
Embedded System Education: A New Paradigm for
Engineering Schools?

Alberto Luigi Sangiovanni-Vincentelli and Alessandro Pinto
University of California at Berkeley

alberto,apinto@eecs.berkeley.edu

Abstract— Embedded systems are emerging as an essential
component of modern electronic products. Embedded system
design problems are posing challenges that involve entirely new
skills for engineers. These skills are related to the combination
of traditionally disjoint engineering disciplines. There is a shared
concern that today’s educational systems are not providingthe
appropriate foundations for embedded systems. We believe anew
education paradigm is needed.

We will argue this point using the example of an emerging
curriculum on embedded systems at the University of California
at Berkeley. This curriculum is the result of a distillation
process of more than ten years of intense research work. We
will present the considerations that are driving the curriculum
development and we review our undergraduate and graduate
program. In particular, we describe in detail a graduate class
(EECS249: Design of Embedded Systems: Modeling, Validation
and Synthesis) that has been taught for six years. A common
feature of our education agenda is the search for fundamentals
of embedded system science rather than embedded system design
techniques, an approach that today is rather unique.

Index Terms— Embedded System Design, Education.

I. I NTRODUCTION

Embedded systems have been a strong research area for
the University of California at Berkeley. We will briefly
review this intense research activity as a preamble to present
the Berkeley effort in embedded system education that is
intimately related to the research program.

The research activities on embedded systems at Berkeley
can be cast in a matrix organization where vertical research
areas cover application domains such as automotive, avionics,
energy, industrial control, and horizontal areas cover enabling
technologies such as Integrated Circuits, Sensors, Wireless
Networks, Operating Systems, Embedded Software, Auto-
matic Control, Design Methodologies and Tools. The impor-
tant aspect of our approach is that the enabling technologies
are explicitly linked to the vertical application areas andare
geared towards the embedded system domain.

At Berkeley, we have traditionally based our research pro-
grams on a strong interaction with industry and collaboration
among faculty in different disciplines; embedded system re-
search is no exception.

Among embedded system application domains, automotive
has been an area of interest for many years. The PATH
project [41] of CALTRANS (California Transportation Depart-
ment) has been a test bed to develop new concepts in control of
distributed systems, modeling, tools and methodologies with
a strong experimental part and an intense interaction with

industry. The automotive emphasis of our design methodology
work dates back to 1988 when a joint program on for-
mal approaches to embedded controller design with Magneti
Marelli for their Formula one robotized gear shift for Ferrari
started. In the automotive domain, there has also been strong
interdepartmental interaction between mechanical engineering
and electrical engineering/computer science.

In US Universities, bottom-up aggregation of interests and
approaches to education is more common than top-down
planning. Hence, education initiatives in novel areas almost
always start with advanced graduate course offerings to mi-
grate towards coordinated graduate programs and eventually
into undergraduate courses. Thus, it is no wonder that course
offering in Berkeley on embedded systems has been strong for
years in the advanced course series (the EE and CS 290 series)
that are related to faculty research activities. One such course
has migrated to a regular offering in the graduate program
(EECS249: Embedded System Design: Modeling, Analysis and
Synthesis), the main topic of this paper.

The guiding principle in our teaching and research agenda
related to embedded systems is to bring closer together system
theory and computer science. The two fields have drifted apart
for years while we believe that the core of embedded systems
intended as an engineering discipline lies in the marriage of
the two approaches. While computer science traditionally deals
with abstractions where the physical world has been carefully
and artfully hidden to facilitate the development of application
software, system theory deals with the physical foundations of
engineering where quantities such as time, power and size play
a fundamental role in the models upon which this theory is
based. The issue then is how to harmonize the physical view
of systems with the abstractions that have been so useful in
developing the CS intellectual agenda. We argue that a novel
system theory is needed that at the same time is computational
and physical. The basis of this theory cannot be but a set of
novel abstractions that partially expose the physical reality to
the higher levels and methods to manipulate the abstractions
and link them in a coherent whole. The research community
is indeed developing some of the necessary results to build
this novel system theory and we believe it is time to inject
these findings in the teaching infrastructure so that students
can be exposed to this new way of thinking that should
advance the state of embedded system design to a point
where reliable and secure distributed systems can be designed
quickly, inexpensively and with no errors.

The paper presents the guiding principles we have followed

5



in our education effort and the set of courses offered that
have direct relevance to the field of embedded system design.
We list only the courses whose embedded system content
is explicitly addressed. Otherwise, we may end up with a
comprehensive list of all courses offered in engineering (except
maybe a few) as today electronic system design is almost
a synonym with embedded system design. In particular, we
present first (Section 2) the graduate program: we zoom in
on EECS249 and then we briefly review a set of advanced
topical courses on embedded systems. In Section 3, we present
an overview of our undergraduate program centered on a
sophomore core course1 (EECS20N [30], [32]) that has
been now offered over the past five years. This course for
EE and CS students addresses mathematical modeling of
signals and systems from a computational perspective. This
reflects an effort of Berkeley faculty to set new foundations
for the education in electrical engineering that is based on
fundamentals rather than application domains. In this section,
we also offer a view on our programs for the near future to
address specifically embedded systems at junior and senior
level. In Section 4, we offer concluding remarks that could
be of use for setting up a graduate or advanced undergraduate
class in embedded system design in other institutions.

II. T HE GRADUATE PROGRAM PART 1:
EECS249 DESIGN OFEMBEDDED SYSTEMS: MODELS,

VALIDATION AND SYNTHESIS

This course [15] is part of the “regular” graduate program in
EECS. It is taken by first year graduate students as well as by
senior graduate students in EECS and other departments such
as Mechanical Engineering, Nuclear Engineering and Civil
Engineering.

The idea of the course is to emphasize the commonality
among the variety of application fields and to use a design
methodology as the unified framework where the topics of the
course are embedded. In this way, the variety of the advanced
courses offered in our curriculum benefits from the foundations
laid out by EECS249. The course is rather unique as it aims at
bringing together the behavioral aspects of embedded system
design with implementation within a rigorous as possible
mathematical framework. Behavior capture, verification and
transformation are taught using the concepts pioneered by
Edward Lee associated to models of computation. The im-
plementation design is seen as a companion to the behavioral
design as opposed to a more traditional academic view where
implementation follows in a top-down fashion behavioral
design. We adopt the view presented in [45] [46] to provide
the intellectual background. In this methodology, the design
proceeds by refinement steps where the mapping of behavior
into “architecture” is the step to move to the next level of
abstraction. Using this view, embedded software design is the
process of mapping a particular behavior on a computing plat-
form. By the same token, the choice of a particular distributed
architecture due to geographical distribution or to performance
optimization is handled in a unified way. The choice of

1A core course is a required course for the educational programs offered
by the Department

components including reconfigurable and programmable parts
is the result of architectural space exploration where cost
functions and constraints guide the search.

From this brief overview, it should be clear that our
motivation is to bring out the fundamental issues and the
formalization that enables verification and synthesis at a level
that would not be possible otherwise. This particular aspect
should be seen as the quest for a new system science that
serves as a framework to teach design that transcends the
traditional discipline boundaries.

Given the large scope of the course, it has a heavy load; four
contact hours and two lab hours per week. The contact hours
are broken into traditional lectures and discussion of papers
presented by the students. The verification of the learning
process is left to weekly homework that are a mix of exercises
and of theory, and to a final project that is fairly advanced,
so much so that often the project reports see the light in the
community as conference or journal papers.

The contents and the organization of the class has been the
result of a number of advanced courses in hybrid systems and
system level design that date back to 1991, when the first such
class was taught.

A. Organization of the class

The basic tenet of the methodology that forms the skeleton
of the class is orthogonalization of concerns, and, in par-
ticular, separation of function and architecture, computation
and communication. This methodology called platform-based
design is presented as a paradigm that incorporates these prin-
ciples and spans the entire design process, from system-level
specification to detailed implementation. We place particular
emphasis on the analysis and optimization of the highest levels
of abstraction of the design where all the important algorithmic
and architectural decisions are taken.

The course has four main parts that are summarized in
table I.
Introduction and Methodology. After a presentation of the
motivation for the class extracted from a variety of examples
in different industrial domains, we introduce the methodology
followed (Platform-based Design [45]) and examples of its
applications. We present many examples of embedded sys-
tems: cars, airplanes, smart buildings, elevators, and sensor
networks. In the introductory lecture, we highlight common-
alities among all the examples that we present to set the stage
for the philosophy of the course aimed at defining the common
methods that can be used across different application domains;
the course is intended to solve “the embedded system design
problem” rather than particular instances of it.

An entire lecture is devoted to an overview of the platform-
based design principle. The method is justified by illustrating
how it can be used to solve, or at least, to formalize, design
problems that are common to the entire class of embedded
systems.
Function. The notion of behavior is analyzed and the role of
non-determinism in specification is explained. We present the
basic models of computation that are needed to represent the
behavior of most designs: Finite-State Machines, Synchronous

6



Languages, Data Flow Networks, Petri Nets, Discrete Event
Systems and Hybrid Systems. For each model we present the
computation, communication and coordination semantics with
a particular emphasis on the properties that are guaranteedand
verifiable. We outline the use of unified frameworks to com-
pare the different models of computation and we present the
Tagged-Signal Model (TSM) [31] and agent algebras [40] as
unifying theories to allow the composition of different models
of computation to describe a complete system. We introduce
here the Ptolemy [44] and Metropolis [3] environments for
analysis and simulation of heterogeneous specifications.

We then ventured in the presentation of the model of
computation used in Metropolis: the Metropolis Meta Model
(MMM). The MMM can be considered an abstract semantics
since it can accommodate a variety of models of computation
that are obtained by refinement of this model. We presented
the additional constructs that are used in Metropolis to capture
the specification of a design in a declarative style (a unique
feature of Metropolis): the Language of Constraints (LOC) and
a more conventional language for logical constraint specifica-
tion, LTL [43]. We also presented the Ptolemy actor-oriented
semantics and showed how this is another style for abstract
semantics.
Architecture and Mapping We then introduce the notion
of architecture as a set of components (interconnections
for communication and building blocks that are capable of
carrying out computation) that are providingservicesto the
behavior that we wish to implement.Optimal architecture
choice is presented as the selection of a particular set of
computational blocks in alibrary of available components,
and of their interconnection. The evaluation of the quality
of a selected architecture is based on amappingprocess of
behavior to the computation blocks, including programmable
components. The mapping process should be accompanied by
an estimate of the performance of the design once mapped onto
the architecture. Communication representation is illustrated.
The representation of architectures in the Metropolis and
Mescal [38] environments are presented.

We emphasize the communication aspect as one of the
most important in architecture development. We introduce
communication-based designas a design paradigm where
computation is abstracted away and communication becomes
the main objective of the design process. We present a formal
definition of the communication problem using the tagged
signal model framework that explains the communication
phenomena as a restriction of the behaviors of the connected
processes. We show a practical example of an architecture
platform like Xilinx VirtexII Pro as a heterogeneous platform
that can be used for fast prototyping.

Mapping functions to architectures is possibly the most
relevant aspect of the Platform based design methodology
taught in this class. The power of the MMM is evident here
where the use of the same modeling constructs for function and
architecture allows a particularly efficient way of performing
mapping and analyzing the quality of the result.

By using the MMM notion of events, we show how the
function netlist can be placed in correspondence with the ar-
chitecture netlist by introducing the so-called mapping netlist.

In this way, events in the functional netlist trigger eventsin the
architecture netlist via the mapping netlist. We show how the
mechanism can be exploited to change the mapping of function
to architecture elements in a straightforward manner that
does not require re-writing of the architectural and functional
description. We present the scheduling problem as an essential
part of the allocation of functionality to shared resources.
In this respect, we review the fundamental results of the
scheduling literature.

Then, we show how mapped functions can be simulated
and how the performance of the mapping can be extracted.
At this point, we introduce the notion of quantity managers
as tools that compute quantities such as power and time
used by architectural components when executing the part
of the functionality mapped onto them. Finally, we present
mechanisms to feed quantity managers information about the
basic execution “costs” (e.g., power and time) and we show
examples drawn from Xilinx programmable platforms [49] and
from other platforms such as the Intel MXP5800.
Synthesis and Verification.We review the notions of ver-
ification and synthesis and present how verification is not
a synonym of simulation but contains static analysis tools
as well as formal verification. In particular, we discuss the
notion of successive refinement as the process used in the PBD
methodology to go from specification to final implementation.
We demonstrate the use of the MMM to keep in the same
environment both the more abstract and the more concrete
representation to simplify the use of refinement verification
techniques. We also show the simulation approach followed
in the Metropolis environment to reduce or even eliminate the
overhead that comes with the flexibility of maintaining both
architecture and functionality present as separate entities of
the design.

Then, we focus on the methods available in literature for
software estimation, an important component of any verifica-
tion methodology that mixes hardware and software imple-
mentations. The approach by Malik [34] is first introduced
for static analysis of programs based on pipeline and cache
modeling and integer linear programming followed by the
abstract interpretation work of Wilhelm that yielded the well-
known analysis program AbsInt [21].

We then move to the software synthesis problem and
we present the model-based design approach where code
is automatically generated from mathematical models. After
reviewing shortly Real Time Workshop of MathWorks, we
discuss a different way of generating code from models that
follows the same paradigm used in hardware synthesis of
optimizing the original description (software representation)
before mapping it onto a given execution platform. In this
case, we show that we have a “technology independent” phase
followed by technology mapping. We show how Esterel [5]
is compiled using this idea and using FSM optimization
techniques based on MIS [7] originally developed at Berkeley
for logic synthesis to generate implementation code. We then
present another method to optimize the original description
based on the Ordered Binary Decision Diagram [8] represen-
tation of programs. We show how to use the variable ordering
methods developed to manipulate OBDDs in logic synthesis

7



to generate efficient programs from Co-Design Finite State
Machines [20].

We also present evaluation techniques to compute the time
taken by synthesized programs to execute on a given plat-
form that are used to guide the optimization search. These
techniques are shown to be accurate when the software is
automatically synthesized. We then move to the problem of
optimizing code for data flow dominated applications with
limited data dependent control. We show also how operating
system features such as hardware-software communication
mechanisms and scheduling policies can be synthesized from
requirements [2], [23] and we point to the evolution of
implementation platforms that can make the optimized “com-
pilation” problem increasingly difficult.

Finally we present two industrial tools for automatic code
generation: the real-time workshop (RTW) [36] by Mathworks
and Targetlink [14] by dSPACE.

The last few lectures of the course are dedicated to placing
the material presented in perspective. An application suchas
automotive control is used to show the complete flow from
modeling the functionality with hybrid systems to mapping
onto execution platforms that are modified according to the
results of the analysis. We had in mind to use Metropolis
and x-Giotto as well as the Xilinx back-end to demonstrate a
complete design flow in action, but the parallel development
of the tools needed did not provide us in time with the flow
as we hoped to.

Another application space that we explored is wireless
sensor networks where our view of design leads naturally to
the definition of layers of abstraction that identify clearly the
need of a “middleware” that can capture well the performance
of a particular physical implementation of the network to offer
the application programmer an abstraction that enables re-
use across different implementations with appropriate abstract
analysis of the effects of the physical network on the applica-
tion program.

After the end of the course, the projects that are used to
evaluate the students are presented in front of the entire class
to open a wide range discussion among students, teaching
assistant, mentors and faculty on the results and the ideas on
how to improve the course.

B. Projects

The course is graded on the basis of a set of homework
and on a final project. After the first week of class, a list of
project proposals is given to the students. We rely on a group
of highly qualified mentors form industry and academia that
help the students in reviewing previous work and conducting
the research to complete their projects on time. We push
students to start as early as possible and we motivate them
by mentioning the possibility of submitting for publication for
the best reports.

Following the course organization, projects are divided in
the ones that are related to functional description, architectural
description, mapping, case studies and design methodologies.

The choices of students are often concentrated on the
definition of formal models for describing a function and on

the development of algorithms for verification and synthesis.
The case studies were mainly developed by students coming
from departments other than EECS that are interested in
studying how the methodology can be applied to solve specific
design problems. Given the short available time, it is not
possible in general for students to develop and show the
effectiveness of a complete design methodology for a specific
application domain. This is the reason why this kind of
projects are rarely taken even though a couple were chosen
and had worthwhile results. Projects that were developed in
the past years include Time-Based Communication Refinement
for CFSMs, Heterochronous dataflow domain in Ptolemy II,
Hardware extension to ECL and Extending CFSMs to allow
multirate operations.

Few projects were given on architecture. This situation
reflects the status of our research in the field that only recently
has taken an important turn determined by the extensive
introduction of the use of the MMM and of the characterization
work carried out in conjunction with the Xilinx project. We
expect that more projects on this subject will be proposed in
the future particularly in the area of syntax and semantics of
languages for architectural description and automatic verifica-
tion and refinement tools for architectures.

A successful project was about a complete methodology
for embedded software design and system integration of a
rotorcraft UAV [26] whose results were published both as a
conference and as invited paper in the Proceedings of the
IEEE. This project was carried out by three students and
two mentors coming from different knowledge domain. In the
area of wireless sensor networks, a group of students applied
the methodology for studying an ad-hoc sleeping disciplines
for nodes [29]. This application domain is very relevant not
only for its distributed nature but also for the severe energy
consumption constraints on each node.

Two other projects that had success to the point of being
published in primary conferences were related to chip architec-
tures. One was about the synthesis of on-chip communication
architectures [42] and automatic hardware/software partition-
ing for reconfigurable platforms [4].

Projects in less obvious application domains have also been
offered. In particular, two years ago a project on the design
of a real-time eye detection system was assigned to two
students [50]..

III. T HE GRADUATE PROGRAM PART 2:
ADVANCED GRADUATE COURSES

Advanced courses are an important feature of the Berkeley
graduate program. These courses reflect very recent advances
in the state of the art of a particular knowledge domain. They
are topical courses; their content changes from year to year
and can be taken by students multiple times. In general, they
are taken by PhD students who are interested in research
topics in the area covered by the course. Regular graduate
courses are often derived from the advanced series after the
content has jelled and there is enough interest in the student
population. Since embedded systems are so important in our
research agenda, there are several advanced courses that have a

8



Course Section Lectures Discussions Labs

Introduction Definition of embedded systems,
examples of applications, chal-
lenges, future applications

“The tides of EDA” Introduction to the Metropolis
Meta-Model language

Function Finite State Machines, Co-design
finite state machines, Kahn process
networks and data flow, Tagged
Signal Model, Agent Algebras,
Petri nets, Synchronous languages
and desynchronization

StateCharts, Data flow with firings,
Desynchronization

Introduction to PtolemyII, Build-
ing a model of computation in
Metropolis, Esterel.

Architecture Performances, Architecture
modeling, Modeling Concurrency:
Scheduling, Interconnection
architectures, Reconfigurable
platforms, Programmable
platforms, Fault tolerant
architectures.

Formal modeling of processors,
Rate monotonic hyperbolic bound,
Interface synthesis.

Modeling architectures in Metropo-
lis, Xilinx, PSoC.

Mapping Mapping specification, Design Ex-
ploration, Software estimation and
synthesis, Static analysis, Quasi
static scheduling.

Synthesis of software from CFSMs
specification

Virtual Component Co-design,
Mathworks RTW, dSpace Target
Link

TABLE I

CLASS SYLLABUS

direct relationship with the topics of this paper. These courses
are labeled EE290 and CS294 followed by a letter indicating
the area these courses belong to.

In Figure 1, we show a the backbone of a graduate program
in embedded systems that traverses the courses presented in
this paper. A well thought out course program in embedded
systems should include domain-specific courses that provide
the reference framework for the students to be productive in
the outside world.

EE249

CS294

EE290N

EE290O EE290A

CS294w

Embedded System Science

Advanced topics

Real Time SW
Parallel/Reconfigurable platforms

Applications

Se
m

es
te

rs

Fig. 1. A graduate program in embedded systems

A. Computer Science Courses

The Computer Science Division of our Department offers
a graduate level class on embedded network and mobile
computing platforms. The course is “CS294-1”. As is always
the case for advanced graduate classes that belong either tothe
EE290 series or the CS294 series, its content changes every
semester.

In the last five years, this course has always been centered
around applications that are embedded in the environment with
which they interact.

1) Deeply Embedded Network Systems:This advanced
class focuses on ubiquitous computing [11]. The course is
based on the experience of researchers form different univer-
sities on wireless sensor networks.

The schedule of the class starts with an introduction to the
emerging computing platforms composed of a large number
of simple nodes communicating on wireless channels. Habitat
monitoring applications are taken as representative of embed-
ded networks of nodes that can sense and communicate. The
design of the embedded network is driven by the application
that sets the requirements to satisfy. After the introduction,
one week is dedicated to the presentation of several platforms
and operating systems that are currently available.

The following four weeks of the class give an overview
of all the proposed protocols for wireless sensor networks:
network discovery, topology information, aggregation, broad-
cast and routing. The design of all these protocols takes into
account the constraints imposed by the application. The class
puts a lot of emphasis on power consumption since nodes
cannot be replaced.

The second part of the class gives directions for the imple-
mentation and deployment of these networks. Two weeks are
devoted to the problems arising from the distributed natureof
the applications. In particular, distributed storage of informa-
tion and distributed control are presented as important research
areas. Finally, privacy is considered as a potential problem
since embedded networks have the capability of monitoring
every objects in the environment in which they are embedded.

Students in the class are divided in groups and each of them
works on a project. Possible topics range from programming
models and simulations of large scale networks to new proto-
cols for routing and localization. In Fall 2003, a considerable
number of projects investigated the problem of programming
the network starting form the description of the application.

2) Mobile Computing and Wireless Networking:The level
of abstraction of the networks considered in this class is much
higher than the one considered in the previous section. The
focus in on new trends in mobile computing and integration
of heterogeneous networks [12].

The class presents challenges in mobile computing where
the end user is a person that uses a device to be constantly
connected to the rest of the world. The requirements on
the protocol implementation are derived by looking at the

9



issues that mobility brings up: routing, network registration
and security. Some protocols to solve all this problems are
presented.

A network node is an hand-held device that presents severe
limitations in power consumption. This problem, which is
presented as an important constraints, presents some common-
ality with wireless sensor networks of the deeply embedded
networks class but it is not the only one. Connectivity and
distributed information storage are also investigated andsome
solutions are presented.

Finally, some common platforms for this kind of systems
like WLAN, UMTS, GSM and GPRS are presented.

B. Advanced Electrical Engineering Courses

The electrical engineering division of the EECS Department
offers advanced courses that are focused on formal models for
system level design and embedded software. Two classes are
particularly relevant to our discussion on embedded systems.

1) EE290N: Concurrent models of computation for embed-
ded software:This advanced class focuses on concurrent mod-
els of computation for embedded software development [17].
It can be seen as the extension to and deep analysis of the
first five weeks of EECS249. It has been taught four different
times with contents that are converging to a unified view so
that there is a plan of making it a regular graduate course.
Abstract semantics, concrete semantics and implementation
of some of the most commonly used models are presented.
Besides homework assignments, students are required to work
on a project.

The first two lectures present the main differences between
embedded software and software for standard applications.In
particular, threads are formally defined and their limitations
are underlined with a particular emphasis on the problems
that arise when using this technique for developing concurrent
programs. Then, languages for particular applications, like
NesC [22] and Lustre [10], are taken as representative of
domain specific models for embedded software.

Then Process Networks (PN) are introduced and an abstract
semantics based on PN is presented together with the notion of
partial ordering and prefix ordering on sequences of events.In
this abstract settings, properties like monotonicity, continuity
and determinacy of a process are described as properties of the
input-output function on streams that characterize a process.
The fixed point semantics is also introduced when multiple
processes are connected together and loops are present in
the corresponding functional graph. A concrete semantics
is then presented and finally the concrete implementation
of PN semantics, following the Kahn-McQueen execution
semantics, is shown by using PtolemyII as a platform for
implementing and composing models of computation. The
problem of bounded execution (an execution that used a
bounded amount of memory) is introduced and simulation
techniques are presented.

After Process Networks, synchronous languages are intro-
duced together with the notion of complete partial orders
and the least fixed point semantics of synchronous programs.
Dataflow models are extensively discussed: statically schedu-

lable Data Flow, multidimensional and heterochronous data
flow and boolean data flow.

The last part of the class introduces continuous time models
and hybrid systems. The emphasis is on the semantics and
the techniques that are used to solve systems of differential
equations. In particular, problems like event detection and
Zeno behaviors for hybrid systems are considered and the
impact on the simulation engine are explained.

2) EE290O: Embedded Software Engineering:While the
previous class explores the models that should be used in de-
veloping embedded software, this class focuses on a particular
design flow. The class presents a model of computation, the
Giotto model [24], and explains why it is suitable for a class
of embedded software [18]. The class is divided in three parts:
RTOS Concepts. A real time operating system is characterized
by the services that it provides: environment communication
services, event triggering services, software communication
services and software scheduling. Tasks and threads are de-
fined and a model for them is explained. A simple example
of an RTOS is given. In their first homework, students have
to implement an RTOS on the LEGO brick. The students now
have a feeling of the RTOS abstraction level and the problems
in modeling software at this level. The E-machine [25] is then
described and its properties are formally explained: semantics
of the E-machine, portability and predictability, deterministic
behavior and logical execution time.
RTOS Scheduling. Some classic scheduling algorithms are
presented. First, a task is modeled with execution time and
deadline and the concept of preemption is explained. Then,
early deadline first and rate monotonic scheduling are ex-
plained. The last part of this section is devoted to schedu-
lability tests like rate monotonic analysis (RTA) and model
based schedulability analysis (where tasks and schedulersare
modeled as timed automata).
RT Communication. The last part of the class deals with real
time communication. Messages are modeled with deadline and
worst case latency. Two protocols are presented in details:
Controller Area Network (CAN) and Time Triggered Protocol
(TTP) [28]. The problem of fault tolerance is introduced and
the solution proposed by the TTP protocol is explained.

3) EE290a: Concurrent System Architectures for Appli-
cations and Implementations:This experimental class was
offered in the Spring 2002. The focus of the class is on
models for concurrent applications, heterogeneous platforms
and the mapping of the former to the latter [16]. This course
can be considered as a follow-on to EECS249 with respect to
Architecture and Mapping.

The first part of the class introduces the content of the course
by giving examples of applications and platforms. Several
models of computation like finite state machines, process
networks, data flow, synchronous/reactive, communicatingse-
quential processes and co-design finite state machines are
introduced emphasizing the fact that each model is particularly
suitable for a specific application domain. The Click [47]
model of computation is explained for modeling the processing
of streams of packets in routers.

The first example presented in the class is MPEG decoding
together with an entire flow from specification (using a flavor

10



of Kahn process networks called YAPI [13]) to implemen-
tation. This example shows how the requirements of an
application condition the selection of a model of computation
and the underling implementation platform. Several platforms
are then presented: the Nexperia [39] platform by Philips
for multimedia application and the Ixp1200 [27] platform by
Intel for network processing. For each platform, examples of
what kind of application they target are given together with
performances result.

The Giotto model of computation and the E-Machine are
presented and an example of the software running on an
autonomous helicopter is shown. Another example show the
implementation of an IP router on a VirtexII Pro FPGA and
the implication of using a multi-threaded implementation.The
SCORE (Stream Computations Organized for Reconfigurable
Execution) [9] project is also presented. In this project both
function and architecture are described using Kahn process
networks and the challenge is to find a schedule of processes
for bounded execution. The architecture is composed of a
set of processors that communicate over a shared network.
Buffers are allocated on memory segments. The last lectures
give an overview of multiprocessors platforms like RAW and
IWarp [6] and other programmable platforms like PSOC by
Cypress and the Extensa Processor.

IV. T HE GRADUATE PROGRAM PART 3:
CIVIL AND MECHANICAL ENGINEERING

These two Departments have traditionally been interested
in embedded applications. They have some graduate courses
where embedded topics are featured.

A. Mechanical Engineering 230: “Real Time Software for
Mechanical System Control”

The Mechanical Engineering Department offers a class that
teaches students how to control mechanical systems using
embedded software. It is a lab oriented class in the sense that
students are taught how to implement a controller in Java on
an embedded processor.

Even if methodology is not really the focus of this class,
controlling a mechanical system implies understanding the
continuous dynamics governing it and the constraints that are
imposed on the reaction time of the software controller. The
class gives an overview of the real time control problems.
Students are exposed to Java as a technology that allow the
development of real time systems and how complicated control
algorithms can be implemented on an embedded processor.
This part takes one third of the entire class. This technology
is applied to the control of motors.

Students learn real time programming through a set of labs.
The first two labs are meant to teach students how to write
a control algorithm for an embedded processor. The third
lab show how the software world interfaces with a physical
component like a motor. In the following lab sessions, students
are guided in implementing a feedback control algorithm for
a motor.

B. Civil and Mechanical Engineering 290I: “Civil Systems,
Control and Information Management”

The possibility of sensing the environment and communi-
cating over a dense network of tiny objects is of much interest
for the civil engineering community. This course starts with
an introductory lecture that motivates the use of embedded
networks with several applications: automatic control of the
BART (Bay Area Rapid Transportation) system, earthquakes
monitoring and mesh stable formation flight of unmanned air
vehicles.

The emphasis of the class is on the formal specification
of complex networked systems. The Teja [48] environment
is used as example of formal language to specify systems of
users and resources. Syntax and semantics of the language are
explained in the class and students are trained in using the
environment with labs and homework.

V. THE UNDERGRADUATE PROGRAM

Our approach to embedded systems has been to marry the
physical and the computational world to teach students how to
reason critically about modeling and abstractions. Tradition-
ally undergraduate EE courses have focused on continuous
time and detailed modeling of the physical phenomena using
partial and ordinary differential equations, while undergraduate
CS courses have focused on discrete representations and
computational abstractions. We noted that students then were
“boxed” in this dichotomy and had problems linking the two
worlds. The intellectual agenda was to teach students how
to reason about the meaning of mathematical models, their
limitations and power. EECS20N (Structure and Interpretation
of Signals and Systems) was born with this idea in mind.

EECS 20N together with EECS 40 (Introduction to Micro-
electronic Circuits), CS 61A (The Structure and Interpretation
of Computer Programs), CS 61B (Data Structures), and CS
61C (Machine Structures) are mandatory courses for any
Berkeley undergraduate EECS student. In addition to having
an important role in the general undergraduate education,
EECS20N (see [30], [32]) is also at the root of a system
science program whose structure is shown in Figure 2. In this
diagram, EE149, Hybrid and Embedded Systems, is an upper-
division class that is under design and will provide the ideal
follow-on to EECS20N in a curriculum that focuses on the
foundations of embedded systems.

A. EECS20N: Structure and interpretation of signals and
systems

a) Motivation and History:EECS20N [19] is a course
that electrical engineering and computer science studentstake
in their second year at Berkeley. Traditionally, our undergradu-
ates were exposed to a rigorous approach to systems in classes
offered in the junior and senior year dealing with circuit theory,
communication systems and control. The contents of the
courses were thought in terms of the application domain and
exposed a certain degree of duplication, as ordinary differential
equations and transforms such as Laplace and Fourier were
common tools. In addition, the modeling techniques used
were essentially continuous time ignoring for a large part the

11



121 122
123

ME 134
124 125 126

127

OR 162

Hybrid & 
embedded 

systems

Computer 
networks

Feedback 
control

Digital 
comm.

Media & 

DSP

Stochastic 
systems

Optimization

221,

249

228,

263

222,

223

224 225 226 227

20

corresponding graduate classes

Fig. 2. Pre-requisite Structure for Undergraduate Programin Systems

discrete world. From conversations among the system faculty,
the idea of revamping substantially the foundations of systems
and signals emerged to provide a strong basis for embedded
system design.

Traditional courses such as circuit theory (and the resulting
emphasis on linear time-invariant systems) were no longer
deemed core courses and a unified approach to the basics of
signals and systems took form as the seed for launching an
initiative to bring our students to appreciate the mathematical
underpinnings of embedded system analysis including continu-
ous and discrete abstractions and models. In particular, Edward
Lee and Pravin Varaija embarked in 1999 for the journey that
eventually led to EECS20N. They wrote a book [33], built
a course on the fundamentals needed to understand signals
and systems, and adopted tools such as Matlab [37] to lower
the barrier to abstract reasoning using extensively visualization
of system behavior. The description of their approach can be
found in two papers [30], [32] from which this section is taken.

b) The Program of the Course:The themes of the course
are:

• The connection between imperative (computational) and
declarative (mathematical) descriptions of signals and
systems.

• The use of sets and functions as a universal language for
declarative descriptions of signals and systems.

• State machines and frequency domain analysis as com-
plementary tools for designing and analyzing signals and
systems.

• Early and frequent discussion of applications.

State machines were the means to introduce EE students to
reason about digital abstractions, frequency domain analysis
to introduce CS students to reason about the continuous time
world. The use of applications is essential to keep the students
interested and motivated in absorbing a material that otherwise
may be too arid and abstract at an early stage of engineering
education.

The introduction to the course motivates forthcoming ma-
terial by illustrating how signals can be modeled abstractly
as functions on sets. The emphasis is on characterizing the
domain and the range, not on characterizing the function itself.
The startup sequence of a voiceband data modem is used as
an illustration, with a supporting applet that plays the very
familiar sound of the startup handshake of V32.bis modem,

and examines the waveform in both the time and frequency
domain. Systems are described as functions that map functions
(signals) into functions (signals). Again, the focus is noton
how the function is defined, but rather on what is the domain
and range. Block diagrams are defined as a visual syntax for
composing functions.

The connection between imperative and declarative descrip-
tion is fundamental to set the framework for making the intel-
lectual connection between the labs and the lecture material.
The, finite state machines are introduced and analyzed. Non-
determinism and equivalence in state machines is explained.
Equivalence is based on the notion of simulation, so simulation
relations and bisimulation are defined for both deterministic
and nondeterministic machines. These are used to explain that
two state machines may be equivalent even if they have a
different number of states, and that one state machine may
be an abstraction of another, in that it has all input/output
behaviors of the other (and then some). Composition of finite
state machines and the feedback loop connection is introduced.
The most useful concept to help subsequent material is that
feedback loops with delays are always well formed.

The last part applies the theory to real examples that depend
on the interests and expertise of the instructor, but we have
specifically covered vehicle automation, with emphasis on
feedback control systems for automated highways. The use
of discrete magnets in the road and sensors on the vehicles
provides a superb illustration of the risks of aliasing.

c) The Lab: A major objective of the course is to
introduce applications early, well before the students have built
up enough theory to fully analyze the applications. This helps
to motivate the students to learn the theory. In the Lab, we
emphasize the use of software to perform operations that could
not possibly be done by hand, operations on real signals such
as sounds and images.

While the mathematical treatment that dominates in the
lecture and textbook is declarative, the labs focus on an
imperative style, where signals and systems are constructed
procedurally. Matlab and Simulink [37] are chosen as the
basis for these exercises because they are widely used by
practitioners in the field, and because they are capable of
realizing interesting systems.

There are 11 lab exercises, each designed to be completed in
one week. The exercises include: Arrays and Sound, Images,
State Machines, Control Systems, Difference and Differential
Equations, Spectrum, Comb Filters, Modulation and Demodu-
lation, Sampling and Aliasing. Two of the weeks are quite in-
teresting (State Machines and Control Systems) from the point
of view of embedded systems and models of computation. The
third lab uses Matlab as a low-level programming language
to construct state machines according to a systematic design
pattern that will allow for easy composition. The theme of the
lab is establishing the correspondence between pictorial rep-
resentations of finite automata, mathematical functions giving
the state update, and software realizations. The main project
in this lab exercise is to construct a virtual pet. This problem
is inspired by the Tamagotchi virtual pet made by Bandai in
Japan. Tamagotchi pets were popular in the late 1990s, and had
behavior considerably more complex than that described in

12



this exercise. The students design an open-loop controllerthat
keeps the virtual pet alive. This illustrates that systematically
constructed state machines can be easily composed.

In the Control System lab, students modify the pet so that
its behavior is nondeterministic. They are asked to construct a
state machine that can be composed in a feedback arrangement
such that it keeps the cat alive.

B. Discussion and future directions

EECS20N has reached a degree of maturity that will allow
it to be taught by any faculty in the Department given the
large amount of teaching material available. During the first
years, the course was not among the favorites of the students
given its generality and mathematical rigor. However, the
fine-tuning of labs and lectures and of their interrelation has
had a positive effect on the overall understanding of the
material and the students now express their satisfaction with
this approach. Having laid out the foundation of the work,
we are now considering extending the present offering in the
upper division. The EE149 class in gestation will emphasize
three main aspects:

• The idea of introducing signals and systems as described
here with the operational and the denotational view can
be traced to the research work that led to the development
of the Lee-Sangiovanni-Vincentelli (LSV) tagged signal
model [31], a denotational framework to compare models
of computation. While the concept of time is not as
abstract as in the LSV model, the course does present the
denotational view of systems along similar lines. EE149
will focus on the semantics of embedded systems and
introduce a consistent family of models of computation
with the relative applications, strengths and weaknesses.

• Using Matlab and Simulink as a virtual prototyping
method and being exposed to both the digital and the
analog abstraction, the students have an early exposure
to hybrid systems [35] as an important domain for
embedded systems where a physical plant described in
the continuous-time domain is controlled by a digital
controller. We will devote a substantial portion of the
course to the discussion of the properties of hybrid
models as paradigms for the future of large scale system
monitoring and control.

• A substantial problem is the way in which Simulink
combines discrete and continuous-time models. Simulink
essentially embeds the discrete in the continuous do-
main, i.e., the numerical integration techniques determine
the time advancement for both continuous and discrete
models. Thusde facto Simulink implements a single
model of computation: the synchronous reactive model
where logical time is determined by the integration al-
gorithm. This may make Simulink non ideal for teach-
ing embedded systems where heterogeneous models of
computation play a fundamental role. We will add to
the Matlab/simulink environment, Ptolemy II as a design
capture and verification tool to obviate this problem.

• Implementation platforms are important as they deter-
mine the real-time properties of the system as well as

its cost, weight, size and power consumption. The course
will present methods to capture implementation platforms
and to map functionality to platforms.

• Applications will be emphasized as drivers and as test
cases for the methods presented in the class. In particular,
during the course, students will be asked to develop com-
pletely an embedded system in a particular application
domain using the methods taught. This design work will
be carried out in teams whose participants will have
enough diversity as to cover all aspects of embedded
system design.

Since many of these topics are covered in EECS249, the
graduate class, we will borrow heavily from that experience
while the material of EECS249 will evolve towards more
advanced topics.

VI. CONCLUSIONS

We outlined the embedded system education program at
the University of California at Berkeley. We stressed the
importance of foundations in education as opposed to techni-
calities. Embedded systems are important enough to warrant
a careful analysis of the mathematical bases upon which we
can build a solid discipline that marries rigour with practical
relevance. Given the present role of embedded systems in our
research agenda and the traditional approach to education in
the leading US Universities, the first courses to be developed
are advanced graduate courses. The natural evolution is to
solidify the teaching material to a point where regular graduate
classes can be taught and finally move the contents to the
undergraduate curriculum while the graduate courses adjust
continuously to the advances in the field brought about by
research. The flexibility of the US system allows to change
fairly easily the curriculum and to strive for relevance to the
ever changing society and cultural landscape.

While we believe that our program has achieved a set of
important goals, we do realize that much remains to do. At
the undergraduate level, we are planning to introduce an upper
division class on hybrid and embedded software systems.
At the graduate level, we are considering the addition of
regular courses on theoretical foundations focusing on function
description and manipulation as well as one on reconfigurable
and programmable architectural platforms to follow the basic
graduate course (EECS249) on embedded systems. We also
believe that embedded system courses should be considered
foundational courses for the entire college of engineeringand
we are working with our Dean and Department Chairpersons
to address this issue.

The views presented here are for a large part shared with
the Artist [1] Network of Excellence Education Team whose
agenda is described in another paper of this special issue.

VII. A CKNOWLEDGEMENTS

We wish to acknowledge the long-time collaboration with
Edward Lee, Tom Henzinger, Richard Newton, Jan Rabaey,
Shankar Sastry and Pravin Varaija in the research and teaching
agenda on embedded systems at Berkeley. The help and
support of the Metropolis group is gratefully acknowledged.

13



Important impacts on our approach come from interactions
with Albert Benveniste, Gerard Berry, Paul Caspi, Hugo
DeMan, Luciano Lavagno, Joseph Sifakis and the ARTIST
European Network of Excellence team, Alberto Ferrari and his
colleagues of PARADES, and last but not least our industrial
associates too numerous to be mentioned. Funding for this
work came from CHESS NSF ITR, and the GSRC. Work
(partially) done in the framework of the HYCON Network
of Excellence, contract number FP6-IST-511368.

REFERENCES

[1] Artist, “http://www.artist-embedded.org/overview/.”
[2] F. Balarin et al., Polis: A Design Environment for Control-Dominated

Embedded Systems. Kluwer, 1997.
[3] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and

A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic sys-
tem design environment,”IEEE Computer, Apr 2003.

[4] M. Baleani, F. Gennari, Y. Jiang, Y. Patel, R. K. Brayton,and
A. Sangiovanni-Vincentelli, “Hw/sw partitioning and codegeneration
of embedded control applications on a reconfigurable architecture
platform,” in Proceedings of the 10th International Symposium on
Hardware/Software Codesign (CODES), Estes Park, Colorado, USA,
May 2002.

[5] G. Berry and G. Gonthier, “The esterel synchronous programming
language: Design, semantics, implementation,”Science of Computer
Programming, vol. 19, no. 2, pp. 87–152, 1992.

[6] S. Borkar, R. Cohn, G. Cox, S. Gleason, and T. Gross, “Warp: an in-
tegrated solution of high-speed parallel computing,” inSupercomputing
’88: Proceedings of the 1988 ACM/IEEE conference on Supercomputing.
IEEE Computer Society Press, 1988, pp. 330–339.

[7] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang, “Mis: A multiple-level logic optimization system,”IEEE Trans.
Comput.-Aided Design Integrated Circuits, vol. 6, no. 6, pp. 1062–1081,
Nov. 1987.

[8] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation,” vol. C-35, no. 8, pp. 677–691, Aug. 1986. [Online].
Available: mentok.cse.psu.edu/bryant86graphbased.html

[9] E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek, and A. DeHon,
“Stream computations organized for reconfigurable execution (score),”
in FPL ’00: Proceedings of the The Roadmap to Reconfigurable Com-
puting, 10th International Workshop on Field-Programmable Logic and
Applications. Springer-Verlag, 2000, pp. 605–614.

[10] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “Lustre: a declar-
ative language for real-time programming,” inPOPL ’87: Proceedings
of the 14th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages. ACM Press, 1987, pp. 178–188.

[11] CS294, “http://www.cs.berkeley.edu/˜ culler/cs294-f03/.”
[12] CS294w, “http://www.cs.berkeley.edu/˜ adj/cs294-1.f00/.”
[13] E. A. de Kock, G. Essink, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel,

W. M. Kruijtzer, P. Lieverse, and K. A. Vissers, “Yapi: Application
modeling for signal processing systems,”Proceedings of the Design
Automation Conference, June 2000.

[14] dSpace, “http://www.dspaceinc.com/ww/en/inc/products/sw/targetli.htm.”
[15] EE249, “http://www-cad.eecs.berkeley.edu/˜ polis/class.”
[16] EE290A, “

http://www-cad.eecs.berkeley.edu/respep/research/classes/ee290a/fall02/.”
[17] EE290N, “http://embedded.eecs.berkeley.edu/concurrency/.”
[18] EE290O, “http://www.cs.uni-salzburg.at/˜ ck/teaching/eecs290o-spring-

2002.”
[19] EECS20N, “http://ptolemy.eecs.berkeley.edu/eecs20/index.html.”
[20] F. B. et. al., “Synthesis of software programs for embedded control ap-

plication,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, June 1999.

[21] C. Ferdinand and R. Wilhelm, “On predicting data cache behavior for
real-time systems,” inProceedings of the ACM SIGPLAN Workshop on
Languages, Compilers, and Tools for Embedded Systems. Springer-
Verlag, 1998, pp. 16–30.

[22] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesc language: A holistic approach to networked embedded
systems,”SIGPLAN Not., vol. 38, no. 5, pp. 1–11, 2003.

[23] Giotto, “http://embedded.eecs.berkeley.edu/giotto/.”

[24] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto:A time-
triggered language for embedded programming,”Proceedings of the
IEEE, vol. 91, pp. 84–99, 2003.

[25] T. A. Henzinger and C. M. Kirsch, “The embedded machine:Predictable,
portable real-time code,” inProceedings of the International Conference
on Programming Language Design and Implementation. ACM Press,
2002, pp. pp. 315–326.

[26] B. Horowitz, J. Liebman, C. Ma, J. Koo, T. A. Henzinger,
A. Sangiovanni-Vincentelli, and S. Sastry, “Embedded software design
and system integration for rotorcraft uav using platforms,” in Proceed-
ings of the 15th IFAC World Congress on Automatic Control. Elsevier,,
2002.

[27] IXP1200, “
http://www.intel.com/design/network/products/npfamily/ixp1200.htm.”

[28] H. Kopetz and G. Grunsteidl, “Ttp-a protocol for fault-tolerant real-time
systems,”Computer, vol. 27, no. 1, pp. 14–23, 1994.

[29] F. Koushanfar, A. Davare, D. T. Nguyen, M. Potkonjak, and
A. Sangiovanni-Vincentelli, “Distributed localized algorithms and pro-
tocols for power minimization in networked embedded systems,” in
ACM/IEEE International Symposium On Low Power Electronicsand
Design, 2003.

[30] E. A. Lee, “Designing a relevant lab for introductory signals and
systems,”Proc. of the First Signal Processing Education Workshop,
2000.

[31] E. A. Lee and A. L. Sangiovanni-Vincentelli, “A framework for com-
paring models of computation,”IEEE Trans. Comput.-Aided Design
Integrated Circuits, vol. 17, no. 12, pp. 1217–1229, Dec. 1998.

[32] E. A. Lee and P. Varaiya, “Introducing signals and systems – the berkeley
approach,”Proc. of the First Signal Processing Education Workshop,
2000.

[33] ——, “Structure and interpretation of signals and systems,” 2003.
[34] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software

using implicit path enumeration,” inWorkshop on Languages, Compilers
and Tools for Real-Time Systems, 1995, pp. 88–98.

[35] J. Lygeros, C. Tomlin, and S. Sastry, “Controllers for reachability
specifications for hybrid systems,” inAutomatica, Special Issue on
Hybrid Systems.

[36] Mathworks, “http://www.mathworks.com/products/rtw/.”
[37] Matlab, “http://www.mathworks.com/.”
[38] Mescal, “http://embedded.eecs.berkeley.edu/mescal.”
[39] Nexperia, “http://www.semiconductors.philips.com/products/nexperia/.”
[40] R. Passerone, “Semantic foundations for heterogeneous systems,” Ph.D.

dissertation, University of California, Berkeley, 2004.
[41] PATH, “http://www.path.berkeley.edu/.”
[42] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli,“Constraint-driven

communication synthesis,” inProceedings of the Design Automation
Conference 2002 (DAC’02), June 2002.

[43] A. Pnueli, “The temporal logic of programs,” inProceedings of the 18th
IEEE Symposium on the Foundations of Computer Science (FOCS-77),
IEEE. Providence, Rhode Island: IEEE Computer Society Press, Oct.
31–Nov. 2 1977, pp. 46–57.

[44] PtolemyII, “http://ptolemy.eecs.berkeley.edu.”
[45] A. Sangiovanni-Vincentelli, “Defining platform-based design,”

EEDesign of EETimes, February 2002.
[46] A. Sangiovanni-Vincentelli, L. Carloni, F. D. Bernardinis, and M. Sgroi,

“Benefits and challenges for platform-based design,” inProceedings of
the 41st annual conference on Design automation. ACM Press, 2004,
pp. 409–414.

[47] N. Shah, W. Plishker, and K. Keutzer,NP-Click: A Programming Model
for the Intel IXP1200, 1st ed. Elsevier, 2004, vol. 2, ch. 9, pp. 181–201.

[48] Teja, “http://www.teja.com/.”
[49] Xilinx, “http://www.xilinx.com.”
[50] L. Zimet, S. Kao, A. Amir, and A. Sangiovanni-Vincentelli, “An embed-

ded system for an eye detection sensor,” inComputer Vision and Image
Understanding: Special Issue on Eye Detection and Tracking, 2004.

14


