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Abstract

This paper investigates bootstrapping for statis-
tical parsers to reduce their reliance on manu-
ally annotated training data. We consider both
a mostly-unsupervised approach,co-training,
in which two parsers are iteratively re-trained
on each other’s output; and a semi-supervised
approach,corrected co-training, in which a
human corrects each parser’s output before
adding it to the training data. The selection of
labeled training examples is an integral part of
both frameworks. We propose several selection
methods based on the criteria of minimizing er-
rors in the data and maximizing training util-
ity. We show that incorporating the utility cri-
terion into the selection method results in better
parsers for both frameworks.

1 Introduction

Current state-of-the-art statistical parsers (Collins, 1999;
Charniak, 2000) are trained on large annotated corpora
such as the Penn Treebank (Marcus et al., 1993). How-
ever, the production of such corpora is expensive and
labor-intensive. Given this bottleneck, there is consider-
able interest in (partially) automating the annotation pro-
cess.

To overcome this bottleneck, two approaches from ma-
chine learning have been applied to training parsers. One
is sample selection(Thompson et al., 1999; Hwa, 2000;
Tang et al., 2002), a variant of active learning (Cohn et al.,
1994), which tries to identify a small set of unlabeled sen-

tences with hightraining utility for the human to label1.
Sentences with high training utility are those most likely
to improve the parser. The other approach, and the fo-
cus of this paper, isco-training(Sarkar, 2001), a mostly-
unsupervised algorithm that replaces the human by hav-
ing two (or more) parsers label training examples for each
other. The goal is for both parsers to improve by boot-
strapping off each other’s strengths. Because the parsers
may label examples incorrectly, only a subset of their out-
put, chosen by some selection mechanism, is used in or-
der to minimize errors. The choice of selection method
significantly affects the quality of the resulting parsers.

We investigate a novel approach of selecting training
examples for co-training parsers by incorporating the idea
of maximizing training utility from sample selection. The
selection mechanism is integral to both sample selection
and co-training; however, because co-training and sam-
ple selection have different goals, their selection methods
focus on different criteria: co-training typically favors se-
lecting accurately labeled examples, while sample selec-
tion typically favors selecting examples with high train-
ing utility, which often are not sentences that the parsers
already label accurately. In this work, we investigate se-
lection methods for co-training that explore the trade-off
between maximizing training utility and minimizing er-
rors.

Empirical studies were conducted to compare selection
methods under both co-training and a semi-supervised
framework called corrected co-training (Pierce and
Cardie, 2001), in which the selected examples are man-
ually checked and corrected before being added to the

1In the context of training parsers, a labeled example is a
sentence with its parse tree. Throughout this paper, we use the
term “label” and “parse” interchangeably.



training data. For co-training, we show that the benefit of
selecting examples with high training utility can offset the
additional errors they contain. For corrected co-training,
we show that selecting examples with high training util-
ity reduces the number of sentences the human annotator
has to check. For both frameworks, we show that selec-
tion methods that maximize training utility find labeled
examples that result in better trained parsers than those
that only minimize error.

2 Co-training

Blum and Mitchell (1998) introduced co-training to
bootstrap two classifiers with differentviewsof the data.
The two classifiers are initially trained on a small amount
of annotated seed data; then they label unannotated data
for each other in an iterative training process. Blum and
Mitchell prove that, when the two views areconditionally
independentgiven the label, and each view is sufficient
for learning the task, co-training can boost an initial
weak learner using unlabeled data.

The theory underlying co-training has been extended
by Dasgupta et al. (2002) to prove that, by maximizing
their agreement over the unlabeled data, the two learn-
ers make few generalization errors (under the same in-
dependence assumption adopted by Blum and Mitchell).
Abney (2002) argues that this assumption is extremely
strong and typically violated in the data, and he proposes
a weaker independence assumption.

Goldman and Zhou (2000) show that, through care-
ful selection of newly labeled examples, co-training can
work even when the classifiers’ views do not satisfy
the independence assumption. In this paper we investi-
gate methods for selecting labeled examples produced by
two statistical parsers. We do not explicitly maximize
agreement (along the lines of Abney’s algorithm (2002))
because it is too computationally intensive for training
parsers.

The pseudocode for our co-training framework is given
in Figure 1. It consists of two different parsers and a cen-
tral control that interfaces between the two parsers and
the data. At each co-training iteration, a small set of sen-
tences is drawn from a large pool of unlabeled sentences
and stored in acache. Both parsers then attempt to label
every sentence in the cache. Next, a subset of the newly
labeled sentences is selected to be added to the train-
ing data. The examples added to the training set of one
parser (referred to as thestudent) are only those produced
by the other parser (referred to as theteacher), although
the methods we use generalize to the case in which the
parsers share a single training set. During selection, one
parser first acts as the teacher and the other as the student,
and then the roles are reversed.

A andB are two different parsers.
M i
A andM i

B are the models ofA andB at stepi.
U is a large pool of unlabeled sentences.
U i is a small cache holding a subset ofU at stepi.
L is the manually labeled seed data.
LiA andLiB are the labeled training examples forA andB

at stepi.
Initialize:

L0
A ← L0

B ← L.
M0
A ← Train(A,L0

A)
M0
B ← Train(B,L0

B)
Loop:

U i ← Add unlabeled sentences fromU .
M i
A andM i

B parse the sentences inU i and
assign scores to them according to their scoring
functionsfA andfB .

Select new parses{PA} and{PB} according to some
selection methodS, which uses the scores
from fA andfB .

Li+1
A isLiA augmented with{PB}

Li+1
B isLiB augmented with{PA}

M i+1
A ← Train(A,Li+1

A )
M i+1
B ← Train(B,Li+1

B )

Figure 1: The pseudo-code for the co-training algorithm

3 Selecting Training Examples

In each iteration, selection is performed in two steps.
First, each parser uses somescoring function, f , to assess
the parses it generated for the sentences in the cache.2

Second, the central control uses someselection method,
S, to choose a subset of these labeled sentences (based on
the scores assigned byf ) to add to the parsers’ training
data. The focus of this paper is on the selection phase, but
to more fully investigate the effect of different selection
methods we also consider two possible scoring functions.

3.1 Scoring functions

The scoring function attempts to quantify the correctness
of the parses produced by each parser. An ideal scor-
ing function would give the true accuracy rates (e.g., F-
score, the combined labeled precision and recall rates).
In practice, accuracy is approximated by some notion
of confidence. For example, one easy-to-compute scor-
ing function measures the conditional probability of the
(most likely) parse. If a high probability is assigned, the
parser is said to be confident in the label it produced.

In our experimental studies, we considered the selec-
tion methods’ interaction with two scoring functions: an
oracle scoring functionfF-score that returns the F-score
of the parse as measured against a gold standard, and a

2In our experiments, both parsers use the same scoring func-
tion.



practical scoring functionfprob that returns the condi-

tional probability of the parse.3

3.2 Selection methods

Based on the scores assigned by the scoring function,
the selection method chooses a subset of the parser la-
beled sentences that best satisfy some selection criteria.
One such criterion is the accuracy of the labeled exam-
ples, which may be estimated by the teacher parser’s con-
fidence in its labels. However, the examples that the
teacher correctly labeled may not be those that the stu-
dent needs. We hypothesize that the training utility of
the examples for the student parser is another important
criterion.

Training utility measures the improvement a parser
would make if that sentence were correctly labeled and
added to the training set. Like accuracy, the utility of
an unlabeled sentence is difficult to quantify; therefore,
we approximate it with values that can be computed from
features of the sentence. For example, sentences contain-
ing many unknown words may have high training util-
ity; so might sentences that a parser has trouble parsing.
Under the co-training framework, we estimate the train-
ing utility of a sentence for the student by comparing the
score the student assigned to its parse (according to its
scoring function) against the score the teacher assigned
to its own parse.

To investigate how the selection criteria of utility and
accuracy affect the co-training process, we considered a
number of selection methods that satisfy the requirements
of accuracy and training utility to varying degrees. The
different selection methods are shown below. For each
method, a sentence (as labeled by the teacher parser) is
selected if:

• above-n(Sabove-n): the score of the teacher’s parse
(using its scoring function)≥ n.

• difference(Sdiff-n): the score of the teacher’s parse
is greater than the score of the student’s parse by
some thresholdn.

• intersection(Sint-n): the score of the teacher’s parse
is in the set of the teacher’sn percent highest-
scoring labeled sentences, and the score of the stu-
dent’s parse for the same sentence is in the set of
the student’sn percent lowest-scoring labeled sen-
tences.

Each selection method has acontrol parameter, n, that
determines the number of labeled sentences to add at each
co-training iteration. It also serves as an indirect control

3A nice property of using conditional probability,
Pr(parse|sentence), as the scoring function is that it
normalizes for sentence length.

of the number of errors added to the training set. For ex-
ample, theSabove-nmethod would allow more sentences
to be selected ifn was set to a low value (with respect to
the scoring function); however, this is likely to reduce the
accuracy rate of the training set.

The above-nmethod attempts to maximize the accu-
racy of the data (assuming that parses with higher scores
are more accurate). Thedifferencemethod attempts to
maximize training utility: as long as the teacher’s label-
ing is more accurate than that of the student, it is cho-
sen, even if its absolute accuracy rate is low. Theinter-
sectionmethod attempts to maximize both: the selected
sentences are accurately labeled by the teacherandincor-
rectly labeled by the student.

4 Experiments

Experiments were performed to compare the effect of
the selection methods on co-training and corrected co-
training. We consider a selection method,S1, superior
to another,S2, if, when a large unlabeled pool of sen-
tences has been exhausted, the examples selected byS1

(as labeled by the machine, and possibly corrected by the
human) improve the parser more than those selected by
S2. All experiments shared the same general setup, as
described below.

4.1 Experimental Setup

For two parsers to co-train, they should generate com-
parable output but use independent statistical models.
In our experiments, we used a lexicalized context free
grammar parser developed by Collins (1999), and a lex-
icalized Tree Adjoining Grammar parser developed by
Sarkar (2002). Both parsers were initialized with some
seed data. Since the goal is to minimize human annotated
data, the size of the seed data should be small. In this pa-
per we used a seed set size of1, 000 sentences, taken from
section 2 of the Wall Street Journal (WSJ) Penn Tree-
bank. The total pool of unlabeled sentences was the re-
mainder of sections 2-21 (stripped of their annotations),
consisting of about 38,000 sentences. The cache size is
set at 500 sentences. We have explored using different
settings for the seed set size (Steedman et al., 2003).

The parsers were evaluated on unseen test sentences
(section 23 of the WSJ corpus). Section 0 was used as
a development set for determining parameters. The eval-
uation metric is the Parseval F-score over labeled con-
stituents: F-score = 2×LR×LP

LR+LP , whereLP and LR
are labeled precision and recall rate, respectively. Both
parsers were evaluated, but for brevity, all results reported
here are for the Collins parser, which received higher Par-
seval scores.
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Figure 2: A comparison of selection methods using the oracle scoring function,fF-score, controlling for the label
quality of the training data. (a) The average accuracy rates are about 85%. (b) The average accuracy rates (except for
those selected bySdiff-10%) are about 95%.

4.2 Experiment 1: Selection Methods and
Co-Training

We first examine the effect of the three selection meth-
ods on co-training without correction (i.e., the chosen
machine-labeled training examples may contain errors).
Because the selection decisions are based on the scores
that the parsers assign to their outputs, the reliability of
the scoring function has a significant impact on the per-
formance of the selection methods. We evaluate the ef-
fectiveness of the selection methods using two scoring
functions. In Section 4.2.1, each parser assesses its out-
put with anoracle scoring function that returns the Par-
seval F-score of the output (as compared to the human
annotated gold-standard). This is an idealized condition
that gives us direct control over the error rate of the la-
beled training data. By keeping the error rates constant,
our goal is to determine which selection method is more
successful in finding sentences with high training utility.

In Section 4.2.2 we replace the oracle scoring function
with fprob, which returns the conditional probability of
the best parse as the score. We compare how the selection
methods’ performances degrade under the realistic con-
dition of basing selection decisions on unreliable parser
output assessment scores.

4.2.1 Using the oracle scoring function,fF-score

The goal of this experiment is to evaluate the selection
methods using a reliable scoring function. We therefore
use an oracle scoring function,fF-score, which guaran-
tees a perfect assessment of the parser’s output. This,
however, may be too powerful. In practice, we expect
even a reliable scoring function to sometimes assign high
scores to inaccurate parses. We account for this effect by

adjusting the selection method’s control parameter to af-
fect two factors: the accuracy rate of the newly labeled
training data, and the number of labeled sentences added
at each training iteration. A relaxed parameter setting
adds more parses to the training data, but also reduces
the accuracy of the training data.

Figure 2 compares the effect of the three selection
methods on co-training for the relaxed (left graph) and
the strict (right graph) parameter settings. Each curve in
the two graphs charts the improvement in the parser’s ac-
curacy in parsing the test sentences (y-axis) as it is trained
on more data chosen by its selection method (x-axis).
The curves have different endpoints because the selection
methods chose a different number of sentences from the
same 38K unlabeled pool. For reference, we also plotted
the improvement of a fully-supervised parser (i.e., trained
on human-annotated data, with no selection).

For the more relaxed setting, the parameters are chosen
so that the newly labeled training data have an average
accuracy rate of about 85%:

• Sabove-70%requires the labels to have an F-score≥
70%. It adds about 330 labeled sentences (out of the
500 sentence cache) with an average accuracy rate
of 85% to the training data per iteration.

• Sdiff-10% requires the score difference between the
teacher’s labeling and the student’s labeling to be at
least 10%. It adds about 50 labeled sentences with
an average accuracy rate of 80%.

• Sint-60% requires the teacher’s parse to be in the
top 60% of its output and the student’s parse for the
same sentence to be in its bottom 60%. It adds about



150 labeled sentences with an average accuracy rate
of 85%.

Although none rivals the parser trained on human an-
notated data, the selection method that improves the
parser the most isSdiff-10%. One interpretation is that
the training utility of the examples chosen bySdiff-10%
outweighs the cost of errors introduced into the training
data. Another interpretation is that the other two selection
methods let in too many sentences containing errors. In
the right graph, we compare the sameSdiff-10% with the
other two selection methods using stricter control, such
that the average accuracy rate for these methods is now
about 95%:

• Sabove-90%now requires the parses to be at least
90% correct. It adds about 150 labeled sentences
per iteration.

• Sint-30% now requires the teacher’s parse to be in
the top 30% of its output and the student’s parse for
the same sentence in its bottom 30%. It adds about
15 labeled sentences.

The stricter control onSabove-90% improved the
parser’s performance, but not enough to overtake
Sdiff-10% after all the sentences in the unlabeled pool
had been considered, even though the training data of
Sdiff-10% contained many more errors.Sint-30% has a

faster initial improvement4, closely tracking the progress
of the fully-supervised parser. However, the stringent re-
quirement exhausted the unlabeled data pool before train-
ing the parser to convergence.Sint-30% might continue
to help the parser to improve if it had access to more un-
labeled data, which is easier to acquire than annotated
data5.

Comparing the three selection methods under both
strict and relaxed control settings, the results suggest that
training utility is an important criterion in selecting train-
ing examples, even at the cost of reduced accuracy.

4.2.2 Using thefprob scoring function
To determine the effect of unreliable scores on the se-

lection methods, we replace the oracle scoring function,
fF-score, with fprob, which approximates the accuracy
of a parse with its conditional probability. Although this
is a poor estimate of accuracy (especially when computed
from a partially trained parser), it is very easy to compute.
The unreliable scores also reduce the correlation between
the selection control parameters and the level of errors in
the training data. In this experiment, we set the parame-
ters for all three selection methods so that approximately

4A fast improvement rate is not a central concern here, but
it will be more relevant for corrected co-training.

5This oracle experiment is bounded by the size of the anno-
tated portion of the WSJ corpus.
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Figure 3: A comparison of selection methods using the
conditional probability scoring function,fprob.

30-50 sentences were added to the training data per iter-
ation. The average accuracy rate of the training data for
Sabove-70%was about 85%, and the rate forSdiff-30%
andSint-30% was about 75%.

As expected, the parser performances of all three selec-
tion methods usingfprob (shown in Figure 3) are lower
than usingfF-score (see Figure 2). However,Sdiff-30%
andSint-30% helped the co-training parsers to improve
with a 5% error reduction (1% absolute difference) over
the parser trained only on the initial seed data. In con-
trast, despite an initial improvement, usingSabove-70%
did not help to improve the parser. In their experiments on
NP identifiers, Pierce and Cardie (2001) observed a sim-
ilar effect. They hypothesize that co-training does not
scale well for natural language learning tasks that require
a huge amount of training data because too many errors
are accrued over time. Our experimental results suggest
that the use of training utility in the selection process can
make co-training parsers more tolerant to these accumu-
lated errors.

4.3 Experiment 2: Selection Methods and
Corrected Co-training

To address the problem of the training data accumulating
too many errors over time, Pierce and Cardie proposed
a semi-supervised variant of co-training called corrected
co-training, which allows a human annotator to review
and correct the output of the parsers before adding it to
the training data. The main selection criterion in their
co-training system is accuracy (approximated by confi-
dence). They argue that selecting examples with nearly
correct labels would require few manual interventions
from the annotator.

We hypothesize that it may be beneficial to consider
the training utility criterion in this framework as well.
We perform experiments to determine whether select-
ing fewer (and possibly less accurately labeled) exam-
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Figure 4: A comparison of selection methods for corrected co-training usingfF-score (a) in terms of the number of
sentences added to the training data; (b) in terms of the number of manually corrected constituents.

ples with higher training utility would require less effort
from the annotator. In our experiments, we simulated
the interactive sample selection process by revealing the
gold standard. As before, we compare the three selection
methods using bothfF-scoreandfprob as scoring func-

tions.6

4.3.1 Using the oracle scoring function,fF-score

Figure 4 shows the effect of the three selection meth-
ods (using the strict parameter setting) on corrected co-
training. As a point of reference, we plot the improve-
ment rate for a fully supervised parser (same as the one
in Figure 2). In addition to charting the parser’s perfor-
mance in terms of the number of labeled training sen-
tences (left graph), we also chart the parser’s performance
in terms of the the number of constituents the machine
mislabeled (right graph). The pair of graphs indicates the
amount of human effort required: the left graph shows
the number of sentences the human has to check, and the
right graph shows the number of constituents the human
has to correct.

ComparingSabove-90%and Sdiff-10%, we see that
Sdiff-10% trains a better parser thanSabove-90%when all
the unlabeled sentences have been considered. It also im-
proves the parser using a smaller set of training exam-
ples. Thus, for the same parsing performance, it requires
the human to check fewer sentences thanSabove-90%and
the reference case of no selection (Figure 4(a)). On the
other hand, because the labeled sentences selected by
Sdiff-10% contain more mistakes than those selected by
Sabove-90%, Sdiff-10% requires slightly more corrections

6The selection control parameters are the same as the previ-
ous set of experiments, using the strict setting (i.e., Figure 2(b))
for fF-score.

than Sabove-90%for the same level of parsing perfor-
mance; though both require fewer corrections than the
reference case of no selection (Figure 4(b)). Because
the amount of effort spent by the annotator depends on
the number of sentences checked as well as the amount
of corrections made, whetherSdiff-10% or Sabove-90%is
more effort reducing may be a matter of the annotator’s
preference.

The selection method that improves the parser at the
fastest rate isSint-30%. For the same parser performance
level, it selects the fewest number of sentences for a hu-
man to check and requires the human to make the least
number of corrections. However, as we have seen in the
earlier experiment, very few sentences in the unlabeled
pool satisfy its stringent criteria, so it ran out of data be-
fore the parser was trained to convergence. At this point
we cannot determine whetherSint-30%might continue to
improve the parser if we used a larger set of unlabeled
data.

4.3.2 Using thefprob scoring function

We also consider the effect of unreliable scores in the
corrected co-training framework. A comparison between
the selection methods usingfprob is reported in Figure
5. The left graph charts parser performance in terms of
the number of sentences the human must check; the right
charts parser performance in terms of the number of con-
stituents the human must correct. As expected, the unreli-
able scoring function degrades the effectiveness of the se-
lection methods; however, compared to its unsupervised
counterpart (Figure 3), the degradation is not as severe.
In fact, Sdiff-30% andSint-30% still require fewer train-
ing data than the reference parser. Moreover, consistent
with the other experiments, the selection methods that at-
tempt to maximize training utility achieve better parsing



performance thanSabove-70%. Finally, in terms of reduc-
ing human effort, the three selection methods require the
human to correct comparable amount of parser errors for
the same level of parsing performance, but forSdiff-30%
andSint-30%, fewer sentences need to be checked.

4.3.3 Discussion

Corrected co-training can be seen as a form of active
learning, whose goal is to identify the smallest set of un-
labeled data with high training utility for the human to
label. Active learning can be applied to a single learner
(Lewis and Catlett, 1994) and to multiple learners (Fre-
und et al., 1997; Engelson and Dagan, 1996; Ngai and
Yarowsky, 2000). In the context of parsing, all previ-
ous work (Thompson et al., 1999; Hwa, 2000; Tang et
al., 2002) has focussed on single learners. Corrected co-
training is the first application of active learning for mul-
tiple parsers. We are currently investigating comparisons
to the single learner approaches.

Our approach is similar toco-testing(Muslea et al.,
2002), an active learning technique that uses two classi-
fiers to find contentious examples (i.e., data for which the
classifiers’ labels disagree) for a human to label. There is
a subtle but significant difference, however, in that their
goal is to reduce the total number of labeled training ex-
amples whereas we also wish to reduce the number of
correctionsmade by the human. Therefore, our selection
methods must take into account the quality of the parse
produced by the teacher in addition to how different its
parse is from the one produced by the student. Theinter-
sectionmethod precisely aims at selecting sentences that
satisfy both requirements. Exploring different selection
methods is part of our on-going research effort.

5 Conclusion

We have considered three selection methods that have dif-
ferent priorities in balancing the two (often competing)
criteria of accuracy and training utility. We have em-
pirically compared their effect on co-training, in which
two parsers label data for each other, as well as corrected
co-training, in which a human corrects the parser labeled
data before adding it to the training set. Our results sug-
gest that training utility is an important selection criterion
to consider, even at the cost of potentially reducing the ac-
curacy of the training data. In our empirical studies, the
selection method that aims to maximize training utility,
Sdiff-n, consistently finds better examples than the one
that aims to maximize accuracy,Sabove-n. Our results
also suggest that the selection method that aims to maxi-
mize both accuracy and utility,Sint-n, shows promise in
improving co-training parsers and in reducing human ef-
fort for corrected co-training; however, a much larger un-
labeled data set is needed to verify the benefit ofSint-n.

The results of this study indicate the need for scor-
ing functions that are better estimates of the accuracy of
the parser’s output than conditional probabilities. Our
oracle experiments show that, by using effective selec-
tion methods, the co-training process can improve parser
peformance even when the newly labeled parses are
not completely accurate. This suggests that co-training
may still be beneficial when using a practical scoring
function that might only coarsely distinguish accurate
parses from inaccurate parses. Further avenues to ex-
plore include the development of selection methods to
efficiently approximate maximizing the objective func-
tion of parser agreement on unlabeled data, following the
work of Dasgupta et al. (2002) and Abney (2002). Also,
co-training might be made more effective if partial parses
were used as training data. Finally, we are conducting ex-
periments to compare corrected co-training with other ac-
tive learning methods. We hope these studies will reveal
ways to combine the strengths of co-training and active
learning to make better use of unlabeled data.
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