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Summary

In the last decade, matrix-assisted laser desorption/ionization (MALDI) imaging mass
spectrometry (IMS), also called as MALDI-imaging, has proven its potential in proteomics
and was successfully applied to various types of biomedical problems, in particular to
histopathological label-free analysis of tissue sections. In histopathology, MALDI-imaging
is used as a general analytic tool revealing the functional proteomic structure of tissue sec-
tions, and as a discovery tool for detecting new biomarkers discriminating a region anno-
tated by an experienced histologist, in particular, for cancer studies.
A typical MALDI-imaging data set contains 108 to 109 intensity values occupying more
than 1 GB. Analysis and interpretation of such huge amount of data is a mathematically,
statistically and computationally challenging problem. In this paper we overview some
computational methods for analysis of MALDI-imaging data sets. We discuss the impor-
tance of data preprocessing, which typically includes normalization, baseline removal and
peak picking, and hightlight the importance of image denoising when visualizing IMS data.

1 Introduction

In the last decade, matrix-assisted laser desorption/ionization (MALDI) imaging mass spec-
trometry [6, 21], also called as MALDI-imaging, has proven its potential in the spatially-
resolved proteomic analysis of thin biological tissue sections. MALDI-imaging is used as a
general analytic tool revealing the functional proteomic structure of tissue, and as a discovery

*To whom correspondence should be addressed. Email: trede@scils.de

Journal of Integrative Bioinformatics, 9(1):189, 2012 http://journal.imbio.de

doi:10.2390/biecoll-jib-2012-189 1

C
op

yr
ig

ht
 2

01
2 

Th
e 

A
ut

ho
r(

s)
. P

ub
lis

he
d 

by
 J

ou
rn

al
 o

f I
nt

eg
ra

tiv
e 

B
io

in
fo

rm
at

ic
s.

 
Th

is
 a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

-N
oD

er
iv

s 
3.

0 
U

np
or

te
d 

Li
ce

ns
e 

(h
ttp

://
cr

ea
tiv

ec
om

m
on

s.
or

g/
lic

en
se

s/
by

-n
c-

nd
/3

.0
/).

http://www.scils.de
http://www.zetem.uni-bremen.de
http://www.maldi.uni-bremen.de
http://www.bdal.de
http://pharmacy.ucsd.edu


tool for detecting new biomarkers discriminating a region annotated by an experienced histol-
ogist, in particular for cancer studies [11, 15]. Currently, the development of computational
methods for MALDI-imaging is lagging behind the technological progress [1,25]. The follow-
ing problems in the field of MALDI-imaging need specially developed computational methods,
see [1] for more details:

1. Preprocessing: baseline removal, spectra normalization, and noise reduction [2, 7, 14]

2. Data reduction using mass spectrometry peak picking [9] or scale-space transformations,
e.g. the discrete wavelet transform [16]

3. Data representation using multivariate statistics, e.g. principal component analysis (PCA)
and its variants [10, 12, 24]

4. Spatial segmentation of a MALDI-imaging data set based on spectra clustering [2, 8]

5. Supervised classification of spectra of a MALDI-imaging data set (or data sets) after
training a classifier on manually annotated regions [3,15] and detection of discriminative
m/z-values

6. Postprocessing, e.g. image magnification and co-registration with a high-resolution mi-
croscopy image

In this paper, we demonstrate the effect of preprocessing and spatial segmentation algorithms
for the evaluation of MALDI-imaging data sets, illustrate pre-processing for data analysis based
on spatial segmentation, and highlight the importance of image denoising for visualization. The
paper is based on our short workshop communication [23], however, in this extended form it
presents new original results comparing segmentation of a real-life data set with and without
preprocessing. The considered data set represents MALDI-imaging applied to a rat kidney
section simulating a typical proteomics experiment (measured at the MALDI Imaging Lab,
University of Bremen). The computations and visualization were done using the SCiLS Lab
software (SCiLS, Bremen, Germany).

2 Methods

2.1 Preprocessing

Once a sample has been prepared for MALDI analysis, mass spectra are acquired at discrete
spatial points, providing a so-called data cube or hyperspectral image, with a mass spectrum
measured at each pixel, see Figure1. A mass spectrum represents the relative abundances of
ionizable molecules with various mass-to-charge (m/z) values, ranging for MALDI-TOF-IMS
from several hundreds up to a few tens of thousands of m/z-values.

A MALDI-imaging data set can be considered as a collection of spectra that have been mea-
sured independently, hence normalization of spectra is an important task of image preprocess-
ing. The most popular method is the so-called total ion count method (TIC), which normalizes
every spectrum separately by dividing each spectrum intensity by the sum of all its intensi-
ties. In [7], more advanced ways than spectrum-wise normalization are discussed, namely,
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Figure 1: An MALDI-imaging data set is a data cube. Spectra (A) are measured at spatial points
of a sample (B) with spatial coordinates (x,y). Given a mass (m/z value), one obtains an intensity
image; examples for the channels m/z 4422 and m/z 8965 are shown in (C, D).

normalization based on the spectra noise level and normalization based on the median of signal
intensities.

A typical mass spectrum consists of three fundamental components: peaks, a baseline and noise
(see [22] for more details). A peak can be approximated by the Gaussian function. Note that the
peak width increases with increasing m/z-values. The baseline is inherent to sample preparation
and the MALDI measurement and can vary throughout the image [18]. The baseline is a slowly
varying component of a spectrum, normally with high values in the region of low m/z-values
and vanishing for high m/z-values. The noise level depends on the measurement device and
the measuring process. Since the MALDI technique relies upon counting ions, the noise is
assumed to be Poisson distributed and our study confirms this hypothesis [2]. Poisson noise is
multiplicative, since the mean number of counts is equal to their variance. The peaks comprise
the essential information about abundant ionizable molecular compounds present in the sample.
The aim of MALDI-imaging data preprocessing is to clean the spectra from baseline and noise
first, then to select peaks encoding relevant information.

Baseline correction is a standard method of mass spectra preprocessing. One method to perform
baseline correction is the top-hat operator from mathematical morphology [19] which is defined
as the difference between the original spectrum and its morphological opening. Other baseline
substraction methods are summarized in e.g. [14].

The presence of noise in MALDI-imaging data can be easily seen by visual inspection of m/z-
images corresponding to selected m/z-values. Since the noise in MALDI data is strong, image
denoising can significantly improve the visualization. An important issue to consider when
selecting the image denoising methods is the change of noise variance both within an image
and between different images. In [2], we showed that the noise variance at a spatial point
linearly depends on the mean intensity around this point. This possibly indicates the Poisson
distribution of the noise. In order to reduce this pixel-to-pixel variability, in [2] a method for
edge-preserving image denoising has been introduced that adjusts the level of denoising to the
local noise level and to the local scale of the features to be resolved.
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2.2 Data Compression

MALDI-imaging data typically consists of thousands of different channels (103 to 104). To
process such a huge amount of data one can constrain the channels to the most relevant ones
without losing significant information. In MALDI-imaging, this can be achieved by peak pick-
ing where m/z-values for specific peaks are selected. For processing huge MALDI-imaging
data sets efficient peak picking methods are crucial. At the same time, peak picking should be
robust to strong noise, preventing the use of straightforward local maxima or signal-to-noise
ratio methods, which can produce false positives.

In [9], a peak picking method based on the orthogonal matching pursuit (OMP) was proposed
and in [2] this method was applied to MALDI-imaging mass spectrometry data. The main idea
of the method is to model each spectrum as a sum of Gaussian-shaped functions. For each
single spectrum, the peak-picking algorithm from [2] selects certain peaks of the Gaussian
shape. This assigns to each m/z-value a number of spectra in which this m/z-value was selected
as a peak. Finally, the most frequent peaks which occur in more than 1% of considered spectra
are selected.

However, because the Gaussian shape is just an approximation of a real peak shape, and prob-
ably because of small mass shifts (the mass recalibration for each spectrum is not used in
imaging MS), often several m/z-values close to the center peak m/z-value are selected. This
reduces the frequency of the peak m/z-value. Moreover, for a peak, this approach selects not
one but several m/z-values that can influence subsequent processing steps. This effect seems to
be stronger for large peaks, which e.g. leads to their increased impact on clustering.

In order to prevent this redundant selection of several m/z-values per peak, in [5] the selected
m/z-values have been aligned by moving them uphill the data set mean spectrum so that they
are in the local maxima of the mean spectrum, see Figure 2. This simple improvement allows
us to increase the sensitivity of the peak picking without a drop in specificity.

Alternative methods for reducing the amount of data for a later feature selection and classifica-
tion are scale space methods as e.g. the discrete wavelet transform [16]. The idea of the wavelet
transform is to use a wavelet for which its scaling function closely matches the peak pattern of
spectra, as e.g. the bi-orthogonal bior3.7 wavelet in [3].

2.3 Spatial Segmentation

Presently, data mining of MALDI-imaging data sets is a time-consuming endeavor as it is
mostly done manually and a MALDI-imaging data set consists of thousands of m/z-channels.
Manual data mining of such data requires the user to click through each image and look for
distributions that may correlate to the morphology of the sample analyzed. Unsupervised pro-
cessing methods do not require a user to provide data annotation and can be used as a first step
of data mining providing data overview and extracting prominent features.

Such an unsupervised method is spectral clustering resulting in spatial segmentation of a data
set [8]. The outcome of clustering can be displayed as a spatial segmentation map (an integer-
valued image, usually shown using pseudo-color), coloring identically points grouped into one
cluster.
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Figure 2: The method from [5] of alignment of data set frequent masses. The data set mean
spectrum is shown in blue. Red triangles indicate peaks (and their masses) found after peak
picking. Green arrows illustrate the process of alignment. Green triangles show aligned peaks
and their masses. Reprinted from [5], Copyright 2011, with permission from Elsevier.

The main drawback of using straightforward clustering of mass spectra is that it is negatively
affected by the pixel-to-pixel variability. Taking into account the spatial relations between
spectra improves the segmentation maps considerably by suppressing the noise and pixel-to-
pixel variability. In [2], a pipeline for segmentation of MALDI-imaging data sets is proposed
that takes into account spatial information. After spectra normalization and baseline correction,
the first step of this pipeline is a reduction of the data set by selecting peaks appearing in at
least 1% of spectra. The second step and the core of this segmentation procedure is an edge-
preserving denoising of m/z images for each m/z-value from the selected peaks list. Finally,
the reduced and processed spectra are clustered, and the clustering results are displayed as a
spatial segmentation map in which spatial points whose spectra are grouped into one cluster are
identically colored. The edge-preserving image denoising operation improves the segmentation
map significantly.

Most of the advanced clustering methods are computationally intensive. Use of simpler meth-
ods reduces the computation time but deteriorates the qualitity of the segmentation maps due
to strong noise in data. In [4], an efficient segmentation approach for data has been proposed,
that projects the data to fewer dimensions and at the same time considers a spectrum together
with its spatial neighbors.

2.4 Postprocessing

An important issue for MALDI imaging mass spectrometry technique is its relatively low spa-
tial or lateral resolution (i.e. a large size of a pixel) as compared with microscopy. The state of
the art resolution is around 20 micron for MALDI-imaging [13] versus 0.25 micron for optical
microscopy. So, when comparing an MALDI-imaging data set or its segmentation map with
a microscopy image, a significant difference in spatial resolution complicates the visual inter-
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pretation. In [5], a computational approach was proposed to improve the spatial resolution of a
segmentation map of an imaging mass spectrometry data set.

Other imaging problems occur when extending the 2D MALDI-imaging technique to three
spatial dimensions with consecutive sections of tissue. Here one has to align a stack of hyper-
spectral images to each other. Methods for image registration of grey-scale images are avail-
able [17], but—to the best of our knowledge—not yet specially adapted to 3D hyperspectral
MALDI data.

From a technical perspective, visualizing 3D information is highly complex. From a medi-
cal perspective however, it still does not provide enough information for diagnosis. To draw
conclusions from the data, it must first be correlated with 3D anatomical information (such
as data obtained via magnetic resonance imaging). However, superimposing these two data
sets originating from entirely different imaging modalities is complicated by the issue of image
co-registration [20] and standard pipelines are not established, yet.

3 Results

The rat kidney sample has been preparated and MALDI measured at the MALDI Imaging Lab,
University of Bremen. Mass spectra were acquired on a MALDI-TOF instrument (Autoflex IV
LRF; Bruker Daltonik GmbH) in linear positive mode. MALDI measurements were performed
at a mass range of 2 kDa to 20 kDa. The lateral resolution for the MALDI image was set to
150 µm. The rat kidney data set comprises 6,304 spectra. The following processing steps were
performed with SCiLS Lab software.

Normalization and Baseline Subtracting. Normalization of spectra has been done with re-
spect to the total ion count (TIC). Spectra were baseline corrected by subtracting a smooth
lower envelope curve which consist of wide Gaussians. In figure 3, the TIC normalization and
the baseline correction is visualized for the rat kidney data set. By means of these preprocessing
methods the m/z images allow for better description of anatomical structures.

Data Compression by means of Peak Picking. For peak picking the method from [2] has
been used. From the joint list of potential peaks, which includes all detected peaks, 344 peaks
were selected as consensus peaks as they occurred in at least 1% of spectra. After applying the
alignment to the mean spectrum as described in from [5], 63 important peaks remained.

Spatial Denoising. After peak picking, for subsequent data processing we only use the reduced
MALDI-imaging hyperspectral datacube (the data set is reduced in the number of m/z-values
by the peak picking). We processed this data with edge-preserving denoising of m/z-images
corresponding to these peaks. Examples of m/z-images and their denoised versions are shown
in figure 3. The method efficiently removes the noise while not smoothing out edges.

Spatial Segmentation. The segmentation map after clustering with edge-preserving denoising
is presented on the right-hand side in figure 4 coregistered with an optical image of the ana-
lyzed rat kidney section. The major anatomical regions are well represented. On the contrary,
the segmentation map produced without prior-to-clustering image denoising does not recover
the anatomical structure (left-hand side). When judging the quality of the representation, it is
important to consider that only mass spectral information was used to recreate anatomical fea-
tures in a completely automated way with no prior knowledge about the sample being utilized.
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Figure 3: Images corresponding to one m/z-value. Left column: measured raw data, middle
column: after TIC normalization and baseline correction, right column: after edge-preserving
denoising. a.u. = arbitrary units.
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Figure 4: Comparison of clustering with and without previous smoothing. Left: Simple clustering
does not recover the anatomical structure of the rat kidney section due to high-dimensional data,
low spatial resolution (mixture of tissues) and multiplicative-like Poisson noise. Right: Locally-
adaptive edge-preserving denoising of m/z images and following clustering preserves spatial struc-
ture, i.e. edges and small details are not eroded.

4 Discussion

Data from imaging mass spectrometry can be represented as a hyperspectral image with thou-
sands of channels. Since manual data mining of MALDI-imaging data sets is very time-
consuming, the development of automated computational methods is necessary. Mathematics
offers a variety of methods from image processing, statistics and machine learning that can be
used for simplifying and automating the analysis of imaging mass spectrometry data. Other
areas of science where hyperspectral images incur use similar methods for related problems.
Here, an interdisciplinary exchange of experiences can inspire each other and avoid gratuitous
parallel developments.

MALDI-imaging data is characterized by independently measured spectra and the presence
of strong and multiplicative noise. Hence preprocessing procedures of MALDI data as e.g.
normalization, baseline correction and denoising are fundamental first steps in data processing
pipelines for MALDI-imaging data. For achieving spatial segmentation using spectra cluster-
ing, preprocessing of MALDI data has a crucial influence.
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