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Abstract

Metabolite concentrations can regulate gene expression, which can in turn regulate metabolic activity. The extent to which
functionally related transcripts and metabolites show similar patterns of concentration changes, however, remains
unestablished. We measure and analyze the metabolomic and transcriptional responses of Saccharomyces cerevisiae to
carbon and nitrogen starvation. Our analysis demonstrates that transcripts and metabolites show coordinated response
dynamics. Furthermore, metabolites and gene products whose concentration profiles are alike tend to participate in related
biological processes. To identify specific, functionally related genes and metabolites, we develop an approach based on
Bayesian integration of the joint metabolomic and transcriptomic data. This algorithm finds interactions by evaluating
transcript–metabolite correlations in light of the experimental context in which they occur and the class of metabolite
involved. It effectively predicts known enzymatic and regulatory relationships, including a gene–metabolite interaction
central to the glycolytic–gluconeogenetic switch. This work provides quantitative evidence that functionally related
metabolites and transcripts show coherent patterns of behavior on the genome scale and lays the groundwork for building
gene–metabolite interaction networks directly from systems-level data.
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Introduction

Cellular metabolism—the process by which nutrients are

converted into energy, macromolecular building blocks, and other

small organic compounds—depends upon the expression of genes

encoding enzymes and their regulators. Well-characterized

transcriptional regulatory circuits such as the lac and trp operons

in E. coli and the galactose utilization system in S. cerevisiae illustrate

how the concentration of metabolites such as tryptophan or

galactose can modulate gene expression. In addition, changes in

gene expression can lead to increases or decreases in the

concentrations of enzymes and regulatory proteins, thereby

affecting concentrations of intracellular metabolites. While indi-

vidual cases of mutual regulation by metabolites and gene

products have been and continue to be described, identifying the

full scope of these interactions is important for improving rational

control of metabolism to meet therapeutic and bioengineering

objectives. Clinical scientists, for instance, may be interested in

developing novel treatments that control blood glucose levels in

diabetic patients, or that fight cancer by disrupting metabolism in

tumor cells. This line of inquiry is also relevant to bioengineers

seeking to increase the production of small molecules (such as

biofuels or flavor molecules) by knocking out or overexpressing

individual genes.

The simultaneous measurement of metabolite and transcript

concentrations is one method that has begun to show promise for

identifying gene products and small molecules involved in the

same biological processes [1]. A number of studies [2–6] have

followed the behavior of specific secondary metabolites of interest

such as volatile signaling molecules [4] or compounds with

pharmaceutical properties [3], as well as transcripts, in response to

genetic or biochemical perturbations. The further refinement of

high-throughput experimental technologies such as mass spec-

trometry has enabled recent studies to measure many functional

classes of metabolites together with a large proportion of the

transcriptome [7–14]. For example, one recent ground-breaking

study collected extensive data on metabolite, protein, and

transcript levels in E. coli following the disruption of genes in

primary carbon metabolism or changes in growth rate, and

concluded that metabolite concentrations tended to be stable with

respect to these perturbations [15]. Another study [12] compared

transcript and metabolite concentrations in S. cerevisiae under two

different growth conditions, and using a novel computational

method in which known metabolic pathways were divided into

smaller pathways termed ‘‘reporter reactions,’’ the authors

observed that when two different growth conditions were

compared, the majority of the reporter reactions showed changes

in transcript concentrations, with fewer revealing significant
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alterations in metabolite levels. Such methods, which make

inferences based on comprehensive reconstructions of biochemical

pathways in an organism, represent valuable tools for analyzing

metabolomic and transcriptional data together. However, there is

still a need for approaches that are designed to answer the problem

of identifying novel interactions between specific gene products

and metabolites that include both enzymatic and regulatory

relationships.

Of prime importance to the problem of finding gene–metabolite

relationships from data is the question of whether functionally-

related metabolites and transcripts do indeed show coherent

patterns of concentration changes that can be used to make valid

predictions. Studies aimed at addressing this question have relied

on computing correlation coefficients between profiles of transcript

and metabolite concentrations, which can then be ranked [7] or

used to co-cluster the metabolomic and transcriptomic data [8].

However, it is possible that other types of regulation, such as post-

translational protein modifications and feedback inhibition, could

be more predominant in the aggregate than transcriptional

regulation [11]. Accordingly, a major limitation with these

computational techniques is that the extent to which transcripts

and metabolites are co-regulated is not known. The proportion of

strong gene–metabolite correlations that are due to chance or

indirect effects, as opposed to enzymatic or regulatory relation-

ships, has also not been determined by previous investigations.

In part due to these concerns, previous work has come to

contradictory conclusions about the extent of coordination

between metabolite and transcript concentrations. Some quali-

tative evidence has been provided for the claim that transcripts

and metabolites are substantially co-regulated [8,9,16], including

the comparison of clustering patterns in each data set [8], and

examples of coherent correlations between biosynthetic enzymes

and their products [9]. In contrast, other studies contend that

transcript and metabolite profiles tend to behave differently [10],

and some have argued that correlative approaches are not

specific enough to draw conclusions about which genes and

metabolites are functionally related (such that the expression of a

gene product controls the concentration of a metabolite, or vice

versa) [11,17].

Indeed, observed correlations within metabolic networks often

confound straightforward interpretations. Metabolic networks,

unlike transcriptional or protein-interaction networks, consist of

molecular species which chemically interconvert. As a result,

metabolites that are only distantly related in terms of the

underlying pathways can show high levels of correlation [18].

This is especially true in the case of global perturbations (e.g.,

nutrient starvation, diurnal cycles) which affect many different

branches of metabolism at once [19]. It is therefore likely that the

interpretation of correlations between transcript and metabolite

concentrations will depend on contextual factors, such as the

branch of metabolism being studied or the experimental

perturbation under which the correlations were observed.

In order to examine these questions further, we conducted a

systems-level investigation of the metabolome and transcriptome

of S. cerevisiae, in which we measure the dynamic responses of

metabolites and transcripts to two nutrient deprivations. We

examine whether transcripts and metabolites are co-regulated in

general, and demonstrate the existence of a strong trend for

correlated genes and metabolites to participate in related

biological processes. We also demonstrate that the correlations

observed for related gene–metabolite pairs are dramatically

different depending on the type of metabolite and the perturbation

to which the cells are subjected, and we develop a Bayesian

algorithm capable of accounting for these dependencies. When

applied to our experimental data, this algorithm makes gene–

metabolite interaction predictions that are significantly more

precise and complete than those made by correlation alone.

Results

Transcript levels (Dataset S1, GEO accession number

GSE11754) were measured via microarray following the induction

of carbon starvation (glucose removal) or nitrogen starvation

(ammonium removal) at 0, 10, 30, 60, 120, 240, and 480 minutes

post-induction. These data complement a previously-published

study that measured metabolites in Saccharomyces cerevisiae using

liquid chromatography–tandem mass-spectrometry (LC-MS/MS),

under the same experimental conditions [20]. Both metabolite and

transcript samples were collected utilizing a filter-culture ap-

proach, which allows the rapid modification of the extracellular

environment and fast quenching of intracellular metabolism and

transcription [20,21].

Singular Value Decomposition and Enrichment Analysis
Reveal Substantial Coregulation between Transcription
and Metabolism

The extent to which transcripts and metabolites show

coordinated behavior in response to environmental perturbations

remains an open question. It has been observed that metabolite

data and transcript data cluster in similar ways [8], yet other

studies have noted marked differences in the temporal dynamics of

the metabolic and transcriptional responses [10]. Previous systems-

level analyses have not presented quantitative evidence either for

or against the similarity of the transcriptional and metabolic

responses as a whole. To investigate this question, we used singular

value decomposition to mathematically extract the signals in the

transcriptional and in the metabolic data, and then tested how well

these signals were correlated to each other.

Singular value decomposition (SVD) of the gene expression data

and of the metabolite data shows that the dominant metabolite

abundance patterns are closely aligned with the corresponding

Author Summary

Metabolism is the process of converting nutrients into
usable energy and the building blocks of cellular
structures. Although the biochemical reactions of metab-
olism are well characterized, the ways in which metabolism
is regulated and regulates other biological processes
remain incompletely understood. In particular, the extent
to which metabolite concentrations are related to the
production of gene products is an open question. To
address this question, we have measured the dynamics of
both metabolites and gene products in yeast in response
to two different environmental stresses. We find a strong
coordination of the responses of metabolites and func-
tionally related gene products. The nature of this
correlation (e.g., whether it is direct or inverse) depends
on the type of metabolite (e.g., amino acid versus
glycolytic compound) and the kind of stress to which the
cells were subjected. We have used our observations of
these dependencies to design a Bayesian algorithm that
predicts functional relationships between metabolites and
genes directly from experimental data. This approach lays
the groundwork for a systems-level understanding of
metabolism and its regulation by (and of) gene product
levels. Such an understanding would be valuable for
metabolic engineering and for understanding and treating
metabolic diseases.

Coordinated Transcript and Metabolite Changes
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transcript abundance patterns (Figure 1). The first eigenvector for

both genes and metabolites corresponds to a roughly monotonic

starvation response that is similar across carbon and nitrogen

deprivation. The second eigenvector is consistent with a nutrient-

specific response, and exhibits opposite directionality between

carbon and nitrogen deprivation. The third eigenvector represents

a difference in dynamics between carbon and nitrogen starvation.

Since neither the eigenvectors found by SVD nor the correlation

analysis is sensitive to the absolute scale of each pattern in the

transcript and metabolite data, the similarities described above are

due to the response dynamics, and do not imply similar

magnitudes of the responses. However, the magnitudes of the

responses that we observed in the transcriptional and the

metabolomic data appear to be comparable: the root-mean-

squared fold change from the zero timepoint was 3.3-fold for

metabolites and 3.1-fold for transcripts. This analysis supports the

conclusion that metabolite and transcript concentrations change in

quantitatively similar manners following nutrient starvation. Thus,

although metabolism and transcription operate on different time

scales, in the present study these two processes can be directly

compared without explicitly accounting for such a temporal

difference.

This result enabled us to ask whether the transcripts and

metabolites that show similar dynamics tend to be biologically

related: although instances of relationships between the concen-

trations of metabolites and related biosynthetic enzymes have been

described [9,16], other systems-level studies have noted that the

majority of individual gene–metabolite correlations that they

observed had no direct interpretation [11]. In order to investigate

whether a trend in fact exists for metabolites involved in a certain

biological process to show coordinated response patterns with

related genes, we conducted a statistical enrichment analysis

covering multiple metabolite classes (Materials and Methods). In

this analysis, the metabolites that we measured were divided into

four broad classes according to their functional role: (a) glycolysis

and pentose-phosphate pathway compounds, (b) TCA cycle

compounds, (c) amino acids, and (d) biosynthetic intermediates.

For each of these classes, a list of associated genes was assembled,

such that if a gene was significantly correlated to a metabolite

belonging to a particular class, then that gene was considered to be

associated with that metabolic class. Significance of correlation

was assessed empirically via permutation test and corrected for

multiple hypotheses, setting the false discovery rate at 0.01. To

find which functions were statistically over-represented in these

lists of associated genes, we then performed Gene Ontology term

enrichment analysis, using the hypergeometric distribution to

obtain p-values which were then Bonferroni-corrected. We

selected the Gene Ontology (GO) to perform this enrichment

since it has annotations for S. cerevisiae that encompass not only

enzymes but also regulatory proteins, and since the ontology

extends beyond metabolism to cover a wide range of other

biological processes such as protein translation and the cell cycle.

The full list of enriched biological processes is shown in Table 1.

Despite the complexity of the interplay between metabolism and

transcription and complicating factors such as post-translational

regulation, we found a strikingly logical and biologically relevant

relationship between classes of metabolites and the types of gene

products to which they were highly correlated. For example, the

single significant enrichment result for TCA cycle compounds is

the biological process ‘‘tricarboxylic acid cycle intermediate

metabolism’’ (p~4:9|10{2). Additionally, the gene products

correlated to the amino acid metabolite category are enriched

for ‘‘amino acid metabolism’’ (p~2:4|10{6) and ‘‘tRNA

aminoacylation’’ (p~7:3|10{7). Transcripts correlating with

biosynthetic intermediates are enriched for ‘‘biosynthesis’’

(p~2:1|10{3), among other processes, and the glycolysis and

pentose-phosphate pathway compounds are enriched for ‘‘protein

amino acid N-linked glycosylation’’ (p~6:2|10{4). Not all terms

show a direct relationship to the metabolite class for which they

are enriched: except for the TCA cycle compounds, the profiles of

metabolites in every class appear to be correlated to transcripts

involved in lipid, ergosterol, and steroid metabolism, a result

whose functional relevance has yet to be determined. Additionally,

the profiles of the glycolysis and pentose-phosphate pathway

compounds also tend to be highly correlated to the expression of

genes involved in mitosis and the cell cycle. This enrichment may

relate to the fact that, while yeast cells deprived of nitrogen

continue to proliferate and divide over the course of an eight-hour

experiment, presumably by catabolizing intracellular nitrogen

sources, yeast cells starved for glucose arrest and enter stationary

phase almost immediately [20].

Patterns of Correlation between Genes and Metabolites
Depend on the Experimental Condition and the Type of
Metabolite

While the above approach is adequate to reveal an overall trend

for co-regulation of functionally related genes and metabolites, the

nature of the co-regulation could vary depending on the

experimental condition and the functional role of the metabolite

involved. Furthermore, correlations between genes and metabo-

lites can be of varying strengths, ranging from no correlation to a

perfectly linear relationship between transcript concentration and

metabolite concentration. These different strengths of correlation

can be more or less informative about a gene–metabolite

relationship, depending on the circumstance under which they

are observed. For example, since amino acids and the enzymes

involved in their biosynthesis and catabolism are both likely to be

strongly affected by a lack of ammonium, it could be the case that

instances of co-regulation between genes and amino acids under

nitrogen starvation would be more meaningful than correlations of

the same strength observed under carbon starvation.

In addition, correlation can be either positive (as the

concentration of the gene rises, the concentration of the metabolite

also rises) or negative (‘‘inverse’’—as the concentration of one

rises, the other falls). The levels of related genes and metabolites

could exhibit a positive correlation under one condition while

having an inverse relationship or no relationship under another,

due to condition-specific differences in regulation. For example, 3-

phosphoglycerate (3PG) and phosphoenolpyruvate (PEP) are

important in both ATP production and biosynthesis (in which

they provide carbon skeletons). 3PG and PEP are known to

accumulate during carbon starvation via an allosteric regulatory

mechanism that prepares the cell for gluconeogenesis and the

metabolism of alternate carbon sources; conversely, their abun-

dances fall under nitrogen starvation [20]. However, many of the

enzymes that use the metabolites of lower glycolysis as biosynthetic

precursors are repressed under both starvation conditions, perhaps

to avoid wasting limited resources. These enzymes include ILV2

(acetolactate synthase, which catalyzes the first step in isoleucine

and valine biosynthesis from pyruvate) and ARO3 (which catalyzes

the first step in aromatic amino acid biosynthesis from PEP and

erythrose-4-phosphate). Calculating the correlations of 3PG or

phosphoenolpyruvate with genes like ILV2 or ARO3 over both

experimental conditions would, in effect, average two opposite

behaviors: anti-correlation in carbon starvation and positive

correlation in nitrogen starvation. There would be no overall

correlation, although the behavior could well be consistent with a

functional gene–metabolite relationship.

Coordinated Transcript and Metabolite Changes
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Figure 1. Singular value decomposition reveals coordination between transcriptional and metabolic responses to carbon and
nitrogen starvation. Eigenvectors of the transcription (left) and metabolite (right) concentration data sets were calculated. Each eigenvector is
composed of a characteristic response under carbon starvation (‘‘carbon’’, in light gray circles) and under nitrogen starvation (‘‘nitrogen’’, in dark gray
triangles). For each gene eigenvector on the left, the corresponding metabolite eigenvector is plotted on the right. The corresponding eigenvectors
correlated significantly, with p-values of (A) 6.961023, (B) 2.261024, and (C) 2.161022. For the transcript data, the percent information explained by
each eigenvector was (A) 46%, (B) 13%, and (C) 9%. For the metabolite data, the percent information explained was (A) 33%, (B) 20%, and (C) 10%.
doi:10.1371/journal.pcbi.1000270.g001

Coordinated Transcript and Metabolite Changes
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Condition-specific behavior is indeed observed for these gene–

metabolite pairs, as well as for the pairs ‘‘ALD6 to phosphoenol-

pyruvate,’’ ‘‘GLK1 to hexose phosphate,’’ and ‘‘PGM2 to hexose

phosphate’’ (Figure 2A–E, in which the concentrations of

metabolites belonging to the ‘‘glycolysis and pentose-phosphate

pathway’’ class and the concentrations of functionally related gene

products are plotted against each other). Ald6p oxidizes acetalde-

hyde to acetate, and in addition to its key role in redox metabolism

[22,23], is involved in the production of acetyl-CoA from

glycolytic end products [24–27]. The enzyme Glk1p phosphory-

lates glucose to glucose-6-phosphate in the first irreversible step of

glycolysis [28], and Pgm2p catalyzes the conversion of glucose-1-

phosphate to glucose-6-phosphate during the metabolism of

alternative carbon sources such as galactose [29]. The metabolite

‘‘hexose phosphate’’ refers to glucose-6-phosphate as well as its

isomers (e.g., fructose-6-phosphate, with which glucose-6-phos-

phate is interconverted), which were not distinguishable in the

present LC-MS/MS analysis.

Overall, these glycolytic and pentose-phosphate pathway

metabolites show positive correlations (raverage~0:64) with a

number of related genes under nitrogen starvation but nega-

tive correlations (raverage~{0:73) under carbon starvation

Table 1. Complete results of Gene Ontology (GO) term enrichment for each metabolite class: glycolysis and pentose-phosphate
pathway compounds (G/PPP), amino acids (AA), TCA cycle intermediates (TCA), and biosynthetic intermediates (BSI).

Class GO Term p-Value Class GO Term p-Value

G/PPP Cell cycle 5.4961025 AA Protein biosynthesis ,10212

Mitotic cell cycle 1.3961024 Nitrogen compound metabolism ,10212

Protein amino acid N-linked
glycosylation

6.1761024 Biosynthesis ,10212

Sister chromatid segregation 1.2461023 Amine metabolism ,10212

Chromosome segregation 1.3061023 Cellular biosynthesis ,10212

Mitotic sister chromatid segregation 4.8961023 Macromolecule biosynthesis 6.85610212

Ergosterol biosynthesis 8.6861023 Amino acid and derivative metabolism 2.1561027

Ergosterol metabolism 8.6861023 tRNA aminoacylation for protein translation 7.2861027

M phase 1.7161022 Amino acid activation 7.2861027

Lipid biosynthesis 2.9961022 tRNA aminoacylation 7.2861027

Mitosis 3.7261022 Translation 1.7161026

Allantoin metabolism 3.9461022 Amino acid metabolism 2.3761026

Allantoin catabolism 3.9461022 Organic acid metabolism 9.5961026

Heterocycle catabolism 3.9461022 Carboxylic acid metabolism 9.5961026

M phase of mitotic cell cycle 4.1461022 Lipid biosynthesis 2.5361025

Protein amino acid glycosylation 4.7561022 Ergosterol biosynthesis 1.0361024

Biopolymer glycosylation 4.7561022 Ergosterol metabolism 1.0361024

Steroid biosynthesis 4.8661022 Steroid biosynthesis 2.2361024

Sterol biosynthesis 4.8661022 Sterol biosynthesis 2.2361024

BSI Nitrogen compound metabolism 4.7561025 Cellular macromolecule metabolism 6.4161024

Lipid biosynthesis 1.1961024 Cellular physiological process 8.6561024

Amine metabolism 2.4561024 Primary metabolism 1.4461023

Biosynthesis 2.1461023 Sterol metabolism 2.1061023

Amino acid and derivative metabolism 2.3161023 Cellular process 2.7561023

Amino acid metabolism 6.9961023 Cellular protein metabolism 2.7561023

Ergosterol biosynthesis 9.4761023 Physiological process 2.7661023

Ergosterol metabolism 9.4761023 Steroid metabolism 2.8961023

Organic acid metabolism 1.6461022 Alcohol metabolism 4.1361023

Carboxylic acid metabolism 1.6461022 Cellular metabolism 4.3061023

tRNA aminoacylation for protein
translation

4.2861022 Metabolism 9.6061023

Amino acid activation 4.2861022 Regulation of translation 1.5761022

tRNA aminoacylation 4.2861022 Amine biosynthesis 1.6561022

Cellular lipid metabolism 4.9161022 Nitrogen compound biosynthesis 1.6561022

TCA Tricarboxylic acid biosynthesis 4.9661022 Regulation of protein biosynthesis 2.0661022

Lipid metabolism 2.6661022

Cellular lipid metabolism 4.0361022

doi:10.1371/journal.pcbi.1000270.t001
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Figure 2. A selection of example scatterplots that demonstrate experimental condition-dependent correlation between
metabolites and related genes, motivating the use of a Bayesian algorithm. Metabolite and gene transcript concentration changes are
represented as log2 ratios of measurements from starved cells to measurements from unstarved cells. The responses observed under carbon
starvation (light gray circles, ‘‘Carbon’’ in legend) are labeled distinctly from the responses under nitrogen starvation (dark gray triangles, ‘‘Nitrogen’’
in legend), but are plotted on the same axes. Solid light gray and dark gray lines are linear best-fits for the responses observed under carbon and
nitrogen starvation, respectively; the dashed line is a linear best-fit curve for all data. (A–E) Scatterplots of metabolites from the glycolysis and
pentose-phosphate pathway metabolic class versus related genes show an inverse relationship under carbon starvation, but a positive correlation
under nitrogen starvation. The dashed line shows that this relationship would be obscured by computing correlation across all data points. ILV2
catalyzes the first step of isoleucine and valine biosynthesis from pyruvate; ARO3 catalyzes the first step in aromatic amino acid biosynthesis from PEP
and erythrose-4-phosphate; ALD6, which also plays a key role in redox metabolism, is involved in the creation of cytosolic acetyl-CoA from pyruvate;
GLK1 phosphorylates glucose to glucose-6-phosphate; and PGM2 catalyzes the interconversion of glucose-1-phosphate and glucose-6-phosphate. (F–
H) Scatterplots of metabolites from the amino acid metabolic class versus related genes, in contrast, show positive correlation in both carbon and
nitrogen starvation. Even in this case, however, computing correlation across both conditions can lead to an underestimation of the extent of the
relationship (e.g., (H) threonine vs. THR4, where although rnitrogen~0:95 and rcarbon~0:97, roverall~0:86). HTS1 charges (i.e. aminoacylates) the
histidinyl-tRNA; MET6 catalyzes the formation of methionine from homocysteine; and THR4 converts phosphohomoserine to threonine.
doi:10.1371/journal.pcbi.1000270.g002

Coordinated Transcript and Metabolite Changes
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(Figure 2A–E; representations of the nitrogen starvation data

and best-fit lines using expanded x-axes can be found in Figure

S2). Computing correlation across both conditions would lead to

the erroneous conclusion that no relationship exists between

these genes and metabolites (raverage~0:14). In contrast, for

metabolites belonging to the ‘‘amino acids’’ category (Figure 2F–

H), related metabolites and genes tend to show strong positive

correlations under both conditions: histidine and HTS1 (the

histidine tRNA synthetase), methionine and MET6 (methionine

synthase), and threonine and THR4 (threonine synthase)

exemplify this behavior (raverage~0:89). We have therefore

developed a Bayesian algorithm capable of automatically

learning and exploiting the way in which different signs and

strengths of correlation can be suggestive of a functional

relationship, depending on the experimental condition and the

metabolite class.

Bayesian Analysis Captures Context-Dependent Patterns
of Correlation between Genes and Metabolites

Bayesian networks [30–32] are a general class of graphical

probabilistic models. Because they allow the specification of

dependencies between quantities of interest, such as relationships

observed between genes and metabolites under different condi-

tions, Bayesian networks are well-suited for leveraging such

dependencies in order to make specific predictions. In these

networks, variables, or ‘‘nodes,’’ are connected by arrows, or

‘‘edges,’’ indicating which variables depend on which others. Each

node is parametrized by a conditional probability distribution

(CPD), which describes the probability of observing the variable in

a certain state, given the states of the variables on which it is

dependent (for example, in Figure 3B, ‘‘gene–metabolite correla-

tion observed under carbon starvation’’ is dependent on both

‘‘metabolite class’’ and whether a ‘‘gene–metabolite functional

relationship’’ exists).

Our objective in constructing this Bayesian network was to

formalize the concept that the strength and direction of correlation

observed between a certain gene and metabolite is particular to the

experimental perturbation, and depends on the functional class to

which the metabolite in question belongs. We also expect to

observe different correlations for metabolites and genes that are

truly related than we would observe for random, unrelated gene–

metabolite pairs. The Bayesian network that we constructed

(Figure 3B) therefore consists of four nodes. Two of these nodes

correspond to observed correlations calculated from LC-MS/MS

and microarray data (‘‘gene–metabolite correlation observed

under nitrogen starvation’’ and ‘‘gene–metabolite correlation

observed under carbon starvation’’); each of these nodes can take

one of five different values, depending on the strength and sign of

correlation. The other two nodes (‘‘gene–metabolite functional

relationship,’’ which can be yes or no, and ‘‘metabolite class,’’

which can be any of the four metabolite classes enumerated above)

correspond to intrinsic attributes of the gene–metabolite pair. To

represent the dependencies described above, edges have been

drawn from the node representing ‘‘functional relationship’’ and

from the node representing ‘‘metabolite class’’ to both of the nodes

representing gene–metabolite correlations observed under a

specific experimental condition.

Given a set of positive and negative examples, the conditional

probability distributions that constitute the parameters of our

model can be automatically learned. These distributions are given

by P Cg,m

��FRg,m,MCm

� �
and P Ng,m

��FRg,m,MCm

� �
, where Cg,m

refers to the correlation of gene g and metabolite m under carbon

starvation, Ng,m to correlation under nitrogen starvation, FRg,m to

whether or not a functional relationship exists between gene g and

metabolite m, and MCm to the class of metabolite m. By Bayes’

theorem, these class-specific conditional probability distributions

(CPDs) are equivalent to the probability that a pair is functionally

related given a certain observed level of correlation, normalized by

1) whether that level of correlation is rare or common overall and

by 2) whether functional relationships are rare or common overall

(i.e.,
P FRg,m Ng,m ,MCmjð ÞP Ng,m MCmjð Þ

P FRg,m MCmjð Þ and
P FRg,m Cg,m ,MCmjð ÞP Cg,m MCmjð Þ

P FRg,m MCmjð Þ ).

To learn these parameters, we calculated how often different

correlations were observed for a set of gene–metabolite pairs

known to be either functionally related or unrelated. Positive

examples were drawn from genes and metabolites belonging to the

same pathway in the Kyoto Encyclopedia of Genes and Genomes

(KEGG [33]); negative examples were random gene–metabolite

pairs that were not in the positive example set (see Materials and

Methods for details).

A key advantage of Bayesian networks, compared to other

machine-learning techniques, is that since the parameters are

probability distributions, they have a direct meaning which can be

informative about the system being modeled. With this in mind,

the parameters P Ng,m FRg,m,MCm

��� �
and P Cg,m FRg,m,MCm

��� �
are shown in Figure 3C, for two of the metabolite classes

(‘‘glycolysis and pentose-phosphate pathway’’ and ‘‘amino acids’’)

and all possible values of Ng,m, Cg,m, and FRg,m. Intuitively, these

probabilities capture how likely an observed gene–metabolite

correlation would be if the gene–metabolite pair were either

related (dark grey) or unrelated (light grey). For example, in the

plots on the right-hand side of Figure 3C (nitrogen deprivation

data), the distribution for functionally-related pairs is shifted

substantially to the right: this indicates that functionally related

gene–metabolite pairs tend to be positively correlated under

nitrogen starvation.

Another visualization of these conditional probability distribu-

tions is shown in Figure 3D. Here, the CPDs are collapsed into a

single bar chart for each metabolite class and environmental

condition by taking the log-ratio of the CPDs represented by the

light and dark lines in Figure 3C. These log-odds scores are given

mathematically by log
P Cg,mð ÞjFRg,m~Yes,MCm

P Cg,mð ÞjFRg,m~No,MCm

� �
and

log
P Ng,m FRg,m~Yes,MCmjð Þ
P Ng,m FRg,m~No,MCmjð Þ

� �
. This visualization is particularly

useful because it clarifies whether a particular level of correlation

is more likely to be observed for a related gene–metabolite pair

(above zero) or for an unrelated pair (below zero). For instance,

this figure shows that for amino acids (second row), negative

correlations under either condition are more likely to be observed

for unrelated gene–metabolite pairs than for pairs where a

functional relationship exists. The magnitude of each bar

corresponds to how much more probable a particular correlation

is for either related or unrelated pairs. For example, in the case of

the amino acids, while a positive correlation under either

experimental condition suggests a functional gene–metabolite

relationship, positive correlation is more informative under

nitrogen starvation than it is under carbon starvation.

The values that the network learned for these parameters

indicate that the magnitude and direction of correlation between a

given gene and metabolite do in fact depend strongly on that

metabolite’s class, as suggested by Figure 2. For instance, the

amino acid methionine and the biosynthetic gene MET6, which

converts homocysteine to methionine, have a clear functional

relationship. Consistent with the parameters learned, methionine

and MET6 exhibit a strong positive correlation under both

conditions, especially nitrogen starvation (Figure 2G). In contrast,

for glycolysis and pentose-phosphate pathway compounds, while

Coordinated Transcript and Metabolite Changes
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related gene–metabolite pairs do exhibit positive correlations

under nitrogen starvation, interacting pairs actually tend to be

inversely correlated under carbon starvation. This relationship is

typified by GLK1 and hexose-phosphate (Figure 2D). Additionally,

when hexose-phosphate concentrations are plotted against GLK1

transcript concentrations, it is readily apparent that because

hexose-phosphate and GLK1 are positively correlated under

nitrogen starvation but inversely correlated under carbon

starvation, they exhibit a very weak relationship when Pearson

correlation is computed across both conditions (r~0:095).

This pattern of positive correlation under nitrogen starvation

and inverse correlation under carbon starvation is also observed

for a number of other gene–metabolite pairs in our standard of

examples (Figure 2A–E), including phosphoenolpyruvate (PEP)

and ALD6 (Figure 2C). In terms of chemical steps, PEP is linked to

ALD6 indirectly (being first converted to pyruvate by CDC19 and

then to acetaldehyde via pyruvate decarboxylase, the major

isozyme of which is PDC1). However, PEP, like ALD6, is

predominantly cytoplasmic, whereas the intermediate species

pyruvate and acetaldehyde exist in both cytoplasmic and

mitochondrial pools, which could be regulated differently. This

suggests that the total cellular concentrations of PEP might be

more strongly related to ALD6 concentrations than would those of

the other intermediate species, and furthermore that gene–

metabolite pairs that are not directly linked by a single

biochemical reaction may still have important functional relation-

ships.

This type of Bayesian integration does not attempt to infer

causality between changes in gene and metabolite levels. In certain

cases, however, we do have a prior expectation that can explain

Figure 3. Bayesian network relating gene–metabolite interactions to metabolomic and transcriptomic data and to metabolite class.
(A) Overview of Bayesian integration procedure. Transcript and metabolite data were used to compute correlations between genes and metabolites
over time under different experimental conditions. These correlations, along with a set of positive and negative examples obtained from KEGG, were
used to train a Bayesian network. (B) Structure of the Bayesian network. This four-node network states that the variables corresponding to gene–
metabolite correlations observed under either nitrogen or carbon starvation depend on the class of the metabolite involved, and whether or not a
functional relationship between the gene and metabolite exists. The rounded boxes by each node represent the possible values that the nodes can
take. (C) Conditional probability distributions learned from the experimental data. The parameters of the Bayesian network were computed from the
experimental data and the set of positive and negative examples of gene–metabolite functional interactions. The light gray line gives the probability
(y-axis) that, given no functional relationship, one would observe a given correlation (x-axis); the dark gray line gives the corresponding probability if
given a true functional relationship instead. (D) Conditional probability distributions represented as log-odds scores. The sign of the bar corresponds
to whether observing a certain strength and direction of correlation is more likely for a true functional relationship (positive) or for no functional
relationship (negative), while the magnitude of the bar corresponds to how much more likely this is.
doi:10.1371/journal.pcbi.1000270.g003
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some of the learned parameters. For example, lack of ammonium

under nitrogen starvation likely leads directly to falling amino acid

concentrations. Nitrogen starvation also leads to decreased activity

of the transcription factor GCN4 and thus reduced expression of

amino acid biosynthetic genes. Although the mechanism is not

fully understood, there is evidence that the TOR pathway, which

is believed to sense intracellular concentrations of glutamine [34],

is responsible for causing reduced translation of GCN4 via the

protein Eap1p [35]. Under carbon starvation, many transcripts

may be induced or repressed by a combination of extracellular

pathways for the sensing of glucose (via Ras/PKA and Snf3p) and

intracellular sensing of hexose-phosphate (potentially mediated by

HXK2) [36]. While these pathways are elaborate and involve many

layers of regulation, it has been observed that during growth

without glucose, repression involving HXK2 and MIG1 is relieved

[37]. In the absence of glucose, we would expect glucose-6-

phosphate, fructose-6-phosphate, and FBP levels to drop: since

HXK1 and GLK1 have been shown to be under the control of

HXK2-dependent glucose repression [38], this would explain the

inverse correlation observed between, for example, GLK1 and

hexose-phosphate.

Bayesian Integration Finds Specific Gene–Metabolite
Interactions outside Our Standard of Examples

Following parameter learning, we performed inference using

the Bayesian network, which assigned to each gene–metabolite

pair a confidence score. This score is equal to the posterior

probability of a functional relationship, given the metabolite class

and the correlations observed in the data (i.e.,

P FRg,m

��Ng,m,Cg,m,MCm

� �
). Since this value is continuous

between 0 and 1, different cutoffs can be chosen depending on

whether a certain application requires more precision (the fraction

of pairs above the cutoff that are true positives) or more recall

(fraction of total true positives with a score above the cutoff). One

way to assess performance that takes this trade-off into account is

to plot precision against recall for every possible cutoff, yielding a

precision-recall curve (PRC). The same type of PRC can also be

generated using the Pearson correlation between metabolite and

gene concentrations instead of the gene–metabolite confidence

score. We have employed these PRCs to compare the perfor-

mance of our method relative to simply computing correlation

across both experiments (Figure 4).

Given the differences between the parameters learned for

distinct perturbations and metabolic classes, we expected that

many physiologically relevant, specific gene–metabolite interac-

tions that can be discovered by this Bayesian analysis would be

missed by looking only at overall correlation. In agreement with

this expectation, when evaluated against our set of known gene–

metabolite interactions (using three-fold cross validation to avoid

overfitting) and compared to Pearson correlation, Bayesian

integration performs significantly better (Figure 4). It is more

precise than correlation overall, and reaches twice the precision at

the most stringent cut-off (the leftmost end of the curve), which

corresponds to the most confidently-predicted gene–metabolite

interactions.

To investigate the potential of the Bayesian network to find

biologically relevant interactions beyond the set of examples, we

searched for support in the scientific literature for the most

confident predictions of our network (764 predicted gene–

metabolite interactions, excluding those belonging to the example

set derived from KEGG), as well as for 250 random gene–

metabolite pairs. While many true predictions could be novel and

thus unsupported in the literature, we still expect that accurate

predictions would be enriched for pairs supported by existing

published evidence. Each gene–metabolite pair was scored on four

specific criteria (see Materials and Methods). The evaluation was

performed blind to whether gene–metabolite pairs were predicted

or randomly picked. Of the random pairs, only 1.2% received

literature support. In contrast, 9.4% of the highly-predicted pairs

were supported by at least one piece of literature evidence, an

enrichment of 7.8-fold (p~0:001 by Fisher’s exact test; for

contingency table, see Table 2). Whereas no random pair satisfied

all four evidence criteria, three predicted pairs did: methionine-

MET3, methionine-MET22, and methionine-MET10. These three

pairs were not in our gold standard because they participate in the

assimilation of sulfur into homocysteine, and although homocys-

teine is converted in one step to L-methionine, in the KEGG

database ‘‘sulfur metabolism’’ does not contain the molecular

species ‘‘methionine’’ and is a separate pathway from ‘‘methionine

metabolism.’’ Nevertheless, MET3, MET10, and MET22 are

essential for methionine biosynthesis and the knockouts are

methionine auxotrophs. We also found a variety of other genes

and metabolites for which there was substantial evidence: e.g.,

valine-PDC5 (PDC5 is involved in the catabolism of valine to

isobutyl alcohol [39]), and methionine-MIS1 (MIS1 is required for

the formylation of the mitochondrial initiator Met-tRNAfMet

[40]). The full results can be found in Dataset S3. These results

suggest that, despite the limited scale of the present work, our

approach is capable of generalizing from our training set to find

other biologically relevant gene–metabolite interactions.

A further example of the potential utility of the Bayesian

approach is illustrated in Figure 5, in which we describe an

interaction identified by Bayesian integration between a metab-

olite and a protein that regulates enzyme concentrations. This

regulatory protein functions as an important part of the system

Figure 4. Precision-recall curve (PRC) showing the superior
performance of context-sensitive Bayesian integration (dark
gray line), as compared to overall strength of gene–metabolite
concentration correlation (light gray line), for identifying
gene–metabolite functional interactions from transcriptomic
and metabolomic data. Recall, or fraction of known positives
predicted by the system, is plotted on the X-axis (log scale); precision,
or fraction of predictions that are in the training set, is plotted on the Y
axis. The Bayesian integration PRC shows greater area under the curve
than the correlation PRC, especially in the left-most, highest-confidence
regime.
doi:10.1371/journal.pcbi.1000270.g004
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that S. cerevisiae has evolved to face a fundamental metabolic

challenge: namely, the diauxic shift, during which the cell changes

from fermentative to respirative growth. In the first phase of

growth on fermentable sugars, S. cerevisiae cultures initially grow

quickly, metabolizing all the available glucose to ethanol (high

ethanol concentrations are toxic to many other microbes, giving S.

cerevisiae a competitive advantage). This fermentative phase is

followed by a second phase of growth in which yeast cells use

ethanol as a substrate, and perform oxidative respiration. The

switch between these two states involves extensive metabolic and

transcriptional remodeling [41]. Chief among the changes induced

by the diauxic shift is the shift from using glucose to generate ATP

(glycolysis), to using ethanol and ATP to make glucose and the

carbon skeletons necessary for biosynthesis (gluconeogenesis).

Many of the steps in both glycolysis and gluconeogenesis are

readily reversible and are therefore catalyzed by the same

enzymes. For this reason, it is imperative that the cell be able to

commit to one pathway or the other by controlling the enzymes

that are unique to each pathway, as otherwise the cell would waste

energy through futile cycles. Accordingly, S. cerevisiae has evolved

extensive regulatory machinery at the metabolic, transcriptional,

and post-transcriptional levels that allows it to successfully

negotiate this transition.

One of the key steps of glycolysis is the irreversible conversion of

fructose-6-phosphate (F6P) to fructose-1,6-bisphosphate (FBP),

catalyzed by phosphofructokinase (the genes PFK1 and PFK2); in

gluconeogenesis, the opposite reaction is catalyzed by a separate

enzyme, fructose-1,6-bisphosphatase (Fbp1p). A schematic of this

pathway is given in Figure 5A. One of the top predictions made by

the Bayesian network for the metabolite fructose-1,6-bisphosphate

(FBP) was the gene VID24, which was not in our gold standard of

examples. However, VID24 is known to play an important

regulatory role in governing the gluconeogenetic enzyme Fbp1p:

during the switch from gluconeogenesis to glycolysis, Fbp1p is

specifically targeted to and degraded in the vacuole in a way that is

dependent on VID24 [42]. This example highlights the promise of

Bayesian integration to find relationships that correlation alone

would miss. Pearson correlation calculated between VID24 and

FBP across both conditions yields r equal to just 0.03. However, as

shown in Figure 4B, VID24 and FBP exhibit an inverse correlation

under carbon starvation (r~{0:98) and a strong positive

correlation under nitrogen starvation (rw0:99). According to the

parameters learned by the Bayesian network for the ‘‘glycolysis

and pentose-phosphate pathway’’ metabolite class, this behavior is

indicative of a gene–metabolite functional relationship with a high

likelihood. It is important to note that this interaction was found

despite the fact that our study did not explicitly target the diauxic

shift, suggesting the capacity of this method to recover diverse

functional signals in the data. Moreover, this example shows that

interactions can be found not only between genes encoding

enzymes and the metabolites they act on, but also between

metabolites and proteins that play roles in metabolic regulation.

Discussion

We have generated paired transcriptional and metabolomic

data that capture the dynamic responses to two perturbations over

Table 2. Literature support for predicted gene–metabolite
interactions.

Scoring Pairs Non-scoring Pairs Total

Random 3 247 250

Predicted 72 692 764

Contingency table representing enrichment of predicted pairs for evidence in
literature validation study (by Fisher’s exact test, p~0:001). Dataset S3 contains

the full results from the literature study.
doi:10.1371/journal.pcbi.1000270.t002

Figure 5. Example of gene regulating the glycolytic–gluconeogenic switch (VID24) that we identified as interacting with the key
glycolytic metabolite fructose-1,6-bisphosphate (FBP). (A) Schematic of reactions involving FBP and VID24. The conversion of FBP to hexose
phosphate is catalyzed by fructose-1,6-bisphosphatase (FBP1). Vid24p destroys this enzyme by targeting it to the vacuole for destruction. (B)
Scatterplot showing the relationship between VID24 and FBP abundances over carbon starvation (‘‘carbon’’ in the legend) and nitrogen starvation
(‘‘nitrogen’’ in the legend). As in Figure 2, lines represent linear best-fit curves, calculated separately for each condition (solid lines) or over both
conditions (dashed line). VID24 and FBP are inversely correlated under carbon starvation (light gray), but positively correlated under nitrogen
starvation (dark gray), as anticipated for a gene interacting with a glycolytic metabolite. VID24 was in the top 3% of predictions made for FBP.
doi:10.1371/journal.pcbi.1000270.g005
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time, and find substantial evidence for the co-regulation of

transcripts and metabolites. At a general level, singular value

decomposition reveals that the dominant dynamic patterns

exhibited by transcript and metabolite concentrations are closely

aligned. Functional enrichment demonstrates that metabolites

tend to show significant correlations to genes that play roles in

related biological processes. Finally, using a Bayesian framework,

we are able to find patterns of co-regulation between genes and

metabolites that take into account both the experimental context

where the correlations are observed, and the functional classifi-

cation of the metabolite in question.

By analyzing metabolite and transcript data within this

framework, we can identify new interactions and detect both

direct and indirect regulatory relationships between a broad range

of genes and small molecules. For example, we identified a

regulatory link between FBP and VID24, although they exhibit

almost no net correlation across both of the environmental

perturbations tested (Figure 5). Additionally, our top predictions

also include gene–metabolite relationships that connect metabo-

lism to other key biological processes: for instance, methionine is

known to play a unique and important role in the initiation of

translation, and indeed two of our top predictions link methionine

to FUN12 and GCN3, which are both involved in the formation of

the 80S initiation complex that includes Met-tRNAiMet [43–45].

This type of Bayesian integration has been shown to outperform

conventional correlation-based analyses (Figure 4), and the

literature study suggests that we are able to find true gene–

metabolite interactions outside of the gold standard. Furthermore,

our ability to verify via literature search a substantial fraction of

the predicted gene–metabolite pairs (Table 2) implies that Figure 4

markedly underestimates the precision of the Bayesian approach:

many of the apparent ‘‘false positives’’ reflect real interactions that

were not included in the limited set of positive examples selected

from KEGG. These include both real interactions that are already

known in the literature, and novel interactions to be verified in

follow-up efforts. Identifying such novel gene–metabolite relation-

ships could be used not only to drive further experimentation, but

also to contribute to other modeling approaches that rely on

extensive knowledge about cellular metabolic networks and their

connectivity.

Despite this progress, there is undoubtedly still room for

advances to be made in the accuracy of the predicted gene–

metabolite interactions. For instance, advances in analytical

techniques continue to allow the measurement of larger numbers

of known compounds. Although the metabolite classes that we

describe in the present work are broadly applicable and cover the

majority of primary metabolism, they could also be extended to

cover biomolecules that were not measured in the current study,

such as lipids or secondary metabolites. Additionally, an increase

in measured compounds could allow broader classes such as

‘‘biosynthetic intermediates’’ to be divided into smaller groups like

amino acid intermediates or nucleotides, allowing more specific

predictions to be made without the risk of overfitting based on a

small number of examples. Using a larger number of classes could

also help to avoid situations in which a small number of

metabolites in a particular class exhibit different behavior from

the majority, potentially leading to incorrect predictions for those

outlier metabolites. Another area for future development is the

gold standard itself, which, although certainly sufficient to make

valid predictions, is still incomplete, as shown by the literature

study. The gold standard could productively be combined with an

extensive curation of the yeast metabolism literature, so that

known regulatory as well as enzymatic interactions between genes

and metabolites would then be included.

It should also be noted that the current predictions were made

on the basis of only two experimental conditions. As interest in the

measurement of multiple biomolecule types grows, more paired

gene–metabolite data of the type presented here will continue to

be published, and we imagine that these data will prove a valuable

resource for integration efforts like the present work. Selected data

sets that could prove particularly illuminating include metabolome

and transcriptome sampling under other elemental starvations,

such as phosphate and sulfur. Additionally, since prototrophic

yeasts are capable of growth on a variety of carbon and nitrogen

sources, monitoring gene and metabolite concentrations under

these conditions could be illuminating with respect to both general

(e.g., preferred vs. non-preferred nutrient sources, such as

ammonium vs. proline) and specific gene–metabolite interactions

(e.g., repression or activation of the GAL pathway by galactose).

As compounds from more branches of metabolism can be

measured, and as data sets that track multiple biomolecule types in

response to perturbations become available for more experimental

conditions, analyses that are sensitive to biochemical context are

likely to become increasingly critical. This work represents proof-

of-concept of the potential of context-sensitive approaches for

building networks relating metabolic activity and gene expression

directly from experimental data.

Materials and Methods

Limitation Experiments on Filters
Cultures of FY4 (a prototrophic, Mata derivative of S288C [46],

Princeton strain DBY11069) were grown overnight in liquid

minimal media (YNB, see below). After these overnight cultures

were set back, 10 mL of early exponential phase culture (Klett 60,

1.56106 cells/mL) was filtered onto 0:45 mm pore-size nitrocellulose

filters (82 mm in diameter). The cells (1.56107 cells with diameter

5 mm) covered 5% of the filter surface. The filters were then placed

on minimal media-agarose plates and allowed to grow for 3 h at

300C, or approximately one doubling on the filter. To initiate the

starvation time-course, the filters were transferred from the minimal

plates to plates made with media lacking either ammonium (YNB-N,

nitrogen deprivation) or D-glucose (YNB-C, carbon deprivation).

The filter-culture approach, which allows for both rapid modifica-

tion of the extracellular environment and rapid quenching of

metabolism, is described in detail in previous work [20,21].

The transcriptome and metabolome were sampled during

exponential growth (before switching) and at 10, 30, 60, 120, 240,

and 480 minutes following the switch to nitrogen-free or carbon-

free media. Measurements of both metabolites and transcripts were

collected in parallel. The metabolite measurements and extraction

procedures have been previously published [20]. The observed

quantitative metabolite concentration changes were verified by an

independent experiment that included isotopically-labeled stan-

dards of 34 metabolites during the measurement process. This

validation demonstrates that the metabolite measurements are

robust to potential ion suppression artifacts and experimental noise

(see Figure S1 and Brauer et al. [20]).

Experimental controls also demonstrate that the presented

metabolomic and transcriptomic data are dominated by biological

signal and not by noise. Raw LC-MS/MS data (log2 transformed

ion counts) for two independent replicates of exponentially

growing yeast are plotted in Figure S3. The agreement between

the two samples was found to be high (y = 1.03x. R2~0:998). The

Lin’s concordance coefficient [47], a normalized measure of the

distance from the 45u line representing y~x, where 0 is non-

reproducible and 1 is perfectly reproducible, was 0.98, indicating

very high reproducibility.
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For the transcriptomic data, two additional negative control

replicates were collected by extracting RNA from filter cultures

moved to plates containing both a carbon and a nitrogen source

(i.e., the same nutrient conditions as before the switch). The

median standard deviation in transcript measurements collected

from these replicates was found to be 0.099 (log2 units). In

contrast, the median standard deviation for the carbon starvation

timecourse was 0.45, and for the nitrogen starvation timecourse

0.46. This demonstrates that the primary source of variability in

the presented data is not due to technical or biological noise.

Transcriptome Sampling
In order to take timepoints of transcription, the filter cultures

were submerged in liquid nitrogen and stored at {800C. Yeast

cells were washed from filters with 10 mL of lysis buffer, and RNA

was subsequently extracted using a Qiagen RNEasy kit (QIAGEN,

Valencia, CA). Oligo(dT) resin from an Oligotex midi kit

(QIAGEN, Valencia, CA) was used to purify the poly(A)+ fraction

from the total extracted RNA. cRNA labeled with cyanine (Cy)5-

(experimental) or Cy3-dCTP (reference) was then synthesized

from 1 to 2 mg of the poly(A)+ RNA. The transcriptional profiles

of yeast cultures at the time of harvest were measured by

hybridization of the Cy3- and Cy5-labeled cRNA to an Agilent

Yeast Oligo Microarray (V2). The reference sample was the zero-

timepoint (taken during exponential growth prior to media

switching).

Normalization of Transcriptome and Metabolome Data
Metabolite levels were normalized by cell dry weight to

account for cell growth and division during the time course. As

metabolites were roughly evenly-distributed between increasing

and decreasing in response to nutrient starvation, no normali-

zation for total metabolome size or total LC-MS/MS signal was

required. For transcript levels, cell growth and division was

accounted for by loading an approximately equivalent amount of

reference and experimental RNA onto each array. This loading

also normalized for decreases in total RNA pool size induced by

nutrient starvation. Such normalization is useful to enable the

identification of specific transcriptional regulatory events, as

opposed to changes in the overall level of transcription. To

correct for biases in hybridization efficiency between the Cy3

and Cy5-labeled RNA, microarray chip scans were normalized

so that the total intensities across all probes in the red and in the

green channels were equal.

For the purposes of our analyses, both metabolite and transcript

levels were expressed as log base 2 ratios of the zero timepoint.

Missing values for the transcriptional data were imputed using

KNNimpute [48] with 10 neighbors, discarding any genes having

more than 30% missing values; metabolites with missing values

were discarded.

Singular Value Decomposition
Singular value decomposition (SVD) is a process used to

elucidate predominant patterns in large data matrices; its

applications include image compression and noise reduction.

SVD transforms a single data matrix into three matrices: these

correspond to (i) the characteristic patterns, or ‘‘eigenvectors’’; (ii)

the amount of information each pattern contributes to the original

data set as a whole; and (iii) the weight of each pattern for

individual variables. Alter et al. [49] contains a more detailed

treatment. Singular value decomposition was performed in

MATLAB using the svd command.

To determine the extent of coordination between metabolism

and transcription under the conditions tested, we computed the

Pearson correlation between the most informative gene patterns

(top eigenvectors) and corresponding metabolite patterns. We

found that each of the first three gene patterns correlated

significantly with the corresponding metabolite patterns, suggest-

ing that similar overall trends were exhibited in both types of data.

Significance was established via t-test (pv0:05).

The root-mean-squared fold change (rmsfold ) for each of the

data types was computed according to the following formula:

rmsfold~2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T :N

PT
t~1

PN
n~1

xt,nð Þ2
r� �

where T is the number of timepoints (12 for either data type), N is

the number of molecular species measured (5373 for transcripts

and 61 for metabolites), and xt,n is a particular abundance level

observed at timepoint t for gene or metabolite n expressed as a

log2 ratio to time 0. The root-mean-squared fold change was 3.1

for transcripts and 3.3 for metabolites.

Gene Ontology Enrichment Analysis
For each metabolite m and gene g measured, we calculated the

Pearson correlation between them:

rg,m~

P
gi{gð Þ mi{mð Þ
n{1ð Þsgsm

where sg and sm correspond to the sample variance of g and m, and

n is the sample size (i.e., total number of observations) of m (or g).

We then conducted a permutation test, rearranging the columns

(i.e., experimental conditions) of the metabolite data matrix 104

times to get bootstrapped p-values for these correlation values,

which were then corrected using a false discovery rate of a~0:01
according to the procedure described by Benjamini and Hochberg

[50]. The significantly-correlated genes for each metabolite were

assembled into lists. We combined all the gene lists for every

metabolite in a particular class (TCA cycle, glycolysis and pentose-

phosphate pathway, amino acids, or biosynthetic intermediates),

yielding four larger gene lists, one for each metabolite class.

The Gene Ontology (GO) [51] is a hierarchical categorization

scheme for genes in several organisms, including S. cerevisiae. There

are three top-level nodes, or ‘‘terms,’’ namely, ‘‘molecular

function,’’ ‘‘cellular component,’’ and ‘‘biological process’’; the

majority of gene products in yeast are annotated to more specific

(i.e., descendant) terms. We calculated the enrichment of these

per-metabolite-class gene lists for all possible GO ‘‘biological

process’’ terms using the hypergeometric distribution. Let g be the

number of class-associated genes, G the number of genes in the

genome, T the number of genes in a GO term, and t the number

of class-associated genes that are also in the GO term. The p-value

is then given by:

p~1{
Xt{1

n~0

T

n

� �
G{T

g{n

� �

G

g

� �

where n iterates from 0 to t{1. This equation therefore yields one

minus the probability of observing t{1 or fewer class-associated

genes belonging to a given GO term, or equivalently, the

probability of observing t or greater class-associated genes

belonging to that GO term.
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These enrichment p-values were then Bonferroni corrected (i.e.,

pcorrected~puncorrected|h, where h is the number of tests). Since

only terms containing at least one of the significantly-correlated

genes were tested for enrichment, the number of hypotheses tested

h was 138 for the ‘‘TCA cycle’’ class, 611 for the ‘‘amino acids’’

class, 468 for the ‘‘glycolysis and pentose-phosphate pathway’’

class, and 620 for the ‘‘biosynthetic intermediates’’ class. All

significant (pv0:05) enrichments are given in Table 1.

Gold Standard Construction
We assembled a ‘‘gold standard,’’ or a set of positive and

negative examples of gene–metabolite interactions, from the

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

database [33]. In order to find positive examples for the metabolite

classes ‘‘amino acids’’ and ‘‘biosynthetic intermediates,’’ for each

distinct pathway (e.g., ‘‘arginine and proline metabolism’’) as

defined by KEGG, the set of reactions in a pathway was collected

and then matched to the enzymes that catalyzed these reactions.

To generate gene–metabolite pairs, every measured metabolite

that appeared in that pathway was then paired with this set of

enzymes. For example, in the pathway ‘‘arginine and proline

metabolism,’’ arginine, ornithine, and proline are all paired with

all of the enzymes involved in the catabolism and biosynthesis of

arginine and proline, including arginase (CAR1), ornithine-oxo-

acid transaminase (CAR2), and proline oxidase (PUT1).

In the case of the ‘‘TCA cycle’’ and ‘‘glycolysis and pentose-

phosphate pathway’’ metabolite classes, a similar procedure was

used. However, compounds from both of these classes are used as

carbon skeletons for a wide variety of metabolites. Therefore, to

improve the specificity of these positive examples, positive

examples for the ‘‘TCA cycle’’ class were drawn only from the

list of reactions in the ‘‘TCA cycle’’ pathway, and positive

examples for the ‘‘glycolysis and pentose-phosphate pathway’’

class were drawn only from ‘‘glycolysis and gluconeogenesis’’ and

‘‘pentose-phosphate pathway.’’ Additionally, to properly capture

the structure of glycolysis and the pentose-phosphate pathway,

each of these KEGG pathways was divided into two separate

subpathways: these subpathways were upper and lower glycolysis

(genes and metabolites upstream and downstream of fructose-1,6-

bisphosphate, respectively, with FBP itself belonging to upper

glycolysis), and the oxidative and non-oxidative branches of the

pentose-phosphate pathway. Matching of metabolites within a

pathway to reactions and to enzymes was performed in the same

way as above (because of the structure of KEGG, this included

certain enzymes outside the pathway that directly acted on one of

the metabolites in these pathways, such as ILV6).

Certain ‘‘distributor’’ metabolites (2-oxoglutarate, acetyl-CoA,

ADP, AMP, ATP, L-glutamate, L-aspartate, L-glutamine, NAD+,

and NADP+) were excluded from the gold standard because they

are common reactants or products in a very large number of

reactions. For each metabolite class, 50 times as many random

gene–metabolite pairs (drawn from outside the positive example

set for all metabolite classes) were picked as negative examples, so

that the final gold standard was 1.96% positives and 98.04%

negatives (Dataset S2).

Data Processing
In order to perform Bayesian integration, we first calculate the

Pearson correlation of every metabolite and gene separately for

each experimental perturbation. In order to ensure that these

correlations are comparable between conditions, we enforce

normality on the observed correlations r by applying a Fisher

transform:

z~
1

2
log

1zr

1{r

� �

The resulting distribution z is then centered by the mean m and

divided by the standard deviation s ( Z~ z{m
s

� �
). This process

transforms the correlation distributions observed under nitrogen

and under carbon starvation to be approximately equal to a

normal distribution centered around zero, with a standard

deviation of one. The Z-scores are then discretized into five bins;

bin edges were {?,{1:5,{0:5,0:5,1:5,?f g, so that the ‘‘strong

inverse’’ bin contained Z-scores more than 1.5 standard deviations

below the mean, the ‘‘weak inverse’’ bin contained Z-scores from

0.5 to 1.5 standard deviations below the mean, the ‘‘no

relationship’’ bin contained Z-scores 0.5 standard deviations

above or below the mean, and so forth. These discretized data

become the input for the Bayesian networks described below.

Bayesian Network Training and Evaluation
The algorithm for finding gene–metabolite interactions is based

on the Bayesian network shown in Figure 3. This network, whose

structure is depicted in Figure 3B, relates the correlations observed

between a gene and metabolite under each condition to (1)

whether the gene and metabolite are related and (2) the class of the

metabolite. More rigorously, this network specifies that, for a given

gene g and metabolite m, the discretized correlations observed

under nitrogen starvation (Ng,m) and under carbon starvation

(Cg,m) are dependent on the class (MCm) of the metabolite and

whether or not the gene and metabolite are functionally

related (FRg,m). This network is therefore parametrized by the

conditional probability distributions P Ng,m FRg,m,MCm

��� �
and

P Cg,m FRg,m,MCm

��� �
, along with the prior probability of a

gene–metabolite relationship P FRg,m MCmj
� �

, which simply

reflects the proportion of positive and negative examples in our

gold standard for each metabolite class (see above). The

conditional probability distributions P Ng,m FRg,m,MCm

��� �
and

P Cg,m FRg,m,MCm

��� �
were calculated from the data using

maximum likelihood [52]. In each of our examples, the value of

every node is known, so this calculation reduced to counting the

examples falling into each bin of correlation under nitrogen or

carbon starvation for each possible value of FRg,m and MCm.

These counts were then divided by the total number of

observations satisfying those values of FRg,m and MCm to yield

probability distributions summing to one for

P Ng,m FRg,m,MCm

��� �
and P Cg,m FRg,m,MCm

��� �
.

After learning the parameters for this Bayesian network (shown

in Figure 3C and 3D), we calculated the probability that a gene

and metabolite were actually related given the observed

correlations and the metabolite class, or

P FRg,m Ng,m,Cg,m,MCm

��� �
. In our network, exact inference can

be used to calculate P FRg,m Ng,m,Cg,m,MCm

��� �
:

P FRg,m Ng,m,Cg,m,MCm

��� �
~

P Ng,m MCm,FRg,m

��� �
P Cg,m MCm,FRg,m

��� �
P FRg,m MCmj
� �

P Ng,m,Cg,m MCmj
� �

The numerator can be calculated directly from the learned

parameters, and the denominator can be obtained by marginal-

ization over FRg,m.

We assessed this algorithm by generating a precision-recall

curve, employing three-fold cross-validation to ensure unbiased
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evaluations. The gold standard was divided into random thirds; the

network was then trained on two-thirds of the examples and

evaluated on the remainder. This training was repeated three times,

each time holding out a different third of the gold standard.

Histograms of the confidence scores received by the positive and

negative examples in the Bayesian integration process reveal that the

positive examples from our gold standard indeed have significantly

higher scores (p~1:1|10{39 by Kolmogorov-Smirnov test), and

can be found throughout the top predictions (Figure S1).

Our Bayesian network was trained and evaluated using the

Bayes Net Toolbox for MATLAB [53].

Literature-Based Evaluation of Top Predictions
The top 788 gene–metabolite pairs were predicted to be related

by the Bayesian network with equal confidence. These top

predictions were compiled and the pairs in the gold standard

were removed; this yielded 764 predicted pairs. We then added

250 random gene–metabolite pairs, and analyzed the random and

predicted sets together. This analysis was performed blind to

whether pairs were predicted by the algorithm or randomly

selected. The predictions were evaluated based on four categories:

1. Specific GO function. A pair received a point if a GO term to

which the gene was annotated contained the name of the

metabolite or metabolite class, and this GO term was more

specific than a term in the GO Functional Slim [54] list.

2. Specific TF target. If the gene in question had an upstream

binding site (according to Harbison et al. [55] or Tachibana et

al. [56]) for a transcription factor known to regulate a specific

branch of metabolism (for example, methionine and a gene

with a MET4 site, or a sulfur-containing amino acid and a gene

with a CBF3 site), then the gene–metabolite pair received a

point for each binding site.

3. Specific documented interaction. A pair received a point if a Pubmed

search with each member of the pair as a search term was able

to reveal a confirmed interaction between the two, as in FBP

and VID24.

4. Relevant knockout phenotype. A pair received a point if there was a

documented knockout (KO) phenotype for the gene in question

listed on the Saccharomyces Genome Database (SGD) [57]

that related to the metabolite in question, such as failure of the

knockout to grow in media not supplemented with that

metabolite.

Since relatively few genes and metabolites have been studied for

interactions, we expect that the gene–metabolite pairs scored

according to this evaluation will contain many false negatives, or

gene–metabolite pairs for which there is no evidence simply

because the relationship between those particular genes and

metabolites have not yet been studied, despite the presence of a

functional interaction.

Media Composition
‘‘YNB’’ minimal media consisted of 6.7 g yeast nitrogen base

without amino acids and 20 g D-glucose per 1 L. ‘‘YNB-C’’

carbon starvation media consisted of 6.7 g yeast nitrogen base

without amino acids per 1 L, with no glucose. ‘‘YNB-N’’ minimal

media consisted of 6.7 g yeast nitrogen base without amino acids

and without ammonium sulfate and 20 g D-glucose per 1 L. 30 g

of three-times-washed ultrapure agarose was added per 1 L to

make agarose plates.

Supporting Information

Dataset S1 Transcript data. Transcriptional data, expressed as

log2 ratios to time zero, for 10, 30, 60, 120, 240, and 480 minutes

post-induction of nitrogen starvation (removal of ammonium) or

carbon starvation (removal of glucose).

Found at: doi:10.1371/journal.pcbi.1000270.s001 (2.20 MB XLS)

Dataset S2 Gold standard. Set of positive and negative

examples of gene-metabolite interactions used to train the

Bayesian network, assembled from the KEGG (Kyoto Encyclo-

pedia of Genes and Genomes) Pathway database.

Found at: doi:10.1371/journal.pcbi.1000270.s002 (0.21 MB XLS)

Dataset S3 Literature study results. This table is a representa-

tion of the described blind literature study, in which the 764 top

predictions (that were not in the gold standard) were scored

together with 250 random gene-metabolite pairs.

Found at: doi:10.1371/journal.pcbi.1000270.s003 (0.25 MB XLS)

Figure S1 Distribution of prediction scores. This figure shows

histograms of the confidence scores (x-axis) from the Bayesian

integration procedure for negative (dashed light gray) and positive

(solid dark gray) examples in the gold standard. The plot reveals

that the distribution of positive pairs shows a propensity for higher

scores (p = 1.1610239, by Kolmogorov-Smirnov test) and that the

distribution of positive pairs is smooth.

Found at: doi:10.1371/journal.pcbi.1000270.s004 (0.02 MB PDF)

Figure S2 Enlarged plots of selected metabolite versus gene

concentrations under nitrogen starvation. Because concentrations

of the glycolytic metabolites hexose-phosphate and phosphoenol-

pyruvate had a smaller dynamic range under nitrogen starvation

than under carbon starvation, the first five examples of metabolite

vs. transcript concentration plots in the nitrogen starvation

condition from Figure 2 have been plotted with an expanded

x-axis.

Found at: doi:10.1371/journal.pcbi.1000270.s005 (0.01 MB PDF)

Figure S3 Comparison of zero timepoints from metabolomic

data shows robustness to biological and technical variation. Since

we have two independent measurements of metabolite counts in

unperturbed cells (the zero timepoints in the carbon starvation and

in the nitrogen starvation experiments), these measurements can

be compared to assess the technical and biological reproducibility.

The agreement between the time points is very high (y = 1.036,

R2 = 0.998). We also calculated Lin’s concordance coefficient,

which is a normalized measure of the distance from the 45u line

through the origin y = x, where a score of 0 would be totally non-

reproducible and a score of 1 would be identical; this value was

calculated to be 0.98, indicating very high reproducibility.

Found at: doi:10.1371/journal.pcbi.1000270.s006 (0.02 MB PDF)
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