get time() - time0;

} while (tsteps < steps);
printf("size: %d, stride: %d, time: %d",

csize * sizeof(int), stride * sizeof(int),
(int)(time * 1E9 / (steps * SAMPLE * stride * ((limit - 1) / (stride + 1)));

}
}

Figure 1: Standard memory hierarchy benchmark

(e) There is a constant stride between successive ac-
cesses of array elements. The IBM Power 3, among
others, performs hardware prefetching for such
fixed stride accesses, which interferes which the
timing measurements.

(f) A key assumption is that the array x is stored
in a contiguous set of memory locations. In real-
ity, it is only guaranteed to be contiguous in the
logical address space of the processor, and it can
be fragmented in the physical address space. In
most processors, lower level caches are physically
addressed, so the contiguity assumption for array
elements is violated.

The existing systems we examined all use this micro-bench-
mark in one form or another, although some of them attempt
to address some of these problems in various ways. Our ap-
proach is different at the algorithmic level, and it eliminates
these problems.

3. COMPACTNESS OF SEQUENCES
The micro-benchmarks discussed in this paper measure

the associativity (A), block size (B), capacity (C), and hit
latency (l) of caches. The first three parameters are some-
times referred to as the 〈A, B, C〉 of caches.

We use the Intel P6 (Pentium Pro/II/III) as an example.
Figure 2 shows the structure of a memory address and Fig-
ure 3 shows the structure of the L1 data cache, which on
these machines is organized as 〈A,B, C〉 = 〈4, 32, 16KB〉.

offset
index
tag


t=20
 i=7
 b=5


Figure 2: P6 memory address structure

A=4

2
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1
2
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Figure 3: P6 L1 data cache structure

Therefore the cache contains C
B

= 16384
32

= 512 individual

blocks, divided into 512
A

= 512
4

= 128 sets of 4 blocks each.
The highest t = 20 bits constitute the block tag, i = 7 bits
are needed to index one of the 128 sets, and b = 5 bits are
needed to specify the offset of a particular byte within the
32-byte block. Note that C = A× 2i+b.

Definition 1. For a cache with associativity A and ca-
pacity C, we define the stride of that cache as T ≡ C

A
= 2i+b.

Lemma 1. Consider a cache with stride T , and addresses
m0 and m aligned on a cache block boundary. The address
m maps to the same cache set as m0 iff m = m0 +k×T for
some integer k.

Proof. Follows directly from the definition.



If W is a set of addresses, we define projecti (W ) to be
the subset of W containing only the addresses that map to
cache set i, and indices (W ) to be the set of cache indices of
the elements of W .

Definition 2. For a set of addresses W , and a index i,

projecti (W ) ≡ {m ∈W : index (m) = i}

Definition 3. For a set of addresses W ,

indices (W ) ≡ {i : projecti (W ) 6= ∅}

We assume that set-associative caches implement the least-
recently-used (LRU) replacement policy. This assumption is
reasonable because most modern processors implement vari-
ants of this policy. Moreover, our experimental results show
that our micro-benchmarks can be accurate even when the
policy is not LRU (e.g., the L1 data cache of IBM Power 3
uses FIFO replacement policy).

3.1 Sequences
Some of our micro-benchmarks access sequences of N ad-

dresses, where successive addresses are separated by a stride
S = 2σ as shown in Figure 4(a). Such sequences are com-
pletely characterized by their starting address m0, stride S
and number of elements N and therefore we use the notation
〈m0, S, N〉 to represent them.

To measure parameters of multi-level memory hierarchies,
our micro-benchmarks use sequences of sequences, as shown
in Figure 4(b). One way to think about these sequences of
sequences is to imagine each of the N points in the sequence
of Figure 4(a) being expanded into a sequence of n points
(superpose Figures 4(a),4(b)). To represent them we use the
notation W = 〈〈m0, s, n〉 , S, N〉. Like S, the small stride s
is always a power of 2.

S S S
... ...

...m0

1 2 3 N-1 N

(a) 〈m0, S, N〉

…

s s
...
...

S-(n-1)s

1 2 3 n
m0

s s
...
...

S-(n-1)s

1 2 3 n

s s
...
...

S-(n-1)s

1 2 3 n

s s
...
...

1 2 3 n

...

...

1

(b) 〈〈m0, s, n〉 , S, N〉

Figure 4: Sequences of sequences

Definition 4.

(a) 〈m0, S, N〉 ≡ [m0, m0 + S, . . . , m0 + (N − 1) S]

(b) 〈〈m0, s, n〉 , S, N〉 ≡ ∪i∈[0,N−1] 〈m0 + i× S, s, n〉

In Definition 4(b), we call each 〈m0 + i× S, s, n〉 an in-
ner subsequence of 〈〈m0, s, n〉 , S, N〉. Notice that the se-
quence of sequences 〈〈m0, s, n〉 , S, N〉 can also be expressed
as 〈〈m0, S, N〉 , s, n〉. This property is expressed in Lemma 2.

Lemma 2. 〈〈m0, s, n〉 , S, N〉 ≡ 〈〈m0, S, N〉 , s, n〉

Proof. Omitted.

We mention that a sequence of sequences can be viewed
as the convolution of two sequences. Lemma 2 follows from
the well-known fact that convolution is commutative.

3.2 Compactness
We determine cache parameters by measuring the aver-

age time per memory access when accessing the elements of
certain sets of memory addresses.

When all addresses of an address sequence W can coex-
ist together in a cache we say that W is compact with re-
spect to that cache and the average access time is the cache
hit latency lhit. When the sequence is not compact and
we repeatedly access its elements the cache will suffer some
misses. If every single access is a cache miss, we say that W
is non-compact and the average access time is the cache miss
latency lmiss, which is typically much greater than lhit. Fi-
nally, when some accesses are cache hits and some are cache
misses, the average access time is between lhit and lmiss and
we say that W is semi-compact. Definition 5 presents this
concepts formally.

Definition 5. For a cache with associativity A,

compact (W ) ≡ ∀i ∈ indices (W ) : |projecti (W )| ≤ A

non-compact (W ) ≡ ∀i ∈ indices (W ) : |projecti (W )| > A

semi-compact (W ) ≡ ¬compact (W ) ∧ ¬non-compact (W )

The definition says that, for any cache index from the set
of indices for W , a compact sequence will have at most A
elements with this index, while a non-compact sequence will
have at least A + 1 elements with this index. A sequence is
semi-compact if there is an index with at most A elements,
as well as an index with at least A + 1 elements.

Lemma 3. Compact sequences have the following proper-
ties.

(a) For a cache with capacity C, block size B, and an ad-
dress m0 aligned on a cache block boundary, the half-
open interval [m0, m0 + C) is compact.

(b) A subset of a compact sequence is compact.

(c) If indices (W1)∩ indices (W2) = ∅, and W1 and W2 are
compact then W1 ∪W2 is compact.

(d) If indices (W1)∩ indices (W2) = ∅, and W1∪W2 is non-
compact, then W1 and W2 are non-compact.

(e) If W1 and W2 are non-compact then W1 ∪W2 is non-
compact.

Proof. (a) The interval [m0, m0 + C) is equivalent to the
sequence W = 〈m0, 1, C〉 =

�
〈m0, 1, B〉 , B, C

B �. Because m0

is aligned on B, the cache lines used by W are the same
as the cache lines used by W ′ =

�
m0, B, C

B �, in which only
one address is mapped to a single cache line. Furthermore
W ′ can be expressed as

��
m0, B, T

B � , T, C
T �. From Lemma 1,

all inner subsequences w′

i =
�
m0 + i× T, B, T

B � map exactly
one element to each cache set. Therefore W ′ maps exactly
A = C

T
elements to each cache set, and by Definition 5 it is

compact. Because W uses the exact same cache lines, it is
also compact.

Results (b)-(e) follow directly from Definition 5.

4. L1 DATA CACHE
Figure 5 gives some intuition about the compactness prop-

erties of a sequence W = 〈m0, S, N〉 where S ≤ T . When
N × S ≤ C the sequence is compact as it maps at most A



addresses to each cache set (from Lemma 3(a,b)). When
N × S ≥ C + T the sequence is non-compact, as it maps at
least A+1 addresses to each cache set. When C < N ×S <
C +T , the sequence is semi-compact as it maps A addresses
to some of the cache sets and A+1 address to the rest of the
cache sets. For S ≥ T there are no semi-compact sequences,
and for S < T , W is semi-compact for T

S
−1 different values

of N .

S 2S C C + T

lmiss

lhit

N × S

latency

Figure 5: Example of (semi-/non-)compact

Theorem 1 describes the necessary and sufficient condi-
tions for compactness and non-compactness of a sequence
with respect to a given cache. Intuitively, the number of
cache sets occupied by elements of a large enough sequence
of stride S ≥ B is dT

S
e. The number of elements mapped

to two cache sets differ by at most one. Therefore, the
sequence is compact if N ≤ A �T

S �, and non-compact if

N ≥ (A + 1) �T
S �. The proof given below establishes the

iff condition, and also covers the case when S < B.

Theorem 1. Consider a cache with parameters 〈A, B, C〉
and a sequence W = 〈m0, S, N〉, where m0 is aligned on a
cache block boundary.

(a) compact (W )⇔ N ≤ Nc = A �T
S �

(b) non-compact (W )⇔ N ≥ Nnc = (A + 1) �T
S �

Proof.

• S ≥ T . In this case Nc = A and Nnc = A + 1.

Since both S and T are powers of 2, S must be an
integer multiple of T . From Lemma 1 it follows that all
N addresses in the sequence map to the same cache set.
Therefore the sequence is compact iff for N ≤ A = Nc

and non-compact iff N ≥ A + 1 = Nnc.

• B ≤ S < T , and let k = T
S

and N = p× k + r, where
0 ≤ r < k. Therefore:

W = 〈m0, S, p× k + r〉

= 〈m0, S, p× k〉 ∪ 〈m0 + S × p× k, S, r〉

= 〈〈m0, T, p〉 , S, k〉 ∪ 〈m0 + p× T, S, r〉

From Lemma 1 follows that:

1. Each inner subsequence of 〈〈m0, T, p〉 , S, k〉 maps
exactly p elements to a single cache set;

2. The k inner subsequences of 〈〈m0, T, p〉 , S, k〉map
to k different cache sets;

3. The r elements of the sequence 〈m0 + p× T, S, r〉
map to the same cache sets as the first r of the k
inner subsequences of 〈〈m0, T, p〉 , S, k〉.

We now look at the following subcases:

– For N = Nc = k × A, p = A and r = 0. We have
A different elements of W mapped to each of k
different cache sets, and therefore W is compact.

– For N < Nc, W is compact by Lemma 3(b).

– For N = Nnc = k × (A + 1), p = A + 1 and
r = 0. We have exactly (A + 1) different elements
of W mapped to each of k different cache sets, and
therefore W is non-compact.

– For N > Nnc we have at least (A + 1) different
elements of W mapped to each of k different cache
sets, and therefore W is non-compact.

– For Nc < N < Nnc, p = A and 0 < r < k.
We have exactly (A + 1) different elements of W
mapped to r of the k cache sets and exactly A
different elements of W mapped to k− r of the k
cache sets. Therefore W is semi-compact.

The required result follows directly from this.

• S < B, and let k = B
S

. In this case, groups of k
consecutive elements of W map to the same cache line,
and therefore:

compact (W )⇔ compact (〈m0, S, N ′〉)⇔

⇔ compact �W ′ = �m0, B, N′

k �� .

N ′ is the smallest multiple of k, such that N ′ ≥ N .
Since we already proved the theorem for W ′,

compact (W )⇔ compact (W ′)⇔

⇔ N′

k
≤ A T

B
⇔ N ′ ≤ k × A T

B
⇔ N ≤ Nc = A �T

S � .

By analogy, if N ′′ is the largest multiple of k, such
that N ′′ ≤ N ,

non-compact (W )⇔ non-compact (〈m0, S, N ′′〉)⇔

⇔ non-compact �W ′′ = �m0, B, N′′

k �� ⇔
⇔ N′′

k
≥ (A + 1) T

B
⇔ N ′′ ≥ k × (A + 1) T

B
⇔

⇔ N ≥ Nnc = (A + 1) �T
S � .

4.1 Algorithms for Measuring Parameters
In this section we use the function is compact (W ) to de-

termine empirically if W is compact. Its implementation is
discussed in Section 4.2.

4.1.1 Cache Latency
We determine lhit by measuring the average time per ac-

cess of the sequence 〈m0, 1, 1〉, which is compact since it
contains a single element.

4.1.2 Capacity and Associativity
Theorem 1 suggests a method for determining the capacity

C and the associativity A of a cache, for which pseudo-code
is presented in Figure 6. The algorithm can be described
as follows. Start with the sequence 〈m0, S, N〉 = 〈m0, 1, 1〉,
which is compact, and double N until the sequence is not
compact. Let Nold be the first N for which this happens.
Now start doubling the stride S, and for each S compute the
smallest N for which 〈m0, S, N〉 is not compact. This value



of N can be found by using binary search in the interval
[1, Nold]. If N 6= Nold, let Nold = N and recompute N for
the next S. Repeat this step until N = Nold. At this point,
A = N − 1 and C = S

2
× A.

S ← 1;
N ← 1;
while (is compact (〈m0, S, N〉))

N ← 2×N;

repeat

S ← 2× S;
Nold ← N;

N ← min N ′ ∈ [1, Nold] : ¬is compact (〈m0, S, N ′〉);
until (N = Nold);

A← N − 1;
C ← S

2
× A;

Figure 6: Measuring C and A of L1 Data Cache

The largest stride S used in this algorithm is 2T . We will
exploit this fact when we consider multi-level cache hierar-
chies.

Note that towards the end of the execution of the algo-
rithm, the number of distinct addresses accessed is on the
order of the associativity of the cache. Non-compactness of
these sequences results in a very pronounced increase in av-
erage access time, enabling our approach to produce more
accurate results than those obtained using other approaches.

4.1.3 Block Size
For given cache parameters C, A, and T , 〈m0, T, 2A〉 is

non-compact since all 2A addresses map to the same cache
set. This sequence can also be expressed as 〈〈m0, T, A〉 , C, 2〉.
If we offset the second half of the sequence by a constant δ, as
shown in Figure 7, we get the sequence 〈〈m0, T, A〉 , C + δ, 2〉.

T T ... T T ...T+B

1 2 3 A 1 2 3 A
m0

Figure 7: Measuring B of L1 data cache

The addresses in each of the two inner subsequences map
to a single cache set. This cache set is the same for both
inner subsequences when 0 ≤ δ < B, and is different when
δ ≥ B. Therefore the smallest value of δ for which the full
sequence 〈〈m0, T, A〉 , C + δ, 2〉 is compact is δ = B. Fig-
ure 8 shows pseudo-code for the algorithm.

δ ← 1
while (¬is compact (〈〈m0, T, A〉 , C + δ, 2〉))

δ ← 2× δ;
return δ;

Figure 8: Algorithm for measuring B

4.2 Implementation of is compact
The algorithms in Section 4.1 call is compact (W ) to deter-

mine experimentally whether sequence W is compact. Our
implementation of this function repeatedly accesses each ad-
dress in W , computes the average time per access l, and
declares the sequence to be compact if l is “close enough”
to the cache hit latency lhit, which is measured as described
in Section 4.1.1. Because of noise and timer inaccuracies, l
may not be exactly equal to lhit even if the set is compact.
X-Ray currently assumes that the miss latency of each cache
level is at least twice the hit latency at that level; therefore
it declares that a sequence is not compact if the average

time per access is at least twice greater than the hit latency.
Intuitively, this means that the time per access has to dou-
ble before the difference is considered “significant”. We are
currently evaluating more statistically sound strategies.

We now address the practical problems discussed in Sec-
tion 2. In our implementation, the array of elements is de-
clared of type pointer (void *) instead of integer (int) as
in the Saavedra benchmark. The array is initialized in such
a way that each element contains the address of the element
which should be accessed immediately after it. A local vari-
able p is initialized with the address of the element which
should be accessed first. This initialization is performed off-
line, before the actual timing.

A simplified version of the timing routine is presented in
Figure 9. The variable R is chosen so that the loop executes
for at least a predetermined amount of time t. Larger values
of R are likely to produce more accurate timing results at the
expense of additional running time. In our implementation,
we use t = 1 second. Additionally, in the implementation,
the while loop is unrolled several times to avoid loop over-
head.

startT ime← get time();

while (--R)

p← *(void **)p;
timePerAccess← (get time() − startT ime)÷ R;

printf("", p);

Figure 9: Improved timing of memory accesses

It is easy to see that the only operation performed in the
loop body is p ← *(void **)p, which reads the memory
address stored at address p and updates p with it.

The following points address the implementation prob-
lems of the Saavedra benchmark discussed in Section 2.

(a) The code in Figure 9 uses the simplest possible looping
structure, and loop overhead can be reduced as much
as needed, by sufficient unrolling. In our implementa-
tion we unroll 256 times.

(b) Each of the memory accesses depends on the previous
one to produce the actual address to access, so aggres-
sive compilers cannot take advantage of instruction-
level parallelism and overlap them.

(c) Each memory access constitutes precisely one mem-
ory read instruction, so the actual timing corresponds
exactly to the average latency per access.

(d) All modern architectures today support indirect ad-
dressing mode, so each operation should be translated
to a single machine instruction (e.g., “lwz 11,0(11)”
on the PowerPC ISA).

(e) The final value of the variable p is used by the printf

statement, so the compiler is not able to optimize the
memory accesses away by dead code elimination.

(f) For a correct implementation of is compact (W ), it is
important that we repeatedly access all elements of the
sequence; however, the actual order in which we ac-
cess them is irrelevant. To prevent hardware constant
stride prefetchers such as those on the IBM Power ar-
chitecture from interfering with our timing, we initial-
ize the array elements by chaining the pointers so that
we visit the elements in a pseudo-random order.



Consider the address sequence m0, m1, . . . , mn−1. One
way to reorder this sequence is to choose a number p,
such that p and n are mutually prime. After visiting
element mi, we visit element m(i+p) modulo n instead of
element a(i+1) modulo n. As p and n are mutually prime,
the recurrence i ← (i + p) modulo n is guaranteed to
generate all the integers between 0 and n − 1 before
repeating itself.

Note that this technique does not address problems
posed by Markov predictors [8] and Load Value pre-
dictors [2]. However, to the best of our knowledge,
these mechanisms have not yet been implemented in a
commercial processor.

(g) All modern processors have virtually indexed L1 data
caches and therefore physical contiguity of the array
is not an issue. Lower levels of the memory hierarchy
are usually physically indexed, so physical contiguity
is important for lower levels of the memory hierarchy,
as we discuss in Section 5.3.

5. LOWER LEVELS OF CACHE
We denote the cache at level i as Ci, its 〈A, B, C〉 parame-

ters as 〈Ai, Bi, Ci〉, its stride as Ti and its hit latency as li.
We extend the notation from the previous section, so that
compacti (W ) denotes that compact (W ) with respect to Ci.
We extend non-compact and semi-compact in the same way.

Measuring parameters of lower levels of the memory hi-
erarchy is considerably more difficult than measuring the
parameters of the L1 data cache. One reason why the al-
gorithms described in Section 4 cannot be used directly is
that Ci is accessed only if Ci−1 suffers a miss. Therefore com-
pactness with respect to Ci of a sequence of addresses can be
determined empirically only if this sequence is non-compact
with respect to C1, C2, . . . Ci−1.

Our solution to this problem is to transform a sequence
W into a new sequence W ∗ with the following properties.

1. compacti (W ∗)⇔ compacti (W )

2. non-compactj (W ∗), for all j ∈ [1, i− 1]

Intuitively, W is of the form presented in Figure 4(a).
We want to transform it to W ∗, which is a sequence of se-
quences of the form presented in Figure 4(b), so that the
extra memory accesses exhaust the associativity of caches
above Ci. Such a transformation may be necessary because
on some architectures, lower level caches are less associative
than higher level caches.

For example, some versions of the IBM Power 3 have 8MB,
8-way set associative C2 and 64KB, 128-way set associative
C1. Therefore the final iteration of the algorithm in Fig-
ure 6 should examine the sequence W = 〈m0, 2MB, 9〉 and
declare it non-compact. Without transforming W , this will
not happen because although the sequence is non-compact
with respect to C2, it is compact with respect to C1. As we
discuss later, the corresponding W ∗ we use for this W is
W ∗ = 〈〈m0, 512, 15〉 , 2MB, 9〉, which is non-compact with
respect to C1. Another way to view this sequence is W ∗ =
〈〈m0, 2MB, 9〉 , 512, 15〉, i.e. 15 copies of the original se-
quence W shifted by a factor of 512. Each of these copies
behaves identically to the original W with respect to C2, but
it is easy to verify that together, they force non-compactness
with respect to C1.

The constructions in this section assume that (i) each
cache level is at least twice bigger than the level immediately
above it, and (ii) the stride of any cache level is at least as
large as the block size of any other cache level. These can be
formally specified as Ci ≥ 2Ci−1 and Ti ≥ Bj . To the best
of our knowledge, these assumptions are satisfied by all cur-
rent machines. Furthermore, the measurements assume that
li ≥ 2li−1 to detect changes in compactness of sequences as
described in Section 4.2.

The constructions rely on a generalization of Theorem 1
to sequences of sequences, which is presented in Theorem 2.
To prove it, we need the following lemma.

Lemma 4. Consider a cache with parameters 〈A, B, C〉
and stride T . Let W1 = 〈m0, S, N〉 and W2 = 〈m0 + δ, S, N〉.
If m0 and m0+δ are aligned on a cache block boundary, and
0 < δ < min (S, T ), then indices (W1) and indices (W2) are
disjoint.

Proof. If not, there must be elements e1 = m0 + p× S
and e2 = m0+δ+q×S in sequences W1 and W2 respectively
such that index (e1) = index (e2).

Since m0 and m0 + δ are aligned on a cache block bound-
ary, both m0 and δ must be non-negative multiples of the
block size B. Since B ≤ δ < S and both B and S are pow-
ers of 2, S must be a multiple of B. Therefore, e1 and e2

must be multiples of B. If they map to the same cache index,
these two addresses must differ by some multiple of the cache
stride T . Therefore, m0 + p× S = m0 + δ + q × S + k × T
for some integers p, q, and k. This can be simplified to
δ = (p− q)× S − k × T . Since both S and T are powers of
2, it follows that δ is a multiple of min(S, T ). This means
that either δ = 0 or δ ≥ min(S, T ). Either way, this con-
tradicts the assumption that 0 < δ < min (S, T ). Therefore,
indices (W1) and indices (W2) are disjoint.

Theorem 2. Consider a cache with parameters 〈A, B, C〉
and stride T , and a sequence of sequences

W ∗ = 〈〈m0, s, n〉 , S, N〉 ,

where (n− 1)× s < min (T, S) and B ≤ s.

(a) compact (W ∗)⇔ N ≤ Nc = A �T
S �

(b) non-compact (W ∗)⇔ N ≥ Nnc = (A + 1) �T
S �

Proof. From Lemma 2 and Definition 4,

W ∗ = 〈〈m0, S, N〉 , s, n〉 = ∪i∈[0,n−1] 〈m0 + i× s, S, N〉 .

From Theorem 1 each of the inner subsequences Wi =
〈m0 + i× s, S, N〉 for i ∈ [0, n − 1] is compact for N ≤ Nc,
non-compact for N ≥ Nnc, and semi-compact otherwise.

From Lemma 4, indices (Wi) are pairwise disjoint sets for
all i ∈ [0, n−1]. The required result follows from Lemma 3.

Note that Theorem 1 is a special case of Theorem 2 for
n = 1. In this case the constraint (n− 1)×s < T is trivially
true and the sequence 〈m0, s, n〉 has a single element (m0).

5.1 Two Cache Levels
Consider two cache levels, C1 = 〈A1, B1, C1〉 and C2 =
〈A2, B2, C2〉. To apply the algorithms in Section 4.1 to
measure parameters for C2, we replace each sequence W in
those algorithms with a sequence of sequences W ∗, such that
compact2 (W ∗)⇔ compact2 (W ) and non-compact1 (W ∗).



To construct W ∗, we restrict ourselves to sequences for
which S ≤ 2T (because 2T is the largest stride used by
these algorithms). Furthermore, because we assume C2 ≥
2C1, we can assume compact2 (W ) if (N − 1) × S < 2C1.
Therefore we can restrict ourselves to sequences for which
(N − 1)× S ≥ 2C1.

Lemma 5. Let W = 〈m0, S, N〉 be a sequence in which
S ≤ 2T2 and (N − 1) × S ≥ 2C1, where T2 is the stride
of L2 cache, and C1 is the capacity of the L1 cache. Let
W ∗ = 〈〈m0, s, n〉 , S, N〉, where

s = T1

n = �A1 + 1

N � .

The following properties hold:

(a) compact2 (W ∗)⇔ compact2 (W ) and

(b) non-compact1 (W ∗) .

Proof. First we show that

(n− 1)× s = ��A1 + 1

N � − 1� × T1 <
S

2
. (1)

The opposite is impossible, because

S

2
≤ ��A1 + 1

N � − 1� × T1 ≤ �A1 + N

N
− 1� × T1

≤
A1

N
× T1 =

C1

N
<

C1 × S

2C1
=

S

2
⇒

S

2
<

S

2
.

Therefore each inner subsequence of W ∗ is properly con-
tained between successive elements of the sequence W .

(a) From (n− 1) × s < S
2

and S ≤ 2T2 we conclude that
(n− 1)× s < min (S, T2).

From Theorem 2, compact2 (W ∗) ⇔ N ≤ A2 �T2

S �.
From Theorem 1, compact2 (W ) ⇔ N ≤ A2 �T2

S �.
Therefore compact2 (W ∗)⇔ compact2 (W ).

(b) • S > T1. Since s = T1, all n×N elements of W ∗

map to the same L1 cache set. W ∗ is non-compact
because n×N = �A1+1

N � ×N ≥ (A1 + 1).

• S ≤ T1. Because of the proper nesting, n = 1,
i.e., W = W ∗. N ≥ 2C1

S
+ 1 > 2A1×T1

S
≥

(A1 + 1) T1

S
= (A1 + 1) �T1

S � , and by Theorem 1
non-compact1 (W ∗).

5.2 Multiple Cache Levels
To generalize the approach from Section 5.1 to multiple

cache levels C1, C2, . . . , Cl we replace W = 〈m0, S, N〉 with
W ∗ = 〈〈m0, s, n〉 , S, N〉, where W ∗ is constructed by con-
sidering caches C1, C2, . . . , Cl−1. Specifically, we choose

s = min
i∈I

Ti

n = max
i∈I

��Ai + 1

N � × Ti

s
� ,

and I = {i ∈ [1, l) : Ti < S}.

Lemma 6. If S ≤ 2Tl and (N − 1) × S > 2Ci for all
i ∈ [1, l) then

(a) compactl (W ∗)⇔ compactl (W ) and

(b) non-compacti (W ∗) for all i ∈ [1, l − 1] .

Proof. ��Ai+1
N � − 1� × Ti < S

2
for all i ∈ [1, l) (by anal-

ogy with Inequality (1)). For i ∈ I we have Ti ≤ S
2

and
therefore:

�Ai + 1

N � − 1 <
S

2Ti

⇒ �Ai + 1

N � Ti ≤
S

2
.

Therefore:

(n− 1) × s = �max
i∈I

��Ai + 1

N � × Ti

s
� − 1� × s =

= max
i∈I

��Ai + 1

N � × Ti� − s ≤
S

2
− s <

S

2
.

Therefore each inner subsequence of W ∗ is properly con-
tained between successive elements of the sequence W .

(a) From (n− 1) × s < S
2

and S ≤ 2Ti we conclude that
(n− 1)× s < min (S, Ti).

From Theorem 2, compactl (W ∗) ⇔ N ≤ Al × �Tl

S �.
From Theorem 1, compactl (W ) ⇔ N ≤ Al × �Tl

S �.
Therefore compactl (W ∗)⇔ compactl (W ).

(b) • i ∈ I . Consider

W ′ = ��m0, s, �Ai + 1

N � Ti

s 	 , S, N	
= ���m0, s,

Ti

s 	 , Ti, �Ai + 1

N � 	 , S, N	
= ���m0, Ti, �Ai + 1

N � 	 , S, N	 , s,
Ti

s 	 .

By Lemma 5(b), applied to cache levels i and
l, all inner subsequences of W ′ are non-compact
with respect to Ci. Therefore, by Lemma 3(e),
non-compacti (W ′).

W ∗ =
��

m0, s, maxi∈I � �Ai+1
N � Ti

s
�� , S, N � ⊇W ′,

and with respect to Ci, indices (W ∗) = indices (W ′).
Therefore non-compacti (W ∗).

• i 6∈ I . W ∗ = 〈〈m0, s, n〉 , S, N〉 = 〈〈m0, S, N〉 , s, n〉.
A proof similar to that of Lemma 5(b) shows
that all inner subsequences of the latter are non-
compact with respect to Ci. By Lemma 3(e),
non-compacti (W ∗) holds.

5.3 Algorithms for Measuring Parameters
We use the algorithms in Section 4.1 to measure latency,

capacity and associativity at lower cache level, by substitut-
ing is compact (W ) with is compacti (W ∗), which repeatedly
accesses each address in W ∗, computes the average time per
access l, and declares the sequence to be compact if l is
close to li (the hit latency of Ci). If (N − 1) × S < 2Ci−1,
the implementation does not perform any measurements but
simply assumes that the sequence is compact.



One major complication when measuring parameters of
lower level caches is that on modern platforms C1 is typi-
cally virtually indexed, but lower levels are always physically
indexed. This is a problem because contiguity in virtual
memory is not a sufficient condition for contiguity in phys-
ical memory, and thus a fixed stride sequence of addresses
in the virtual address space may not map to a fixed stride
sequence in physical address space.

To measure parameters of lower level caches it is therefore
necessary to allocate physically contiguous memory. There
are two ways to acquire such memory in a modern operating
system: (i) request physically contiguous pages from the
kernel, or (ii) request virtual memory backed by a super-
page.

The first approach is generally possible only in kernel
mode, and there are strict limits on the amount of allo-
catable memory. It is mainly used for direct memory access
(DMA) devices. Another, somewhat smaller problem is that
such memory regions typically consist of many pages and
TLB misses might introduce inter-level interference noise in
our cache measurements.

The second approach is more promising, but currently
there is no portable way to request super-pages from all
operating systems. To address this problem, we provide OS-
specific memory allocation and deallocation routines, which
are then used by the cache micro-benchmarks to allocate
memory supported by super-pages. We have implemented
this approach for Linux, and we will implement it for other
operating systems in the near future.

There has been some work on transparently supporting
variable size pages in the OS [12]. When such support be-
comes generally available, our OS-specific solution will not
be required.

6. MEASURING TLB PARAMATERS
The general structure of a virtual memory address is shown

in Figure 10 (the field widths are Intel P6 specific). The low-
order bits contain the page offset, while the hi-order bits are
used for indexing page tables during the translation to a
physical address. Because the translation from virtual to
physical address is too expensive to perform on every mem-
ory access, a TLB is used to cache and reuse the results.

page offset
indices to page tables

TLB index
TLB tag


20
 12


16
 4


Figure 10: Memory address decomposition on P6

A TLB has a certain number of entries E each of which
can cache the address translation for a single virtual memory
page of size P . Even though TLB does not store the actual
data but only its physical address and a few flags, it uses the
upper portion of the virtual address in a way a normal cache
does (for encoding index and tag), and so we can consider it
a normal cache CTLB = 〈A, B, C〉 = 〈ATLB , P, E × P 〉. Ide-
ally we would like to use our cache parameter measurement
algorithms discussed in Section 4.1, but some complications
arise as outlined below.

1. Variable page size: measuring parameters for caches
with variable block size is not possible with our current
algorithms. On current operating systems, the default
is to use only a single page size, and therefore there

is no immediate danger of measurement failure. Fur-
thermore, [12] suggests that when transparent support
for multiple page sizes becomes available, TLB misses
will be automatically minimized and will have negligi-
ble impact on performance. At that point measuring
the TLB parameters would not be necessary.

2. Replacement policy: typically a TLB has high associa-
tivity and LRU is impractical to implement because of
speed issues. In practice processors use much simpler
replacement policies like round-robin or random. Some
even perform a software interrupt on a TLB miss and
leave to the operating system to do the replacement.

3. Ensuring TLB access: As in the case of lower level
caches, we need to make sure that the TLB is accessed
when memory references are issued by the processor.
In modern platforms this is ensured by the fact that
the TLB stores memory protection information which
is needed to complete the particular memory opera-
tion.

4. Physical contiguity: As with lower level caches, we
need physically contiguous memory to perform TLB
measurements. Unfortunately, using super-pages is
not an alternative for obvious reasons, and so a kernel
module is required.

Because of these complications, our experience with mea-
suring TLB parameters is limited. None of the other tools
produced any correct results on any of the tested platforms.
Therefore, we describe our limited experimental results be-
low.

For a sequences W = 〈m0, S, N〉, let N = p × �T1

S � + r,

where 0 ≤ r < �T1

S �. To measure TLB parameters using the
algorithms described in Section 4.1, we transform W into (T1

and B1 are the stride and the block size of C1 respectively):

W ∗ = ��m0, S, �T1

S � 	 , T1 + B1, p	 ∪
〈m0 + (p− 1)× (T1 + B1) , S, r〉

We assume that the C1 has at least twice as many blocks
as there are entries in the TLB, i.e. C1

B1

≥ 2 CT LB

BT LB
, which is

true for all modern platforms today. Under this assumption,
it is easy to see that compact1 (W ∗).

Using the algorithms in Section 4.1 with the modified se-
quences W ∗, we were able to accurately measure the TLB
parameters of a Pentium III as 64 page entries, 4-way set
associative, and page size of 4KB. We also measured the
TLB parameters of a Pentium 4 as 65 page entries, fully-
associative, with a page size of 4KB. On the Pentium 4 our
measurement is close to the correct one (measured associa-
tivity 65 vs. actual associativity of 64)1. We will conduct
experiments on other platforms in the future.

7. MEASURING AVAILABLE REGISTERS
Registers are often considered a level-0 cache C0, as they

are at the top of the memory hierarchy. If a machine has
N registers of type T , we can characterize C0 = 〈A, B, C〉 =
〈N, sizeof (T ) , N × sizeof (T )〉. C0 can exhibit spacial local-
ity only in the case of vector registers (MMX, SSE, etc.).
1This problem may be similar to the one we discuss about
the L1 data cache of Power 3 in Section 8.1



Furthermore, it is fully associative and the replacement pol-
icy is software controlled.

The only way to directly exercise this control is to pro-
gram in assembly language. Portable software, on the other
hand, is usually written in a high-level language like C and
the native compiler is responsible for register allocation, reg-
ister spills and fills. Nevertheless, when the ultimate goal is
high-performance, programmers need to make assumptions
about the number of registers available for register allocation
and apply optimizing transformations like array scalariza-
tion and loop unrolling appropriately (e.g., in ATLAS [16]).

Our approach to measuring the number of registers of
particular type T is to generate special code sequences that
access n different variables, measure the time per operation
for several n, and infer the number of registers from the
results.

r0 ← add (r0, rn);
r1 ← add (r1, r0);
r2 ← add (r2, r1);
. . .
rn ← add (rn, rn−1);

Figure 11: Sequence with n variables

The form of the sequences we use is shown in Figure 11.
Note that if the compiler is able to allocate all n variables
into registers, each add operation will be translated to a
single ALU instruction. On the other hand, if at least one
variable is not allocated to a register, additional memory
access instructions will be emitted in addition to the ALU
instruction to fetch the data from the memory hierarchy.
Since each operation in the sequence depends on the previ-
ous one, the incurred additional latency cannot be hidden
and the average time per operation is much higher.

Measuring the number of available registers therefore re-
duces to finding the longest code sequence whose average
access time is the same as that of the sequence of length 1.
In our implementation we start with n = 1 and keep dou-
bling it until an increase in access time is observed, say for
n = nmax. Then we use binary search to find the the n we
need in the interval [nmax/2, nmax).

Note that this method measures the effective number of
available registers, which is the value that is relevant for
program optimization. This value can often be smaller than
the number of actual registers on the given architecture for
the following reasons.

• Some registers may be reserved for the Stack Pointer,
Frame Pointer, Return Address, etc.

• Some registers may be hardwired with specific values,
most often the floating point values 0.0 and 1.0.

• Compilers may use some registers in a special way,
and they might not be available to the general register
allocator, e.g., accumulators, register windows, etc.

• Compilers might not use all available registers for dif-
ferent reasons, e.g., targeting an older version of the
ISA.

By appropriately defining the operation add, this method
is able to measure all types of registers, including integer,
floating point, and vector registers (e.g., MMX, SSE, 3DNow!,
Altivec) through compiler intrinsics.

Neither lmbench nor Calibrator try to measure the num-
ber of available registers. The ATLAS framework attempts
to provide a rough estimate for the number of floating point
registers, but they can afford to be conservative, as opposed
to precise, because they only use the estimate to bound their
search space. Table 1 summarizes our measurement results.

available / actual
Architecture int double MMX SSE

Pentium 4 5 / 8 8 / 8 8 / 8 8 / 8
Itanium 2 123 / 128 128 / 128 n/a n/a
Athlon MP 5 / 8 8 / 8 8 / 8 8 / 8
Opteron 240 14 / 16 16 / 16 8 / 8 16 / 16
UltraSPARC IIIi 24 / 32 31 / 32 n/a n/a
R12000 22 / 32 32 / 32 n/a n/a
Power 3 28 / 32 32 / 32 n/a n/a

Table 1: Experimental results for registers

Table 1 shows that on some platforms, the number of
registers measured by X-Ray is different than the number
of architected registers. In each case, we verified that the
difference arose because some registers are reserved by the
architecture or the compiler for some special use. In partic-
ular, the number of available integer registers is smaller than
the actual number on all platforms because integer registers
may be used to hold the values of the program counter, stack
pointer, frame base register etc. The measured number of
floating point registers is equal to the actual number in all
cases except on the UltraSPARC IIIi machine, where one of
the registers is hardwired to 0.0. The measured number of
vector registers is always equal to the actual number. We do
not provide results for 3DNow! and SSE2 registers, because
they are equivalent to MMX and SSE register respectively.

Measurements on the Itanium 2 illustrate a different point.
This processor has 128 floating-point registers but two of
these registers are hardwired to 0.0 and 1.0. In spite of
this, X-Ray concluded that the Itanium has 128 available
registers, because the average access time did not increase
significantly until three or more variables were spilled. Re-
ducing the significance threshold used by X-Ray may permit
a more accurate measurement but this increases sensitivity
to noise. In any case, the difference may be irrelevant to
software because the results suggest that the software can
assume that there are 128 available floating-point registers
without significant loss of performance from register spills.

8. EXPERIMENTAL RESULTS
The implementation of the memory micro-benchmarks de-

scribed in this paper is part of an open micro-benchmark
tool called X-Ray [18]. To report cache latency in CPU
cycles we use a micro-benchmark for measuring CPU fre-
quency, which is part of X-Ray. In this section we compare
the results from running the memory-hierarchy portion of X-
Ray on 7 platforms with the results from running Calibrator
v0.9e [9] and lmbench v3.0a3 [10, 11, 15].

Because all the tools, including X-Ray, measure hardware
parameters empirically, the results sometimes vary from one
execution to the next. These variations are negligible for X-
Ray, but quite noticeable sometimes with the other tools.
The results we present for the other tools are the best ones
we obtained in several trial runs.

Table 2 shows the memory hierarchy parameters, along
with the results from measuring them with the different
tools. When a parameter is not successfully measured by
a tool, we use the following special entries to specify the



reason:

• n/a – the tool does not claim to be able to measure
this hardware parameter;

• empty – the benchmark completed but did not pro-
duce a value for this parameter;

• abort – an abnormal termination of some kind oc-
curred prevented the benchmark from completion;

• os – OS-specific support is required for X-Ray to com-
plete this measurement and we have not implemented
such support yet.

8.1 L1 Data Cache
As Table 2 shows, X-Ray successfully found the correct

values for all L1 cache parameters on all the platforms other
than the Power 3, where it decided that the cache was
129-way set associative although it is actually 128-way set-
associative. This anomaly also affected the determination
of the cache capacity slightly. The performance of the other
tools varies, and the details are presented in Table 2.

8.2 Lower Level Caches
Lower level caches are physically addressed on all mod-

ern machines so we found it necessary to use super-pages to
obtain consistent measurements of lower level cache para-
meters, as discussed in Section 5.3. Support for super-pages
is very OS-specific, so we targeted the Linux system as a
proof of concept. Table 2 shows that X-Ray was able to
measure lower level cache parameters correctly on all the
Linux machines in our study (Pentium 4, Itanium 2, Athlon
MP, and Opteron 240). We are currently working on the
implementation for Solaris, IRIX and AIX, which will allow
us to test X-Ray on the rest of the machines as well. The
Itanium was the only machine in our study that has an L3
cache. Table 3 shows the results of these measurements.

The numbers for the AMD machines (Athlon and Opteron)
are interesting because they expose the fact that the L1
and L2 caches on these machines implement cache exclu-
sion. Most platforms support cache inclusion, which means
that information cached at a particular level of the memory
hierarchy is also cached in all lower levels. AMD machines
on the other hand use exclusion, so data never resides in
both the L1 and L2 caches simultaneously. This effectively
increases the useful capacity of L2 by the capacity of the L1.

X-Ray classified the 512KB, 16-way associative L2 cache
of the AthlonMP as an 18-way set-associative cache with
a capacity of 576KB (exactly C1 + C2). Similarly on the
Opteron 240, the 1MB L2 was classified as a 17-way set
associative cache with an effective capacity 1088KB (exactly
C1 + C2). If the actual capacity of the L2 cache is needed,
it can be obtained by subtracting the capacity of the L1

cache, although the combined capacity is what is actually
relevant for an autonomic code that wants to perform an
optimization like cache tiling.

The performance of the other tools varied. Calibrator
produced somewhat pessimistic results for cache capacity
on some of the Linux machines; we believe this effect arises
from non-contiguous physical memory since this reduces the
effective cache capacity. lmbench terminates abnormally on
some platforms, but produces accurate results when it ter-
minates cleanly.

Architecture A
c
tu

a
l

X
-R

a
y

C
a
li
b
r
a
to

r

lm
b
e
n
c
h

Pentium 4 8 8 8 8
Itanium 2 16 16 16 abort

L1 Data Cache Athlon MP 64 64 64 empty
Capacity Opteron 240 64 64 64 abort
(KB) UltraSPARC IIIi 64 64 64 64

R12000 32 32 32 32
Power 3 64 64.5 64 64

Pentium 4 64 64 32 64
Itanium 2 64 64 64 abort

L1 Data Cache Athlon MP 64 64 64 empty
Block Size Opteron 240 64 64 32 abort
(bytes) UltraSPARC IIIi 32 32 32 32

R12000 16 16 64 32
Power 3 128 128 128 128

Pentium 4 4 4 n/a n/a
Itanium 2 4 4 n/a n/a

L1 Data Cache Athlon MP 2 2 n/a n/a
Associativity Opteron 240 2 2 n/a n/a
(count) UltraSPARC IIIi 4 4 n/a n/a

R12000 2 2 n/a n/a
Power 3 128 129 n/a n/a

Pentium 4 2 4.32 2.02 2.06
Itanium 2 2 1.99 2 abort

L1 Data Cache Athlon MP 3 3.02 3.17 empty
Hit Latency Opteron 240 3 3 3.02 abort
(cycles) UltraSPARC IIIi 2 2 1.99 2

R12000 2 2.02 2.07 2.01
Power 3 2 2.01 2 2.01

Pentium 4 512 512 384 512
Itanium 2 256 256 256 abort

L2 Data Cache Athlon MP 512 576 384 512
Capacity Opteron 240 1024 1088 768 abort
(KB) UltraSPARC IIIi 512 os 1024 1024

R12000 512 os 2048 2048
Power 3 512 os 6144 6144

Pentium 4 128 128 128 128
Itanium 2 128 128 128 128

L2 Data Cache Athlon MP 64 64 64 64
Block Size Opteron 240 64 64 64 64
(bytes) UltraSPARC IIIi 64 os 64 64

R12000 128 os 128 128
Power 3 128 os 128 128

Pentium 4 8 8 n/a n/a
Itanium 2 8 8 n/a n/a

L2 Data Cache Athlon MP 16 18 n/a n/a
Associativity Opteron 240 16 17 n/a n/a
(count) UltraSPARC IIIi ? os n/a n/a

R12000 ? os n/a n/a
Power 3 ? os n/a n/a

Pentium 4 ? 41.52 17.75 20.36
Itanium 2 ? 5.98 4.16 abort

L2 Data Cache Athlon MP ? 36 18.25 2.69
Hit Latency Opteron 240 ? 22.8 13.13 abort
(cycles) UltraSPARC IIIi ? 12.89 12.41 15.15

R12000 ? 13.69 11.94 13.86
Power 3 ? 18.13 8.52 17.19

Pentium 4 ? 761.92 372.42 368.31
Itanium 2 ? 297.65 281.45 abort

Main Memory Athlon MP ? 471.35 400.57 197.58
Latency Opteron 240 ? 136.21 126.81 abort
(cycles) UltraSPARC IIIi ? os 164 172.81

R12000 ? os 110.92 122.06
Power 3 ? os 136.22 160.84

Table 2: Summary of experimental results



Actual X-Ray Calibrator lmbench

C (KB) 6144 6144 6144 abort
B (bytes) 128 128 128 abort
A (count) 24 24 n/a n/a
l (cycles) ? 19 14 abort

Table 3: Summary of Itanium 2 C3 parameters

The cache access latency figures produced by all the tools
for lower level caches should be taken with a grain of salt
since the actual access time can fluctuate substantially de-
pending on what other memory bus transactions are occur-
ring at the same time.

Experimental results for measuring TLB parameters and
number of registers were discussed earlier in Secions 6 and
Section 7 respectively.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we described novel algorithms for measur-

ing the associativity, block size, and capacity of all levels
of the memory hierarchy, as well as some TLB parameters
and the number of registers. The experimental results show
that our approach automatically measures more cache para-
meters with greater precision than existing approaches do.
This is because our micro-benchmarks measure the parame-
ters of one level of the memory hierarchy at a time, unlike
existing tools that consider all levels simultaneously. To
accomplish this, our micro-benchmarks use more complex
sequences of addresses than existing tools do.

The memory hierarchy benchmarks described here are im-
plemented as part of an open framework for development of
micro-benchmarks called X-Ray [18]. X-Ray can also mea-
sure hardware parameters such as the CPU frequency, in-
struction latency, throughput, and existence, SMP and SMT
availability, and the number and type of functional units in
the CPU.

We are actively designing and developing new micro-bench-
marks and we are currently working on measuring parame-
ters of victim and instruction caches, improving the quality
of measuring TLB parameters, measuring other cache pa-
rameters such as bandwidth, parallelism, write mode, and
sharedness, and implementing OS support for Solaris, AIX,
etc. We are also investigating more statistically sound ap-
proaches for determining when jumps occur in the timing
measurements.

X-Ray is freely available at http://iss.cs.cornell.edu/
Software/X-Ray.aspx.

10. REFERENCES
[1] R. Allan and K. Kennedy. Optimizing Compilers for

Modern Architectures. Morgan Kaufmann Publishers,
2002.

[2] Martin Burtscher and Benjamin G. Zorn. Hybrid
load-value predictors. IEEE Trans. Comput.,
51(7):759–774, 2002.

[3] C.L. Coleman and J.W. Davidson. Automatic memory
hierarchy characterization. IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 103–110, 2001.

[4] J. Dongarra, K. London, S. Moore, P. Mucci,
D. Terpstra, H. You, and M. Zhou. Experiences and
lessons learned with a portable interface to hardware
performance counters. In PADTAD Workshop, IPDPS
2003, April 2003.

[5] Jack Dongarra, Shirley Moore, Phil Mucci, Keith
Seymour, and Haihang You. Accurate cache and TLB
characterization using hardware counters. In
Proceedings of the International Conference on
Computational Science (ICCS) 2004, Krakow, Poland,
2004.

[6] Matteo Frigo and Steven G. Johnson. The design and
implementation of FFTW3. Proceedings of the IEEE,
93(2), 2005. special issue on ”Program Generation,
Optimization, and Adaptation”.

[7] J. L. Hennessy and D. A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, 1990.

[8] Doug Joseph and Dirk Grunwald. Prefetching using
markov predictors. IEEE Transactions on Computers,
48(2):121–133, 1999.

[9] Stefan Manegold. The calibrator: a cache-memory and
TLB calibration tool. http://homepages.cwi.nl/
∼manegold/Calibrator/calibrator.shtml.

[10] Larry McVoy and Carl Staelin. lmbench.
http://www.bitmover.com/lmbench/.

[11] Larry McVoy and Carl Staelin. lmbench: Portable
tools for performance analysis. In USENIX 1996
Annual Technical Conference, January 22–26, 1996.
San Diego, CA, pages 279–294, Berkeley, CA, USA,
January 1996.

[12] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan
Cox. Practical, transparent operating system support
for superpages. SIGOPS Oper. Syst. Rev.,
36(SI):89–104, 2002.
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