
1

Observing Web Browser Behaviour Using the
Nprobe Passive Monitoring Architecture

(Extended Abstract)
James Hall, Ian Pratt and Ian Leslie

University of Cambridge Computer Laboratory
Contact Author: James Hall1 (James.Hall@cl.cam.ac.uk)

University of Cambridge Computer Laboratory
New Museums Site, Pembroke Street

Cambridge CB2 3QG, UK
Tel: +44 (0)1223 334600, Fax: +44 (0)1223 334678

Abstract—In this paper we will introduce a novel passive
network monitoring architecture which enables us to cap-
ture and integrate data from different levels of the protocol
stack using a probe which can be placed at any arbitrary
point in the network. We subject the data gathered to off-
line analysis and show how, by modelling the dynamics of
the protocols observed, we are able to extract information
which would not be available using existing means. In this
paper, we show how the technique can be used to observe the
network behaviour of Web Browsers, and the way in which
they use TCP connections.

I. I NTRODUCTION AND MOTIVATION

The strengths of passive network monitoring techniques
are well recognised, and have been comprehensively de-
scribed in many previous works.

The entire set of data concerning the network’s traffic
and functioning is potentially available to the user of such
techniques, but the volume of data collected may become
unmanageable, particularly as network bandwidths and the
volume of traffic carried increase. Past work has perforce
largely been limited to the examination of behaviour ob-
served at one level of the network protocol stack e.g. TCP,
or to a limited set of the total data e.g. Netflow.

Many phenomena of interest, however, dictate that the
network, communicating processes and the protocols em-
ployed be viewed as an integrated system. To do this the
capture and integration of data from a range of protocols
is required, together with monitoring architectures capa-
ble of extracting and storing the required data without loss
due to overload. Adata reductionratio must be achieved
which allows the capture of an adequate but minimal set of
data tailored towards its intended use.

More recently monitoring designs aimed towards keep-
ing pace with today’s network bandwidths include the

1James Hall is a Graduate Student at the Computer Laboratory

ambitious OCxMon architecture [1] and the AT&T Labs
PacketScope [2].

The collection and integration of data derived from mul-
tiple levels in the network protocol stack is the subject of a
growing research field, including the Windmill monitoring
architecture [3], and in the BLT project [4].

The Nprobe design is aimed towards use of ‘off the
shelf’ components, flexibility, scalability and ability to
keep pace with high bandwidths, high data reduction
ratios, no packet (data) loss, and minimal data extrac-
tion/reduction and copying overheads. While similar to
some of the work described in [1][2][3] and [4] it differs
in many significant respects. We have, so far, concentrated
upon the probe infrastructure and protocol data extraction
modules which allow us to study World Wide Web traffic,
although the capabilities now open to us are wide ranging
and may in future include examination of streamed media.
We have conducted a preliminary study of Web Server de-
lays described in [5].

Much work has focussed upon the efficiency with which
Web Servers deliver objects over TCP, but relatively lit-
tle has examined the contribution made by the browser.
Nprobe extends data extraction/correlation to the contents
of the web objects seen, in the case of HTML pages ex-
tracting link URLs.

Research based upon transfers of thesetsof web ob-
jects comprising whole pages from the perspective of the
client is relatively new ground, and argues a shift of em-
phasis from interest in server behaviour to that of the
client. Whilst suggestions have been made to improve the
efficiency of multiple-object transfers using TCP/HTTP,
e.g.. HTTP 1.1 persistent connections and pipelining, it
has not hitherto been possible to comprehensively study
the efficiency with which these mechanisms have been em-
ployed, or to exactly what extent.



2

In Section II of this paper we describe the Nprobe on-
line monitoring architecture, and in Section III we illus-
trate some of its capabilities by describing current work
investigating Web browser behaviour.

II. M ONITOR DESIGN

A. The Nprobe Architecture

The Nprobe architecture runs over the GNU/Linux op-
erating system, with modifications made to the kernel net-
working and memory management code to support the ef-
ficient passing of network buffers to and from user-space.
Any network interface supported by Linux can be used
with Nprobe, though in some cases we have chosen to
modify the device driver to improve performance or add
instrumentation. Currently deployed systems are dual Pen-
tium PIII 500MHz machines, with storage provided by a
software RAID array of high-capacity IDE disks.

Nprobe is currently equipped with Alteon ACEnic 1Gbs
Ethernet cards fed by port monitoring via a local switch.
They may alternatively receive packets directed to the
probe via a pair of passive optical splitters inserted into the
link of interest, as when previously monitoring ATM links.
The cards’ firmware is modified to attach time-stamps to
incoming packets with an accuracy typically of the order
of a few microseconds.

The modified firmware also provides a simple filter,
based upon hashing of XOR’d source and destination IP
addresses, which can determine to which analysis pro-
cess packets should be delivered, or whether they should
be dropped without transfer to the host. In this way we
are able to exploit processor affinity of separate user level
analysis processes, each dealing with a different subset of
traffic. By employing an n-valued hash we accommodate
the possibility of using a cluster of monitoring machines
each handling a specified sub-set of the traffic, hence pro-
viding scalability to enable us to monitor very high band-
width links.

The major components of the Nprobe design are shown
in Figure 1.

Incoming packets are delivered into a input buffer pool
by the network device drivers and are not processed further
in the kernel, but by user-level modules as described in
Section II-B. To avoid the overhead of a copy into user
space the buffer pool is mapped in to the analysis process’
address space and analysis/data extraction carried out in
place. A large pool is provided in order to accommodate
burstiness in incoming traffic and the inevitable variation
in packet analysis times due to variations in packet length
and complexity.

Current work has not involved connection to highly
utilised networks, but Nprobe has been used to monitor

File System
s/w RAID

NIC
Filter

CPU1
Nprobe
Process

Log Buffer

Rx Buffer

NIC
Filter

CPU2
Nprobe
Process

Log Buffer

Rx Buffer

Fig. 1. Major Elements of the Nprobe Architecture

links where bandwidths of up to 120Mbs (including up
to 96Mbs of HTTP traffic) have been observed without
packet loss and with the consumption of less than 20%
of available CPU cycles. When extracting data from TCP
packet headers, HTTP headers and HTML object contents
a data reduction rate of approximately 12:1 is achieved,
rising to over 50:1 when less TCP header information is
collected. The storage system should be capable of han-
dling these logging data rates even if the input traffic were
well in excess of a gigabit per second.

B. Analysis and Data Extraction

Packets collected by Nprobe are analysed ‘on the fly’ by
user-level processes which extract the required data from
the contained protocol headers and payloads — hence
achieving a desirable rate of data reduction while not dis-
carding potentially useful data – and save it for post-
collection analysis. Each incoming packet is dealt with in
its entirety and the containing buffer immediately returned
for re-use by the input driver unless temporarily retained
for TCP sequence ordering.

The analysis software is implemented as a series of



3

modules, providing flexibility and allowing monitoring
and analysis functions to be composed and customised as
required. Each module extracts protocol specific data, and
where necessary de-multiplexes higher level protocols and
delivers packets to their own processing module in an ap-
propriate manner.

The TCP module will, for instance, note out of order
packets, sequence gaps and retransmissions, and store and
reorder packets as necessary to ensure that they are deliv-
ered in order to the HTTP module. Timeout mechanisms
are employed to avoid buffer starvation in the case of long
queues following packets seen by the receiving host but
not by the probe (i.e. not resulting in a re-transmission),
or to detect prolonged quiescence of connections resulting
either from loss of FIN packets or routing changes leading
to loss of the packet stream.

Considerable ingenuity has been required in the con-
struction of data extraction modules in order to make them
robust in the face of malformed or misused protocol header
fields and badly behaving hosts. Some of the difficulties
met in this respect are described in [4].

Extracted data and state are maintained in a hierarchy
comprising host endpoints, port endpoints, TCP connec-
tions and (for instance) HTTP transactions. A flexible def-
inition of ‘flows’ can thereby be employed and data rel-
evant to the protocol levels of interest can be correlated
throughout the hierarchy. HTTP transactions are immedi-
ately associated with the TCP connections carrying them,
and requests and responses paired even in the presence
of persistent connections or pipelined requests. Collected
data is output in binary form at a granularity of a TCP/UDP
connection.

The extracted data is not written out by the analysis pro-
cess(es) but is written into a large output buffer. An inde-
pendent ‘writer’ thread copies data from the output buffer
to disk; in this way the analysis process(es) are available to
examine packets and return buffers to the pool without de-
lay, and data output consumes processor cycles only when
not required for higher priority input processing.

C. Off-Line Analysis of Binary Data Logs

The data harvested from the network is later post-
analysed using software which extracts the pertinent data
and passes it to analytic modules specific to the study be-
ing carried out.

The post-analysis code is currently written in Python
chosen for its powerful high-level data-types, object orien-
tation and suitability for quick prototyping. The format of
the Nprobe output files is based upon the C-language struc-
tures used by the Nprobe on-line analysis code; Python’s
extensibility using modules written in C allows fast access

to and interpretation of the binary data as object classes via
appropriate interfaces generated using SWIG.

III. O BSERVING WEB BROWSERBEHAVIOUR

The pages fetched by web browsers become increas-
ingly complex with the increasing count of ‘in-line’ com-
ponents — style sheets, images, frames, script elements —
and with server-generated content. Performance, as expe-
rienced by the user no longer depends upon the download
time of a single object, but upon that of aset of objects
(we commonly observe web pages containing in excess of
forty images, sometimes in excess of one hundred). The
timely issuing of requests, together with the efficient use
of TCP connections, is therefore crucial.

The factors contributing to the download times of sin-
gle objects have been studied, but are often less significant
than the delays contributed by the browser. Data collected
using Nprobe allows us to reconstruct the ‘reference trees’
representing whole pages, as well as the performance of in-
dividual TCP connections. As we know when the browser
first ‘sees’ each reference we can therefore assess the part
played by its behaviour in overall download times.

Figure 2 shows the post analysis reconstruction of net-
work activity while fetching of a small page from the Uni-
versity’s web server. Horizontal bars represent the TCP
connections opened; packets from the client are shown
as tics above the bar, and those from the server below it.
Heavy tics represent packets carrying data. The dashed
lines indicate the constructed reference tree, and indicate
which packets carried the links subsequently followed.
Connection (i) is used to request an HTML document, (ii)
a style sheet, and (iv) – (vi) three in-linedgif images. The
server response to the GET request of (iv) is a single packet
containing an ‘object not modified’ server response. ‘Con-
nection’ (i) comprises two UDP packets containing a DNS
request for the server and its response.

It is interesting to note that, in this small example, both
client and server signified their willingness to use HTTP
1.1 persistent connections, yet the browser issued its sub-
sidiary requests on two pairs of TCP connections, each
being used only for a single request. There is a delay of
approximately 500ms between the close of the last con-
nection of the first subsidiary pair and the almost simul-
taneous opening of the second pair. The browser leaves
the first connection, used for fetching the primary object,
open but inactive for over 1500ms before transmitting a
FIN packet.

Larger reference trees exhibit more complex, and often
more puzzling, behaviour and, even at this relatively early
stage in the study, pose many intriguing questions. We
see the use of persistent connections in only approximately



4

0 500 1000 1500 2000 2500 3000 3500 4000

ms

(i)

(iii)

(iv)

(v)

(vi)

(ii)

Fig. 2. The Reference Tree for a Small Web Page

10% of requests, and the use of ‘pipelining’ hardly at all
— why should this be. Where multiple persistent connec-
tions are used we often note that requests are issued only
after the receipt of outstanding responses on any of the
connections, rather than concurrently. Reference to Fig-
ure 2, which although small is not untypical, shows that
delays attributable to the browser are of significant magni-
tude in comparison the download times of small objects.

As we monitor traffic at some arbitrary point in the net-
work we do not, of course, know exactly when packets ar-
rive at either server or client. Fortunately this knowledge
is not necessary — causality comes to our aid. We can
measure the time interval between seeing pairs of packets
travelling in opposite directions and which are associated
by cause and effect, the arrival of one has made possible
the transmission of the other. The measured interval con-
sists of two parts: (a) apartial round trip time, i.e. the
time taken for packets to traverse the network from the
monitoring point to a communicating host and for return-
ing packets to traverse the reverse path, and (b) any delay
introduced by the host. By identifying causal pairs known
not to involve any delay attributable to the host we are able
to establish partial round trip times, and hence deduce the
delay component for other pairs.

The establishment of causality is a non-trivial exercise,
particularly as it may be determined at multiple levels in
the protocol stack. We use our record of the TCP packets
traversing a connection to construct a dynamic model of
the connection which incorporates the changing state and
behaviour of the two end-points. Such models are com-
plex as they must allow for differing implementations and
for packet losses both up and down stream of the monitor-
ing point. Our modelling is similar to that described in [6],

although to a different end, and is more fully described in
[5]. A similar, but less complex model of HTTP behaviour
is also constructed using data extracted from HTTP head-
ers and is integrated with the TCP model. The output of
the integrated model enables us to differentiate and quan-
tify delays due to the server, client, network and protocol
operation.

IV. CONCLUSIONS ANDFURTHER WORK

Nprobe has fulfilled its design in collecting datasets
more comprehensive in scope than those previously avail-
able. Although it has not yet monitored traffic which
would strain its capabilities we have been pleasantly sur-
prised at the ease with which it has performed so far, as
it effectively make three passes through the HTTP pack-
ets monitored; to verify the IP checksum, to parse HTTP
headers and HTML documents, and to calculate an MD5-
based signature of all objects seen.

The richness of the data gathered and the post-collection
analysis techniques that we are developing promise re-
wards in several areas, including suggestions for the im-
provement of web browser and server performance, down-
loads of large and complex web pages, and cache perfor-
mance.

REFERENCES

[1] J. Apisdorf, K claffy, K. Thompson, and Rick Wilder., “Oc3mon:
flexible, affordable, high performance statistics collection,” .

[2] N. Anerousis, R. Caceres, N. Duffield, A. Feldmann, A. Green-
berg, C. Kalmanek, P. Mishra, K.K. Ramakrishnan, and J. Rex-
ford, “Using the at&t labs packetscope for internet measurements,
design, and performance analysis,” November 1997.

[3] G.R. Malan and F. Jahanian., “An extensible probe for network
protocol performance and measurement.,” inProceedings of ACM
SIGCOMM’98., pp. 215–227. August 1998.

[4] Anja Feldmann, “BLT: Bi-layer tracing of HTTP and TCP/IP,”
WWW9 / Computer Networks, vol. 33, no. 1-6, pp. 321–335, 2000.

[5] James Hall, Ian Pratt, and Ian Leslie, “Non-intrusive es-
timation of web server delays,” Tech. Rep., University of
Cambridge Computer Laboratory: http://www.cl.cam.ac.uk/ Re-
search/SRG/netos/netx/publications/sdel.html, May 2001.

[6] Vern Paxson, “Automated packet trace analysis of TCP imple-
mentations,” inProceedings of the ACM SIGCOMM Conference :
Applications, Technologies, Architectures, and Protocols for Com-
puter Communication (SIGCOMM-97), New York, Sept. 14–18
1997, vol. 27,4 ofComputer Communication Review, pp. 167–180,
ACM Press.


