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Abstract

Randomized first-mover strategies of Stackelberg games
are used in several deployed applications to allocate
limited resources for the protection of critical infrastructure.
Stackelberg games model the fact that a strategic attacker can
surveil and exploit the defender’s strategy, and randomization
guards against the worst effects by making the defender less
predictable. In accordance with the standard game-theoretic
model of Stackelberg games, past work has typically assumed
that the attacker has perfect knowledge of the defender’s
randomized strategy and will react correspondingly. In light
of the fact that surveillance is costly, risky, and delays an
attack, this assumption is clearly simplistic: attackers will
usually act on partial knowledge of the defender’s strategies.
The attacker’s imperfect estimate could present opportunities
and possibly also threats to a strategic defender.
In this paper, we therefore begin a systematic study of
security games with limited surveillance. We propose
a natural model wherein an attacker forms or updates a
belief based on observed actions, and chooses an optimal
response. We investigate the model both theoretically and
experimentally. In particular, we give mathematical programs
to compute optimal attacker and defender strategies for a
fixed observation duration, and show how to use them to
estimate the attacker’s observation durations. Our experi-
mental results show that the defender can achieve significant
improvement in expected utility by taking the attacker’s
limited surveillance into account, validating the motivation
of our work.

Introduction
Stackelberg security games have been used in several
deployed applications for allocating limited resources in
order to protect critical infrastructure including LAX Air-
port, US Coast Guard, and the Federal Air Marshals Ser-
vice (Basilico, Gatti, and Amigoni 2009; Korzhyk, Conitzer,
and Parr 2010; Dickerson et al. 2010; Tambe 2011; An et al.
2011b; Pita et al. 2008; An et al. 2011a; Tsai et al. 2009).
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A Stackelberg security game models an interaction between
a defender and an attacker (Kiekintveld et al. 2009). The
defender first commits to a security policy (which may be
randomized), and the attacker conducts surveillance to learn
the defender’s policy before launching an attack. A solution
to the game yields an optimal randomized strategy for the
defender, based on the assumption that the attacker will ob-
serve this strategy and respond optimally. Software decision
aids based on Stackelberg games have been successfully
implemented in several real-world domains, including Los
Angeles International Airport (LAX) (Pita et al. 2008),
United States Federal Air Marshals Service (FAMS) (Tsai
et al. 2009), United States Transportation Security Agency
(TSA) (Pita et al. 2011), and the United States Coast
Guard (An et al. 2011a; Shieh et al. 2012).

Terrorists conduct surveillance to select potential targets
and gain strong situational awareness of targets’ vulnerabil-
ities and security operations (Southers 2011). Most existing
work on security games, including deployed applications,
assumes that the attacker is able to observe the defender’s
strategy perfectly. (There are some notable exceptions
discussed below; our work differs significantly from those.)
This assumption is a useful first-level approximation, but it
is clearly simplistic. In reality, the attacker may have more
limited observation capabilities since surveillance is costly
and delays an attack. Attackers may also wish to reduce
the number of observations due to the risk of being detected
by security forces during surveillance activities (Southers
2011). Therefore, it is important to consider situations
where attackers select targets based on a limited number of
observations using explicit belief updates.

In this paper, we begin a systematic investigation of
belief update models for games with limited observation.
We make the following contributions: (1) We introduce
a natural model of security games with limited surveil-
lance and formulate how the attacker updates his belief
based on observations. (2) We provide two formulations
for computing the defender’s optimal strategy, one using
nonconvex programming, and another which is convex,
but approximate. (3) We present theoretical analysis and
exhibit surprising non-monotonicity phenomena. (4) Our
experiments show that the defender can do much better by
explicitly modeling the attacker’s decision process based on
limited observations.



Stackelberg Security Games
A Stackelberg security game (Kiekintveld et al. 2009) has
two players, a defender who uses m identical resources to
protect a set of targets T = {1, 2, . . . , n} (m < n), and an
attacker who selects a single target to attack. The defender
hasN pure strategiesA, each a coverage vector representing
which m targets are covered. Our model can handle more
general security settings in which there may exist scheduling
constraints on the assignment of resources (Jain et al. 2010).
In that case, A represents feasible assignments. We write
Ai = 1 if target i is covered in strategy A ∈ A, and
Ai = 0 otherwise. The defender can choose a randomized
strategy x, with xA ≥ 0 the probability of playing a
strategy A. A defender strategy can be represented more
compactly using a marginal coverage vector c(x) = 〈ci(x)〉
where ci(x) =

∑
A∈A xAAi is the probability that target

i is covered by some defender resource (Kiekintveld et al.
2009). The attacker’s strategy is a vector a= 〈ai〉 where ai
is the probability of attacking target i. Since the attacker
always has an optimal pure-strategy response, we restrict
the attacker’s strategies to pure strategies without loss of
generality.

The payoffs for each player depend on which target is
attacked and the probability that the target is covered. If
the attacker attacks target i, there are two cases: If target
i is covered, the defender receives a reward Rdi and the
attacker receives a penalty P ai . Otherwise, the payoffs for
the defender and attacker are P di and Rai , respectively. We
assume that Rdi ≥ P di and Rai ≥ P ai in order to model that
the defender would always prefer the attack to fail, while
the attacker would prefer it to succeed. For a strategy profile
〈c,a〉, the expected utilities for both agents are given by:

Ud(c,a)=
∑
i∈T

aiU
d(c, i),where Ud(c, i)=ciR

d
i +(1− ci)P di

Ua(c,a)=
∑
i∈T

aiU
a(c, i),where Ua(c, i)=ciP

a
i +(1− ci)Rai

In a Stackelberg game, the defender moves first, choosing
x, while the attacker observes x and plays an optimal
response a to it. The standard solution concept is strong
Stackelberg equilibrium (SSE) (von Stengel and Zamir
2004). In an SSE, the defender chooses an optimal strategy
x, accounting for the attacker’s best response a, under the
assumption that the attacker breaks ties in the defender’s
favor.

Security Games with Limited Observation
We propose to depart from the standard Stackelberg assump-
tion that the attacker has full knowledge of x, and instead
model the attacker as a Bayesian decision maker who starts
with a prior distribution over the defender’s strategies and
forms a posterior based on a finite number of observed
realizations. We refer to our model as SGLS (Security
Game with Limited Surveillance). Throughout most of
this paper, we assume that the duration τ of the attacker’s
observation sequence is determined exogenously, e.g., based
on intelligence or expert advice. (At the end, we offer a

heuristic approach to estimate τ as an alternative.) The
sequence of moves in an SGLS is as follows.

1. First, the defender chooses a strategy. We assume that
when choosing a strategy, the defender has knowledge of
the attacker’s prior beliefs about the defender’s strategy
and the number of observations the attacker will make.

2. Then, the attacker makes τ observations and selects the
optimal target based on his posterior belief about the
defender’s strategy.

Example 1. We use the LAX airport as an example, based
on the ARMOR application (Pita et al. 2008). The police
at LAX place m checkpoints on the entrance roads to LAX
following a mixed strategy computed by ARMOR. The fact
that attackers may engage in surveillance prior to an attack
is based on real-world cases and feedback from security
experts (Southers 2011), and follows other Stackelberg
models deployed in practice and justified elsewhere (Pita
et al. 2009).1 In practice, the attackers will make only
a limited number of observations of how the checkpoints
are placed before they launch an attack. For example, they
might observe placements for 20 days, and then launch an
attack a week later after finalizing plans for the attack based
on an analysis of the security strategy. A single observation
in this domain might involve the attacker driving around the
different entrances to the airport in order to determine which
ones are covered by checkpoints at any particular time, so
each observation gives information about the full strategy of
the defender.2

We assume that the attacker and the defender have
common knowledge of the attacker’s prior beliefs over the
set of mixed strategies that the defender may execute. We
also assume that the defender does not know the exact times
when the attacker will conduct surveillance, and therefore
cannot modify the mixed strategy during the observation
sequence. This is realistic if the defender is operating in a
steady state, and does not know when or where surveillance
operations could take place for planning a specific attack.

In an SGLS, the attacker updates his beliefs about the
defender’s strategy given his prior and τ observations,
labeled σ1, . . . , στ , where each observation is one of the
defender’s pure strategies. The individual observations are
drawn independently from the distribution representing the
defender’s mixed strategy. Such a sequence of observations
σ can be compactly represented by an observation vector

1The model in this paper assumes a surveillance phase prior
to any actual execution of an attack. In particular, we assume
that executing an attack is sufficiently complex that it is pro-
hibitively difficult to observe the pure strategy of the defender
and immediately launch an attack against this pure strategy.
This assumption is based on real-world cases and feedback from
security experts (Southers 2011), and follows other Stackelberg
models deployed in practice and justified elsewhere (Pita et al.
2009). One important factor in this is the difficulty of generating
and executing complex conditional plans with limited resources.

2An alternative model could be developed where the attacker
picks one (or a few) targets to observe, and will therefore only learn
about a part of the full pure strategy in each observation. This is an
interesting direction for future work.



o = 〈oA〉 in which oA is the number of times pure strategy
A is observed. An observation vector o can represent

τ !∏
A∈A oA! observation sequences. The observation vector

space is Oτ = {o : oA ∈ {0, . . . , τ},
∑
A∈A oA = τ}

when the attacker makes τ observations.

Updating Attacker Beliefs
We assume that the attacker’s belief is represented as Dirich-
let distributions with support set S = {x :

∑
A∈A xA =

1, xA ≥ 0,∀A ∈ A}. A Dirichlet distribution f(x)
is characterized by a parameter vector α = 〈αA〉 with
αA > −1 for all A ∈ A. It assigns probability
β
∏
A∈A(xA)αA to the defender’s mixed strategy x, where

β =
Γ(

∑
A∈A αA+|A|)∏

A∈A Γ(αA+1) is a normalization constant expressed
in terms of the gamma function Γ. The prior belief can be
represented as follows:

f(x) =
Γ(
∑
A∈A αA + |A|)∏

A∈A Γ(αA + 1)

∏
A∈A

(xA)αA

If the defender’s mixed strategy is x, the probability
that the attacker will observe o ∈ Oτ is f(o|x) =

τ !∏
A∈A oA!

∏
A∈A(xA)oA . By applying Bayes’ rule for

observation o, we can calculate the posterior distribution as:

f(x|o) =
Γ(
∑
A∈A αA + |A|+ τ)∏

A∈A Γ(αA + oA + 1)

∏
A∈A

(xA)αA+oA

Having observed o, the attacker believes that the proba-
bility with which the defender chooses pure strategy A is

p(A|o) =

∫
S
xAf(x|o)dx =

αA + oA + 1∑
A∈A αA + |A|+ τ

.

The marginal coverage of target i according to the
posterior belief f(x|o) is

coi =
∑
A∈A

Aip(A|o) =

∑
A∈AAi(αA + oA + 1)∑
A∈A αA + |A|+ τ

.

After making τ observations, the attacker chooses the best
target to attack based on the posterior belief f(x|o), i.e.,
attacks the target i maximizing (1 − coi )Rai + coi P

a
i . We

denote this target by ψ(o).

Analysis of SGLS
In this section, we explore some general trends among
the strategies and payoffs for the attacker and defender.
Intuitively, one would expect that more observations will
give the attacker more accurate information. In turn, this
more accurate information could be exploited to make better
(for the attacker) decisions. In zero-sum games, where the
two players’ utilities are the opposite of each other, this
should also lead to lower utility for the defender. Finally,
one may expect that more fine-grained knowledge will make
the attacker consider a larger set of targets, and the defender
may thus have to protect more targets.

Somewhat surprisingly, all of the above intuitions can
at times be false, even in the following apparently much
more restrictive class of games: the defender has only one
resource m = 1, so that a pure strategy A consists precisely
of protecting a single target i. The attacker’s prior has
αA = 0 for all strategies A. Furthermore, the game is
zero-sum (so P di = −Rai ), and both players’ utilities are
0 when the attack fails (so P ai = Rdi = 0). In these cases,
the game is fully characterized by the target values to the
attacker, which we simply write as Ri := Rai .

The high-level intuition for the failure of the reasoning
described above is that when the attacker makes few ob-
servations, it imposes a coarse “resolution” on the possible
probabilities x the attacker could obtain as beliefs. After all,
the denominator for all xA is always τ + |A| +

∑
A∈A αA.

For different values of τ , the particular fractions that can
be attained for xA can interact with the target values Ri
in ways that can be surprisingly exploited by the defender.
The following example illustrate these effects, showing that
increasing τ is not necessarily advantageous for the attacker.

Example 2 (Increasing Defender Utility with Larger τ ).
There are two targets, with values R1 = 1 and R2 = 0.99.
There are two pure defender strategies: protecting target
1 or target 2. Assume that the defender protects target 1
with a probability of x ∈ [0, 1] and protects target 2 with
probability 1 − x. Consider that the attacker makes one
observation and there are two situations: 1) He will observe
target 1 being protected with probability x and will then
attack target 2; 2) He will observe target 2 being protected
with probability 1 − x and will attack target 1 in this case.
Therefore, the defender’s expected utility is−0.99x2− (1−
x)2 and her optimal utility is −0.497. If the attacker makes
two observations, there are three situations: 1) target 1 is
always protected; 2) target 2 is always protected; and 3)
target 1 is protected once and target 2 is protected once. We
can calculate the optimal defender strategy by hand and the
defender’s optimal utility is−0.469, which is higher than the
defender’s utility when the attacker makes one observation.

Intuitively, what happens here is that with one obser-
vation, the attacker will always have a belief that makes
one target significantly more likely to be protected than the
other one. This means that the other target will have to be
protected against attack, and the defender needs to defend
both targets roughly equally. On the other hand, with two
observations, there is a significant chance that the attacker
will believe that the protection probabilities are equal. Since
target 1 is attacked in that case, the defender can profitably
increase coverage on target 1.

Example 3 (Fewer Targets Protected with Larger τ ). There
are three targets, two of value R1 = R2 = 1.3, and a third
of value R3 = 1.

A slightly tedious but straightforward calculation shows
that when τ = 2, the optimal strategy for the defender
protects target 3 with probability roughly 16%, and targets
1 and 2 with probability roughly 42% each. On the other
hand, if τ = 3, there is no observation sequence under
which target 3 is attacked (as either target 1 or target 2 will
always be more attractive), so by Proposition 1 below, the



optimal solution is to protect each of targets 1 and 2 with
probability 50%. This example thus shows that neither the
set nor the number of protected targets needs to be monotone
non-decreasing.

These examples raise interesting practical challenges.
They show that a defender with very precise informa-
tion about the observation length τ could possibly exploit
subtleties in the attacker’s belief update rule to catch the
attacker more frequently. Intuitively, such a strategy may
not be as robust in practice: it could backfire seriously when
the estimate of τ is slightly off. In general, since there
may be uncertainty in τ (and we will experimentally show
the advantage of our approach despite such uncertainty), an
interesting direction for future work is whether such uncer-
tainty could lead to expected monotonicity of behaviors.

Safe Targets
Some targets i have sufficiently low values such that there is
no observation vector o for which the attacker would attack
i. We call a target i safe for observation duration τ if ψ(o) 6=
i for all o ∈ Oτ where ψ(o) is the target the attacker will
attack after observing o. Let Φτ denote the set of all targets
safe for duration τ . Of course, some targets could be safe
even in an SSE.

It is intuitive to believe that safe targets should never be
protected in an optimal defender strategy. In other words,
the defender never needs to use safe targets as “decoys”.
This intuition is true, so long as the defender is allowed
to leave some resources unused, or the number of unsafe
targets is at least as large as the number of resources.
Proposition 1. Without loss of generality, the optimal
defender strategy x has the property that ci(x) = 0 for
all safe targets i, under the assumption that the defender
is allowed to leave resources unused.

Proof. Define a vector x′ by setting x′A′ =
∑
A:A\Φτ=A′ xA

for all A′. In other words, when the strategy x asks the
defender to protect a set A (each defender pure strategy
A ∈ A represents the set of targets the pure strategy A will
cover), she instead protects just the unsafe targets in A. We
claim that this new strategy x′ does as well as x.

Consider the following specific way in which the defender
can generate an action according to x. Partition the unit
interval [0, 1] into disjoint sets SA of size |SA| = xA. Draw
a uniformly random number z ∈ [0, 1], and play the unique
strategy A with z ∈ SA. A sequence of τ actions can then
be generated by drawing z ∈ [0, 1]τ uniformly at random,
and playing the unique action A with zj ∈ SA in round j.
The vector z uniquely determines a sequence of actions for
the defender, and thus uniquely determines the observation
o. We write o(x, z) for the unique observation generated
when the distribution is x and the random vector chosen is
z. We can now write the defender’s expected utility as

E
[
Ud | x

]
=

∫
z∈[0,1]τ

Ud(cψ(o(z,x))(x), ψ(o(z,x)))dz, (1)

where ci(x) is the protection probability of target i under the
mixed strategy x.

To generate an action according to x′, we can use a
similar strategy. We specifically define the sets SA′ =⋃
A:A\Φτ=A′ SA, which have sizes exactly xA′ . In other

words, to generate an action A′ from x′, we draw a set
A according to the distribution x, and then protect the set
A′ = A \ Φτ . The result of this specific way of coupling
the generation of o and o′ = o(x′, z) is that for each vector
z, we can obtain o′ = o(x′, z) from o = o(x, z) simply by
setting o′i = oi for i /∈ Φτ , and o′i = 0 for i ∈ Φτ . (Since
we assume that m = 1, oi is defined as oA if Ai = 1.)

To determine ψ(o′) from o′, notice that the attacker does
a pairwise comparison between all targets i, based on the
utility of the attack and the belief about the protection
probability, which is based only on o′i. Thus, the choice
among a set T ′ of targets will remain the same if o′i = oi
for all i ∈ T ′. Because ψ(o′) /∈ Φτ by definition, and
o′i = oi for all i /∈ Φτ , we get that ψ(o(x′, z)) = ψ(o(x, z))
for all z. Plugging this equality into (1), and observing that
ci(x

′) = ci(x) for all i /∈ Φτ now shows that the expected
utility is the same under the two strategies.

Motivated by the study of SSE, one might suspect that
the converse is also true, i.e., that every unsafe target must
be protected with positive probability. It turns out that the
converse is false, as evidenced by the following example:

Example 4 (Not All Unsafe Targets Protected). Consider
an instance with 4 targets. The first three have value 1.334
each, while the fourth one has value 1. The attacker makes
τ = 9 observations. Expressing the defender’s payoff
as a function of her probability of protecting target 4 and
computing the derivative shows that the optimal strategy
never protects target 4, and instead assigns probability 1/3
to each of targets 1, 2, and 3. This is even though target 4
is not safe: if each of targets 1, 2, 3 is observed protected
exactly thrice, the attacker will actually attack target 4.

Intuitively, it does not pay for the defender to divert
even a small amount of resources to target 4 to deal with
a fairly unlikely (though possible) event. At a higher level,
this example shows that a defender should make judicious
choices about which targets need to be protected.

Computing the Defender’s Optimal Strategy
We now investigate the problem of computing the defender’s
optimal strategy in general SGLS under the assumption
that the number of observations, τ , is known. First, we
observe that the attacker’s optimal target choice depends
only on the observation vector o, and not directly on the
defender’s strategy. Of course, the defender’s strategy x
affects the probability of each observation vector o, and
therefore affects the probability that the attacker will choose
each target. Nevertheless, we can use this insight to separate
the attacker’s decision problem, which is discrete, but easy,
from the problem of the defender, which is continuous and
non-linear. We first describe how we can calculate the
optimal attacker response for each observation o. Then, we
describe how to compute an optimal defense strategy x.



Attacker’s Best Response
Assume that the attacker observes o ∈ Oτ . The attacker’s
posterior belief about the coverage of target i is coi =∑

A∈A Ai(αA+oA+1)∑
A∈A αA+|A|+τ . The attacker’s expected utility for

attacking target i is then coi (P ai − Rai ) + Rai . If the
attacker observes o, the attacker will attack the best target
ψ(o) which can give him the highest expected utility:
ψ(o) = arg maxi∈T

(
coi P

a
i + (1 − coi )Rai

)
. As in SSE,

we assume that the attacker breaks ties in the defender’s
favor. ψ(o) can be computed simply by going through all
targets and comparing their objective values (which are easy
to compute).

Exact Formulation
We now introduce an exact (but nonconvex) mathematical
program for computing the defender’s optimal strategy x,
assuming that ψ(o) is pre-computed.
P1:

max
∑

o∈Oτ

τ !∏
A∈A oA!

∏
A∈A

(xA)oAdo (2)

s.t. xA ∈ [0, 1] ∀A ∈ A (3)∑
A∈A

xA = 1 (4)

ci =
∑
A∈A

xAAi ∀i ∈ T (5)

do = cψ(o)R
d
ψ(o)+(1−cψ(o))P

d
ψ(o) ∀o ∈ Oτ (6)

P1 defines the defender’s optimal strategy by consid-
ering all possible o ∈ Oτ and evaluating her expected
utility for each observation. Equation (2) is the objective
function which maximizes the defender’s expected payoff∑

o∈Oτ f(o|x)do where do is the defender’s expected util-
ity when the attacker’s observation is o. Equations (3) and
(4) define the legal strategy space for the defender. Equation
(5) defines the marginal coverage for each target given the
defender’s strategy x. Equation (6) defines the defender’s
expected payoff do = cψ(o)R

d
ψ(o) + (1− cψ(o))P

d
ψ(o) when

the attacker attacks ψ(o) for observation o.
Unfortunately, objective (2) makes this formulation non-

convex so no available solver can guarantee an optimal solu-
tion. This motivates us to consider a convex approximation.

Convex Approximation
Taking the log of the defender’s objective function (2) does
not change the maximizers since log is monotone increasing.
However, it keeps the function (2) non-convex, so as an
approximation, we move the log inside the summation,
which makes it a concave objective

∑
o∈Oτ (log τ !∏

A∈A oA! +∑
A∈A oA log xA + log do). The value of do could be

negative, so we cannot safely apply the log operator. By
adding a large value to each entry in the payoff matrix we
can get an equivalent game in which do is always positive.
This yields the following convex minimization formulation:

P2:

min
∑

o∈Oτ

(
− log

τ !∏
A∈A oA!

−
∑
A∈A

oA log xA − log do
)

(7)

s.t. (3)− (6)

Attacker’s Number of Observations
In the previous section we assumed that the number
of attacker observations was known. As witnessed in
many terrorist attacks (Southers 2011), surveillance happens
during the terrorist operational planning cycle, and the
decision about observation duration is often exogenously
made. How would the defender estimate the number τ of
observations the attacker would make? This section presents
a computational heuristic approach for approximating τ .
Specifically, the attacker is supposed to model the defender’s
best response to his observation duration by assuming that
the game is zero-sum. In other words, the attacker assumes
that the defender payoffs are P di = −Rai and Rdi = −P ai
for each target i ∈ T . In general, observations incur an
opportunity cost by delaying an attack and increasing the
probability that the attackers are captured before an attack
can be carried out. We model this opportunity cost as a
fixed cost λ > 0, such that taking τ observations reduces
the attacker’s expected utility by λ · τ .3 The problem of
calculating the optimal observation duration can then be
formulated as:

argmax
τ

( ∑
o∈Oτ

τ !∏
A∈AoA!

∏
A∈A

x∗A(τ)oAko − λ · τ
)

where x∗(τ) is the defender’s optimal strategy (computed
using P1) under the assumption of zero-sum games. ko =∑
A∈A x

∗
A(τ)Ai,ψ(o)(P

a
ψ(o)−R

a
ψ(o))+R

a
ψ(o) is the attacker’s

utility when he observes o and the defender plays strategy
x∗(τ). In other words, the attacker chooses which target to
attack based on his posterior beliefs and the attacker’s utility
of attacking his best target ψ(o) depends on the attacker’s
belief about the defender’s optimal strategy x∗(τ).

We propose a search heuristic to iteratively approximate
τ . Intuitively, with a small τ value, the attacker’s prior belief
has a large impact on his posterior belief, which could be far
from the defender’s strategy. The defender may be able to
exploit this (since we assume the prior is known), leading
to a low attacker utility. As τ becomes large, the attacker’s
belief will converge to the true defender strategy, and the
attacker is likely to choose a better response. However,
the attacker’s utility decreases with increasing τ due to the
observation cost λ. Due to these competing factors, it is very
likely that the attacker’s utility is single-peaked.

We use this structure to approximate the best value of τ
using binary search in Algorithm 1. We maintain a lower

3If λ = 0, the attacker will make an infinite number of
observations and will be able to completely learn the defender’s
strategy. The defender’s optimal strategy will be the SSE strategy.
An alternative way of modeling surveillance cost is using a
discount factor.



bound (LB) and an upper bound (UB) on the attacker’s
optimal observation duration. LB is initialized to 0. Let
Ua(τ) be the attacker’s utility if the attacker makes τ
observations, which can be computed using P1. We say
that Ua(τ) is increasing iff Ua(τ) ≤ Ua(τ + 1).

Algorithm 1: Estimate optimal observation duration
LB ← 0, n← 1;
while Ua(Fn) is increasing do

LB ← Fn, n++;

UB ← Fn;
while UB − LB > 1 do

τ ← UB+LB
2

;
if Ua(τ) is increasing then LB ← τ + 1;
else UB ← τ ;

return arg maxτ∈{LB,UB} U
a(τ);

The first stage of Algorithm 1 is estimating the upper
bound UB using Fibonacci numbers Fn. If Ua(Fn) is
increasing, we will update the lower bound to Fn and
continue to check Ua(Fn+1). If Ua(Fn) is decreasing, we
have found a feasible upper bound Fn. In the second stage
of Algorithm 1, we use binary search to find the optimal τ .
In each iteration, τ is set to be the mean of UB and LB. If
Ua(τ) is increasing, the lower bound is increased, otherwise
the upper bound is decreased. The search continues until the
upper bound and lower bound are sufficiently close.

Experimental Evaluation
We compare SGLS with the standard SSE model (in which
the attacker has full knowledge of the defender’s strategy,
and the defender plans accordingly) and explore key char-
acteristics of SGLS. We conduct experiments primarily on
randomly-generated instances of security games. Rdi and
Rai are drawn independently and uniformly from the range
[0, 100]. P di and P ai are drawn from the range [−100, 0]. We
consider three methods for setting the prior beliefs for the
attacker. The first is a uniform prior: the attacker believes
that the defender will choose a uniformly random strategy
from the space of possible strategies, so αA = ν for every
A ∈ A. ν is a parameter capturing the strength of the prior
belief. As ν increases, the attacker’s posterior belief will
give more weight to his prior. The second prior is based
on the SSE strategy x̂ for a zero-sum game constructed so
that the defender’s payoffs are the opposite of the attacker’s
payoffs. This prior can be computed by an attacker who
does not know the defender’s payoffs. In the absence of
such knowledge, it seems reasonable for an attacker to treat
the game as zero-sum. The prior satisfies maxA αA = ν
and αA/x̂A =αA′/x̂A′ for different A,A′ ∈A. Finally, we
consider a hybrid that combines the uniform and SSE using
a weighted combination with weights of 0.5 each.

All experiments are averaged over 100 sample games.
Unless otherwise specified, we use 5 targets, 1 defender
resource, λ= 1 as the observation cost, and a uniform prior
with ν=10. We use KNITRO version 8.0.0 to solve P1 and
P2.
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Figure 1: P1 vs P2: runtime
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Figure 4:Vary observation length

Comparison of Solution Methods: We begin by e-
valuating the accuracy and runtime performance of our
solution methods, P1 and P2. Formulation P1 is exact
but nonconvex, while P2 is approximate but convex. Since
existing solvers cannot guarantee exact solutions for non-
convex programs, all of the solutions we find are approxi-
mate. However, we can get a sense of the overall solution
accuracy by using the multi-start feature of KNITRO when
solving the nonconvex formulation. Figure 1 shows that
the approximate formulation P2 is faster than the exact
formulation, and the runtime for KNITRO increases linearly
with additional restarts as expected. In Figure 2, we see
that the approximate formulation P2 results in much lower
solution quality than P1. We also see that the solution
quality for P1 is very similar regardless of the number of
restarts. We observe similar results for tests with larger
numbers of targets. Based on these data, we use P1 with one
starting point in the remaining experiments. In addition, we
note that we can use the analytical results from Proposition 1
to speed up P1 by a factor of two.

Convergence Behavior: Intuitively, as τ grows very
large, the solution should converge towards the SSE solu-
tion. Our experimental results confirm this. Figure 3 shows
the difference between the strategy computed using P1 and
the SSE solution in random zero-sum games with 4 targets.
The payoff for each player is 0 for a failed attack, and we
sort the payoffs for the targets so that the values for targets
1, 2, 3, and 4 are in decreasing order. Each data point is
the difference between the coverage on the target for the P1
strategy and the SSE strategy. As τ increases, the defender’s
strategy gradually converges to the SSE strategy (all of the
differences converge towards 0).

There is also an interesting pattern in the structure of
the solutions when there are few observations: the defender
allocates more resources to protect targets with the highest
values, and fewer resources to less important targets. In the
graph, this is seen in the positive average differences for
target 1 and the negative differences for 2 and 3. Intuitively
when τ is small, the attacker believes that each target is
protected with similar probability, so the important targets
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Figure 8: Using LAX data

are relatively underprotected, and vice versa.
SGLS outperforms SSE: We now evaluate the perfor-

mance of P1 against SSE strategies. In the experiments, the
attacker always plays an optimal best response according
to the limited surveillance model. Our results presented
in Figures 4–7 show that the SGLS solution based on
P1 leads to significantly higher defender utilities than the
SSE strategy across a wide range of different experimental
conditions. In Figure 4, the x-axis is the number of
observations τ , and the y-axis is the defender’s utility for
the SGLS solution and SSE. We consider different attacker
priors including uniform, zero-sum SSE, and the hybrid
prior combining uniform and zero-sum SSE. Figure 4 shows
that the strategies computed by P1 always achieved higher
utilities than SSE for all priors, though the effect is less
dramatic for the SSE-based prior. Additionally, as the
number of attacker observation increases, the defender’s
utility tends to decrease.

Figures 5–7 compare the performance of P1 against SSE
strategies when the attacker always chooses the approxi-
mately optimal τ (using the methods described previously)
for games with varying numbers of resources, observation
costs, and initial attacker priors. (We did not include the
results for some priors for readability.) Figure 5 shows
that the defender’s utility increases with more resources,
as expected. The defender’s utility also increases as the
attacker’s observation cost increases (Figure 6), which is
consistent with our earlier observation since the attacker
tends to make fewer observations with increasing cost.
Finally, with a higher value of ν, the attacker will update
beliefs more slowly, placing greater weight on the prior. The
attacker may make more observations to account for this, but
must also factor in the utility loss due to observation costs.
As shown in Figure 7, the defender’s utility is monotone
increasing with the decrease of the attacker’s learning speed.

Robustness of SGLS: To apply SGLS using P1, the
defender needs to estimate the number of observations the
attacker will make, which may be difficult in practice.
Here we examine the impact that an inaccurate estimate
can have on the defender’s payoff. In Table 1, each

Table 1: Robustness of SGLS

1 2 3 4 5 6 7 8 9 10 SSE
1 0.0 4.4 5.9 9.9 11.6 13.6 15.1 17.5 19.2 21.3 49.3
2 7.2 0.0 2.6 5.5 7.4 9.2 10.8 13.0 14.7 16.8 44.7
3 11.8 5.0 0.0 3.7 4.9 6.9 8.3 10.6 12.2 14.2 42.3
4 19.3 12.8 8.6 0.0 2.0 3.1 4.6 6.6 8.2 10.2 38.1
5 23.4 17.1 13.1 4.7 0.0 1.9 2.7 4.8 6.2 8.2 35.9
6 26.0 19.8 15.9 7.8 3.7 0.0 1.4 3.2 4.5 6.3 34.1
7 28.9 22.9 19.2 11.6 7.3 4.0 0.0 2.2 3.1 4.8 32.4
8 34.1 28.4 25.0 17.3 13.4 9.8 6.0 0.0 1.2 2.7 29.8
9 36.4 30.9 27.7 20.8 16.8 13.5 9.5 3.4 0.0 1.8 28.3

10 41.0 35.6 32.6 25.6 21.7 18.6 14.5 8.6 5.4 0.0 26.2

row represents the τ∗ ∈ {1, . . . , 10} of observations the
attacker actually makes before choosing a strategy. Each
column represents the defender’s estimate of the observation
duration τ ∈ {1, . . . , 10} which is used in computing the
defender strategy; the last column represents the defender
using the SSE strategy. Let Ud(τ∗, τ) be the defender’s
utility when the attacker makes τ∗ observations but the
defender assumes that the attacker will make τ observations.
The entry in row τ∗ and column τ isUd(τ∗, τ∗)−Ud(τ∗, τ),
which measures the defender’s utility loss for estimating τ∗
as τ (or using the SSE strategy in the final column). On the
diagonal, τ∗ = τ , so the utility loss is zero by definition.

The data in Table 1 show that the utility loss from using
an SSE is typically greater than from using an incorrect
number of observations. The optimal solutions are fairly
robust to small variations in τ , especially as τ grows larger.
In addition, we note that the loss for overestimating τ is
generally smaller than for a symmetric underestimate of τ ;
in the table, the values to the upper right (overestimates) are
smaller than the values to the lower left (underestimates).

SGLS on Real LAX Game Matrices: In addition to the
randomly-generated game instances used in the experiments
above, we also ran a comparison of the SGLS solution with
the SSE solution using real-world data from the deployed
ARMOR system for scheduling canine patrols at the LAX
airport. There are eight terminals within the LAX airport
and there is one canine unit. The results on the real
game matrix shown in Figure 8 are similar to the results
for our synthetic examples. (The defender’s utilities of
SSE strategies with different priors are the same; thus, the
corresponding curves overlap.) In particular, the SGLS
solution achieves significant improvements in the defender’s
expected utility compared to SSE.

Summary and Related Work
We present the first systematic study of security games with
limited surveillance, making the following contributions: (i)
We introduce the SGLS model wherein an attacker forms
or updates a belief based on observed actions, and chooses
an optimal response; (ii) We investigate SGLS theoretically,
providing surprising non-monotonicity phenomena; (iii) We
give mathematical programs to compute optimal attacker



and defender strategies for a fixed observation duration, and
to estimate the attacker’s observation durations; (iv) Our
experimental results show that the defender can exploit the
limited observation to achieve significantly higher expected
utility than what would be achievable by SSE, validating the
motivation of our work.

In terms of related work, some recent work has relaxed the
perfect observation assumption in security games. Korzhyk
et al. (2011) only consider two extreme situations: perfect
observation and no observation. Realistically, attackers have
partial knowledge of the defender’s strategies. RECON (Yin
et al. 2011) takes into account possible observation errors by
assuming that the attacker’s belief is within some distance
of the defender’s real strategy. It does not address how
these errors arise, nor does it explicitly model the process
of forming beliefs based on limited observations. The
COBRA algorithm (Pita et al. 2010) focuses on human
perception of probability distributions by applying support
theory (Tversky and Koehler 1994) from psychology. Both
RECON and COBRA require hand-tuned parameters to
model observation errors, which we avoid in this paper.
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