Baccalauréat International

Mathematical studies SL formula booklet

Contents

Prior learning 2
Topics 3
Topic 1-Number and algebra 3
Topic 2-Descriptive statistics 3
Topic 3-Logic, sets and probability 4
Topic 5-Geometry and trigonometry 5
Topic 6-Mathematical models 6
Topic 7-Introduction to differential calculus 6

Prior learning

5.0	Area of a parallelogram	$A=b \times h$, where b is the base, h is the height Area of a triangle Area of a trapezium height
	$A=\frac{1}{2}(b \times h)$, where b is the base, h is the Area of a circle sides, h is the height	
Circumference of a circle	$A=\pi r^{2}$, where r is the radius Distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$	$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
Coordinates of the midpoint of a line segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$	

Topic I—Number and algebra

1.2	Percentage error	$\varepsilon=\left\|\frac{v_{\mathrm{A}}-v_{\mathrm{E}}}{v_{\mathrm{E}}}\right\| \times 100 \%$, where v_{E} is the exact value and v_{A} is the approximate value of v
1.7	The nth term of an arithmetic sequence The sum of n terms of an arithmetic sequence	$u_{n}=u_{1}+(n-1) d$ $S_{n}=\frac{n}{2}\left[2 u_{1}+(n-1) d\right]=\frac{n}{2}\left(u_{1}+u_{n}\right)$
1.8	The nth term of a geometric sequence The sum of n terms of a geometric sequence	$u_{n}=u_{1} r^{n-1}$ $S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
1.9	Compound interest	$F V=P V \times\left(1+\frac{r}{100 k}\right)^{k n}$, where $F V=$ future value, $P V=$ present value, $n=$ number of years, $k=$ number of compounding periods per year, $r \%=$ nominal annual rate of interest

Topic 2—Descriptive statistics

2.5	Mean of a set of data	$\sum_{i=1}^{k} f_{i} x_{i}$
n		where $n=\sum_{i=1}^{k} f_{i}$
2.6	Interquartile range	$\mathrm{IQR}=Q_{3}-Q_{1}$

Topic 3—Logic, sets and probability

3.3	Truth tables	p	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \underline{\vee} q$	$p \Rightarrow q$	$p \Leftrightarrow q$
		T	T	F	T	T	F	T	T
		T	F	F	F	T	T	F	F
		F	T	T	F	T	T	T	F
		F	F	T	F	F	F	T	T
3.6	Probability of an event A	$\mathrm{P}(A)=\frac{\text { number of outcomes in } A}{\text { total number of outcomes }}$							
	Complementary events	$\mathrm{P}\left(A^{\prime}\right)=1-\mathrm{P}(A)$							
3.7	Combined events	$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$							
	Mutually exclusive events	$\mathrm{P}(A \cap B)=0$							
	Independent events	$\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$							
	Conditional probability	$\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$							

Topic 5-Geometry and trigonometry

5.1	Equation of a straight line Gradient formula	$y=m x+c ; a x+b y+d=0$ $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
5.3	Sine rule Cosine rule Area of a triangle	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ $a^{2}=b^{2}+c^{2}-2 b c \cos A ; \quad \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$ $A=\frac{1}{2} a b \sin C$, where a and b are adjacent sides, C is the included angle
5.5	Area of the curved surface of a cylinder Surface area of a sphere Area of the curved surface of a cone Volume of a pyramid Volume of a cuboid Volume of a cylinder Volume of a sphere Volume of a cone Volume of a prism	$A=2 \pi r h$, where r is the radius, h is the height $A=4 \pi r^{2}$, where r is the radius $A=\pi r l$, where r is the radius, l is the slant height $V=\frac{1}{3} A h$, where A is the area of the base, h is the vertical height $V=l \times w \times h$, where l is the length, w is the width, h is the height $V=\pi r^{2} h$, where r is the radius, h is the height $V=\frac{4}{3} \pi r^{3}$, where r is the radius $V=\frac{1}{3} \pi r^{2} h$, where r is the radius, h is the vertical height $V=A \mathrm{~h}$, where A is the area of cross-section, h is the height

Topic 6-Mathematical models

6.3	$\begin{array}{l}\text { Equation of the axis of } \\ \text { symmetry for the graph of }\end{array}$	$x=-\frac{b}{2 a}$

the quadratic function
$y=a x^{2}+b x+c$

Topic 7—Introduction to differential calculus

7.2	Derivative of $a x^{n}$	$f(x)=a x^{n} \Rightarrow f^{\prime}(x)=n a x^{n-1}$
	Derivative of a sum	$f(x)=a x^{n}, g(x)=b x^{m} \Rightarrow \quad f^{\prime}(x)+g^{\prime}(x)=n a x^{n-1}+m b x^{m-1}$

Edukraft ${ }^{\circledR}$

