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Abstract. This paper reviews the advances of mixed-integer linear programming (MILP) based approaches
for the scheduling of chemical processing systems. We focus on the short-term scheduling of general network
represented processes. First, the various mathematical models that have been proposed in the literature are
classified mainly based on the time representation. Discrete-time and continuous-time models are presented
along with their strengths and limitations. Several classes of approaches for improving the computational
efficiency in the solution of MILP problems are discussed. Furthermore, a summary of computational
experiences and applications is provided. The paper concludes with perspectives on future research directions
for MILP based process scheduling technologies.
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Process scheduling has attracted an increasing amount of attention from both the academi-
a and the industry in the past decade. The reason for this is twofold. First, it reflects
the pressure faced by the chemical processing and manufacturing related industries to
improve productivity and reduce costs. Second, it is driven by the substantial advances of
related modeling and solution techniques, as well as the rapidly growing computational
power. The problem of interest is to determine the most efficient way to produce a set of
products in a time horizon given a set of limited resources and processing recipes. The
activities to be scheduled usually take place in multiproduct and multipurpose plants,
in which a wide variety of different products can be manufactured via the same recipe
or different recipes by sharing limited resources, such as equipment, material, time, and
utilities. These types of plants have long been employed to manufacture chemicals in
small quantities which have high added-values or frequently changing process parameters
or demands. Their inherent operational flexibility provides the platform for great benefits
that can be obtained through good production schedules.

Mathematical programming, especially Mixed Integer Linear Programming
(MILP), because of its rigorousness, flexibility and extensive modeling capability, has
become one of the most widely explored methods for process scheduling problems.
Applications of MILP based scheduling methods range from the simplest single-stage
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single-unit multiproduct processes to the most general multipurpose processes. These
process scheduling problems are inherently combinatorial in nature because of the many
discrete decisions involved, such as equipment assignment and task allocation over time.
They belong to the set of NP-complete problems (Garey and Johnson, 1979), which
means that the solution time scales exponentially as the problem size increases in the
worst case. This has important implications for the solution of scheduling problems.

There has been a number of reviews related to process scheduling in the chem-
ical engineering and the operations research literature. Reklaitis (1992) reviewed the
scheduling and planning of batch process operations, focusing on the basic components
of chemical process scheduling problems and the available solution methods. Rippin
(1993) summarized the development of batch process systems engineering with particu-
lar reference to the areas of design, planning, scheduling and uncertainty. Grossmann et al.
(1996) provided an overview of mixed-integer optimization techniques for the design and
scheduling of batch chemical processes. They concentrated on basic solution methods
and recent developments for mixed-integer linear and nonlinear programming problems
and also discussed issues in modeling and reformulation. Bassett et al. (1996a) reviewed
existing strategies for implementing integrated applications based on mathematical pro-
gramming models and examined four classes of integration including scheduling, control,
planning and scheduling across single and multiple sites, and design under uncertainty.
Applequist et al. (1997) discussed the formulation and solution of process scheduling and
planning problems, as well as issues associated with the development and use of schedul-
ing software. Shah (1998) examined first different techniques for optimizing production
schedules at individual sites, with an emphasis on formal mathematical methods, and
then focused on progress in the overall planning of production and distribution in multi-
site flexible manufacturing systems. Pekny and Reklaitis (1998) discussed the nature
and characteristics of the scheduling/planning problems and pointed out the key impli-
cations for the solution methodology for these problems. They reviewed the available
scheduling technologies, including randomized search, rule-based methods, constraint
guided search, simulation-based strategies, as well as mathematical programming for-
mulation based approaches using conventional and engineered solution algorithms. Pinto
and Grossmann (1998) presented an overview of assignment and sequencing models used
in process scheduling with mathematical programming techniques. They identified two
major categories of scheduling models—one for single-unit assignment and the other for
multiple-unit assignment—and discussed the critical issues of time representation and
network structure.

Given the computational complexity of combinatorial problems arising from pro-
cess scheduling, it is of crucial importance to develop effective mathematical formula-
tions to model the manufacturing processes and to explore efficient solution approaches
for such problems. The objective of this paper is to present an overview of advances in
MILP based approaches for process scheduling problems. We focus on the short-term
scheduling of general network represented processes. The rest of this paper is organized
as follows. First, the mathematical models that have been proposed in the literature are
classified and presented along with their strengths and limitations. Then, a variety of
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approaches developed to overcome the computational difficulty in the solution of large
MILP problems are discussed. Subsequently, a summary of computational experiences
and applications follows. Finally, the paper will conclude with views on future research
directions for MILP based process scheduling technologies.

1. MILP mathematical formulations

1.1. Characteristics and classification of process scheduling problems

In the context of chemical processing systems, the scheduling problem generally con-
sists of the following components: (i) production recipes, which specify the sequences of
tasks to be performed for manufacturing given products; (ii) available processing/storage
equipment; (iii) intermediate storage policy; (iv) production requirements; (v) specifica-
tions of resources, such as utilities and manpower; and (vi) a time horizon of interest.
The goal is to determine a schedule which includes the details of (i) the sequence of
tasks to be performed in each piece of equipment; (ii) the timing of each task; and (iii)
the amount of material to be processed (i.e., batch-size) by each task. The performance
of a schedule is measured with one or more criteria, for example, the overall profit, the
operating costs, and the makespan.

1.1.1. Process representation
Production recipes in chemical processes can be very complex. Furthermore, different
products can have very low recipe similarities. For scheduling, network based represen-
tations have been developed to represent these production recipes in an ambiguity-free
way. Kondili, Pantelides, and Sargent (1993) proposed a general framework of State-
Task Network (STN). The STN representation of a chemical process is a directed graph
with two types of distinctive nodes: the state nodes denoted by a circle, representing
raw materials, intermediate materials or final products, and the task nodes denoted by a
rectangle box, representing a physical or chemical operation, such as reaction, heating
and separation. The fraction of a state consumed or produced by a task, if not equal to
one, is given beside the arch linking the corresponding state and task nodes. An example
of the STN representation is presented in figure 1. This process exhibits a number of fea-
tures characteristic of many chemical processes, including multiple inputs and outputs
(Task 4 has two inputs, S3 and S5, and two outputs, S2 and S4), shared raw material
among different tasks (both Task2 and Task3 use S2), production of the same product
by different tasks (S2 is produced by Task1 and Task4), and recycle (Task4 produces S2
which is used by Task2, an earlier task in the processing sequence).

Pantelides (1993) extended the STN to the Resource-Task Network (RTN) frame-
work, which characterizes the entirely uniform description of available resources, such
as materials, processing equipment, storage, and utilities. Each task transforms a set of
resources to another set of resources. Figure 2 gives an example of the RTN framework.
In addition to materials, other resources and their interactions with the tasks are also
included in the network. For example, Resource1 ∼ Resource4 are materials that the
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Figure 1. Example of State-Task Network (STN) process representation.
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Figure 2. Example of Resource-Task Network (RTN) process representation.

tasks consume and produce. Resource5 ∼ Resource9 represent equipment and they are
considered to be consumed at the start of a task and produced at the end. Certain prop-
erties of a piece of equipment may be changed by a task (e.g., cleanliness) and it may
require another task (e.g., cleaning) to restore it before being used again. In this case, the
equipment is treated as two different resources before and after the task. For instance, in
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figure 2, Task2 uses Resource6, a clean unit, and “produces” Resource7, a soiled unit;
Resource7 is restored back to Resource6 by Task4, a cleaning operation. Note that tasks
taking place in different units are now regarded as different tasks, for example, Task3a
and Task3b consume the same raw material, Resource3, and produce the same product
Resource4, but they use two different units, Resource6 and Resource8, respectively.

It should be pointed out that there exists a special class of processes, called sequen-
tial processes, which involves relatively simple production recipes and are frequently
employed in chemical and other industries. This type of processes exhibit linear struc-
ture in the production recipe without material merging/splitting or recycle. To make a
product, the corresponding raw material undergoes one or multiple stages. Each stage
consists of a simple operation with a single input from the previous stage and a single
output going to the next stage, though there can be one or parallel units at each stage. Fur-
thermore, different products follow the same or very similar processing sequences. Due
to this special structure of the processing recipe, orders/batches/jobs are used to represent
production and mass balances are often not taken into account explicitly. A significant
amount of work has been dedicated to the development of MILP based approaches for
this class of scheduling problems exploring the special structure of sequential processes,
which can be classified into two main groups as methods based on time slots (for ex-
ample, Pinto and Grossmann, 1995; Pinto et al., 1998; Karimi and McDonald, 1997;
Lamba and Karimi, 2002a; Bok and Park, 1998; Moon and Hrymak, 1999) and methods
based on direct definition of sequences and/or timings of orders/batches (for example, Ku
and Karimi, 1998; Cerdá, Henning, and Grossmann, 1997; Méndez, Henning, and Cerdá,
2000b, 2001; Moon, Park, and Lee, 1996; Hui, Gupta, and Meulen, 2000; Hui and Gupta,
2001; Orçun, Altinel, and Hortaçsu, 2001; Lee et al., 2002). Readers interested in this
class of scheduling problems are directed to a recent review by Floudas and Lin (2004).
In this paper, we focus on the scheduling of general network-represented processes.

In addition to the complexity of processing recipes, scheduling problems of chem-
ical processes are further complicated by a number of other considerations, including
intermediate storage, changeovers, batch and continuous operation modes, demand pat-
terns, resource restrictions, and a variety of objectives (for more details of these char-
acteristics, see Pinto and Grossmann, 1998; Floudas and Lin, 2004). The complexity of
the process scheduling problems necessitates the development of effective schemes for
organizing the large amount of information required to describe most scheduling applica-
tions. For instance, Zentner et al. (1998) proposed a high level language as a compact and
context independent means of expressing a wide variety of process scheduling problems.

1.1.2. Time representation
To formulate a mathematical model for any process scheduling problem, the first major
issue that arises is how to represent the time. Based on two different ways for time rep-
resentation, we classify all existing formulations into two main categories: discrete-time
models and continuous-time models. The scheduling formulations in the first category
follow the approach of time discretization. The time horizon of interest is divided into a
number of time intervals with uniform durations and decisions to be made are associated
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Figure 3. Discrete and continuous representations of time.

with these time intervals, as illustrated in part (a) of figure 3. Therefore, activities that
affect the schedule or changes of the state of the manufacturing system, such as the start
of a task or change of inventory, can only take place at a specific instance of each time
interval, for example, at the beginning of each time interval. This is essentially an approx-
imation of time. In many cases, a short length of time has to be used for the duration of
the time intervals in order to achieve a reasonable degree of accuracy. For example, when
all the processing times are fixed, their greatest common factor (GCF) can be selected as
the duration of the time intervals, otherwise only suboptimal solutions can be obtained.
When very small time interval length needs to be used and/or the time horizon under
consideration is long, the number of the discretized time intervals can be very large. This
leads to very large combinatorial problems, which are computationally very expensive
to solve or even intractable. These two main drawbacks, namely the approximation na-
ture and the computational difficulty in the solution of the resulting large combinatorial
models, substantially restrict the application of the discrete-time approach, especially to
real-world problems.

To address the aforementioned drawbacks of the discrete-time approach, research
efforts have emerged to develop more effective continuous-time formulations for process
scheduling. In contrast to the discrete-time approach, the continuous-time models intro-
duce the key concept of event or variable time interval. The exact definition of event varies
from one formulation to another, but essentially, they all correspond to a time instance in
the continuous domain of the horizon. By associating the events to continuous variables
which can take potentially any value in the time horizon, the activities or changes of sys-
tem, for example, the start and the end of a task, are allowed to take place at any time in
the horizon, which renders the capability of modeling the time most accurately. More im-
portantly, by eliminating a major fraction of the inactive event-time interval assignments
that is characteristic in the solution of a discrete-time model, a usually much smaller
number of events or variable time intervals need to be introduced to model the produc-
tion process compared to the number of fixed time intervals required by the discrete-time
approach. Consequently, the continuous-time approach leads to mathematical program-
ming problems of much smaller size, which, in many cases, requires less computational
effort for their solution. On the other hand, however, because of the variable nature of the
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timings of the events, it becomes more challenging to model the scheduling process and
the resulting mathematical models may exhibit more complicated structures compared
to their discrete-time counterparts. The basic idea of the continuous-time approach is
illustrated in part (b) of figure 3.

In the following sections, the various existing discrete-time and continuous-time
models will be discussed. An extensive discussion of discrete-time versus continuous-
time models for process scheduling can also be found in Floudas and Lin (2004).

1.2. Discrete-time models

Discrete-time scheduling formulations make use of the concept of discretization. The
time horizon of interest is divided into a number of time intervals of uniform du-
rations. The start/end of a task and other important events are associated with the
boundaries of these time intervals. With such a common reference time grid for all
operations competing for shared resources, such as equipment items, the various rela-
tionships in a scheduling problem can be formulated as constraints of relatively simple
forms.

The earliest research contributions that employed this approach for scheduling
problems were reported in the operations research literature. Bowman (1959) proposed
the first mathematical formulation for the general jobshop scheduling problem. He in-
troduced variables that were to take the values of zero or one to represent whether or
not a product occupied a machine during a time period and formulated a (integer) linear
programming problem. Manne (1960) presented another discrete-time model in which
integer-value variables were defined to represent the time period at which a task was to
begin and the resulted discrete linear programming problem involved fewer variables.
Both work pointed out the computational challenges associated to the solution of such
mixed integer programming models. It should be noted that these models focused on se-
quencing problems and didn’t deal with the timing issue explicitly. Notable subsequent
developments include the work by Pritsker, Watters, and Wolfe (1969) for resource-
limited multiproject and jobshop scheduling.

More recently, the same approach was introduced to the chemical engineering
community for the general process scheduling problem. Kondili, Pantelides, and Sargent
(1988, 1993) proposed the first discrete-time formulation for the scheduling of general
chemical processes based on the STN representation. In their formulation, the key de-
cision variables, Wi jt , are introduced to account for the assignment of units to tasks.
This set of binary variables determine whether or not a task (i) starts in unit ( j) at the
beginning of time interval (t) and the following allocation constraint is formulated to
express the restriction that for any unit, at most one task can start at the beginning of
each time interval.

∑

i∈I j

Wi jt ≤ 1, ∀ j ∈ J, t ∈ T, (1)
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where I j is the set of tasks that can be performed in unit ( j). Furthermore, if a task
starts in a unit at a time interval, no other task can start in the same unit until this task is
finished. This requirement is enforced as follows:

∑

i ′∈I j

t+αi j −1∑

t ′=t

Wi ′ j t ′ − 1 ≤ M(1 − Wi jt ), ∀ j ∈ J, i ∈ I j , t ∈ T, (2)

where αi j is the fixed processing time of task (i) in unit ( j) and M is a sufficiently large
positive number.

In addition to the binary variables, the following two sets of continuous variables
are also important. Bi jt represents the amount of material which starts undergoing task (i)
in unit ( j) at time interval (t) (i.e., batch-size), and Sst determines the amount of material
state (s) during time interval (t). The batch-size of a task is related to the corresponding
assignment variable through the capacity constraints as follows:

Wi jt V
Min

i j ≤ Bi jt ≤ Wi jt V
Max

i j , ∀i ∈ I, j ∈ Ji , t ∈ T, (3)

where V Min
i j and V Max

i j are the minimum and maximum capacity of unit ( j) for task
(i), respectively. The mass balance can be expressed effectively by establishing the
relationships between the inventory levels at two consecutive time intervals through the
following constraint:

Sst = Ss,t−1 +
∑

i∈I p
s

ρ
p
is

∑

j∈Ji

Bi, j,t−αis −
∑

i∈I c
s

ρc
is

∑

j∈Ji

Bi, j,t + Rst − Dst, ∀s ∈ S, t ∈ T,
(4)

where I p
s and I c

s are the set of tasks that produce and consume state (s), respectively; ρ
p
is

and ρc
is are the fractions of state (s) produced and consumed by task (i), respectively; Ji is

the set of units suitable for task (i); αis is the processing time for state (s) by task (i). Rst

is the amount of state (s) received from external sources at time interval (t) and variable
Dst represents the amount of state (s) delivered at time interval (t). The restriction on
storage of a material state is then represented simply as upper bounds on the variables
Sst:

0 ≤ Sst ≤ Cs, ∀s ∈ S, t ∈ T, (5)

where Cs is the storage capacity limit for state (s).
Other considerations, such as change-overs and limited utility resources, can also be

incorporated readily in the discrete-time model (Kondili, Pantelides, and Sargent, 1988,
1993). There has been subsequent progresses following this discretization approach and
discrete-time formulation and solution techniques have been developed for a variety
of problems. Examples of related work include those presented by Pantelides (1993),
Dedopoulos and Shah (1995), Pekny and Zentner (1993), Zentner et al. (1994), Bassett,
Pekny, and Reklaitis (1996b) and Elkamel et al. (1997).
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The main advantage of the discrete-time representation is that it provides a refer-
ence grid of time for all operations competing for shared resources, which renders the
possibility of formulating the various constraints in the scheduling problem in a rela-
tively simple manner and usually leads to well-structured mathematical programming
problems. However, the discrete-time approach has two main limitations: the discrete
approximation of time and the large size of resulting MILP problems. Due to the contin-
uous nature of time and the concept of discretization, the discrete-time formulations are
by definition only approximations of the actual problem. Furthermore, one of the key is-
sues in this approach is the selection of the time interval duration, which always presents
a tradeoff between the solution quality and the computational requirement. If a coarse
discretization scheme is used, the problem size may be tractable, but there is an inevitable
loss of model accuracy and it results by definition in suboptimal solutions. Furthermore,
for operations with variable processing times such as continuous processes, which con-
sume feeds and produce products continuously and in general can potentially run for a
time period of any duration, the discrete-time approach only provides an approximate
description of the actual process and the resulting schedule may deviate substantially
from the true optimal solution. On the other hand, if a small time interval is used to
achieve desirable degree of accuracy, the discrete-time approach inevitably leads to very
large combinatorial problems that are difficult or even impossible to solve, especially for
medium or large practical applications.

1.3. Continuous-time models

To address the aforementioned drawbacks of the discrete-time models, research efforts
have been spent in the past decade on the development of more effective and efficient
continuous-time approaches for process scheduling problems. For general network-
represented processes, we classify the continuous-time models that have been presented
in the literature into two groups. The first group of models define a set of events (or
variable time slots, time points) that are used for all tasks and all units. We denote such
formulations as “global event based models.” The second group of models introduce
event points on a unit basis, allowing tasks in different units associated with the same
event point to take place at different times. We denote such models as “unit-specific event
based models.”

1.3.1. Global event based models
The time representation scheme employed in the global event based continuous-time
scheduling models relies on the introduction of events or variable time slots that are
universal for all units and the association of continuous variables to these events or time
slots to determine their timings. The earliest work following this direction were presented
by Zhang (1995), Zhang and Sargent (1996, 1998), Mockus and Reklaitis (1997a, 1999b),
Mockus et al. (1997) and Schilling and Pantelides (1996). Recent developments include
those presented by Castro, Barbosa-Póvoa, and Matos (2001), Majozi and Zhu (2001),
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Lee, Park, and Lee (2001), Burkard, Fortuna, and Hurkens (2002) and Wang and Guignard
(2002).

Zhang (1995) and Zhang and Sargent (1996, 1998) developed the first continuous-
time models for the scheduling of general network-represented processes. Their formula-
tions employ either the STN or the RTN representation and can handle mixed production
facilities involving both batch and continuous processes. One of the key variables in
their formulations concerns the timings of events, Tk . This set of continuous variables
are required to be monotonically increasing.

0 = T1 < T2 < · · · < TK ≤ H, (6)

where H is the time Horizon.
Then, based on the STN framework, two sets of binary variables can be defined

to associate the tasks to the events. Wi jk determines whether or not task (i) starts at Tk

in unit ( j) and Xi jkk ′ is activated if task (i) starts at Tk in unit ( j) and completes at Tk ′ .
With these variables, the allocation constraints can be written as follows to ensure that
if a task starts in a unit at one event time, it finishes at exactly one later event time and
that at each event time a unit can be occupied by at most one task.

Wi jk =
∑

k ′≥k

Xi jkk ′, ∀i ∈ I, j ∈ Ji , k ∈ K , (7)

∑

i∈I j

∑

k≤k ′≤k ′′
Xi jkk ′′ ≤ 1, ∀ j ∈ J, k ′ ∈ K . (8)

Capacity constraints and mass balances are expressed in similar forms as those in
the discrete-time models.

Wi jk V Min
i j ≤ Bi jk ≤ Wi jk V Max

i j , ∀i ∈ I, j ∈ Ji , k ∈ K , (9)

Ssk = Ss,k−1 +
∑

i∈I p
s

ρ
p
is

∑

j∈Ji

∑

k ′≤k

Xi jk ′k Bi jk ′ −
∑

i∈I c
s

ρc
is

∑

j∈Ji

Wi jk Bi jk, ∀s ∈ S, k ∈ K .

(10)

The duration of a task, represented by variable ti jk , is determined by the following timing
constraint:

ti jk =
∑

k ′>k

Xi jkk ′(Tk ′ − Tk), ∀i ∈ I, j ∈ Ji , k ∈ K . (11)

Note that Constraints (10) and (11) involve bilinear products of binary and continuous
variables. Exact linearization techniques (Glover, 1975; Floudas, 1995) can be applied
to transform them into linear forms at the cost of introducing additional variables and
constraints.

Mockus and Reklaitis (1999a) proposed an alternative definition of the task-event
assignment variables. In their continuous-time formulations, which is called
Non-Uniform Discrete-Time Model (NUDTM), two sets of binary variables, W S

i jk and
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W F
i jk , are introduced to determine whether or not task (i) starts and finishes in unit

( j) at the time of event (k), respectively. Due to this different definition, the allocation
constraints are formulated in the following different form:

N jk = N j,k−1 −
∑

i∈I j

W S
i jk +

∑

i∈I j

W F
i jk, ∀ j ∈ J, k ∈ K , (12)

0 ≤ N jk ≤ 1, ∀ j ∈ J, k ∈ K , (13)

where N jk represents the number of available unit ( j) at time Tk and N j0 = 1.
Instead of the absolute times of the events, an alternative way to represent their

timings is to define the duration between two events (i.e., the duration of time slots),
�Tk , as the main timing variables, as suggested by Schilling and Pantelides (1996). The
sum of the durations of all slots should be equal to the whole time horizon:

K−1∑

k=1

�T = H. (14)

Schilling and Pantelides (1996) introduced binary variables yikk ′ to determine whether
or not task (i) starts at time (k) and is active over slot (k ′) ≥ (k). Based on the RTN
framework, they formulated general resource balance and capacity constraints similar to
the following:

Rrk = Rr,k−1 +
∑

i∈Ir

[
µc

ri Nik + νc
riξik +

k−1∑

k ′=1

(
µ

p
ri Nik ′ + ν

p
riξik ′

)
(yik ′,k−1 − yik ′,k)

]
,

∀r ∈ R, k ∈ K , (15)

Rmin
r ≤ Rrk ≤ Rmax

r , ∀r ∈ R, k ∈ K , (16)

where variable Rrk represents the amount of excess resource (r ) during slot (k), Nik

is the number of instances of task (i) starting at the beginning of slot (k), and ξik is
the extent of all instances of task (i) starting at the beginning of slot (k) (e.g., the
amount of material processed by the task). The duration of a task is now expressed
as:

tik =
∑

k ′≥k

yikk ′�Tk ′, ∀i ∈ I, k ∈ K . (17)

This approach of using the slot durations rather than the absolute times of the events has
the advantage that it may lead to tighter linearizations because of the smaller ranges of
the slot durations (Schilling and Pantelides, 1996).

The formulations described above all lead to large scale MINLP problems. Many
of the nonlinear terms can be linearized, but it usually requires the introduction of a large
number of additional variables and constraints and thus increases the size of the resulting
model. For certain classes of problems, for example, in the case of batch processes with
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simple forms of the objective function, all the nonlinearities can be eliminated and large
MILP models are generated.

In addition to the alternative ways to represent variable timings and to define allo-
cation and sequencing variables, the various global event based continuous-time models
may also differ in the exact definition of events, the process representation framework,
and the characteristics of the specific chemical process under investigation. For example,
Castro, Barbosa-Póvoa, and Matos (2001) proposed an RTN based MILP formulation
for the short-term scheduling of batch processes. Majozi and Zhu (2001) presented an
MILP model for the short-term scheduling of batch processes based on a new process
representation called State Sequence Network. They used time points to denote the use
or production of states and introduced binary variables y(s, p) associated with the usage
of state (s) at time point (p). Their formulation leads to small MILP problems, but relies
on the definition of effective states which are related to tasks and units. Lee, Park, and
Lee (2001) reported an STN based MILP formulation for batch and continuous pro-
cesses, which introduced three sets of binary variables to account for the start, process,
and end events of each task. Burkard, Fortuna, and Hurkens (2002) developed an STN
based MILP formulation for the makespan minimization problem for batch processes
and discussed the choice of the objective function and additional constraints. Wang and
Guignard (2002) presented an STN based MILP formulation for batch process schedul-
ing problems, which proposed the definition of events associated with inventory changes
to reduce the total number of events required to model a schedule. Maravelias and Gross-
mann (2003) proposed an STN based MILP model for the short-term scheduling of
multipurpose batch processes which features the elimination of variables for task start-
ing times, a set of tightening inequalities to improve the LP relaxation, and accounts for
constraints on resources other than equipment.

The global event based continuous-time models can incorporate a wide variety of
considerations in process scheduling, such as intermediate storage, change-over, batch
and continuous operational modes, due dates, renewable resources, and various objective
functions.

All the global event based continuous-time models discussed above use an a priori
number of events/time slots/time points. As pointed out by Zhang and Sargent (1996),
an important issue is the estimation and adjustment of this number. An underestimation
may lead to suboptimal solutions or even infeasible problems, while an overestimation
results in unnecessarily large problems, which increase even more the difficulty of the
solution. Despite its significance, relatively little attention has been paid on this issue in
the literature. Two exceptions are the work presented by Schilling (1997) and recently by
Castro, Barbosa-Póvoa, and Matos (2001). They proposed an iterative procedure in which
the model begins with a small number of events and then the number is gradually increased
until no improvement can be achieved. However, as reported by Castro, Barbosa-Póvoa,
and Matos (2001), in some cases, the solution may improve only after the addition of more
than one event, which creates difficulty for the establishment of a stopping criterion that
can guarantee the optimality of the solution. In a more recent work, Burkard, Fortuna,
and Hurkens (2002) derived lower and upper bounds of the total number of batches
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Figure 4. Global events and unit-specific events.

from simple aggregating mixed-integer models based on the minimum and maximum
batch-sizes.

1.3.2. Unit-specific event based models
Ierapetritou and Floudas (1998a, 1998b, 2001), Ierapetritou, Hené, and Floudas (1999),
and Lin and Floudas (2001) proposed a new approach to formulate continuous-time
models for the short-term scheduling of general batch, semicontinuous, and continuous
chemical processes. These formulations employ an original concept of event points,
which are a sequence of time instances located along the time axis of a unit, each
representing the beginning of a task or utilization of the unit. The main difference between
this definition and those used in the global event based models described in the previous
section is illustrated in figure 4. Each event point can be located at different positions along
the time axis for different units, allowing different tasks to start at different time instances
in different units for the same event point. Because of the heterogeneous locations of the
event points for different units as well as the definition of an event as only the starting
of a task (compared to that in a global-event based model which considers the starting
and the finishing of a task as two events), for the same scheduling problem, the number
of event points required in this formulation is smaller than the number of events in the
global event based models described in the previous section. Consequently, the number
of binary variables is reduced substantially in this type of continuous-time formulations.

Based on the new event point concept, two sets of binary variables are defined as the
key assignment variables. wv(i, n) determines whether or not task (i) starts at event point
(n); and yv( j, n) determine whether or not unit ( j) starts being utilized at event point
(n). They are used in the following constraint to represent the restriction on allocation
that in each unit and at each event point at most one of the tasks that can be performed
in this unit should take place.

∑

i∈I j

wv(i, n) = yv( j, n), ∀ j ∈ J, n ∈ N . (18)
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It should be emphasized that the number of event points is the same for all the units,
however, the timing of each event point can be different in different units. Also note that
if a task can be performed in multiple units, it is split into multiple tasks with each one
performed in a different unit. This will increase the number of wv(i, n) binary variables
and in the worst case where every task can take place in every unit, the total number of
tasks after splitting is equal to the number of the original tasks times the number of units.

Based on the STN process representation, the main continuous variables in this
formulation include: B(i, j, n), the batch-size of task (i) in unit ( j) at event point (n);
ST (s, n) and D(s, n), the amounts of state (s) stored and delivered at event point (n)
respectively. Using these variables, the unit capacity, material balance and storage con-
straints can be formulated similarly to those in the discrete-time models and global event
based continuous-time models.

V min
i j wv(i, n) ≤ B(i, j, n) ≤ V max

i j wv(i, n), ∀i ∈ I, j ∈ Ji , n ∈ N , (19)

ST (s, n) = ST(s, n − 1) −D(s, n) +
∑

i∈I p
s

ρ
p
is

∑

j∈Ji

B(i, j, n − 1) −
∑

i∈I c
s

ρc
is

∑

j∈Ji

B(i, j, n),

∀s ∈ S, n ∈ N , (20)

0 ≤ ST (s, n) ≤ Cs, ∀s ∈ S, n ∈ N . (21)

Note that the above constraint (20) is written for batch tasks, while similar constraints
can be written for continuous tasks which takes into account the different nature of the
continuous operation mode (see Ierapetritou and Floudas, 1998b). It should be pointed
out that the amount of state (s) at an event point (n), represented by st(s, n), generally
does not correspond to one well-defined time instance or time period due to the fact
that the state can be consumed or produced by different tasks that take place in different
units with different time axis. When there is a storage limit for the state, an upper bound
can be imposed on the ST (s, n) variable as an approximate way to model the storage
restrictions, as represented by Constraint (21). A rigorous way is to introduce storage
tasks and storage units with certain capacity ranges (see Ierapetritou and Floudas, 1998b;
Lin and Floudas, 2001).

To determine the task timings, we resort to another two sets of continuous variables.
T s(i, j, n) and T f (i, j, n) represent the start and end times of task (i) in unit ( j) at event
point (n). The duration of a task is represented as follows:

T f (i, j, n) = T s(i, j, n) + αi jwv(i, n) + βi j B(i, j, n), ∀i ∈ I, j ∈ Ji , n ∈ N . (22)

This linear expression of variable processing time as a function of the batch-size is able
to model a wide variety of processes. For example, in the case of fixed processing times,
αi j corresponds to the processing time of a task and βi j is zero. While for tasks operating
in the continuous mode, αi j is zero and βi j is the inverse of the processing rate.

In addition to the above duration constraints, the various relationships among the
timings of tasks are formulated through the following three sets of sequence constraints,
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which forms a very important component characteristic of this formulation.

T s(i, j, n + 1) ≥ T f (i, j, n), ∀i ∈ I, j ∈ Ji , n ∈ N , n �= nlast; (23)

T s(i, j, n + 1) ≥ T f (i ′, j, n) + τ j i ′iwv(i ′, n) − H (1 − wv(i ′, n)),

∀ j ∈ J, i ∈ I j , i ′ ∈ I j , i �= i ′, n ∈ N , n �= nlast; (24)

T s(i, j, n + 1) ≥ T f (i ′, j ′, n) − H (1 − wv(i ′, n)),

∀ j, j ′ ∈ J, i ∈ I j , i ′ ∈ I j ′, i �= i ′, n ∈ N , n �= nlast. (25)

Constraints (23) are written for the same task in the same unit at two consecutive event
points. They state that task (i) starting in unit ( j) at event point (n + 1) should start after
the end of the same task performed in the same unit which has already started at the
previous event point (n). Constraints (24) establish the relationships between the timings
of different tasks in the same unit at two consecutive event points. If wv(i ′, n) = 1
which means that task (i ′) takes place in unit ( j) at event point (n), then the last term
of constraint (24) becomes zero forcing task (i) in unit ( j) at event point (n + 1) to
start after the ending time of task (i ′) in unit ( j) at event point (n) plus the required
clean-up time; otherwise the right hand side of constraint (24) becomes negative and
the constraint is trivially satisfied. It should be pointed out that this constraint actually
imposes a lower bound not only on the starting time of task (i) at event point (n + 1) but
also on the starting times of task (i) at the subsequent event points (n + 2), (n + 3), etc.
because of the monotonically increasing relationships among the timings of the same
task in the same unit at consecutive event points established by Constraint (23). In other
words, if two tasks take place in the same unit consecutively, but at two event points
with an idle event point in between, the requirement on their timings is also enforced.
The last set of constraints (25) are written for different tasks (i, i ′) that are performed
in different units ( j, j ′) but take place consecutively according to the production recipe.
If task (i ′) takes place in unit ( j ′) at event point (n) (i.e., wv(i ′, n) = 1), then we have
T s(i, j, n + 1) ≥ T f (i ′, j ′, n) and hence task (i) in unit ( j) has to start after the end
of task (i ′) in unit ( j ′). Similar to Constraint (24), this constraint also establishes the
relationships between tasks that are assigned to non-consecutive event points.

Note that the sequencing and timing relationships are modeled very efficiently with
the above duration and sequencing constraints. No additional variables, such as Xi jkk ′ in
the global event based models discussed in the previous section, are required. This gives
rise to the further significant reduction of the number of binary variables and the overall
size of the resulting MILP models.

By linking demands to event points based on the relative timing of the due dates
and the processing recipe, intermediate due dates can also be incorporated through the
following constraints:

D(s, n) + SL(s, n) = dasn, ∀s ∈ S, n ∈ N , (26)

T s(i, j, n) ≤ ddsn, ∀s ∈ S, i ∈ I p
s , j ∈ Ji , (27)
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where dasn and ddsn are the amount and due date of the demand for state (s) at event point
(n). Note that the tasks that produce the involved state are considered in Constraint (27)
and it is guaranteed that the product delivered at the event point is produced before the due
date of the demand. Slack variables SL(s, n) are introduced to provide more flexibility
in handling partial fulfillment of demands.

Furthermore, Janak, Lin, and Floudas (2004) have recently presented an enhanced
formulation which extends the work of Floudas and coworkers (Ierapetritou and Floudas,
1998a, 1998b, 2001; Ierapetritou, Hené, and Floudas, 1999; Lin and Floudas, 2001), to
take into account constraints on resources other than equipment items, such as utilities,
and also considers various storage policies such as unlimited intermediate storage (UIS),
fixed intermediate storage (FIS), no intermediate storage (NIS), and zero-wait (ZW) con-
ditions. In their proposed model, tasks are allowed to continue over several consecutive
event points in order to accurately monitor the utilization of resources and the storage of
states so that specified limits are enforced. As a result, two sets of binary variables are
employed, one which indicates whether or not a task starts at each event point and another
which indicates whether or not a task ends at each event point. A continuous variable is
also employed to indicate if a task is active at each event point. In addition, new tasks are
defined for the storage of states and the utilization of resources. The sequence and timing
of these new tasks and the processing tasks are then related so that the timing for changes
in resource levels and amounts of states will be consistent and specified limits on both
can be enforced. For instance, constraints are written to define the amount of a utility
used to undertake a task, to keep track of the amount of utility available at each event
point, and also to relate the duration and timing of a utility to the timing of the processing
tasks which utilize that utility. In addition, constraints are included which govern the
batch-size of a storage task, relate the storage task to processing tasks through material
balances, and also relate the duration and timing of the storage task to the timing of the
processing tasks which produce or consume the state being stored through the storage
task. Furthermore, the allocation constraints are expanded in order to relate the above
mentioned binary and continuous assignment variables so that no tasks overlap, no tasks
are assigned to the same event point in the same unit, and all tasks that start processing
must finish processing. Also, constraints are added to relate the batch sizes for tasks
which start and finish at the same or consecutive event points so that tasks which extend
over more than one event point have consistent batch sizes at each event point. Moreover,
the duration constraints for a processing task are expanded to allow tasks to extend over
several event points so that the finishing time is related to a starting time from a previous
event point. Similarly, a set of order satifaction constraints are included to allow orders
for products to be due at intermediate due dates. These constraints force an order for a
state to be met by a certain due date and in a certain amount. Finally, a set of tightening
constraints is introduced to help improve the relaxed LP solution.

Maravelias and Grossmann (2003) have also recently introduced an approach for
the short-term scheduling of multipurpose batch plants including resource constraints and
mixed storage policies, however, their formulation uses a global event based model. When
compared to the unit-specific event based model presented by Janak, Lin, and Floudas
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(2004), their formulation always employs at least one more event point to determine
the same objective function value and as a result, involves more binary and continuous
variables. This is because global event based formulations require an event point for the
start and end of each task whereas unit-specific event based formulations only require an
event point for the start of a task. This means there will be an extra event point to account
for the ending of the last task in a global event based model. Computational results
presented in Janak, Lin, and Floudas (2004) demonstrate that unit-specific event based
models are better suited for short-term scheduling problems where the minimization of
the makespan is the objective and also for the case when a larger number of event points
are considered in the problem, regardless of the objective function used.

It is important to note that the unit-specific event based formulation outlined above
also requires the determination of an a priori number of event points. The general proce-
dure is to start with a small number and iteratively increase it until no improvement of the
objective function can be achieved (Ierapetritou and Floudas, 1998a). Under certain cir-
cumstances, special structures of the problem can be exploited to develop more efficient
ways of determining the optimal number of event points. The possibility that it requires
the addition of more than one event point to improve the solution for this formulation
is much smaller than that for the global event based models, due to the more efficient
utilization of event points and the smaller number of event points required to model a
process.

The unit-specific event based continuous-time formulations described above lead
to MILP models of smaller size mainly in terms of the number of binary variables, com-
pared to the discrete-time models and the other continuous-time models. This can be
shown by comparing the different approaches applied to a small example. This example
is taken from literature (Zhang, 1995; Ierapetritou and Floudas, 1998a, 2001; Castro,
Barbosa-Póvoa, and Matos, 2001) and involves variable processing times. The process
considered has been extensively studied in the literature and the corresponding STN is
shown in figure 5. As shown in Table 1, the discrete-time approach is an approximation
of the actual process and by definition leads to suboptimal solutions that can deviate from
the optimal solution substantially. Furthermore, the size of the resulting model and the
required solution time explode exponentially as the number of time intervals increases
to improve the degree of accuracy. When the number of time intervals is increased from
8 (corresponding to a discretization interval of 1 hr) to 32 (corresponding to a discretiza-
tion interval of 0.25 hr), the discrete-time formulation attains better approximation and
better solution, which improves from 620.2 to 1195.3. However, this is still suboptimal
compared to the best solution of 1498.2 obtained through a unit-specific event based
continuous-time formulation. Furthermore, the size of the resulting model grows signif-
icantly, reflected by the increase of the number of binary variables (from 38 to 591) and
the required solution time (from less than a sec to over 100,000 sec on a HP-C160 work
station without solving to optimality). In contrast, continuous-time approaches lead to
more accurate models of smaller sizes. Two global event based formulations are shown
in Table 1, representing the development of this type of continuous-time models. The
model proposed by Zhang (1995) led to an MILP model with 147 binary variables when
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Table 1
Comparison between discrete-time models and global event based, unit-specific event based continuous-

time models.

Continuous-time models

Global event based Unit-specific
event based

Castro,
Barbosa-Póvoa, Ierapetritou and

Model Discrete-time models Zhang (1995) and Matos (2001) Floudas (1998a, 2001)

Events/time 8 16 32 7 5 5
intervals

Binary var. 38 171 591 147 80 40
Continuous var. 743 2386 8590 497 226 260
Constraints 1567 5135 18415 741 297 374
Obj. (profit) 620.2 940.5 1195.3 1497.7 1480.06 1498.2
Nodes 15 5123 ∼500,000 9575 60 51
CPU time 0.29sa 58sa ∼100,000sa 1027.5sb 0.32sc 0.28sa

aHP-C160
bSun Sparc 10/41
cPentium III 450-MHz.

Figure 5. State-Task Network of the process involved in the example.

using 7 events, which was solved in reasonable time (1027.5 CPU sec on a Sun Sparc
10/41 work station) and achieved a much better objective value of 1497.7, compared
to the discrete-time model. A more recent model proposed by Castro, Barbosa-Póvoa,
and Matos (2001) required 80 binary variables with the use of 5 events and obtained an
objective value of 1480.06 in 0.32 CPU sec on a Pentium III 450-MHz machine. The
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unit-specific event based approach proposed by Ierapetritou and Floudas (1998a, 2001)
used 5 event points and further reduced the size of the resulting model to 40 binary vari-
ables. The model led to an objective value of 1498.2 and was solved in 0.28 CPU sec on
a HP-C160 work station. This example may be exaggerating to some degree, however,
the main differences among the various approaches are illustrated clearly.

2. Solution of MILP models

One of the most important issues in the application of mixed-integer programming tech-
niques to the process scheduling problems lies in the computational efficiency for the
solution of the resulting MILP problems, since realistic problems often lead to large
scale models. To accelerate the solution process, several classes of approaches have been
proposed to exploit special structures of specific problems.

2.1. Reformulation

After constraints have been formulated, in some cases, they can be re-written in alternative
forms which are better from a computational point of view. The aim is to generate models
with tighter integrality gaps, reduced number of binary variables, or special structures
facilitating the solution. For example, Sahinidis and Grossmann (1991b) proposed the
following disaggregated form of the allocation constraint (2) in the discrete-time model
described in the previous section.

Wi jt + Wi ′ j t ′ ≤ 1, ∀ j ∈ J, t ∈ T, i, i ′ ∈ I j , t ′ = t − 1, . . . , t − αi j + 1. (28)

Note that the large positive number M in constraint (2) is eliminated and the reformu-
lated constraints lead to smaller integrality gaps at the cost of a much larger number of
constraints. Shah, Pantelides, and Sargent (1993) suggested another alternative of the
allocation constraint in an aggregated form:

∑

i∈I j

t−αi j +1∑

t ′=t

Wi jt ′ ≤ 1, ∀ j ∈ J, t ∈ T . (29)

This reformulation not only reduces the integrality gap, but also requires only a small
number of constraints.

As another example, Orçun, Altinel, and Hortaçsu (1999) applied Reformulation
Linearization Technique (RLT) (Sherali and Adams, 1994) to an MILP scheduling model
to reduce the integrality gap. The approach consists of a reformulation phase and a
linearization phase. In the reformulation phase, selected constraints and binary variables
are multiplied and the resulting new constraints are added to the original problem. Then
the nonlinear model is linearized during the linearization phase.
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2.2. Addition of cut constraints

It is known that the introduction of additional constraints into an MILP problem may
cut off infeasible solutions at an early stage of the branch and bound searching process
and thus reduce the solution time. For process scheduling problems, such effective cut
constraints can be generated by exploiting special structures of the scheduling prob-
lem or existing insights on the physical problem. For example, Dedopoulos and Shah
(1995) proposed a number of additional constraints which establish explicit relationships
among the various binary variables in a discrete-time MILP model for the production and
maintenance scheduling of multipurpose plants. Elkamel and Al-Enezi (1998) presented
three sets of inequality constraints for a discrete-time model based on timing restrictions
existing in batch processes with fixed processing times and suggested strategies to incor-
porate them in a selective manner. Yee and Shah (1998) developed cut constraints to force
sequence dependent or sequence independent changeover tasks to take place in the LP
relaxation solution, which leads to LP relaxations closer to the original MILP problem.
Lin et al. (2002) introduced additional constraints to impose lower bounds on the total
number of batches based on related product demands and unit capacities. Furthermore,
additional timing constraints were used to reduce the solution space and to improve the
quality of feasible integer solutions. Burkard, Fortuna, and Hurkens (2002) presented
a number of additional constraints, including similar ones on the lower bounds of the
number of batches and the total batch-size according to demands for each final product
and intermediate material.

2.3. Use of heuristics

Another strategy to expedite the solution process relies on the use of heuristics, which
may hold true in some cases but cannot guarantee optimality, to simplify the problem.
Pinto and Grossmann (1995) proposed the preordering of orders based on their due
dates and processing times and introduced logical relationships to impose the relative
sequence of the orders. The preordering constraints increased the problem size and may
lead to suboptimal solution, but they reduced the search space and thus the solution
time, especially for problems involving a large number of orders. Cerdá, Henning, and
Grossmann (1997) presented a number of heuristic rules to prune the set of feasible
predecessors for each order in a unit. The set of predecessors for an order is reduced
by selecting only those that are likely to lead to a good schedule. Although optimality
could not be guaranteed, the use of heuristics reduced the solution time and acceler-
ated the finding of good intermediate integer solutions. Blömer and Günther (2000)
suggested a heuristic two-stage solution procedure for a discrete-time model with the
objective of makespan minimization. An initial solution was obtained with a reduced
number of feasible start-up time periods and then it was improved by left-shifting. The
required computational effort was reduced at the cost of obtaining only suboptimal
solutions.
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2.4. Decomposition

The most widely employed strategy to overcome the computational difficulty for the
solution of large MILP models is based on the idea of decomposition. The decompo-
sition approach divides a large and complex problem, which may be computationally
expensive or even intractable when formulated and solved directly as a single MILP
model, to smaller subproblems, which can be solved much more efficiently. There have
been a wide variety of decomposition approaches proposed in the literature. In addition
to decomposition techniques developed for general forms of MILP problems, various
approaches that exploit the characteristics of specific process scheduling problems have
also been proposed. In most cases, the decomposition approaches only lead to suboptimal
solutions, however, they substantially reduce the problem complexity and the solution
time, which renders the possibility of apply MILP based techniques to large real-world
problems.

Pinto and Grossmann (1995) proposed a decomposition scheme for large schedul-
ing problems arising from multistage batch plants with the objective of minimizing
earliness. First, an MILP model that minimizes the total in process time was solved to
determine the assignments of orders to units. Then, the model is solved to minimize
earliness with the assignment binary variables fixed. Wilkinson, Shah, and Pantelides
(1995) presented an alternative method, aggregate modeling, for tackling the computa-
tional challenge of difficult scheduling problems in multipurpose plants. An aggregate
model was generated from a detailed discrete-time formulation and was essentially a re-
laxation of the original model, but it could be solved in considerably less computational
time and gave a tight upper bound on the solution to the original problem. Bassett, Pekny,
and Reklaitis (1996b) discussed a number of time-based decomposition approaches for
the discrete-time MILP formulation. The first approach used a hierarchy consisting of a
planning level and a scheduling level, which are solved iteratively followed by various
techniques to remove infeasibilities. A second approach, called a reverse rolling win-
dow approach, utilized a hybrid planning/scheduling formulation. In this method, only
a small section of the horizon is determined in full details at each step and a sequence
of such problems with reduced combinatorial complexity are solved in the reverse order
of the time windows. Elkamel et al. (1997) developed another decomposition algorithm
consisting of two basic components. First, in spatial decomposition, the units in the plant
are grouped into different subsets capable of performing different sets of tasks and the
product orders are then decomposed according to the unit groups. Secondly, in temporal
decomposition, the product orders are arranged into groups based on their due dates and
then scheduled sequentially along the time axis. Harjunkoski and Grossmann (2001)
presented a decomposition strategy for the scheduling of a steel plant production. First,
the customer orders are partitioned into families with similar properties and each product
family is then further disaggregated into groups. Next, each group is scheduled indepen-
dently. Finally, an LP/MILP model is used to properly aggregate and improve the overall
schedule. Lin et al. (2002) considered the medium-range scheduling problem of a multi-
product batch plant which involves a relatively long time horizon. Using a rolling horizon
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approach, the full scale problem in the whole scheduling period is decomposed into a
series of smaller short-term scheduling subproblems in successive sub-horizons, which
are connected through material and unit availabilities. A two-level MILP formulation
is proposed to determine the current short sub-horizon and the products to be included,
which takes into account demand distribution and unit utilization and imposes limits on
the complexity of the resulting short-term scheduling problem. Then a continuous-time
MILP based short-term scheduling model incorporating intermediate due dates is applied
to determine the detailed schedule in the current sub-horizon. The decomposition model
and the short-term scheduling model are employed iteratively until the schedules for the
whole period under consideration are generated.

2.5. Intervention of the branch and bound solution procedure

The last main strategy to improve the computation efficiency is through the intervention
of the branch and bound search process. For instance, Shah, Pantelides, and Sargent
(1993) developed ways to reduce the size of the relaxed LP and perform post analysis
of the LP solution at each node of the branch and bound tree. Dedopoulos and Shah
(1995) proposed techniques to fix variables to values implied during the branch and
bound procedure. Schilling and Pantelides (1996) designed a special branch and bound
algorithm which branches on both the binary variables and the continuous τk variables
which represent the lengths of time intervals in a global event based continuous-time
formulation. Yi et al. (2000) presented special branching priorities based on manual
scheduling practice. Higher priorities are given to the binary variables related to major
products, which have higher demands or the scheduler pays special attention to, down-
stream tasks, and earlier times.

3. Computational experience and applications

The significant advances in the modeling and solution of scheduling formulations have
led to their application to large and complex problems. Table 2 summarizes some of the
largest MILP models that have been reported in the literature.

The MILP based scheduling approaches have been employed to a wide variety of
real-world problems. Some examples of notable applications are presented below. Shah,
Pantelides, and Sargent (1993) described a case study on the scheduling of a hydrolubes
plant with adapted industrial data using the STN based discrete-time approach. Wilkinson
et al. (1996) addressed a large scale production and distribution scheduling problem
in which three multipurpose production facilities in different countries supply a large
portfolio of fast moving consumer goods to the European market. They proposed a
detailed formulation that considered all three plants simultaneously. Due to the very large
size of the resulting problem, they generated an approximate formulation by aggregating
constraints, whose solution gave a tight upper bound on the production capacity and
facilitated the decomposition of the original problem into small sub-problems, each
involving a single plant.
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Table 2
Examples of largest MILP scheduling models reported in the literature.

Process Time Bin. var., cont. var., Solution CPU
Work feature representation constraints approach time

Shah, Pantelides, STN, 12 states/ Discrete 2316,3855,3376 Modified branch 48 mina

and Sargent 6 tasks/6 units and bound
(1993)

Pinto and sequential, 50 orders/ Continuous 1050,47917,48843 Decomposition 4.2 hrb

Grossmann 5 stages/25 units slot-based
(1995)

Schilling and RTN, continuous Continuous 1042,2746,4981 Modified branch 57 minc

Pantelides 15 products/ and bound
(1996b) 11 units

Zhang and RTN, continuous Continuous 1318,3237,4801 CPLEX 18 mind

Sargent 15 products/
(1998) 11 units

Ierapetritou STN, batch & Continuous 2375,29384,51000 GAMS/CPLEX 2.7 hre

and Floudas continuous 28 MINOPT/CPLEX
(1998b) products/13 units

aSUN SparcStation IPX
bHP 9000-730
c6 parallel processors
dSun-Sparc10/41
eHP-C160.

Zhang (1995), Schilling and Pantelides (1996b), and Ierapetritou and Floudas
(1998b) considered the scheduling of an industrial fast-moving consumer goods man-
ufacturing plant involving batch and continuous processes. Continuous-time formula-
tions were proposed using either global events (Zhang, 1995; Schilling and Pantelides,
1996b) or unit-specific events (Ierapetritou and Floudas, 1998b). Ierapetritou, Hené, and
Floudas (1999) extended the continuous-time formulation in Ierapetritou and Floudas
(1998a, 1998b) to deal with intermediate due dates and addressed a variety of prob-
lems, including the short-term scheduling of a single-stage multiproduct facility with
multiple semicontinuous processors. Méndez and Cerdá (2000a) addressed the short-
term scheduling of a two-stage multiproduct batch plant which delivered intermediate
products to nearby end-product facilities and proposed a continuous-time MILP model.
Georgiadis, Papageorgiou, and Macchietto (2000) considered the short-term cleaning
scheduling in a special class of heat exchanger networks involving decaying equipment
performance due to milk fouling. Discrete-time approaches were employed to formulate
an MINLP model incorporating general fouling profiles, which is then linearized and
solved as an MILP problem. Yi et al. (2000) studied the production scheduling of a
polybutene process featuring the requirement of product quality check in intermediate
storage tanks and developed a discrete-time MILP model.

Glismann and Gruhn (2001) developed an approach to integrate the short-term
scheduling of multiproduct blending facilities and nonlinear recipe optimization. An
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RTN based discrete-time MILP model was formulated for the scheduling problem. Har-
junkoski and Grossmann (2001) presented a decomposition algorithm for the short-term
scheduling of large scheduling problems in the steel making industry. Lamba and Karimi
(2002b) developed a two-step decomposition algorithm for the short-term scheduling of
a single-stage multiproduct facility with multiple semicontinuous production lines. The
algorithm is based on item combinations and is applied to an industrial problem from
a detergent plant. Castro, Matos, and Barbosa-Póvoa (2002) addressed the scheduling
of a batch digester cooking system of an industrial acid sulphite pulp mill constrained
by steam availability. A discrete time RTN based model featuring the most relevant
steam-sharing alternatives was developed and the required process data were obtained
with a dynamic model of the heating system. Lin et al. (2002) presented a systematic
framework for the medium-range production scheduling of a large industrial polymer
multiproduct plant, which uses a rolling horizon decomposition approach coupled with
the unit-specific event based continuous-time scheduling formulation.

4. Conclusions and perspectives

In the previous sections, we have presented an overview of the developments of mixed-
integer linear programming (MILP) based approaches for the scheduling of chemical
processing systems in the past decade. It is apparent that significant advances have
been achieved on the following important frontiers: (i) development of mathematical
formulations for the effective modeling of a wide variety of chemical processes; (ii)
development of algorithms for the efficient solution of difficult MILP models; and (iii)
increasing application of the formal MILP optimization framework to real scheduling
problems in process and related industries. However, further research work is needed to
address classes of important large-scale industrial applications. More specifically, future
research efforts should be directed to address the following important issues.

4.1. Reduction of integrality gaps

Further efforts are required to reduce and even close the integrality gap for medium and
large scale scheduling applications. This can be achieved through the development of
better mathematical models with tighter relaxations and/or more effective algorithms that
exploit characteristics of the formulation or actual problem.

4.2. Medium-term scheduling

Most work presented in the literature so far has been dedicated to short-term scheduling
or the scheduling of cyclic operations. Much less attention has been paid to medium-term
scheduling which involves a relatively long time horizon and leads to very large scale
problems. Dimitriadis, Shah, and Pantelides (1997) and Lin et al. (2002) reported two
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of the very few efforts dedicated to medium term scheduling. More work remains to be
done to develop effective modeling and solution frameworks for this class of problems.

4.3. Multisite production and distribution scheduling

This is another promising candidate subject for future research. Integrated modeling
of production scheduling at manufacturing sites and distribution scheduling as well as
solving the resulted model of large size will be two major challenges.

4.4. Reactive scheduling

Due to the ubiquitous presence of unpredictable disturbances in the chemical processing
environment, for example, uncertainty in processing times, prices, changes in product
demands, and equipment failure/breakdown, it is of paramount importance to be able
to adjust the current schedule upon realization of uncertain parameters or occurrence
of unexpected events, which is called reactive scheduling. Most of the existing reactive
scheduling approaches uses heuristics, such as time shifting, to update the schedule. New
rigorous MILP based approaches are needed to address reactive scheduling.

4.5. Novel and more complex applications

There remain a variety of manufacturing systems in the chemical processing or related
industries for which scheduling is still carried out based on heuristic or even manual
approaches. It is expected that the introduction of MILP based scheduling technologies
will bring great benefits, while the modeling and solution for the scheduling of these
processes, especially those involving complex structures, will require additional efforts.
For example, the scheduling of manufacturing operations in the semiconductor industry
should be found promising, which features the presence of multiple reentrant flows and
an extremely large number of processing tasks.

Notation

αi j parameter, fixed processing time of task (i) in unit ( j)

αis parameter, processing time for state (s) by task (i)

βi j parameter, linear coefficient of the variable term of the processing time of task (i) in
unit ( j)

�Tk continuous variable, the duration between event (k) and (k + 1) or time slot (k)

µc
ri , µ

p
ri , parameters, the amount of resource (r ) consumed and produced by each in-

stance of task (i), respectively
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νc
ri , ν

p
ri , parameters, the amount of resource (r ) consumed and produced per unit of the

extent of task (i), respectively

ξik continuous variable, the extent of all instances of task (i) starting at the beginning of
slot (k)

ρ
p
is, ρ

c
is parameters, fractions of state (s) produced and consumed by task (i), respectively

τ j i ′i parameter, duration of the cleaning operation required for unit ( j) to switch from
task (i ′) to (i)

τk continuous variable, durations of time slot (k)

Bi jk continuous variable, amount of material which starts undergoing task (i) in unit ( j)
at event (k)

Bi jt continuous variable, amount of material which starts undergoing task (i) in unit ( j)
at time interval (t)

B(i, j, n) continuous variable, amount of material which starts undergoing task (i) in
unit ( j) at event point (n)

Cs parameter, storage capacity limit for state (s)

Dst continuous variable, amount of state (s) delivered at time interval (t)

dasn parameter, amount of the demand for state (s) at event point (n)

ddsn parameter, due date of the demand for state (s) at event point (n)

D(s, n) continuous variable, amounts of state (s) delivered at event point (n)

H parameter, time Horizon

i, i ′ indices, tasks

I set of all tasks

I j set of tasks that can be performed in unit ( j)

Ir set of tasks that consume or produce resource (r )

I p
s , I c

s sets of tasks that produce and consume state (s), respectively

j, j ′ index, units

J set of all units

Ji set of units suitable for task or order (i)

k, k ′, k ′′ indices, events or time slots

K set of events or time slots

M parameter, a sufficiently large positive number
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mi parameter, the lower bound on the total number of batches of task (i)

n index, event point

N set of event points

Nik integer variable, the number of instances of task (i) starting at the beginning of slot
(k)

N jk (binary) variable, the number of available unit ( j) at time Tk

nlast index, the last event point

p index, time point

r index, resource

R set of resources

Rmin
r , Rmax

r parameters, the lower and upper bounds on the excess amount of resource
(r )

Rrk continuous variable, the amount of excess resource (r ) during slot (k)

Rst parameter, amount of state (s) received from external sources at time interval (t)

s index, material state

S set of material states

Ssk continuous variable, amount of material state (s) stored between event (k) and (k+1)
or during slot (k)

Sst continuous variable, amount of material state (s) stored during time interval (t)

SL(s, n) continuous variable, difference between the amount of the demand for state (s)
and the amount of state (s) delivered at event point (n)

ST(s, n) continuous variable, amount of state (s) stored at event point (n)

t, t ′ indices, time intervals

T set of time intervals

ti jk continuous variable, duration of task (i) which starts at Tk in unit ( j)

tik continuous variable, duration of task (i) which starts at the beginning of slot (k)

Tk continuous variable, timing of event (k)

T s(i, j, n), T f (i, j, n) continuous variables, starting and ending times of task (i) in unit
( j) at event point (n), respectively

Xi jkk ′ binary variable, whether or not task (i) starts at Tk in unit ( j) and completes at
Tk ′
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yikk ′ binary variable, whether or not task (i) starts at time (k) and is active over slot (k ′)
≥ (k)

y(s, p) binary variable, whether or not state (s) is used at time point (p)

yv( j, n) binary variable, whether or not unit ( j) starts being utilized at event point (n)

V Min
i j , V Max

i j parameters, minimum and maximum capacity of unit ( j) for task (i), re-
spectively

Wi jt binary variable, whether or not task (i) starts in unit ( j) at the beginning of time
interval (t)

Wi jk binary variable, whether or not task (i) starts at Tk in unit ( j)

W S
i jk, W F

i jk binary variables, whether or not task (i) starts and finishes in unit ( j) at event
(k), respectively

wv(i, n) binary variable, whether or not task (i) starts at event point (n)
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Blömer, F. and H.-O. Günther. (2000). “LP-Based Heuristics for Scheduling Chemical Batch Processes.”
International Journal of Production Research 38, 1029–1051.

Bok, J. and S. Park. (1998). “Continuous-Time Modeling for Short-Term Scheduling of Multipurpose Pipe-
less Plants.” Industrial & Engineering Chemistry Research 37, 3652–3659.

Bowman, E.H. (1959). “The Schedule-Sequencing Problem.” Operations Research 7, 621–624.
Burkard, R.E., T. Fortuna, and C.A.J. Hurkens. (2002). “Makespan Minimization for Chemical Batch Pro-

cesses Using Non-Uniform Time Grids.” Computers & Chemical Engineering 26, 1321–1332.
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