
Compiling Parallel Code for Sparse Matrix Applications

Vladimir Kotlyar Keshav Pingali Paul Stodghill

Department of Computer Science

Cornell University� Ithaca� NY �����

fvladimir�pingali�stodghilg�cs�cornell�edu

August ��� ����

Abstract

We have developed a framework based on relational algebra for compiling e�cient

sparse matrix code from dense DO�ANY loops and a speci�cation of the representation

of the sparse matrix� In this paper� we show how this framework can be used to generate

parallel code� and present experimental data that demonstrates that the code generated

by our Bernoulli compiler achieves performance competitive with that of hand�written

codes for important computational kernels�

Keywords� parallelizing compilers� sparse matrix computations

� Introduction

Sparse matrix computations are ubiquitous in computational science� However� the de�
velopment of high�performance software for sparse matrix computations is a tedious and
error�prone task� for two reasons� First� there is no standard way of storing sparse matri�
ces� since a variety of formats are used to avoid storing zeros� and the best choice for the
format is dependent on the problem and the architecture� Second� for most algorithms� it
takes a lot of code reorganization to produce an e�cient sparse program that is tuned to a
particular format� We illustrate these points by describing two formats � a classical format
called Compressed Column Storage �CCS� ��	
 and a modern one used in the BlockSolve
library ���
 � which will serve as running examples in this abstract�

CCS format is illustrated in Fig� �� The matrix is compressed along the columns and is
stored using three arrays� COLP� VALS and ROWIND� The values of the non�zero elements of
each column j are stored in the array section VALS�COLP�j� � � � �COLP�j � �� � ���� The row
indices for the non�zero elements of the column j are stored in ROWIND�COLP�j� � � � �COLP�j �
�� � ���� This is illustrated in Fig� ��b�� If a matrix has many zero columns� then the zero
columns are not stored� which results in what is called Compressed Compressed Column
Storage format �CCCS�� In this case� another level of indirection is added �the COLIND

array� to compress the column dimension� as well �Fig� ��c���

�

�
BB�

� 	 	 	
	 	 �
� � 	 	
	 � 	 �

�
CCA

1 3

1 4 2 5 6 3 7

2 3 4 2 4

COLP

VALS

ROWIND

1 6 83 6

1 3

1 4 2 5 6 3 7

2 3 4 2 4

COLP

VALS

ROWIND

COLIND 1 2 4

3 6 81

�a� An example matrix �b� CCS format �c� CCCS format

Figure �� Illustration of Compressed Column Storage format

This is a very general and simple format� However� it does not exploit any application
speci�c structure in the matrix� The format used in the BlockSolve library exploits struc�
ture present in sparse matrices that arise in the solution of PDE�s with multiple degrees of
freedom� Figure �a� �adapted from ���
� illustrates a grid that would arise from �D� linear�
multi�component �nite�element model with three degrees of freedom at each discretization
point� The degrees of freedom are illustrated by the three dots at each discretization point�
The sti�ness matrix for such model would have groups of rows with identical column struc�
ture called i�nodes ��identical nodes��� Non�zero values for each i�node can be gathered into
a dense matrix as shown in Fig� �c��

Such matrices are also rich in cliques �a partition into cliques is shown in Fig� �a� using
dashed rectangles�� The library colors the contracted graph induced by the cliques and
reorders the matrix as shown in Fig� �b�� For symmetric matrices� only the lower half is
stored together with the diagonal� Black triangles along the diagonal correspond to dense
matrices induced by the cliques� Gray o��diagonal blocks correspond to sparse blocks of the
matrix �stored using i�nodes�� Notice that the matrix is stored as a collection of smaller
dense matrices� This fact helps reduce sparse storage overhead and improve performance of
matrix�vector products�

For parallel execution� each color is divided among the processors� Therefore each proces�
sor receives several blocks of contiguous rows� On each processor� the o��diagonal blocks are
actually stored by column �in column i�nodes�� When performing a matrix�vector product�
this storage organization makes the processing of messages containing non�local values of the
vector more e�cient� In addition� this allows the overlap of computation and communication
by separating matrix�vector product into a portion which accesses only local data and one
that deals with non�local data in incoming messages�

The main algorithm we will consider in this paper is matrix�vector product which is
the core computation in iterative solvers for linear systems� Consider the performance �in
M�ops� of sparse matrix�vector product on a single processor of an IBM SP� for a variety
of matrices and storage formats� shown in Table � �descriptions of the matrices and the
formats can be found in Appendix A�� Boxed numbers indicate the highest performance for
a given matrix� It is clear from this set of experiments that there is no single format that
is appropriate for all kinds of problems� This demonstrates the di�culty of developing a
�sparse BLAS� for sparse matrix computations� Even if we limit ourselves to the formats in
Table �� one still has to provide at least �� � �� versions of sparse matrix�matrix product

Color #1

Color #0

Color #2

p 0

p 1

p 2

p 0

p 1

p 2

p 0
p 1

p 2

�a� A subgraph generated by D linear
�nite element model

�b� Color�clique reordering in the Block�
Solve library

a b
c d

31

1
2

3
4

41 2

h j
g

i
fe

INODE 21

ba
1 3 42

1
2
3
4

A

c d
e
h

f
i j

g

�c� I�node storage

Figure � Illustration of the BlockSolve format

�assuming that the result is stored in a single format��
The lack of extensibility in the sparse BLAS approach has been addressed by object�

oriented solver libraries� like the PETSc library from Argonne ��
� Such libraries provide
templates for a certain class of solvers �for example� Krylov space iterative solvers� and
allow a user to add new formats by providing hooks for the implementations of some algebraic
operations �such as matrix�vector product�� However� in many cases the implementations of
matrix�vector products themselves are quite tedious �as is the case in the BlockSolve library��
Also� these libraries are not very useful in developing new algorithms�

A radically di�erent solution is to generate sparse matrix programs by using restructuring
compiler technology� The compiler is given a dense matrix program with declarations about
which matrices are actually sparse� and it is responsible for choosing appropriate storage
formats and for generating sparse matrix programs� This idea has been explored by Bik and
Wijsho� ��� �
� but their approach is limited to simple sparse matrix formats that are not
representative of those used in high�performance codes� Intuitively� they trade the ability to
handle a variety of formats for the ability to compile arbitrary loop nests�

We have taken a di�erent approach� Previously� we have shown how e�cient sparse
sequential code can be generated for a variety of storage formats for DOALL loops and
loops with reductions ���� ��
� Our approach is based on viewing arrays as relations� and the
execution of loop nests as evaluation of relational queries� We have demonstrated that our
method of describing storage formats through access methods is general enough to specify

�

Name Diagonal Coordinate CRS ITPACK JDiag BS��

small ���� ����� ���			 ����� ����� ���

medium ���� ����� ����� ����	 ����� ������

cfd����� ����	 ����� ����� ����� ������ ��	�	

��� bus ����� ����� 	��� ����� ����	� ����

bcsstm�� �����	 ���	� ����� ����� ���	� ���	�

gr �� �� ����� ����	 ������ ����� ���� �����

memplus 	��� ����� ����� 	��	 ����� �����

sherman� ������ ����� ������ ��	�� ��	�� ����

Table �� Performance of sparse matrix�vector product

a variety of formats yet speci�c enough to allow important optimizations� Since the class
of �DOANY� loops covers not only matrix�vector and matrix�matrix products� but also
important kernels within high�performance implementations of direct solvers and incomplete
preconditioners� this allows us to address the needs of a number of important applications�
One can think of our sparse code generator as providing an extensible set of sparse BLAS
codes� which can be used to implement a variety of applications� just like dense BLAS
routines�

For parallel execution� one need to specify how data and computation are partitioned�
Such information �we call it distribution relation� can come in a variety of formats� Just as
is the case with sparse matrix formats� the distribution relation formats are also application
dependent� In the case of regular block�cyclic distributions the distribution relations can
be speci�ed by a closed�form formula� This allows ownership information to be computed
at compile�time� However� regular distributions might not provide adequate load�balance in
many irregularly structured applications�

The HPF� standard ��
 provides for two kinds of irregular distributions� generalized
block and indirect� In generalized block distribution� each processor receives a single block of
continuous rows� It is suggested in the standard that each processor should hold the block
sizes for all processors � that is the distribution relation should be replicated� This permits
ownership to be determined without communication� Indirect distributions are the most
general� the user provides an array MAP such that the element MAP�i� gives the processor to
which the ith row is assigned� The MAP array itself can be distributed a variety of ways�
However� this can require communication to determine ownership of non�local data�

The Chaos library ���
 allows the user to specify partitioning information by providing
the list of row indices assigned to each processor� The list of indices are transferred into
distributed translation table which is equivalent to having a MAP array partitioned block�
wise� This scheme is as general as the indirect scheme used in HPF� and it also requires
communication to determine ownership and to build the translation table�

As we have already discussed� the partitioning scheme used in the BlockSolve library is
somewhat di�erent� It is more general than the generalized block distribution provided by
HPF�� yet it has more structure than the indirect distribution� Furthermore� the distri�
bution relation in the BlockSolve library is replicated� since each processor usually receives

�

only a small number of contiguous rows�
Our goal is to provide a parallel code generation strategy with the following properties�

� The strategy should not depend on having a �xed set of sparse matrix formats�

� It should not depend on having a �xed set of distributions�

� The system should be extensible� That is it should be possible to add new formats
without changing the overall code generation mechanism�

� At the same time� the generality should not come at the expense of performance� The
compiler must exploit structure available in sparse matrix and partitioning formats�

To solve this problem we extend our relational approach to the generation of parallel
sparse code starting from dense code� a speci�cation of sparse matrix formats and data
partitioning information� We view arrays as distributed relations and parallel loop execution
as distributed query evaluation� In addition� di�erent ways of representing partitioning
information �regular and irregular� are uni�ed by viewing distribution maps themselves as
relations�

Here is the outline of the rest of the paper� In Section � we outline our relational
approach to sequential sparse code generation� In Section �� we describe our sparse parallel
code generation algorithm� In Section �� we present experimental evidence of the advantages
of our approach� Section � presents a comparison with previous work� Section � presents
conclusions and ongoing work�

� Relational Model of Sparse Code Generation

Consider the matrix�vector product y � A � x�

DO i 	 �
 N

DO j 	 �
 N

Y�i� 	 Y�i� A�i
j� � X�j�

Suppose that the matrix A and the vector x are sparse� and that the vector y is dense� To
execute this code e�ciently� it is necessary to perform only those iterations �i�j� for which
A�i
j� and X�j� are not zero� This set of iterations can be described by the following set
of constraints� ��

�
� � i � N � � � j � N
A�i� j� a� �X�j� x� � Y �i� y�
a �� 	 � x �� 	

���

The �rst row represents the loop bounds� The constraints in the second row associate values
with array indices� for example� the predicate A�i� j� a� constraints a to be the value of
A�i� j�� Finally� the constraints in the third row specify which iterations update Y with
non�zero values�

�

Our problem is to compute an e�cient enumeration of the set of iterations speci�ed by
the constraints ���� For these iterations� we need e�cient access to the corresponding entries
in the matrices and vectors� Since the constraints are not linear and the sets being computed
are not convex� we cannot use methods based on polyhedral algebra� such as Fourier�Motzkin
elimination �
� to enumerate these sets�

Our approach is based on relational algebra� and it models A� X and Y as relations
�tables� that hold tuples of array indices and values� Conceptually� the relation corresponding
to a sparse matrix contains both zero and non�zero values� We view the iteration space of
the loop as a relation I of hi� ji tuples� Then we can write the �rst two rows of constraints
from ��� as the following relational query �relational algebra notation is summarized in
Appendix B��

Qdense � I�i� j� �� A�i� j� a� �� X�j� x� �� Y �i� y� ��

To test if elements of sparse arrays A and X are non�zero� we use predicates NZ�A�i� j��
and NZ�X�j��� Notice that because Y is dense� NZ�Y �i�� evaluates to true for all array
indices � � i � N � Therefore� the constraints in the third row of ��� can be now rewritten
as�

P � NZ�A�i� j�� �NZ�X�j�� ���

The predicate P is called the sparsity predicate� We use the algorithm of Bik and Wijsho� ���
�
 to compute the sparsity predicate in general�

Using the de�nition of the sparsity predicate� we can �nally write down the query which
de�nes the indices and values in the sparse computation�

Qsparse � �PQdense � �P

�
I�i� j� �� A�i� j� a� �� X�j� x� �� Y �i� y�

�
���

�� is the relational algebra selection operator��
We have now reduced the problem of e�ciently enumerating the iteration points that

satisfy the system of constraints ��� to the problem of e�ciently computing a relational
query involving selections and joins� This problem in turn is solved by determining an
e�cient order in which the joins in ��� should be performed and determining how each of
the joins should be implemented� These decisions depend on the storage formats used for
the sparse arrays�

��� Describing Storage Formats

Following ideas from relational database literature ���� 	
� each sparse storage format is
described in terms of its access methods and their properties� Unlike database relations�
which are usually stored as ��at� collections of tuples� most sparse storage formats have
hierarchical structure� which must be exploited for e�ciency� For example� the CCS format
does not provide a way of enumerating row indices without �rst accessing a particular column�
We use the following notation to describe such hierarchical structure of array indices�

J � �I� V � ���

�

which means that for a given column index j we can access a set of hi� vi tuples of row indices
and values of the matrix� The � operator is used to denote the hierarchy of array indices�

For each term in the hierarchy �J and �I� V � in the example�� the programmer must
provide methods to search and enumerate the indices at that level� and must specify the
properties of these methods such as the cost of the search or whether the enumeration
produces sorted output� These methods and their properties are used to determine good
join orders and join implementations for each relational query extracted from the program�
as described in ���
�

This way of describing storage formats to the compiler through access methods and
properties solves the extensibility problem� a variety of storage formats can be described to
the compiler� and the compilation strategy does not depend on a �xed set of formats� For
the details on how the formats are speci�ed to the compiler� see ���
�

��� Index Translations

Some sparse formats such as jagged�diagonal storage involve permutations of row and column
indices� Permutations and other kinds of index translations can be easily incorporated into
our framework� Suppose we have a permutation P which is stored using two integer arrays�
PERM and IPERM � which represent the permutation and its inverse� We can view P as a
relation of tuples hi� i�i� where i is the original index and i� is the permuted index�

Now suppose that rows of the matrix in our example have been permuted using P � Then
we can view A as relation of hi�� j� ai tuples and the query for sparse matrix�vector product
is�

Qsparse � �P

�
I�i� j� �� X�j� x� �� Y �i� y� �� P �i� i�� �� A�i�� j� a�

�
���

where the sparsity predicate is� P � NZ�A��i�� j�� �NZ�X�j���

��� Summary

Here are the highlights of our approach�

� Arrays �sparse and dense� are relations

� Access methods de�ne the relation as a view of the data structures that implement a
particular format

� We view loop execution as relational query evaluation

� The query optimization algorithm only needs to know the high�level structure of the
relations as provided by the access methods and not the actual implementation �e�g�
the role of the COLP and ROWIND arrays in the CCS storage��

� Permutations also can be handled by our compiler

� The compilation algorithms are independent of any particular set of storage formats
and new storage formats can be added to the compiler�

�

� Generating parallel code

Ancourt et al� ��
 have described how the problem of generating SPMD code for dense HPF
programs can be reduced to the computation of expressions in polyhedral algebra� We now
describe how the problem of generating sparse SPMD code for a loop nest can be reduced to
the problem of evaluating relational algebra queries over distributed relations� Section ���
describes how distributed arrays are represented� Section �� describes how a distributed
query is translated into a sequence of local queries and communication statements� In
Section ��� we discuss how our code generation algorithm is used in the context of the
BlockSolve data structures�

��� Representing distributed arrays

In the uniprocessor case� relations are high�level views of the underlying data structures�
In the parallel case� each relation is a view of the partitions �or fragments� stored on each
processor� The formats for the fragments are de�ned using access methods as outlined in
Sec� ��� The problem we must address is that of describing distributed relations from the
fragments�

Let�s start with the following simple example�

� The matrix A is partitioned by row� Each processor p gets a fragment matrix A�p��

� Let i and j be the row and column indices of an array element in the original matrix�
and let i� and j � be the corresponding indices in a fragment A�p�� Because the partition
is by row� the the column indices are the same �j � j ��� However i �� i�� i is the global
row index� whereas i� can be thought of the local row o�set� To translate between i
and i�� each processor keeps an integer array IND�p� such that IND�p��i�� � i� That is�
each processor keeps the list of global row indices assigned to it�

How do we represent this partition�
Notice that on each processor p the array IND�p� can be viewed as a relation IND�p��i� i���

The local fragment of the matrix can also be viewed as a relation� A�p��i�� j� a�� We can
de�ne the global matrix as follows�

A�i� j� a� �
�
p

�i�j�a
�
IND�p��i� i�� �� A�p��i�� j� a�

�
���

�The projection operator � is de�ned in the Appendix B��
In this case� each processor p carries the information that translates its own fragment

A�p� into the contribution to the global relation� But there are other situations� when a
processors other than p might own the translation information for the fragment stored on p�
A good example is the distributed translation table used in the Chaos library ���
� Suppose
that the global indices fall into the range 	 � i � N � � for some N � Also� let P be the
number of processors� Let B � dN�P e� Then for a given global index i the index of the
owner processor p and the the local o�set i� are stored on processor

q � bi�Bc ���

�

Each processor q holds the array of hp� i�i tuples indexed by

h � imodB ���

We need a general way of representing such index translation schemes� The key is to
view the index translation relation itself as a distributed relation� Then� in the �rst case this
global relation is de�ned as�

IND�i� p� i�� �
�
p

IND�p��i� i�� � fpg ��	�

In the example from the Chaos library� the relation is de�ned by�

IND�i� p� i�� �
�
q

�i�p�i�
�
BLOCK�i� q� h� �� IND�q��h� p� i��

�
����

where IND�q��h� p� i�� is the view of the above mentioned array of hp� i�i tuples and the
relation BLOCK�i� q� h� is the shorthand for the constraints in ��� and ����

Once we have de�ned the index translation relation IND�i� p� i��� we can rewrite ��� as�

A�i� j� a� �
�
p

�i�j�a
�
IND�i� p� i�� �� A�p��i�� j� a�

�
���

where IND can be de�ned by� for example� ��	� or �����
Similarly� we can de�ne the global relations X and Y for the vectors in the matrix�vector

product �assuming they are distributed the same way as the rows of A��

X�j� x� �
�
p

�j�x

�
IND�j� p� j �� �� X�p��j �� x�

�
����

Y �i� y� �
�
p

�i�y
�
IND�i� p� i�� �� Y �p��i�� y�

�
����

In general� distributed relations are described by�

R�a� �
�
p

�a
�
IND�a� p� a�� �� R�p��a��

�
����

where R is the distributed relation� R�p� is the fragment on processor p and IND is the
global�to�local index translation relation� The index translation relation can be di�erent for
di�erent arrays� but we assume that it always speci�es a ��� mapping between the global
index a and the pair hp� a�i� Notice that our example partitioning of the IND relation in
��	� and ���� themselves satisfy de�nition ����� We call ���� the fragmentation equation�

How do we specify the distribution of computation� Recall that the iteration set of the
loop is also represented as a relation� I�i� j�� in our matrix�vector product example� We

�

A
(p)

Access methods

Fragmentation

COLP

Global relations

Local fragments

VALS

Low-level data structures

A

ROWIND A
(p)

Bernoulli Compiler HPF

Local storage

A
Distributed arrays

Alignment/Distribution
+Compiler

Figure �� Flow of information in HPF and Bernoulli Compiler

could require the user to supply the full fragmentation equation for I� But this would be
too burdensome� the user would have to provide the local iteration set I�p�� but this set
should really be determined by the compiler using some policy �such as the owner�computes
rule�� In addition� because the relation I is not stored� there is no need to allow multiple
storage formats for it� Our mechanisms are independent of the policy used to determine the
distribution relation for iterations given any distribution relation IND� we can de�ne the
local iteration set by�

I�p��i�� j� � �i��j

�
IND�i� p� i�� �� I�i� j�

�
����

This simple de�nition allows us to treat the iteration set relation I uniformly together with
other relations in question�

Notice that the fragmentation equation ���� is more explicit than the alignment�distri�
bution scheme used in HPF� In the Bernoulli compiler global relations are described through
a hierarchy of views� �rst local fragments are de�ned through access methods as the views
of the low�level data structures� Then the global relations are de�ned as views of the local
fragments through the fragmentation equation�

In HPF� alignment and distribution provide the mapping from global indices to proces�
sors� but not the full global�to�local index translation� Local storage layout �and the full
index translation� is derived by the compiler� This removes from the user the responsibility
for �and �exibility in� de�ning local storage formats� The di�erence in the �ow of information
between HPF and Bernoulli Compiler is illustrated in Fig� ��

By mistake� the user may specify inconsistent distribution relations IND� These incon�
sistencies� in general� can only be detected at runtime� For example� it can only be veri�ed
at run�time if a user speci�ed distribution relation IND in fact provides a ��� and onto
map� This problem is not unique to our framework � HPF with value�based distributions
��
 has a similar problem� Basically� if a function is speci�ed by its values at run�time� its
properties can only be checked at run�time� It is possible to generate a �debugging� version
of the code� that will check the consistency of the distributions� but this is beyond the scope
of this paper�

�	

��� Translating distributed queries

Let us return to the query for sparse matrix�vector product�

Qsparse � �PQdense � �P

�
I�i� j� �� A�i� j� a� �� X�j� x� �� Y �i� y�

�
����

The relations A� X and Y are de�ned by ���� ���� and ����� We translate the distributed
query ���� into a sequence of local queries and communication statements by expanding the
de�nitions of the distributed relations and doing some algebraic simpli�cation� as follows�

����� General strategy

In the distributed query literature the optimization problem is� �nd the sites that will evalu�
ate parts of the query ����� In the context of� say� a banking database spread across branches
of the bank� the partitioning of the relations is �xed� and may not be optimal for each query
submitted to the system� This is why the choice of sites might be non�trivial in such ap�
plications� See �	
 for a detailed discussion of the general distributed query optimization
problem�

In our case� we expect that the placement of the relations is correlated with the query
itself and is given to us by the user� In particular� the placement of the iteration space
relation I tells us where the query should be processed� That is the query to be evaluated
on each processor p is�

Q�p� � �PQdense � �P

�
I�p��i� j� �� A�i� j� a� �� X�j� x� �� Y �i� y�

�
����

where I�p� is the set of iterations assigned to processor p� We resolve the references to the
global relations A� X and Y by� �rst� exploiting the fact that the join between some of
them �in this case A and Y � do not require any communication at all and can be directly
translated into the join between the local fragments� Then� we resolve the remaining ref�
erences by computing communication sets �and performing the actual communication� for
other relations �X in our example��

We now outline the major steps�

����� Exploiting collocation

In order to expose the fact that the join between A and Y can be done without communi�
cation� we expand the join using the de�nitions of the relations�

A�i� j� a� ��i Y �i� y� �	S
p �i�j�a

�
IND�i� p� i�� �� A�p��i�� j� a�

�

��i

	S
q �i�y

�
IND�i� q� i��� �� Y �q��i��� y�

�

����

Because we have assumed that the index translation relation IND provides a ��� mapping
between global index and processor numbers� we can deduce that p � q� This is nothing

��

more than the statement of the fact that A and Y are aligned ��� �
� So the join between A
and Y can be translated into�

A�i� j� a� ��i Y �i� y� �
�
p

�i�j�a�y

�
IND�i� p� i�� ��i� A

�p��i�� j� a� ��i� Y
�p��i�� y�

�
�	�

Notice that the join on the global index i has been translated into the join on the local
o�sets i� � i��� The sparsity predicate P originally refers to the distributed relations� P �
NZ�A�i� j�� � NZ�X�j��� In the translated query� we replace the references to the global
relations with the references to the local relations�

����� Generating communication

The query�

Used
�p�
X �j� � �j�NZ�A�p��i��j��

�
A�p��i�� j� a� �� Y �p��i�� y�

�
���

computes the set of global indices j of X that are referenced by each processor� The join of
this set with the index translation relation will tell us where to get each element�

RecvInd
�p�
X �j� q� j �� � Used

�p�
X �j� �� IND�j� q� j �� ��

This tells us which elements of X must be communicated to processor p from processor
q� If the IND relation is distributed �as is the case in the Chaos library�� then evaluation
of the query �� might itself require communication� This communication can also be
expressed and computed in our framework by applying the parallel code generation algorithm
recursively�

����� Summary

Here is the summary of our approach�

� We represent distributed arrays as distributed relations�

� We represent global�to�local index translation relations as distributed relations�

� We represent parallel DOANY loop execution as distributed query evaluation�

� For compiling dense HPF programs� Ancourt et al� ��
 describe how the computation
sets� communication sets etc� can be described by expressions in polyhedral algebra�
We derive similar results for sparse programs� using relational algebra�

��� Compiling for the BlockSolve formats�

As was discussed in the introduction� the BlockSolve library splits the matrix into two
disjoint data structures� the collection of dense matrices along the diagonal� shown using

�

black triangles in Figure �b�� and the o��diagonal sparse portions of the matrix stored using
i�node format �Figure �c���

In the computation of a matrix�vector product y � A � x the dense matrices along the
diagonal refer only to the local portions of the vector x� Also the o��diagonal sparse blocks
are stored in a way that makes it easy to enumerate separately over those elements of the
matrix that refer only to the local elements of x and over those that require communication�

Altogether� we can view a matrix A stored in the BlockSolve library format as a sum
AD � ASL � ASNL� where�

� AD represents the dense blocks along the diagonal

� ASL represents the portions of the sparse blocks that refer to local elements of x

� ASNL represents the portions of the sparse blocks that refer to non�local elements of x

AD� ASL and ASNL are all partitioned by row� The distribution in the library assigns
a small number of continuous rows to each processor� The distribution relation is also
replicated� thus reducing the cost of computing the ownership information�

The hand�written library code does not have to compute any communication sets or
index translations for the products involving AD and ASL � these portions of the matrix
access directly the local elements of x�

How can we use our code generation technology to produce code competitive with the
hand�written code�

The straight�forward approach is to start from the sequential dense matrix data�parallel
program for matrix�vector product� Since the matrix is represented as three fragments �AD�
ASL and ASNL�� our approach essentially computes three matrix vector products�

y � AD � x
y � y � ASL � x
y � y � ASNL � x

���

The performance of this code is discussed in the next section� Careful comparison of this
code with the handwritten code reveals that the performance of our code su�ers from the fact
that even though the products involving AD and ASL do not require any communication�
they still require global�to�local index translation for the elements of x that are used in the
computation� If we view AD and ASL as global relations that stored global row and column
indices� then we hide the fact that the local indices of x can be determined directly from the
data structures for AD and ASL� This redundant index translation introduces extra level of
indirection in the accesses to x and degrades node program performance� At this point� we
have no automatic approach to handling this problem�

We can however circumvent the problem at the cost of increasing the complexity of the
input program by specifying the code for the products with AD and ASL at the node program
level� The code for the product with ASNL is still speci�ed at the global �data�parallel� level�

local� y�p� � AD�p� � x�p�

local� y�p� � y�p� � A
�p�
SL � x

�p�

global� y � y � ASNL � x

���

��

where y�p�� etc are the local portions of the arrays and y� ASNL and x are the global views�
The compiler then generates the necessary communication and index translations for the
product with ASNL� This mixed speci�cation �both data�parallel and node level programs�
is not unique to our approach� For example� HPF allows the programmer to �escape� to the
node program level by using extrinsics ��
�

In general� sophisticated composite sparse formats� such as the one used in the BlockSolve
library� might require algorithm speci�cation at a di�erent level than just a dense loop� We
are currently exploring ways of specifying storage formats so that we can get good sequential
performance without having to drop down to node level programs for some parts of the
application�

� Experiments

In this section� we present preliminary performance measurements on the IBM SP�� The
algorithm we studied is a parallel Conjugate Gradient ���
 solver with diagonal precondi�
tioning �CG�� which solves large sparse systems of linear equations iteratively� Following
the terminology from Chaos project� the parallel implementation of the algorithm can be
divided into the inspector phase and the executor phase ���
� The inspector determines the
the set of values to be communicated and performs some other preprocessing� The executor
performs the actual computation and communication� In iterative applications the cost of
the inspector can usually be amortized over several iterations of the executor�

In order to verify the quality of the compiler�generated code and to demonstrate the
bene�t of using the mixed local�global speci�cation ��� of the algorithm in this applica�
tion we have measured the performance of the inspector and the executor in the following
implementations of the CG algorithm�

� BlockSolve is the hand�written code from the BlockSolve library�

� Bernoulli�Mixed is the code generated by the compiler starting from the mixed lo�
cal�global speci�cation in ����

� Bernoulli is the �naive� code generated by the compiler starting from fully data�
parallel speci�cation ����

We ran the di�erent implementations of the solver on a set of synthetic three�dimensional
grid problems� The connectivity of the resulting sparse matrix corresponds to a ��point
stencil with � degrees of freedom at each discretization point� Then� we ran the solver on �
�� �� ��� � and �� processors of the IBM SP� at Cornell Theory Center� During each run
we kept the problem size per processor constant at �	� �	� �	� This places ���� �	� rows
with about ��� � �	� non�zeroes total on each processor� We limited the number of solver
iterations to �	� Tab� shows the times �in seconds� for the numerical solution phase �the
executor�� Tab� � shows the overhead of the inspector phase as the ratio of the time taken
by the inspector to the time taken by a single iteration of the executor�

The comparative performance of the Bernoulli�Mixed and BlockSolve versions veri�
�es the quality of the compiler generated code� The ��! di�erence is due to aggressive

��

P BlockSolve Bernoulli�Mixed Bernoulli
sec sec di�� sec di��

 ���� ���	 ! ���� �!
� ���� ���� ! ���	 �	!
� ���� ���� 	! ���� �!
�� ���� ���� �! �	� �	!
� ���� �	� �! ��� �	!
�� �	� ��� �! �� ��!

Table � Numerical computation times ��	 iterations�

P BlockSolve Bernoulli�Mixed Bernoulli Indirect�Mixed Indirect
 	�	� 	�	� �� �� ����
� 	�	� 	��� �� ���� ���
� 	�	� 	��� ��� ���� ����
�� 	��� 	��� ��� ��� ��
� 	�� 	� ��� ���� �����
�� 	��� 	�� ��� ���� �����

Table �� Inspector overhead

overlapping of communication and computation done in the hand�written code� Currently�
the Bernoulli compiler generates simpler code� which �rst exchanges the non�local values of
x and then does the computation� While the inspector in Bernoulli�Mixed code is about
twice as expensive as that in the BlockSolve code� its cost is still quite negligible ���! of
the executor with �	 iterations��

The comparison of the Bernoulli and Bernoulli�Mixed code illustrates the importance
of using the mixed local�global speci�cation ���� The Bernoulli code has to perform
redundant work in order to discover that most of the references to x are in fact local and do
not require communication� The amount of this work is proportional to the problem size �the
number of unknowns� and is much larger than the number of elements of x that are actually
communicated� As the result� the inspector in the Bernoulli code is an order of magnitude
more expensive than the one in the BlockSolve or Bernoulli�Mixed implementations� The
performance of the executor also su�ers because of the redundant global�to�local translation�
which introduces an extra level of indirection in the �nal code even for the local references
to x� As the result� the executor in Bernoulli code is about �	! slower than in the
Bernoulli�Mixed code�

To demonstrate the bene�t of exposing structure in distribution relations� we have mea�
sured the inspector overhead for using the indirect distribution format from the HPF�
standard ��
� We have implemented two versions of the inspectors using the support for the
indirect distribution in the Chaos library ���
�

� Indirect�Mixed is the inspector for the mixed local�global speci�cation of ����

��

� Indirect is the inspector for the fully data parallel speci�cation�

Tab� � shows the ratio of the time taken by the Indirect�� inspectors to the time taken by
the single iteration of the Bernoulli�� executors � the executor code is exactly the same in
both cases and we have only measured the executors for the Bernoulli�� implementations�

The order of magnitude di�erence between the performance of Indirect�Mixed and
Bernoulli�Mixed inspectors is due to the fact that the Indirect�Mixed inspector has to
perform asymptotically more work and requires expensive communication� Setting up the
distributed translation table in the Indirect�Mixed inspector� which is necessary to resolve
non�local references� requires the round of all�to�all communication with the volume pro�
portional to the problem size �i�e� the number of unknowns�� Additionally� querying the
translation table �in order to determine the ownership information� again requires all�to�all
communication� for each global index j the processor q � j�B for some block size B is
queried for the ownership information � even though the communication pattern for our
problems has limited �nearest�neighbor� connectivity�

The di�erence between Indirect and Bernoulli inspectors is not as pronounced � the
number of references that has to be translated is proportional to the problem size� Still� the
Indirect inspector has to perform all�to�all communication to determine the ownership of
the non�local data�

The relative e�ect of the inspector performance on the overall solver performance de�
pends� of course� on the number of iterations taken by the solver� which� in turn� depends on
the condition number of the input matrix� To get a better idea of the relative performance of
the Bernoulli�Mixed and Indirect�Mixed implementation for a range of problems we have
plotted in Fig� � the ratios of the time that the Indirect�Mixed implementation would take
to the time that the Bernoulli�Mixed implementation would take on � and �� processors
for a range of iteration counts � � k � �		� The lines in Fig� � plot the values of the ratio�

k � rI
k � rB

���

where rB is the inspector overhead for the Bernoulli�Mixed version� rI is inspector overhead
for the Indirect�Mixed version and k is the iteration count� A simple calculation shows that
it would take �� iterations of an Indirect�Mixed solver on �� processors to get within �	!
of the performance of the Bernoulli�Mixed� On � processors the number is �� iterations�
To get within 	! it would take � and �� iteration on � and �� processors� respectively�

These data demonstrate that� while the inspector cost is somewhat amortized in an
iterative solver� it is still important to exploit the structure in distribution relations � it can
lead to order of magnitude savings in the inspector cost and improves the overall performance
of the solver�

It should also be noted that the Indirect�Mixed version is not only slower than the two
Bernoulli versions but also requires more programming e�ort� Our compiler starts with the
speci�cation at the level of dense loops both in ��� and ���� whereas an HPF compiler
needs sequential sparse code as input� For our target class of problems � sparse DOANY
loops � our approach results in better quality of parallel code while reducing programming
e�ort�

��

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5

10 20 30 40 50 60 70 80 90 100

In
di

re
ct

-m
ix

ed
 /

B
er

no
ul

li
-m

ix
ed

Number of iterations

P=64
P=8

Figure �� E�ect of problem conditioning on the relative performance

� Previous work

The closest alternative to our work is a combination of Bik�s sparse compiler ��� �
 and the
work on specifying and compiling sparse codes in HPF Fortran ���� ��
�� One could use
the sparse compiler to translate dense sequential loops into sparse loops� Then� the Fortran
D or Vienna Fortran compiler can be used to compile these sparse loops� However� both
Bik�s work and the work done by Ujaldon et al� on reducing inspector overheads in sparse
codes limits a user to the �xed set of sparse matrix storage and distribution formats� this
reducing possibilities for exploiting problem�speci�c structure�

� Conclusions

We have presented an approach for compiling parallel sparse codes for user�de�ned data struc�
tures� starting from DOANY loops� Our approach is based on viewing parallel DOANY loop
execution as relational query evaluation and sparse matrices and distribution information
as distributed relations� This relational approach is general enough to represent a variety of
storage formats�

However� this generality does not come at the expense of performance� We are able
to exploit both the properties of the distribution relation in order to produce inexpensive
inspectors� as well as produce quality numerical code for the executors� Our experimental
evidence shows that both are important for achieving performance competitive with hand�
written library codes�

So far� we have focused our e�orts on the versions of iterative solvers� such as the Con�
jugate Gradient algorithm� which do not use incomplete factorization preconditioners� The
core operation in such solvers is the sparse matrix�vector product or the product of a sparse
matrix and a skinny dense matrix� We are currently investigating how our techniques can be
used in the automatic generation of high�performance codes for such operations as matrix

��

factorizations �full and incomplete� and triangular linear system solution�

References

��
 Corinne Ancourt� Fabien Coelho� Franois Irigoin� and Ronan Keryell� A linear
algebra framework for static hpf code distribution� In CPC��	� November �����
http���cri�ensmp�fr�doc�A��	�ps�Z�

�
 Corinne Ancourt and Franois Irigoin� Scanning polyhedra with do loops� In Principle
and Practice of Parallel Programming� pages ����	� April �����

��
 J� M� Anderson and M� S� Lam� Global optimizations for parallelism and locality on scal�
able parallel machines� In Proceedings of PLDI��	� June ����� http���suif�stanford�edu��
papers�anderson���paper�html�

��
 Argonne National Laboratory� PETSc
 the Portable
 Extensible Toolkit for Scienti�c
Computation� http���www�mcs�anl�gov�petsc�petsc�html�

��
 David Bau� Induprakas Kodukula� Vladimir Kotlyar� Keshav Pingali� and Paul Stodghil�
Solving alignment using elementary linear algebra� In Proceedings of the �th LCPC
Workshop� August ����� Available as Cornell Computer Science Dept� tech report
TR��������

��
 Aart J�C� Bik and Harry A�G� Wijsho�� Advanced compiler optimizations for sparse
computations� Journal of Parallel and Distributed Computing� �������� �����

��
 Aart J�C� Bik and Harry A�G� Wijsho�� Automatic data structure selection and transfor�
mation for sparse matrix computations� IEEE Transactions on Parallel and Distributed
Systems� �����	� � ��� �����

��
 R�F� Boisvert� R� Pozo� K� Remington� R�F� Barrett� and J�J� Dongarra� The Quality
of Numerical Software� Assessment and Enhancement� chapter Matrix Market� a web
resource for test matrix collections� pages ������� Chapman and Hall� London� �����

��
 High Performance Fortran Forum� High performance fortran language speci�cation�
version �	� http���www�crpc�rice�edu�HPFF�home�html�

��	
 Alan George and Joseph W�H Liu� Computer Solution of Large Sparse Positive De�nite
Systems� Prentice Hall� Inc�� �����

���
 Mark T� Jones and Paul E� Plassmann� BlockSolve�� users manual� Scalable library
software for the parallel solution of sparse linear systems� Technical Report ANL�������
Argonne National Laboratory� December �����

��
 D� Kincaid� J� Respess� D� Young� and R Grimes� Algorithm ��� ITPACK C� A FOR�
TRAN package for solving large sparse linear systems by adaptive accelerated iterative
methods� ACM Transactions on Mathematical Software� ������	��� September ����

��

���
 Vladimir Kotlyar� Keshav Pingali� and Paul Stodghill� Compiling parallel sparse code
for user�de�ned data structures� In Proceedings of Eights SIAM Conference on Parallel
Processing for Scienti�c Computing� March �����

���
 Vladimir Kotlyar� Keshav Pingali� and Paul Stodghill� A relational approach to sparse
matrix compilation� In EuroPar� August ����� Available as Cornell Computer Science
Tech� Report �������

���
 Ravi Ponnusamy� Joel Saltz� and Alok Choudhary� Runtime�compilation techniques
for data partitioning and communication schedule reuse� In Proceedings of Supercom�
puting ��	� pages ������	� November ����� ftp���hpsl�cs�umd�edu�pub�papers�comp�
mapper�ps�Z�

���
 Raghu Ramakrishnan� Database Management Systems� College Custom Series�
McGraw�Hill� Inc� beta edition� �����

���
 John R� Rice and Ronald F� Boisvert� Solving Elliptic Problems Using ELLPACK�
Springer�Verlag� New York� NY� �����

���
 Youcef Saad� Kyrlov subspace methods on supercomputers� SIAM Journal on Scienti�c
and Statistical Computing� �	�����		���� November �����

���
 Manuel Ujaldon� Emilio Zapata� Barbara M� Chapman� and Hans P� Zima� New
data�parallel language features for sparse matrix computations� Technical report� In�
stitute for Software Technology and Parallel Systems� University of Vienna� �����
http���www�vcpc�univie�ac�at�activities�language�

�	
 Je�rey D� Ullman� Principles of Database and Knowledge�Base Systems
 v� I and II�
Computer Science Press� �����

��
 Rinhard v� Hanxleden� Ken Kennedy� and Joel Saltz� Value�based distributions and
alignments in Fortran D� Technical Report CRPC�TR������S� Center for Research on
Parallel Computation� Rice University� December �����

�
 Janet Wu� Raja Das� Joel Saltz� Harry Berryman� and Seema Hiranandani� Distributed
memory compiler design for sparse problems� IEEE Transactions on Computers� ������
����� ftp���hyena�cs�umd�edu�pub�papers�ieee toc�ps�Z�

Appendix

A Matrix formats

The matrices shown in Table � are obtained from the suite of test matrices supplied with
the PETSc library ��
 �small�medium�cfd������ and from the Matrix Market ��
 ���� bus�
bcsstm��� gr �� ��� memplus and sherman���

��

The Diagonal format is a variant on the banded storage� it stores an arbitrary set of
diagonals� Instead of storing an entire diagonal only the entries between the �rst and last
non�zero are stored� This is basically Skyline storage ��	
 re�oriented along the diagonals� A
matrix in Coordinate format is stored in three arrays� the array of row indices� of column
indices and of the values� Compressed Row Format �CRS� stores the transpose of the matrix
using the CCS format described in Sec� �� ITPACK format is described in ��� ��
� The
Jagged Diagonal �JDIAG� format is described in ���
� The BlockSolve format is described
in Sec� ��

B Relational algebra notation

We use the notation A�i� j� a� to name the �elds in the relation A� We use bold letters� as in
R�a� to denote tuples of �elds �like vectors�� An equi�join on the common �eld x between
relations R�x� y� and S�x� z� is de�ned by�

R�x� y� ��x S�x� z� � fhx� y� zi j hx� yi � R � hx� zi � Sg ���

The selection operator �P selects the tuples that satisfy the predicate P�

�PR�a� � fa j a � R � P�a�g ���

The projection operator �
a

projects a relation on the �elds a �removing any duplicates��

�
a
R�a�b� � fa j 	b � ha�bi � Rg ���

	

