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Abstract. We consider some class of quasilinear elliptic equations and
show that if the dimension of the domain is large enough then the solu-
tions to these equations exist independently of the right side’s increasing
rate.

1. Introduction

The theorem we present is obtained by quite standard means and it should
not be mentioned here if it were not some strange, from the first look, effect.

As it is well known the problem

−∆u = |u|p−2u, u |∂M= 0,

here M is an m-dimensional star-shaped bounded domain, has nontrivial
solutions of H1

0 (M) provided p < 2m/(m− 2). And by Pohozaev’s identity,
if p > 2m/(m− 2) then it has not.

These facts convince us that the increasing rate of the equation’s right
side is critical for existence of a solution.

On the other hand one knows another factor that should impede the
existence. This factor is a dimension of the domain M .

We consider some class of quasilinear elliptic equations and show that
if the dimension of the domain is large enough then the solutions to these
equations exist independently of the right side’s increasing rate.

2. Main theorem

Let M ⊂ Rm be a bounded domain with smooth boundary ∂M = M\M .
For x = (x1, . . . , xm) introduce the standard Euclidian norm |x|2 =∑m
i=1 x2

i .
Suppose the domain M to be contained in a ball:

M ⊆ BR(x0,Rm) = {x ∈ Rm | |x− x0| < R}.
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Introduce a Banach space

C1
0 (M) = {v ∈ C1(M) | v |∂M= 0}.

Assume a function f : C1
0 (M) → L∞(M) to be continuous.

The main object of our study is the following elliptic problem:

−∆u = f(u), u |∂M= 0. (2.1)

Theorem 1. Suppose there exists a constant λ such that for any

v ∈ C1
0 (M), |v(x)| ≤ λ

the inequality

|f(v)| ≤ 2mλ

R2
(2.2)

holds almost everywhere (a.e.) in M .
Then problem (2.1) has a solution

u ∈ H̃2,r(M) = H1,r
0 (M)

⋂
H2,r(M), r > m.

For example one can take f(u) = (2 + cos(|∇u|2))eu.
Let Mm ⊂ Rm, be bounded domains with smooth boundaries and all

these domains are inscribed in corresponding Euclidian balls with the same
radius R.

Let a function g : R → R be continuous and define the mapping f as
follows: f(v) = g(v(x)).

Consider problem (2.1) with given f in the domains Mm. We claim that
in such a case problem (2.1) has a solution provided m is sufficiently large.
Indeed, take a positive constant λ and observe that the function g is bounded
in the closed interval [−λ, λ], thus inequality (2.2) will certainly be fulfilled,
if only the number m is sufficiently large.

To illustrate this effect consider an example:

−∆u = ceu, u |∂B1(0,Rm)= 0, (2.3)

constant c is positive.
In one dimensional case equation (2.3) can be integrated explicitly, how-

ever the corresponding integrals do not express by the elementary functions.
Numerical simulation of these integrals shows that the problem (2.3) has a
solution if and only if

c ≤ 0, 87845 . . .

On the other hand, applying Theorem 1 with |v(x)| ≤ λ one has:

cev ≤ ceλ ≤ 2mλ. (2.4)

If
c ≤ 2e−1m = m · 0, 73575 . . .

then the second inequality of (2.4) has a solution with respect to λ.
So letting for example c = 1 we see that problem (2.3) has no solutions

in one dimensional case, and by Theorem 1 it has a solution for m ≥ 2. To
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conclude this, notice that by Proposition 1 (see below), the solution to (2.3)
is nonnegative.

3. Proof

Further arguments are quite standard: we use a version of the comparison
principle.

Denote by ∆−1h the solution of the problem

∆w = h ∈ Hs,p(M), w |∂M= 0, s ≥ 0, p > 1.

As it is well known the linear mapping ∆−1 : Hs,p(M) → H̃s+2,p(M) is
bounded.

Construct a mapping G as follows:

G(v) = −∆−1f(v).

We look for a fixed point of this mapping.
Previous assumptions imply that G : C1

0 (M) → H̃2,r(M) is continuous
and by virtue of the embeddings:

H̃2,r(M) @ H̃2−δ,r(M) ⊂ C1
0 (M), 0 < δ < 1, (1− δ)r > m (3.1)

(@ is a completely continuous embedding) the mapping G : C1
0 (M) →

C1
0 (M) is completely continuous.
Consider a function

U(x) =
λ

R2
(R2 − |x− x0|2).

This function takes positive values for x ∈ BR(x0), attains its maximum at
x0:

max
BR(x0,Rm)

U = U(x0) = λ,

and satisfy the following Poisson equation:

−∆U =
2mλ

R2
. (3.2)

Let us recall a version of the maximum principle.

Proposition 1 ([1]). IF v ∈ H1(M) and ∆v ≥ 0 then inequality v(x) ≤ 0
a.e. in ∂M implies that v(x) ≤ 0 a.e. in M .

Lemma 1. The mapping G takes a set

W = {w ∈ C1
0 (M) | |w(x)| ≤ λ, x ∈ M}

to itself. Furthermore, the set G(W ) is bounded in H̃2,r(M).

Proof. Since −∆G(w) = f(w) by formula (3.2) one has:

∆(G(w)− U) = −f(w) +
2mλ

R2
≥ 0
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a.e. in M . Observing that (G(w) − U) |∂M= −U |∂M≤ 0 by Proposition 1
we see: G(w) ≤ U a.e. in M . The same arguments give: −U ≤ G(w) a.e.
in M . Finally a.e. in M we have:

|G(w)| ≤ U ≤ max
BR(x0,Rm)

U = λ.

By assumption of the Theorem the set f(W ) is bounded in L∞(M):
|f(W )| ≤ 2mλ/R2, consequently the set ∆−1f(W ) is bounded in H̃2,r(M).

¤
Lemma 1 and formula (3.1) imply that the set G(W ) is precompact in

C1
0 (M). Observing that W is a convex set, we apply Schauder’s fixed point

theorem to the mapping G : W → W and obtain desired fixed point: u =
G(u) ∈ H̃2,r(M).

The Theorem is proved.
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