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Abstract

The Goldman-Parker Conjecture classifies the complex hyperbolic
C-reflection ideal triangle groups up to discreteness. We proved the
Goldman-Parker Conjecture in [S0] using a rigorous computer-assisted
proof. In this paper we give a new and improved proof of the Goldman-
Parker Conjecture. While the proof relies on the computer for exten-
sive guidance, the proof itself is traditional.

1 Introduction

Let H
2 be the hyperbolic plane. Let G denote the usual reflection ideal

triangle group acting on H
2. The standard generators of G are ι0, ι1, ι2.

PU(2, 1) is the holomorphic isometry group of CH
2, the complex hy-

perbolic plane. See §2 for more details. A C-reflection is an order 2 ele-
ment of PU(2, 1) which is conjugate to the element which has the action
(z, w) → (z,−w). A complex hyperbolic ideal triangle group representation

is a representation of G which maps the generators to C-reflections, and the
products of pairs of generators to parabolic elements. Let Rep(G) denote the
set of such representations, modulo conjugacy. It turns out that Rep(G) is
a half-open interval, naturally parametrized by s ∈ [0,∞). See §2.

Define
s =

√
105/3; s =

√
125/3; (1)
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In [GP], Goldman and Parker introduced Rep(G) (using different notation)
and proved that ρs is a discrete embedding if s ∈ [0, s]. They conjectured that
ρs is a discrete embedding iff ρs(ι0ι1ι2) is not an elliptic element of PU(2, 1).
This corresponds to parameters s ∈ [0, s]. We took care of the interval (s, s]
in [S0], using a rigorous computer-assisted proof, together with some new
constructions in complex hyperbolic geometry. However, the proof in [S0] is
extremely complicated and requires massive computations.

The purpose of this paper is to give a new and improved proof of the
Goldman-Parker Conjecture. Our new proof is based on an idea we worked
out, to a limited extent, in [S1, §8-10]. To each of the three generators
Ij,s = ρs(ιj) we will associate an piecewise analytic sphere Σj,s. We call Σj,s

a loxodromic R-sphere. Our construction is such that Ij,s(Σj,s) = Σj,s and
that Ij,s interchanges the two components of S3 − Σj,s. The key step in our
argument is showing that Σi,s ∩Σj,s is a contractible set−the union of 2 arcs
arranged in a ‘T’ pattern−for i 6= j, and that Σj,s is embedded. This sets up
a version of the familiar ping-pong lemma, and it follows readily from this
picture that ρs is a discrete embedding.

In [S1, §8-10] we established the intersection and embedding properties
of our spheres for all s ∈ [s − ε, s), using a perturbative argument. How-
ever, we couldn’t get an effective estimate on ε back then. Here, in §3, we
develop a theory for loxodromic R-spheres and use it to establish the two
desired properties for all s ∈ [s, s). Pictures like Figure 4.2 indicate that our
construction works for all s ∈ [0, s). However, there are certain technical
details we could not overcome when trying to deal with parameters outside
the range [s, s).

We wrote a Java applet which illustrates this paper in great detail and,
in particular, lets the reader plot pictures like Figure 4.2 for all parameter
values. The paper is independent of the applet, but the applet greatly en-
hances the paper because it lets the reader see visually the objects we refer
to here mainly with symbols. We encourage the reader to use the applet
while reading the paper. One can access the applet from my website. The
applet provides massive hands-on evidence that our construction works for
all s ∈ [0, s]. In fact, most of our proof works for all s ∈ [0, s] but there are
certain technical estimates we rely on that do not hold over the whole range
of parameters.

Since I wrote [S0] 7 years ago, there has been considerable development
of complex hyperbolic discrete groups. Some of us feel that all the new
technology−e.g. [AGG], [S1], [FP], [S2]−should reprove the Goldman-
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Parker Conjecture without too much pain. Nonetheless, a new proof has
never appeared and I thought that this paper would be of interest. Also, I
never liked my proof in [S0] and have wanted a better proof for a long time.

This paper divides into 2 halves. The first half is organized like this:

• §2: background;

• §3: theory of loxodromic R-spheres;

• §4: the proof.

The proof requires a handful of technical estimates, which we make in §5-7.
The technical estimates all concern the location in S3 of a certain collec-

tion of arcs of circles. There is a 1-parameter family of these arcs and one
can readily compute their positions numerically. You can see from my applet
(or from your own experiments) that these estimates hold by a wide margin
and are blatantly true for parameters in [s, s]. The original version of this
paper had computer-aided estimates on the locations of these arcs. At the
request of the referee of this paper, these computer-aided proofs have been
replaced with analytic calculations.

The analytic calculations done in the paper are in part based on a brilliant
algebraic idea due to the anonymous 1 referee. The idea can be summarized
by saying that one should introduce the parameter

x =
e2 + |e|2 + e2

1 − |e|2

and then write all relevant quantities in terms of x. (See §5.1-5.2 for details.)
Here e (which is not to be confused with the base of the natural log) is one
of the coordinates of an eigenvector of the word ρ(ι1ι0ι2).

I would like to thank Elisha Falbel, Bill Goldman and John Parker for
many conversations, over the years, about complex hyperbolic geometry.
Also, I would like to thank the University of Maryland, the Institute for
Advanced Study, the National Science Foundation, and the John Simon
Guggenheim Memorial Foundation, for their generous support.

1Eventually I guessed that the referee was John Parker. You can tell the lion by his
claw.

3



2 Background

2.1 Complex Hyperbolic Geometry

[E] and [G] are good references for complex hyperbolic geometry. [S2] also
has a good introduction.

2.1.1 The Ball Model

C
2,1 is a copy of the vector space C

3 equipped with the Hermitian form

〈u, v〉 = u1v1 + u2v2 − u3v3 (2)

CH
2 and its ideal boundary are respectively the projective images, in the

complex projective plane CP
2, of

N− = {v ∈ C
2,1| 〈v, v〉 < 0}; N0 = {v ∈ C

2,1| 〈v, v〉 = 0} (3)

(The set N+ has a similar definition.) The projectivization map

(v1, v2, v3) → (v1/v3, v2/v3) (4)

takes N− and N0 respectively to the open unit ball and unit sphere in C
2.

Henceforth we identify CH
2 with the open unit ball. CH

2 is called the
complex hyperbolic plane. It is a symmetric space of negative curvature.

2.1.2 Slices

There are two kinds of totally geodesic 2-planes in CH
2:

• The R-slices are 2-planes, PU(2, 1)-equivalent to RH
2 = R

2 ∩ CH
2.

• The C-slices are 2-planes, PU(2, 1)-equivalent to CH
1 = CH

2 ∩C
1.

Let F stand either for R or C. The accumulation set on S3, of an F -slice,
is called an F -circle. An F -reflection is an involution in Isom(CH

2) whose
fixed point set is an F -circle. The map (z, w) → (z,−w) is a prototypical
C-reflection and the map (z, w) → (z, w) is a prototypical R-reflection. The
F -slice determines the F -reflection and conversely.
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2.1.3 Isometries

SU(2, 1) is the 〈, 〉 preserving subgroup of SL3(C), the special complex linear
group. PU(2, 1) is the projectivization of SU(2, 1). Elements of PU(2, 1) act
isometrically on CH

2 and are classified according to the usual scheme for
groups acting on negatively curved spaces. Loxodromic elements move every
point of CH

2 greater than some ε > 0; elliptic elements fix a point in CH
2;

and the remaining elements are parabolic.
We now discuss C-reflections in more detail. elements of PU(2, 1). Given

a vector C ⊂ N+ we define

IC(U) = −U +
2〈U,C〉
〈C,C〉 C. (5)

IC is an involution fixing C and IC ∈ SU(2, 1). See [G, p. 70]. The element
of PU(2, 1) corresponding to IC is a C-reflection. Every C-reflection is
conjugate to the map (z, w) → (z,−w) discussed above. C-reflections are
also called complex reflections.

2.2 Heisenberg Space

2.2.1 Basic Definitions

In the ball model, CH
2 is a ball sitting inside complex projective space

CP
2. For this discussion we fix some p ∈ S3, the ideal boundary of CH

2.
There exists a complex projective automorphism β of CP

2 which maps p to
a point in CP

2 − C
2 and which identifies CH

2 with the Siegel domain:

Z = {(z1, z2)| 2Re(z1) < −|z2|2} ⊂ C
2 ⊂ CP

2 (6)

We write ∞ = β(p) in this case. The isometries of CH
2 which fix ∞ act as

complex linear automorphisms of Z. The set ∂Z is characterized as the set
of null vectors relative to the Hermitian form

〈u, v〉′ = u1v3 + u2v2 + u3v1. (7)

We call H= C × R Heisenberg space. H is equipped with a group law:

(ζ1, t1) · (ζ2, t2) = (ζ1 + ζ2, t1 + t2 + 2Im(ζ1ζ2)) (8)
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There is a natural map from ∂Z to H, given by

µ(z1, z2) = (
z2√
2
, Im(z1)). (9)

The inverse map is given by

(z, t) → (−|z|2 + it, z
√

2). (10)

A Heisenberg stereographic projection from p is a map B : S3 −{p} → H
of the form µ ◦ β where β is as above. We write ∞ = B(p) in this case. We
will somewhat abuse terminology and speak of elements of PU(2, 1) acting on
H. We mean that the conjugate of an element, by Heisenberg stereographic
projection, acts on H. If such a map stabilizes ∞, it acts as an affine map
of H.

• The C-circles in H which contain ∞ all have the form ({z}×R)∪∞.
The remaining C-circles are ellipses which project to circles in C. The
plane containing the ellipse is the contact plane based at the center of
mass of the ellipse. See below for more detail.

• The R-circles which contain ∞ are straight lines. One of these R-
circles is (R × {0}) ∪ ∞. The bounded R-circles in H are such that
their projections to C are lemniscates.

2.2.2 The Contact Distribution

The set of complex lines tangent to S3 forms a PU(2, 1)-invariant contact
distribution on S3. The R-circles are tangent to this distribution and the
C-circles are transverse to it. The image of the contact distribution, under
Heisenberg stereographic projection, is a contact distrubition on H. It is
defined as the kernel of the 1 form dt+ 2(xdy − ydx), when points in H are
written as (x + iy, t). Compare [G, p.124]. Any element of PU(2, 1) acting
on H respects this contact distribution. Each plane in the distribution is
called a contact plane.

Area Principle: Suppose α is a piecewise smooth curve in H, tangent
to the contact distribution, such that π(α) is a closed loop. Then the height
difference−meaning the difference in the t-coordinates−between the two end-
points of α is 4 times the signed area of the compact region enclosed by π(α).
This is basically Green’s theorem. Compare [G, §4]. Call this principle the
area principle.
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2.3 Spinal Spheres

2.3.1 Basic Definitions

Basic information about bisectors and spinal spheres can be found in [G].
Here we recall some of the basics.

A bisector is a subset of CH
2 of the form {x ∈ CH

2| d(x, p) = d(x, q)}.
Here p 6= q are two distinct points in CH

2 and d is the complex hyperbolic
metric. A spinal sphere is the ideal boundary of a bisector. Every two spinal
spheres are equivalent under PU(2, 1), even though this is not immediately
obvious. Equivalently, a spinal sphere is any set of the form

B
−1((C × {0}) ∪∞).

Here B is a Heisenberg stereographic projection. Thus,

S = (C × {0}) ∪∞

is a model in H for a spinal sphere. From the second definition we see some
of the structure of spinal spheres. Here are some objects associated to S:

• S has a singular foliation by C-circles. The leaves are given by Cr×{0}
where Cr is a circle of radius r centered at the origin. The singular
points are 0 and ∞. We call this the C-foliation.

• S has a singular foliation by R-circles. The leaves are horizontal lines
through the origin. The singular points are again 0 and ∞. We call
this the R-foliation.

• The singular points 0 and ∞ are called the poles of S.

• The spine of S is defined as the C-circle containing the poles. In our
case, the spine is ({0}×R)∪∞. Note that the spine of S only intersects
S at the singular points.

Any other spinal sphere inherits this structure, by symmetry. The two folia-
tions on a spinal sphere look like lines of lattitude and longitude on a globe.
A spinal sphere is uniquely determined by its poles. Two spinal spheres are
cospinal if they have the same spine.
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2.3.2 Generic Tangencies with Spinal Spheres

In this section we prove a useful technical result about how an R-circle
intersects a spinal sphere. Let π : H → C be projection. The next result is
illustrated in Figure 2.1.

Lemma 2.1 Let S = (C × {0}) ∪∞ as above. Let γ be a finite R-circle in

H. Suppose

• γ is tangent to S at p 6= 0.

• The line L ⊂ C, containing 0 and π(p), is not tangent to π(γ) at the

double point of π(γ).

Then γ has first but not second order contact with S. Moreover, a neighbor-

hood of p in γ lies on one side of S.

Proof: Since γ is tangent to S at p, and γ is also tangent to the contact
distribution, and the contact distribution is not tangent to S at p, we see
that γ is tangent to the R-circle of S which contains p. This R-circle is
exactly L×{0}. But then L is tangent to π(γ) at π(p). Figure 2.1 shows the
situation when a lobe of π(γ) surrounds 0. The other topological possibility
has the same proof. The basic idea of the proof is that L does not have
second order contact with π(γ) at π(p), by convexity.

γ
Lp

0 r
q

B
A

Figure 2.1

We first apply the area principle to the integral curve α made from two
horizontal line segments and a portion of γ, so that π(α) bounds the lightly
shaded region A shown in Figure 2.1. From the area principle we see that
the height of q is positive, and also a quadratic function of the Euclidean
distance from π(q) to π(p). The quadratic dependence comes from the strict
convexity of π(γ) in a neighborhood of π(p).
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A similar argument works when we take the relevant integral curve which
projects to the region A∪B. We see that the height of the point r is positive,
and also a quadratic function of the Euclidean distance from π(r) to π(p).
Now we know that points on γ, on either side of p, rise quadratically up and
away from S. ♠

Corollary 2.2 Suppose γ links the spine of a spinal sphere Σ and γ is tan-

gent to Σ at some point p. Then γ has first but not second order contact with

Σ at p and a neighborhood of p in γ lies to one side of Σ.

Proof: When we normalize so that Σ = S. then the spine of Σ projects
to 0. One of the lobes of π(γ) surrounds 0, and p projects to some nonzero
point. In short, we have the picture in Figure 2.1, and the hypotheses of the
previous result are forced. ♠

2.4 Equations For C-Circles

Suppose that C is a C-circle in H which links {0} × R. Let π : H → C be
projection as above. Then π(C) is a circle in C which surrounds 0. As in
[S1, §2] we study Ψ∗(C), where Ψ∗ is the map

Ψ∗(z, t) = (arg z, t). (11)

Define

r = radius(π(C)); d = |center(π(C))|; A = (r/d)2. (12)

We only define A when d > 0. We call A the aspect of C. Note that A > 1.

d
r

(C)π

0

Figure 2.2
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Lemma 2.3 Let A be the aspect of C. Up to scaling and rotation Ψ∗(C) is

the graph of

fA(t) = sin(t)(cos(t) +
√
A− sin2(t)) (13)

Proof: We normalize so that (1, 0) is the center of mass of C. Then d = 1
and C is contained in the contact plane through (1, 0). This plane is spanned
by (1, 0) and (i, 2). Let Cθ be the point on C such that the line through 0
and π(Cθ) makes an angle of θ with the x axis. Then Ψ∗(C) is the graph of
the function θ → height(Cθ) = 2y, where Cθ = (x, y). Our formula comes
from solving the equations (x−1)2+y2 = r2 and x = y cot(θ) in terms of y. ♠

Lemma 2.4 If A ≥ 9 then f ′′

A is negative on (0, π) and positive on (π, 2π).

Proof: We compute that

d

dA
f ′′

A(t) =
A(2 −A+ cos(2t)) sin(t)

2(A− sin2(t))5/2
= gA(t) sin(t), (14)

where gA(t) < 0. Hence d
dA
f ′′

A is negative on (0, π) and positive on (π, 2π).
We just need to prove that f ′′

9 is negative on (0, π) and positive on (π, 2π).
We compute that f ′′

9 (π/2) = −7/
√

8 < 0. Thus, we just need to see that
f ′′

9 (t) = 0 only at t = 0 and t = π. Setting u = cos(t) we compute 2

f ′′

9 =
−4h(u) sin(t)

(8 + u2)3/2
; h(u) = 14+12u2+u4+8u

√
8 + u2+u3

√
8 + u2. (15)

For u ∈ (−1, 1] we have

h(u) ≥ 14 + 12u2 + u4 + 24u+ 3u3 = (1 + u)(14 + 10u+ 2u2 + u3) > 0.

This shows that f ′′

9 (t) 6= 0 if t 6∈ {0, π}. ♠

Remark: The preceding lemma is essentially the same as Lemma 4.11 of
[FP], with the variable change φ = t+ π/2.

2In Mathematica we differentiate the function sin(t)(cos(t)+
√

(A − 1) + cos2(t)), which
is a re-writing of fA.
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2.5 Ideal Triangle Groups

2.5.1 The Basic Definition

We will use the same set-up as in [S0]. Given s ∈ [0,∞) we define

βs =
s+ i√
2 + 2s2

. (16)

Sometimes we write β instead of βs, when the dependence is clear. As we
showed in [S0], every ideal triangle in S3 is conjugate to a triangle with
vertices

p0 = (β, β); p1 = (β, β); p2 = (β, β). (17)

In brief, the idea is that we can apply an element of PU(2, 1) so that all
three vertices of our ideal triangle lie on the Clifford torus

{(z, w)| |z| = |w|} ⊂ S3

and then we can rotate the Clifford torus until the points are as above.
Let Ij be the C-reflection which fixes pj−1 and pj+1. We compute that

the elements I0, I1, I2 are given by




0 −1 0
−1 0 0
0 0 −1



 ;




−1 0 0
0 3 −4β
0 4β −3



 ;




3 0 −4β
0 −1 0
4β 0 −3



 , (18)

Letting g0 = I1I0I2 we compute

g0 =




0 −1 0

−A1 0 A2

−A2 0 −A1



 ; A1 =
s+ 17i

s+ i
; A2 =

12
√

2i√
1 + s2

. (19)

A direct computation, for example using the result on [G, p. 201], shows
that g is loxodromic for s ∈ [0, s) and parabolic for s. See [GP].

As we mentioned in the introduction, we are mainly interested in the case
when s ∈ (s, s], though many of our constructions work for s ∈ [0, s] as well.
Actually, we will carry out most of our constructions for s ∈ (s, s), because
there are now several good discreteness proofs for the case s. See [S1] and
[FP].
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2.5.2 Some Associated Objects

When s < s, the element g0 is loxodromic. In this case g0 stabilizes a pair
(E0, Q0), where E0 is a C-circle containing the fixed points of g0 and Q0 is
an arc of E0 bounded by the two fixed points. Of the two possible arcs, we
choose Q0 so that it varies continuously with the parameter and shrinks to
a point as s→ s. The curve

ρ0 = {(uβ, uβ)| u ∈ S1} (20)

is an R-circle fixed by the map (z, w) = (w, z). This map interchanges p1 and
p2 and fixes p0. In short ρ0 is an R-circle of symmetry for our configuration.

One can define Q1, Q2, etc. by cycling the indices mod 3. The objects

(Cj, Ej , pj, Qj); j = 0, 1, 2. (21)

are the elementary objects of interest to us. Figure 2.2 shows those of the
objects which lie on the Clifford torus, when the Clifford torus is drawn as
a square torus (in “arg-arg coordinates”). The black dots are the points of
E0 ∩ ρ0.

C0

ρ0

C1

C2

p0

Figure 2.3
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3 Loxodromic R-Spheres

3.1 The Cospinal Foliation

Our constructions are all based on the pair (E0, Q0) from §2.5, though we
could take any pair (E0, Q0) and make the same definitions. Again, E0 is a
C-circle and Q0 is a proper arc of E0. Note that Q0 determines E0 uniquely.
We include E0 in our notation for emphasis.

Let p, q ∈ E0 be two distinct points. The pair (p, q) is harmonic with
respect to (E0, Q0) if the geodesic connecting p to q in CH

2 is perpendicular
to the geodesic connecting the endpoints of Q0. (Both these geodesics lie in
the C-slice bounded by E0.) A spinal sphere S is harmonic w.r.t. (E0, Q0)
if the poles of S lie in E0 and are harmonic w.r.t (E0, Q0). An R-arc α is
harmonic w.r.t. (E0, Q0) if the endpoints of α are harmonic w.r.t. (E0, Q0).
Every harmonic R-arc is contained in a harmonic spinal sphere.

• Let S(E0, Q0) denote the union of all spinal spheres which are harmonic
with respect to (E0, Q0). We call S(E0, Q0) the cospinal foliation.

• Let R(E0, Q0) denote the union of all R-arcs which are harmonic with
respect to (E0, Q0).

• Let G(E0, Q0) ⊂ PU(2, 1) denote the group which fixes the endpoints
of Q0. Then G(E0, Q0) acts transitively the elements in S(E0, Q0) and
simply transitively on the elements of R(E0, Q0).

To see a picture we work in H and normalize so that E0 = ({0}×R)∪∞
and Q0 is the unbounded arc whose endpoints are (0,±1). We call this
standard position. In this case (p, q) is harmonic with respect to (E0, Q0) iff
p = (0, r) and q = (0, r−1). We include the possibility that r = 0, so that
r−1 = ∞. All the spinal spheres of interest to us are bounded in H, except
for (C × {0}) ∪∞, which corresponds to the case r = 0.

Lemma 3.1 Evrey bounded spinal sphere in S(E0, Q0) is a convex surface

of revolution.

Proof: All such spinal spheres are surfaces of revolution, by symmetry.
Moreover, all such spinal spheres are affine images of the so-called unit spinal

sphere, which has poles (0,±1). The unit spinal sphere satisfies the equation
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|z|4 + t2 = 1 and hence is convex. See [G, p. 159]. Being affine images of a
convex set, the other spinal spheres of interest to us are also convex. ♠

Lemma 3.2 Every two distinct spinal spheres in S(E0, Q0) are disjoint.

Proof: Let S1 and S2 be two distinct spinal spheres in S(E0, Q0). Using the
action of G(E0, Q0) we can arrange that S1 = (C × {0}) ∪∞ and that the
endpoints of S2 are (r, 0) and (r−1, 0), with r 6= 0. But then S2 lies either
entirely in the upper half space, or entirely the lower half space. In either
case S2 is disjoint from S1. ♠

3.2 Loxodromic R-Cones and R-Spheres

Given x ∈ S3 −E0 there is a unique element α ∈ R(E0, Q0) such that x ∈ α.
We let Σ(E0, Q0; x) denote the portion of α which connects x to a point in
Q0. Given a subset S ⊂ S3 −E0 we define

Σ(E0, Q0;S) =
⋃

x∈S

Σ(E0, Q0; x). (22)

We call Σ(E0, Q0;S) the loxodromic cone on S.
Let C1 be a C-circle which links E0. ([§4, Computation 1] establishes this

linking property when (C1, E0) are as in §2.5.) Let (E2, Q2) = I1(E0, Q0).
Here I1 is the C-reflection fixing C1. We say that a loxodromic R-sphere is
an object of the form

Σ1 = Σ(E0, Q0;C1) ∪ Σ(E2, Q2;C1) (23)

If the C-slice bounded by C1 is perpendicular to the C-slice bounded by E0

then C1 lies in one of the elements of S(E0, Q0) and Σ1 is a spinal sphere.
In general Σ1 is not a spinal sphere. In §4 we will show that the loxodromic
R-spheres of interest to us are embedded spheres but not spinal spheres.

We are interested in the case when Σ1 is not a spinal sphere. Henceforth
we assume that Σ1 is not a spinal sphere. In this case we call Σ1 generic.

Lemma 3.3 Let Σ1 be a generic R-sphere. There exists a unique R-circle

R1 such that R1 intersects E0, C1, E2 each in two points. Also, R1 ⊂ Σ1 and

the R-reflection in R1 is a symmetry of Σ1. We call R1 the R-axis of Σ1.
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Proof: We put (E0, Q0) in standard position. Recall that G(E0, Q0) is the
stabilizer subgroup of Q0 which preserves the endpoints. Using the action of
G(E0, Q0) we can normalize so that the center of mass of C1 is (r, 0) for some
r > 0. Consider the R-circle R1 = (R × {0}) ∪∞. By symmetry R1 inter-
sects C1 twice. Also R1 intersects E0 twice. Finally, we have I1(R1) = R1

by symmetry. Hence R1 intersects E2 twice. The R-reflection J1 in R1 is
an anti-holomorphic element preserving (E0, Q0) and C1, and hence a sym-
metry of Σ1. If there was some other axis R′

1 then the composition of the
R-reflection symmetries J1 and J ′

1 would a non-trivial element of PU(2, 1)
preserving both (E0.Q0) and C1. But no such element exists. Hence R1 is
unique. ♠

3.3 The Elevation Map

The set R(E0, Q0) is topologically a cylinder. Since G(E0, Q0) acts transi-
tively on R(E0, Q0), this cylinder admits a natural family of flat metrics. Put
another way, we can write R(E0, Q0) = R/2πZ × R. The identification is
unique up to post-composition with a map of the form (x, y) → (x+a, by+c).
That is, the identification is unique up to affine maps.

There is a tautological map Ψ0 : S3 −E0 → R(E0, Q0) defined as follows:
Ψ0(x) is the element of R(E0, Q0) which contains x. If we identify R(E0, Q0)
with R/2π×R then we have nice coordinates for this map. Given x ∈ S3−E
we let x̂ be a lift of x. We define

Ψ0(x) =



arg
〈x̂, Ê0〉√

〈x̂, Q̂1〉〈x̂, Q̂2〉
, log

∣∣∣
〈x̂, Q̂1〉
〈x̂, Q̂2〉

∣∣∣



 (24)

Here Q̂1 and Q̂2 are lifts of the endpoints of Q0 and Ê0 is a polar vector of
E0. This is to say that 〈Ê0, Ŷ 〉 = 0 whenever Ŷ is a lift of a point Y ∈ E0.

Remarks: (i) It is possible to choose a well-defined branch of the square
root in Equation 24. This is basically a topological fact, deriving from the
fact that the map

f(x) → 〈x̂, Q̂1〉〈x̂, Q̂2〉
induces the map on homology

f∗ : Z = H1(S
3 − E0) → H1(C − {0}) = Z
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which is multiplication by 2.
(ii) Different choices of lifts lead to maps which differ by post-composition
with affine maps.
(iii) To see that Equation 24 works as claimed we compute that Ψ0 conjugates

G(E0, Q0) to isometries of R/2π ×R. The point here is that (Q̂1, Q̂2, Ê0) is
an eigenbasis for the elements of G(E0, Q0).

Henceforth we set Ψ = Ψ0. Note that Ψ(x) = Ψ(y) iff x and y belong to
the same element of R(E0, Q0). Ψ maps the orbit G(E0, Q0)(x) diffeomor-
phically onto R/2πZ × R. hence dΨ has rank 2 everywhere.

For any x ∈ S3 −E0 let Πx denote the contact plane at x. Let

Lx = dΨ(Πx) (25)

As we just mentioned, dΨ has full rank at at x but dΨ maps the 3-dimensional
vector space Tx(S

3) onto a 2-dimensional tangent space. The kernel of dΨ
is the vector tangent to the element of R(E0, Q0) through x. This kernel is
therefore contained in Πx. Hence Lx is a line. The following result captures
some of the basic features of this situation.

Lemma 3.4 Let γ be an F -circle and let x ∈ γ − E0 be a point.

• If F = R and γ is not tangent to Σ(E0, Q0; x) then Ψ(γ) is a nonsin-

gular curve at Ψ(x) and the tangent line is Lx.

• If F = C then Ψ(γ) is nonsingular at Ψ(x) and transverse to Lx.

Proof: When γ is an R-circle, the tangent vector v to γ at x lies in Πx but
is not contained in the kernel of dΨx. Part 1 of our lemma follows from this
fact. When γ is a C-circle, v 6∈ Πx and hence dΨx(v) 6∈ Lx. ♠

Remark: At this point, the reader anxious to see our main construction
should skip to §4.

3.4 More Details on Slopes

From Lemma 3.4 we see that Lx tells us a great deal about what Ψ does to
R-circles and C-circles. We now investigate this further. Let σx denote the
slope of Lx. Of course σx depends on our choice of normalization, but the
general statements we make are independent of normalization. Let S0 denote
the spinal sphere whose poles are ∂Q0.

16



Lemma 3.5 If x ∈ S0 then Lx is a vertical line and hence σx is infinite.

Otherwise σx is finite and nonzero.

Proof: Let H ⊂ G(E0, Q0) denote the 1-parameter subgroup consisting of
the pure loxodromic elements. These elements do not twist at all in the
direction normal to the slice bounded by E0. By symmetry Ψ maps the orbit
H(x) to a vertical line in R/2πZ×R. On the other hand H(x) is tangent to
Πx iff x ∈ S0. From this we see that σx is infinite iff x ∈ S0. Now Ψ maps the
C-circles foliating the spinal spheres in S(E0, Q0) to horizontal lines. From
this fact, and from Lemma 3.4, we see that σx 6= 0.

Lemma 3.6 Let x, y ∈ S3 − E0. Then σx = σy iff x and y lie in the same

G(E0, Q0) orbit.

Proof: By symmetry we have σx = σy if x and y are G(E0, Q0) equivalent.
We just have to establish the converse. Each x ∈ S3 − E0 determines a 1-
parameter subgroup Hx ⊂ G(E0, Q0) which has the property that the orbit
Hx(x) is integral to the contact structure. Then Ψ maps Hx(x) to a geodesic
on R/2πZ ×R which is tangent to Lx. It suffices to show that Hx 6= Hy if x
and y lie in different G(E0, Q0) orbits. Suppose, for the sake of contradiction,
that there are G(E0, Q0)-inequivalent x, y for which Hx = Hy. Using the
action of G(E0, Q0) we can arrange that Ψ(x) = Ψ(y). Let h ∈ Hx = Hy.
By symmetry we have Ψ(h(x)) = h(y). But then we can make a closed
quadrilateral, Q as follows:

• One side of Q is the portion of Hx(x) which connects x to h(x).

• One side of Q is the portion of Hy(y) which connects y to h(y).

• One side of Q is Σ(E0, Q0; y) − Σ(E0, Q0; x).

• One side of Q is Σ(E0, Q0; h(y)) − Σ(E0, Q0; h(x)).

Here we are choosing x, y so that Σ(E0, Q0; x) ⊂ Σ(E0, Q0; y). The shaded
region in Figure 3.1 is the projection of Q to C.

17



h(y)
h(x)

y x
0

Figure 3.1

We normalize so that (E0, Q0) is the standard pair and x = (r, 0) and
y = (s, 0). If we choose h close to the identity, then π(Q) projects to an
embedded quadrilateral in C, as suggested by Figure 3.1. The point here is
that the fibers of Ψ are lobes of lemniscates which have their double points
at the origin. Since Q is integral to the contact structure, and yet a closed
loop, we contradict the Area Principle of §2.2.2. ♠

Corollary 3.7 (Slope Principle) Let γ1, γ2 ∈ S3 −E0 be two R-arcs such

that Ψ(γ1) and Ψ(γ2) are nonsingular at a point x ∈ R/2πZ×R, and tangent

to each other at x. Then γ1 and γ2 intersect at some point y ∈ Ψ−1(x).

Proof: Each fiber of Ψ, including Ψ−1(x), intersects each orbit of G(E0, Q0)
in one point. Our result now follows from Lemma 3.4 and Lemma 3.6. ♠

We normalize Ψ so that σx is positive when S0 separates Q0 from x. In
this case we call x remote from Q0. Thus we can say that σx ∈ (0,∞) iff x
is remote from S0.

3.5 Images of C-Circles

Lemma 3.8 Suppose C is a C-circle which links E0. Then Ψ(C) is the

graph of a function ψ : R/2πZ → R.
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Proof: Ψ(C) is a smooth loop by Lemma 3.4. We need to prove that Ψ(C)
is never vertical. Let C = C1 ∪ C2, where C1 is the closure of the remote
points of C and C2 is the complement. Let I be a C-reflection in a C-circle
contained in S0. Then I interchanges the two components of S3 −S0, and Ψ
conjugates I to a reflection in a horizontal line of R/2πZ ×R. (This is seen

by choosing Q̂1 and Q̂2 in Equation 24 so that these vectors are swapped by
I.) Hence Ψ(I(C2)) is the image of Ψ(C2) reflected in a horizontal line. By
symmetry, then, it suffices to show that Ψ(C1) is never vertical.

Let x ∈ C1. We normalize so that (E0, Q0) is the standard pair and
x = (r, 0) for some r > 0. Since C links E, we can parameterize C as
C(θ) = (z(θ), t(θ)), where θ is the angle between the ray connecting 0 to
π(C(θ)) and R. We are interested in q = C(0).

C

C(0)0

Ψfiber of

C(e)δ

ε

Figure 3.2

If t′(0) = 0 then C is tangent to S = (C × {0}) ∪ ∞ at q. But S is a
member of S(E0, Q0). Hence Ψ(C) is horozontal at Ψ(C(0)). Conversely, if
Ψ(C) is horizontal at Ψ(C(0)) then C is tangent to S and hence t′(0) = 0.

If t′(0) > 0 then w = dΨq(C
′(0)) lies in the interior of the cone bounded

by the x-axis and LC(0), a line whose slope is either positive or infinite. (The
idea here is that the statement holds when the center of mass of C is near
(0, 0), and then Lemma 3.4 and the linking condition guarantee that the cone
condition holds no matter how C varies.) Hence w is not vertical.

If t′(0) < 0 then the projection to C of the fiber of Ψ which contains C(ε)
curves down and clockwise, as shown in Figure 3.1. But then the horizontal
component of w = dΨq(γ

′(0)) exceeds 1 because the angle δ in Figure 3.1
exceeds the angle ε. Again w is not vertical. ♠

We say that C generically links E0 if the C-slice bounded by C is not
perpendicular to the C-slice bounded by E0.
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Lemma 3.9 Suppose that C is a C-circle which generically links E0. Then

Ψ(C) is the graph of a function ψ : S1 → R which has one maximum and

one mimimum.

Proof: Since C generically links E0 the image Ψ(C) is not contained in
a horizontal line. The Ψ-preimages of horizontal lines are spinal spheres.
Since C is not contained in any of these spinal spheres, C can intersect each
of them at most twice. Hence Ψ(C) intersects each horizontal line at most
twice. Our result follows immediately. ♠

Corollary 3.10 Suppose that C1 generically links E0. Then Σ(E0, Q0;C1)
is an embedded topological disk, analytic away from C1 ∪Q0.

Proof: The set Σ(E0, Q0;C1) − Q0 is foliated by R-arcs of the form γ(θ),
where θ ∈ C1 is a point. Two arcs γ(θ1) and γ(θ2) are disjoint because
Ψ(γ(θj)) = Ψ(θj) and Ψ(θ1) 6= Ψ(θ2). Moreover, the arcs vary analytically.
Hence Σ(E0, Q0;C1)−Q0 is homeomorphic to an annulus (with one boundary
component deleted) and analytic away from C1.

Figure 3.3

There is a map f : C1 → Q0 given as follows: f(x) is the endpoint of
Σ(E0, Q0; x). If f(C1) is more than one point−as it is when C generically
links E0−then f is generically 2 to 1 and 1 to 1 at exactly two points. This
follows from Lemma 3.9. Thus, f has the effect of folding C1 in half over an
arc of Q0. Hence the R-arcs foliating Σ(E0, Q0;C1) intersect Q in pairs, with
two exceptions. Topologically, Σ(E0, Q0;C1) is obtained from an annulus by
gluing the inner circle together by a folding map, as in Figure 3.3. From this
description we see that Σ(E0, Q0;C1) is an embedded disk, analytic off of Q0.
♠
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3.6 Images of Linked R-Circles

Lemma 3.11 Let γ be an R-circle which links E0. Then γ is tangent to

exactly two spinal spheres in S(E0, Q0).

Proof: We normalize so that (E0, Q0) is in standard position. Let Qt denote
the unbounded C-arc whose endpoints are (0,±(1+ t)). Then Qt exits every
compact subset of H as t→ ∞. Let N(t) denote the number of elements of
S(E0, Qt) which are tangent to γ.

We define S(E0, Q∞) to be the collection of spinal spheres of the form
(C × {s})∪∞. Given this definition we can define N(∞) to be the number
of spinal spheres in S(E0, Q∞) tangent to γ. Let’s analyze N(∞) first. Let
π : H → C be projection. Suppose γ is tangent to a horizontal spinal sphere
Ss = (C × {s}) ∪∞ at x. Since γ is also tangent to the contact plane Πx,
we see that γ is tangent to the line Πx ∩ Ss. But Πx ∩ Ss is a horizontal
line which intersects E0. Hence π(γ) is tangent at π(x) to a line through the
origin. But π(γ) is a lemniscate, one of whose lobes surrounds the origin.
See Figure 2.1. Hence there are only 2 lines through the origin which are
tangent to π(γ). Hence N(∞) = 2.

Now fix some value of t. Since γ links E0, Corollary 2.2 applies: If
γ is tangent to a spinal sphere S of Σ(E0, Qt) then γ locally lies to one
side of S and has first but not second order contact with S. Moreover,
as t′ → t, the spinal spheres of S(E0, Qt′) converge smoothly to the spinal
spheres of S(E0, Qt). These two properties imply that the tangency points
vary continuously with t and cannot be created or destroyed as t changes.
The two properties also hold at t = ∞.

From the discussion in the preceding paragraph we see that N(t) is inde-
pendent of t. Since N(∞) = 2 we also have N(1) = 2. ♠

Corollary 3.12 (Elevation Image) Suppose that γ is an R-circle which

links E0. Then Ψ(γ) is the union of two non-singular arcs, each having

nonzero slope at every point. The two non-singular arcs meet at two cusp

points.

Proof: Everything but the statement about the cusps follows from Lemma
3.4, Lemma 3.5, and Lemma 3.11. The two cusps appear because γ locally
lies on one side of each of the two spinal spheres to which it is tangent. ♠
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3.7 Linking of the Poles

As above I1(E0, Q0) = (E2, Q2), where I1 is the C-reflection fixing the C-
circle C1 which generically links E0. Also R1 is the R-axis of the R-sphere
Σ1 given in Equation 23.

Lemma 3.13 E0 and E2 are linked.

Proof: We normalize so that (E0, Q0) is the standard pair and the center of
mass of C1 is (r, 0) for some r > 0. Then R1 = (R×{0})∪∞. Let A1 ⊂ R1

be the bounded interval whose endpoints are C1 ∩ R1. The center of A1 is
(r, 0). Since C1 links E0, we have 0 ∈ A1. Since the center of A1 is positive, 0
lies in the left half of A1. Now I1|R1

acts as a linear fractional transformation
interchanging A1 with R1 − A1. But then I1(0, 0) = (s, 0) with s < 0 and
I1(∞) = (r, 0) with r > 0. The two points of E2 ∩R1 are I1(0, 0) and I1(∞).
But these points separate (0, 0) from ∞ on R1. Hence E2 and E0 are linked.
♠

Ψ(C1) and Ψ(E2) have some symmetry: Let J1 be the R-reflection fixing
R1. Then Ψ conjugates J1 to an isometric 180 degree rotation of R/2πZ×R.
The fixed point set of this rotation is exactly Ψ(R1 − E0), which is a pair
of points on the same horizontal level and π units around from each other.
This rotation is a symmetry of Ψ(C1) and also of Ψ(E2). Figure 3.4 shows a
picture of the three possibilities.

Ψ

Ψ

Ψ(C1)

(E2)

Ψ Ψ(E2)
(C1)(E2)

perpendicular case interlaced case

?

?
possible intersection
points

Figure 3.4

We say that Σ1 is interlaced if the picture looks like the right hand side.
That is, a vertical line separates the minimum of Ψ(E2) from the minimum
of Ψ(C1). When we normalize the interlaced case as above, (0, 0) separates
the center of mass of C1 from the center of mass of E2. From this we see
that the set of interlaced R-spheres is connected. In the interlaced case, the
interlacing pattern of the extrema of Ψ(C1) and Ψ(E2) forces

Ψ(C1) ∩ Ψ(E2) = Ψ(R1 −E0). (26)
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3.8 The Two Cusp Lemma

We say that an R-circle γ̂ is affiliated with Σ(E0, Q0;C1) if γ̂ contains an
R-arc of the form Σ(E0, Q0; x), for x ∈ C1, but γ̂ is not the R-axis R1 of Σ1.
The purpose of this section is to prove the following result.

Lemma 3.14 (Two Cusp) Suppose that Σ1 is interlaced. Suppose that γ̂
is an R-circle affiliated to Σ(E2, Q2;C1). Then Ψ(γ̂). is the union of two

nonsingular arcs, each of which has everywhere nonzero slope. The two arcs

are joined at two cusps.

The Two Cusp Lemma is an immediate consequence of Lemma 3.15 below
and the Elevation Image Lemma.

Lemma 3.15 Suppose that Σ1 is interlaced. Then every R-circle affiliated

to Σ(E0, q0;C1) links E2.

Proof: By symmetry, every R-circle affiliated to Σ(E0, q0;C1) links E2 if
and only if every R-circle affiliated to Σ(E2, Q2;C1) links E0.

Let γ̂ be an R-circle affiliated to Σ(E2, Q2;C1). We claim that that
γ̂∩E0 = ∅. Once we know this, we see that either all affiliates of Σ(E2, Q2;C1)
link E0 or all affiliates fail to link E0. By continuity, the link/unlink option is
independent of the choice of interlaced R-sphere. We check explicitly, for one
interlaced R-sphere−e.g. the one in Figure 4.4−that the link option holds
for some of the affiliates. Hence the link option always holds.

It remains to establish our claim. By symmetry γ̂′ = IC1
(γ) is affiliated

with Σ(E0, Q0;C1). By construction, Ψ(γ′ − E0) is a single point of Ψ(C1)
and Ψ(γ′ − E0) ∈ Ψ(R1 − E0) iff R′ = R1. The point is that Ψ is injective
on C1. Therefore

Ψ(γ′ − E0) ∩ Ψ(R1 − E0) = ∅ (27)

we have by hypotheses and Equation 26 that

Ψ(γ′ − E0) ∩ Ψ(E2) ⊂ Ψ(C1) ∩ Ψ(E2) = Ψ(R1 − E0). (28)

Combining Equations 27 and 28 we have

Ψ(γ′ −E0) ∩ Ψ(E2) = ∅. (29)

Hence (γ′ − E0) ∩ E2 = ∅. Since E0 ∩ E2 = ∅ we conclude that γ̂′ ∩ E2 = ∅.
Hence γ̂ ∩E0 = ∅. This establishes our claim. ♠
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3.9 Asymmetry

Let ∆0 denote the C-slice which bounds E0. Let S0 denote the spinal sphere
whose poles are Q0. Let R1 denote the R-axis of the R-sphere Σ1 given in
Equation 23. Again recall that I1(E0, Q0) = (E2, Q0). We we will assume
explicitly that E1 and E2 are generically linked. Hence Ei and Ej are also
generically linked.

Let η : S3 → ∆0 denote orthogonal projection. The generic linking
condition implies that η(Ej) is a circle (rather than a point) for j = 1, 2. Let
Θ1 = η(E0). For j = 0, 2 let Θj be the circle which is perpendicular to η(Ej)
and contains the endpoints of η(Qj). Note that Θ0 and Θ1 intersect at right
angles, since Θ0 = η(S0) and Θ1 = η(E0).Some of these objects are drawn in
Figure 3.5 below. Say that Σ1 is asymmetric if Θ0 ∩ Θ1 ∩ Θ2 = ∅. This is
the generic case. The goal of this section is to prove:

Lemma 3.16 (Asymmetry Lemma) Suppose Σ1 is asymmetric and in-

terlaced. Let x, y ∈ E2 be two points which are harmonic with respect to

Q2. Then Ψ(x) and Ψ(y) lie on the same horizontal line in R/2πZ × R iff

x, y ∈ R1.

Proof: We first list some basic properties of the map η.

• η(E0) is the boundary of ∆0 and η(Q0) is an arc of η(E0). This follows
from the fact that η is the identity on E0.

• If C is a C-circle which is disjoint from E0 then η(C) is a circle con-
tained in the interior of E0. The restriction of η to C is a linear frac-
tional transformation. This property comes from the fact that η is
holomorphic on complex lines.

• If S is a spinal sphere whose spine is E0, then η(S) is a geodesic in ∆0.
In particular, γ0 = η(S0) is the geodesic whose endpoints are η(Q0).
Indeed, an alternate definition of a spinal sphere is the preimage of
such a geodesic under η. See [G].

• η maps each spinal sphere in the cospinal foliation to geodesics perpen-
dicular to η(S0). This follows from symmetry: namely that η conju-
gates G(E0.Q0) to isometries of ∆0 which fix both endpoints of η(Q0).
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• η maps the R-axis of Σ1 to a geodesic γ1 which is simultaneously per-
pendicular to η(S0) and η(C1) and η(Q2). Again this follows from
symmetry: The R-reflection in the R-axis of Σ1 preserves both C1 and
Q2. Indeed, the isometric reflection in γ1 stabilizes η(Q0) and η(Q2)
and η(C1) and ∆0.

Remark: The reader can see all these properties in action using my Applet.

Now we turn to the main argument in the proof of the Asymmetry
Lemma. If x, y ∈ R1 then Ψ(x) and Ψ(y) are precisely the two symme-
try points of Ψ(E2) and Ψ(C1) discussed in Lemma 3.15, and then Ψ(x) and
Ψ(y) lie on the same horizontal line.

Θ1

γ0

γ γ1

η (Q2)

Θ2

Θ0

ηηη

η (E2)

(y)η

(x)η

η (Q0)

Figure 3.5

Suppose, conversely, that Ψ(x) and Ψ(y) lie on the same horizontal line.
This means that η(x) and η(y) lie on the same geodesic γ of ∆0, where γ is
perpendicular to both Θ0 and Θ1. By assumption x, y ∈ E2 are harmonic
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with respect to Q2. Since the restriction of η to E2 is a linear fractional trans-
formation, the points η(x) and η(y) are in harmonic position with respect to
η(Q2). So, we conclude that the geodesic γ has the following properties:

• γ is perpendicular to Θ0 since γ is a geodesic.

• γ is perpendicular to γ0, the geodesic connecting the endpoints of
γ(Q0). Hence γ is perpendicular to Θ1.

• γ intersects η(E2) in two points which are in harmonic position with
respect to η(Q2). But then γ is perpendicular to Θ2, the circle which
is perpendicular to η(E2) and contains η(Q2) in its endpoints.

Figure 3.5 shows a picture. The lemma below says that there is only one
geodesic which has this property, and this geodesic is γ1 = η(R1). Hence
Ψ(x) and Ψ(y) lie on the same horizontal line as Ψ(R1 − E0). This forces
x, y ∈ R1. ♠

Lemma 3.17 Let Θ0,Θ1,Θ2 be 3 circles in C ∪∞. Suppose that Θ0 ∩ Θ1

is a pair of points and Θ0 ∩ Θ1 ∩ Θ2 = ∅. Then there is at most one circle

which is simultaneously perpendicular to Θj for j = 0, 1, 2.

Proof: We normalize by a Moebius transformation so that Θ0 and Θ1 are
lines through the origin. Then a circle in C is perpendicular to Θ0 and
Θ1 iff this circle is centered at the origin. By assumption, Θ2 is a finite
circle in C which does not contain the origin. From here it is easy to see
that at most one circle, centered at the origin, can be perpendicular to Θ2. ♠

We end this chapter with a result which relates symmetry and asymmetry
to the image of the arc Ψ(Q2).

Lemma 3.18 Σ1 is symmetric if and only if the maximum and minimum

heights of Ψ(E2) occur at the endpoints of Ψ(Q2).

Proof: If Σ1 is symmetric then the geodesics in ∆ perpendicular to Θ0 and
Θ1 and containing the endpoints of η(Q2) are tangent to η(E2). Recalling
the 4th property of η mentioned above, the tangency property translates ex-
actly into the statement that the height of Ψ|E2

takes on its maxima and
minima at the endpoints of Q2. The converse is proved simply by running
the argument in reverse. ♠
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3.10 Remoteness

We say that Σ1 is remote if every point of Σ(E2, Q2, C1) is remote from Q0.
In this case α = Ψ(γ) has everywhere positive slope, when γ is an R-arc of
Σ(E2, Q2;C1). In this section we give a technical criterion for remoteness.
We work in H.

Lemma 3.19 Σ1 is remote provided:

• C1 has aspect at least 9.

• The endpoints of Q0 have the form (0,±u), with u ≥ 4.

• π(C1) has radius 1.

• C1 is centered on the real axis.

Proof: Given our bound on the aspect, the center of C1 is at most 1/3 from
0. Hence every point of C1 is at most 2/3 from C × {0}. Also, there is a
spinal sphere S1, containing C1 such that

S1 ⊂ π(C1) × [−5/3, 5/3].

To obtain S1 we simply take the spinal sphere with poles (0,±1) and left
translate by less than 1/3 along R × {0}.

The poles of S0 are (0,±u), with u > 4. It is easy to that the bounded
portion of this huge (and convex) set contains S1 in its interior. Let γ be an
R-arc of Σ(E0, Q0;C1). Then I1(γ) is an R-arc of Σ(E2, Q2;C1). We claim
that γ intersects S1 only at its endpoint. In this case I(γ) is contained in the
bounded portion of S1 = I1(S1), which is in turn contained in the bounded
portion of S0. Hence I(γ) is remote.

To finish our proof we need to establish our claim. Let γ̂ be the fiber of
Ψ containing γ. Then γ̂ is harmonic with respect to (E0, Q0) and π(γ̂) is
one lobe of a lemniscate. Let (0, t1) and (0, t2) be the two endpoints of γ̂,
with t1 < t2. Without loss of generality assume that t1 > 0. Then γ̂ rises
up from its lower endpoint until it intersects C1. Hence t1 ∈ [0, 2/3]. Also
t1t2 = u2 > 14. Hence t2 > 21. Hence γ̂ rises up at least 20. The projection
π(γ̂) is a huge lemniscate. From all this information we can see that γ only
intersects S1 at its endpoint: The only points x ∈ γ̂ with π(x) ∈ π(C1) have
height greater than 5/3. ♠
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4 The Proof

4.1 Main Construction

Let s ∈ [s, s). Let (Cj , Ej, Qj, Rj , pj) be as in §2.5. (Actually, we defined Rj

in §3, as the R-axis of Σj .) Also define

Q21 = Q2 ∩ Σ1; Q12 = Q1 ∩ Σ2. (30)

All our objects depend on a parameter s, though we typically suppress s
from our notation.

Our proof includes several technical lemmas whose proofs will be given in
§5-7. It is to be understood that these results are only proved for parameters
in [s, s].

Lemma 4.1 (Technical Lemma I) The following is true:

1. E0 and C1 are linked.

2. E0 is normalized to be ({0 × R}) ∪ ∞ in Heisenberg space then the

aspect A of C1 is at least 9.

3. Suppose we normalize so that C1 ∩C2 = (1, 0) in H and E0 = {0}×R

and the map (z, t) → (z,−t) swaps C1 and C2. Then 0 is closer to

1 = π(p0) than it is to the other intersection point of π(C1) and π(C2).

Lemma 4.2 (Technical Lemma II) The following is true:

1. Σ1 satisfies the criteria of Lemma 3.19. Hence Σ1 and Σ2 are remote.

2. The curve Ψ(Q2) has negative slope, even at the endpoints.

Lemma 4.3 (Technical Lemma III) The following is true:

1. A horizontal line in R/2πZ × R separates Ψ(Q21) from Ψ(C2), with

Ψ(Q21) lying on top.

2. If we normalize as in item 3 of Technical Lemma I then the center of

C1 lies above all points of C2. Likewise the center of C2 lies below all

points of C1.
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Now we are ready for our main construction. By symmetry Ci and Ej

are linked for i 6= j. We define

Σij = Σ(Ej , Qj ;Ci). (31)

Then Σi = Σij ∪ Σik is an R-sphere because Ii interchanges (Ej , Qj) and
(Ek, Qk). Here i, j, k are distinct indices. Let Ψ = Ψ0 be the map from §3.

Figure 4.1

Figure 4.1 shows Ψ(Σ1 − E0) in black and Ψ(Σ2 − E0) in grey for the
parameter s. All the black curves terminate on the tiny grey arc Ψ(Q21) and
all the grey curves terminate on the tiny black arc Ψ(Q12). The Technical
Lemma III says that the tiny grey arc lies above the grey curve Ψ(C2). This
is obvious from the picture.

Figure 4.2 shows the same picture for s = 1. Even though the parameter
value s = 1 is outside the interval of interest to us, we include the picture
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because the main features are more dramatic. Notice that the Technical
Lemma III remains true even at this parameter. (However, our proof breaks
down.)

Figure 4.2

Recall that Σ1 = Σ10 ∪ Σ12. The R-arcs foliating Σ10 are mapped to
individual points on Ψ(C1). The R-arcs foliating Σ12 are mapped to black
curves connecting Ψ(C1) to the black arc Ψ(Q21). Here, in general

Qij = Qi ∩ Σji; i 6= j. (32)

The point here is that the R-arcs foliating Σ(E2, Q2;C1) start on C1 and end
on a subset of Q2. The point Ψ(p0) is the point of tangency between the
black curve ψ(C1) and the grey curve ψ(C2).
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Remark: Using our applet, the reader can see the picture at any parameter,
and can recolor each individual object, so as to see in a more direct way what
part of the picture coorsponds to what object.

We are going to draw two conclusions from the pictures. The main thrust
of our proof is verifying that the pictures have the claimed property.

Contractible Intersections: Figures 4.1 and 4.2 indicate that Ψ(Σ1 −E0)
and Ψ(Σ2 −E0) only intersect in a single point at the parameters s = s and
s = 1 respectively. Hence A = (Σ1 − E0) ∩ (Σ2 − E0) is a single arc. Note
that Σj ∩ E0 is a connected arc Q∗

j ⊂ Qj. The intersection A∗ = Q∗

1 ∩ Q∗

2 is
another arc, which intersects A in a single point. Hence Σ1 ∩ Σ2 = A ∪ A∗,
the union of two arcs arranged in a T pattern−a contractible set.

Embedded Spheres: Figures 4.1 and 4.2 also suggest that Σ1 and Σ2

are embedded. We work this out here. First, we have Ψ(Σ10 −E0) ⊂ Ψ(C1)
whereas the nontrivial arcs of Ψ(Σ12−E0) only intersects Ψ(C1) at one point.
Therefore

Σ10 ∩ Σ12 ⊂ C1 ∪E0. (33)

By symmetry
Σ10 ∩ Σ12 ⊂ C1 ∪E2. (34)

Lemma 4.5 below shows that E0 ∩ E2 = ∅. Hence Σ10 ∩ Σ12 = C1. We
already know that each hemisphere Σ1j is an embedded disk, and we’ve just
seen that these hemispheres just intersect along the equator. Hence Σ1 is an
embedded sphere. The same result holds for Σ2 by symmetry.

Conclusions: If the pictures are right−namely if Ψ(Σ1 −E0) ∩Ψ(Σ2 −E0)
is a single point−then Σ0,Σ1,Σ2 are embedded spheres which have pairwise
contractible intersections. But then these spheres bound balls B0, B1, B2 with
pairwise disjoint interiors. Moreover Ij interchanges the two components of
S3 −Σj . This picture, at the parameter s, easily implies that ρs is a discrete
embedding. So, to prove the Goldman-Parker conjecture, we just need to
show that Ψ(Σ1 −E0) ∩ Ψ(Σ2 − E0) is a single point for each s ∈ [s, s).
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4.2 Containing the Image

We define S12A to be the region of R/2πZ × R bounded by Ψ(C1), Ψ(Q21)
and the horizontal line through the highest point of Ψ(Q21), as shown in
Figure 4.3.1

From Technical Lemma III, the horizontal edge through the lowest point
of Ψ(Q21) is disjoint from Ψ(C2). We define S12B to be the region of R/2πZ×
R bounded by Ψ(C1), Ψ(Q21) and the horizontal line through the lowest point
of Ψ(Q21).

We define S21A and S21B, similarly, switching the roles of the indices 1
and 2.

S12A

S21A

S12B

S21B

Figure 4.3.1

The R-axis R1 divides Σ(E2, Q2;C1) into two halves, which we denote
by Σ12A and Σ12B . Figure 4.3.2 shows schematically how Ψ(Σ12A) sits inside
S12A. Compare Figure 4.2. Given Technical Lemma III, the Goldman-Parker
Conjecture comes down to proving the following two items, which we estab-
lish in turn.

• Let α = Ψ(γ), where γ is an R-arc of Σ12A. Then α does not intersect
∂S12A at an interior point.

• Ψ(C1) and Ψ(C2) intersect in one point

Item 1 implies that Ψ(Σ12A) ⊂ S12A and also that Σ12A ∩ Σ10 ⊂ C1. The
same holds for Σ12B and hence Σ12 ∩ Σ10 = C1. Hence Σ1 is embedded.
Item 2 combines with Item 1 and with the Technical Lemma III to show that
Ψ(Σ1) ∩ Ψ(Σ2) is a single point.

Our proof of the Goldman-Parker Conjecture boils down to establishing
Items 1 and 2.
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4.3 The Height Property

Figure 4.3.2 shows an enlargement of part of Figure 4.3.1. As in Figure 4.3.2
we have distinguished 5 points on ∂S12A: The 2 black points are Ψ(R1−E1),
where R1 is the R-axis of Σ1. The 2 white points are the points of maximum
and minimum height on Ψ(C1). The grey point is the point of Ψ(Σ12A) which
lies on the same horizontal line as the top white point.

S12A:

negative edge

positive edge

(Q21)Ψ

(C1)Ψ

horizontal edge

Figure 4.3.2

Lemma 4.4 Two arcs of Ψ(Σ12A), which start at the same horizontal level

on Ψ(C1), end at the same point of Ψ(Q21). In particular, there is an arc of

Ψ(Σ12A) which connects the bottom white point to the grey point.

Proof: The second statement follows as a limiting case of the first statement,
so we will concentrate on the first statement. Let α1 and α2 be two R-arcs
of Σ12A. Let aj = Ψ(αj) and let βj = I1(αj).

1. a1 and a2 have endpoints at the same horizontal level of Ψ(C1).

2. Hence α1 ∩C1 and α2 ∩C1 lie in the same spinal sphere of the cospinal
foliation S(E0, Q0).

3. Hence β1 ∩C1 and β2 ∩C1 lie in the same spinal sphere of the cospinal
foliation S(E0, Q0).

4. Hence β1 and β2 lie in the same spinal sphere of the cospinal foliation
S(E0, Q0).
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5. Hence β1 ∩Q0 = β2 ∩Q0.

6. Hence α1 ∩Q2 = α2 ∩Q2.

7. Hence Ψ(α1 ∩Q2) = Ψ(α2 ∩Q2).

8. Hence a1 and a2 contain the same point of Ψ(Q2).

This is what we wanted to prove. ♠

Lemma 4.4 is borne out in Figure 4.1 and 4.2 and can be seen in more
detail on our applet.

4.4 The Interlacing Property

Here we recall Figure 3.4 for convenience. Recall that Σ1 is interlaced if the
picture looks like the right hand side of Figure 3.4. That is, a vertical line
separates the minimum of Ψ(E2) from the minimum of Ψ(C1). In this section
we prove that Σ1 is an interlaced R-sphere for all s ∈ [s, s). This result lets
use all the machinery from §3.

Lemma 4.5 The pairs (C1, E0) and (E0, E2) are each generically linked.

Proof: We already know that (E0, C1) are linked. Lemma 3.13 now says
that (E0, E2) are linked. We just need the genericity condition. If C1 and
E0 bound perpendicular C-slices then I1 stabilizes E0. By symmetry I2 sta-
bilizes E0. But then I1I2 stabilizes a C-slice. This does not happen. If E0

and E2 bound perpendicular C-slices then E0 and E1 bound perpendicular
slices, by symmetry. But then the slices bounded by E1 and E2 are disjoint.
Hence E1 and E2 are unlinked. This is a contradiction. ♠

Comparing Figure 3.4 with Figure 4.4 below we see that Σ1 is interlaced
for the parameter s. By continuity, and Lemma 4.5, we get that Σ1 is in-
terlaced for all s ∈ [s, s). Lemma 4.5 prevents the picture from switching
from the right hand side of Figure 3.4 to the left hand side of Figure 3.4 as
s varies.
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4.5 No Interior Cusps

Let γ be an R-arc of Σ(E2, Q2;C1) and let γ̂ be the R-circle which contains γ.
By definition, γ̂ is an affiliate of Σ(E2, Q2;C1). Figure 4.4 shows a particular
example at the parameter s. Here Ψ(γ) in black the rest of Ψ(γ̂) in grey.
The loop Ψ(C1) is drawn in black and the loop Ψ(E2) is drawn in grey. The
vertical direction in Figure 4.4 is scaled differently than the vertical direction
in Figure 4.1, because otherwise Ψ(E2) would be quite a tall curve. (On my
applet one can use many more colors.)

Figure 4.4

In general, let s ∈ [s, s). Suppose, for this parameter, that γ is an R-arc
of Σ(E2, Q2;C1), not contained in the R-axis of Σ1. Let γ̂ be the R-circle
which contains γ. Let α̂ = Ψ(γ̂) and let α = Ψ(γ). Let α0 = Ψ(γ ∩ C1).

Lemma 4.6 α0 is a cusp of α̂.

Proof: Let θ ∈ C1 be the endpoint of γ. Let Cθ be the contact plane at
θ. Then I1 rotates Cθ by 180 degrees. This means that γθ and I1(γθ) are
tangent at θ. But I1(γθ) = Σ(E0, q0; θ) is a fiber of Ψ. Hence γθ is tangent
to a fiber of Ψ at θ. Hence α0 = Ψ(θ) is a cusp. ♠
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Lemma 4.7 α has does not contain the second cusp of α̂.

Proof: Let’s write α = Ψ(γ) and let γ̂ be the R-circle containing γ. Figure
4.4 shows an example where α does not contain the second cusp. If there
are examples where α does contain the second cusp then there is an example
where the two endpoints of α are both cusps. But then this second cusp is
the point of maximum height of α. Note that γ̂ intersects E2 in two points.
For the example under consideration, we therefore have

height(Ψ(γ̂ ∩Q2)) > height(Ψ(γ̂ ∩ (E2 −Q2))).

However, for the example in Figure 4.4,

height(Ψ(γ̂ ∩Q2)) < height(Ψ(γ̂ ∩ (E2 −Q2))).

But then, by continuity, we have an example where:

height(Ψ(γ̂ ∩Q2)) = height(Ψ(γ̂ ∩ (E2 −Q2))).

However γ∩Q2 and γ∩(E2−Q2) are in harmonic position with respect to Q2.
Thus by Lemma 3.16, Σ1 is symmetric. However, Technical Lemma II and
Lemma 3.18 combine to say that Σ1 is asymmetric. This is a contradiction. ♠

Corollary 4.8 (Rising Property) Let γ be an R-arc of Σ(E2, Q2;C1). If

γ is not contained in the axis then α = Ψ(γ) is nonsingular on its interior

and has nowhere vanishing slope.

Proof: This follows immediately from Lemma 3.4 and Lemma 3.5, combined
with the fact that α has no cusps in its interior. ♠

4.6 Proof of Item 1

At the end of §4.2 we reduced the whole Goldman-Parker Conjecture to the
verification of two items. Here we prove the first of these items.

Let γ be an R-arc of Σ12A. Let α = Ψ(γ). We want to show that α does
not intersect S12A at an interior point. We break ∂S12A into three edges, as
shown in Figure 4.3.2. From the Rising Property, the height of α attains

36



its maximum at the endpoint of α which lies on Ψ(Q21). But the horizontal
edge only intersects Ψ(Q21) at its point of maximum height by Technical
Lemma III. Hence α does not hit the horizontal edge. Since Σ1 is remote α
has positive slope. Hence α cannot hit the negative edge. We just have to
worry about the positive edge.

Before we deal with the problem of hitting the positive edge, we want to
divide the arcs of Ψ(Σ12A) into two categories. Say that a positive arc is one
whose endpoint lies on the positive edge of ∂S12A. Likewise define negative

arcs. Say that the middle arc is the arc which contains the lowest point
of Ψ(C1). This arc connects a white point to a grey point in Figure 4.3.2.
Looking at Figure 4.2 we can see that two positive arcs appear never to cross
each other whereas two negative arcs always cross each other.

α2

α3

α1

x

α1

x

α3

detail

α2

Figure 4.6

Lemma 4.9 Two positive arcs never cross each other at interior points.

Proof: Looking at the ordering of the endpoints of the positive arcs, on
Ψ(C1) and Ψ(Q2) respectively, we see that two positive arcs α1 and α2 must
cross in at least one pair of oppositely oriented crossings, if they cross at all.
By varying α2 away from α1, as in Figure 4.6, we can produce a positive
arc α3 which is tangent to α1 at some point x. We write αj = Ψ(γj). By
the Slope Principle of §3.3, the R-arcs γ1 and γ3 intersect at some point of
Ψ−1(x). But this contradicts the fact that Σ12 is an embedded disk ♠

Corollary 4.10 A positive edge does not intersect the positive arc of C1 in

a point which is interior to the positive edge.
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Proof: Suppose α0 is a positive arc which intersects the positive edge at
a point x0 ∈ Ψ(C1). By Lemma 3.4 the arc α0 is transverse to Ψ(C1) at
the endpoint. Hence an initial open segment of α0 either is contained in the
interior of S12A or is contained in the complement of S12A. Figure 4.7 shows
the former option, which turns out to be the true option. Which option
obtains is independent of the choice of α0, and for α0 very near the middle
arc, the former option obtains by the Rising Property. Hence, the former
option always obtains. In summary, some initial portion of α0 is contained
in the interior of S12A.

12AS

t
0α

α
tx

te
e0

0x

Figure 4.7

We can choose x0 to be the first point where α0 crosses the positive edge.
Let

{αt| t ∈ [0, 1]}
denote the family of positive arcs such that the endpoint et of αt on Ψ(C1)
interpolates between the endpoint e0 of α0 and the point e1 = x0. The arcs
α0 and αt cannot cross, by the previous result. Also, an initial open segment
of αt is contained in the interior of S12A. The only possibility is that αt

crosses the positive edge at some first point xt and, in order along Ψ(C) the
points come as

e0, et, xt, x0.

Since {et} moves all the way from e0 to x0 and et comes before xt (by the
Rising Property) we must have some value s for which es = xs, but this
contradicts the fact that some initial open segment of αs is contained in the
interior of S12A.
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Lemma 4.11 Suppose that α1 is a negative arc and α2 is a positive arc.

Suppose the endpoint of α1 on Ψ(C1) is lower than the endpoint of α2 on

Ψ(C2). Then α1 and α2 do not intersect.

Proof: The ordering of the endpoints for α1 and α2 is the same as in Lemma
4.9. The same argument as in Lemma 4.9 works here. ♠

Corollary 4.12 A negative arc cannot intersect the positive edge of C1 in a

point which is interior to the negative arc.

Proof: Suppose α1 is a negative arc which intersects the positive edge. Let
x be the endpoint of α1 on Ψ(C1). Then, from the Rising Property, α1 in-
tersects the positive edge at a point y which lies above x. But then α1 must
cross some positive arc α2 whose endpoint lies above x and below y. This
contradicts the previous result. ♠

Our lemmas cover all the cases. This establishes Item 1.

4.7 Proof of Item 2

Our goal is to show that Ψ(C1) and Ψ(C2) intersect in a single point, for all
parameters s ∈ [s, s). We work in H and normalize so that (E0, Q0) is in
standard position and ρ0 = (R×{0})∪∞. Then C1 and C2 are swapped by
the R-reflection (z, t) → (z,−t) which fixes ρ0. To fix the scale, we arrange
that C1∩C2 = (1, 0). Both C1 and C2 have aspect greater than 9 by Technical
Lemma I, part 3.

Lemma 4.13 Define Ψ∗(z, t) = (arg z, t). Then Ψ∗(C1) ∩ Ψ∗(C2) = (0, 0),
with Ψ∗(C1) lying on top.

Proof: Let s ∈ [s, s) be some parameter. Ψ∗(Cj) is the graph of a function
ψj . Up to rotations and scaling, ψ satisfies the equation in Lemma 2.4, for
some A > 9. Hence, by Lemma 2.4, the function ψj is convex on an interval
of length π and concave on the complementary interval of length π. We have
parametrized ψ so that ψ(0) = Ψ(p0). Here p0 = (1, 0) = C1 ∩ C2.

Sub-Lemma 4.14 ψ′′(0) > 0 for all s ∈ [s, s).
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Proof: We compute that ψ′′

1 (0) > 0 at the parameter s. Suppose that
ψ′′

1(0) = 0 for some parameter s. Then Ψ∗(C1) and Ψ∗(C2) are tangent at
their inflection point. Then, by symmetry, Ψ∗(C1) = Ψ∗(C2). Here we are
using Lemma 2.4 and the fact that A(Cj) > 9. Since C1 and C2 are gener-
ically linked, this forces C1 = C2, a contradiction. Hence ψ′′(0) > 0 for all
s ∈ [s, s). ♠

t1t2

L1

L2

Ψ(C1)

(C2)Ψ

Figure 4.8

We have Ψ∗(p0) = (0, 0). By symmetry we get

ψ1(0) = ψ2(0); ψ′

1(0) = ψ′

2(0); ψ′′

1 (0) = −ψ′′

2 (0). (35)

The sublemma says that ψ′′

1 (0) > 0. Hence ψ′′

2 (0) < 0 by symmetry. To
establish Item 2 it suffices to show that ψ1(t) > ψ2(t) for t ∈ (0, π]. There
are values t1, t2 ∈ (0, π) such that ψ′′

j (tj) = 0. The point (tj , ψ
′′

j (tj)) is one of
the points of Ψ∗(Cj) ∩ Lj. Here Lj is the horizontal line through the inflec-
tion points of Ψ∗(Cj). We suppose t2 ≤ t1, as indicated in Figure 4.1. The
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other case is similiar. Then on (0, t2) we have ψ1 > ψ2 because of our initial
conditions at 0, and the fact that ψ′′

1 > 0 on (0, t1) and ψ′′

2 < 0 on (0, t1). For
t ∈ [t2, π) the curve Ψ∗(C2) lies below L2, and Ψ∗(C1) lies completely above
L2 by item 2 of Technical Lemma II. (The point here is that Lj contains the
point Ψ∗(cj), where cj is the center of Cj.) This does it. ♠

To finish our proof we compare the loxodromic elevation map Ψ with Ψ∗.
Let A∗

2 ⊂ C2 denote the arc such that Ψ∗(A
∗

2) ranges between 0 and π/2 in
the S1 direction on S1 × R. See Figure 4.9 below. Let π be projection into
C.

0

γ

R0

A

V

p0

C2

C1

Z

a

+ −

+  +
− +

− − 

A2*

Figure 4.9

Lemma 4.15 Ψ∗(A
∗

2) has negative slope.

Proof: Let m∗

2 denote the point on Ψ∗(C2) having minimum height. We can
locate Z = π(Ψ−1

∗
(m∗

2)) as follows: Let A be the line through 0 which contains
the point a on π(C2) closest to 0. Then Z is obtained from A by rotating
90 degrees about the center of π(C2), as shown. The key observations are
that π(C2) lies more in the lower half plane than the upper half plane. This
property is true for one parameter and cannot change as the parameter varies,
because the π(C1) and π(C2) are symmetrically placed with respect to the
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real axis, and never coincide. Compare Figure 5.1. From this observation,
and Computation 5 we conclude that Z lies in the (−,+) quadrant, as shown.

Let A∗∗

2 denote the arc of C2 which projects to the (+,+) quadrant. Since
Ψ−1(m∗

2) projects to a point in the (−,+) quadrant, we conclude that Ψ∗(A
∗∗

2 )
has negative slope. Hence all points of A∗∗

2 lie in the lower half-space of H.
But then the fibers of Ψ, which contain points on A∗∗

2 , project to lemniscate
lobes which curve around counter-clockwise. Figure 4.9 shows one such fiber
γ. In particular, if γ contains the endpoint of A∗

2 then π(γ) is tangent to V
at 0. (This is the π/2 condition, which defines A∗

2.) But then π(γ) intersects
π(C2) in a point which lies to the right of V . Hence A∗

2 ⊂ A∗∗

2 . ♠

Lemma 4.16 Suppose x2 ∈ C2 is a point such that Ψ(x2) ∈ Ψ(C1). Then x
cannot be an interior point of A∗

2.

Proof: We will suppose this is false and derive a contradiction. Let x2 =
(z2, t2). There is some x1 = (z1, t1) ∈ C1 and a fiber γ of Ψ such that x1, x2 ∈
γ. By the previous result t2 < 0. Hence π(γ) curves around clockwise, as
shown in Figure 4.10.

We trace counterclockwise around γ as indicated by the arrow in Figure
4.10. Suppose for the moment that we encounter x2 before we encounter
x1, as shown in Figure 4.10. The height of γ in H is monotone decreasing.
Hence t2 > t1. The line L through 0 and π(x1) intersects π(C1) at some
point between 1 and π(x2). Let x∗2 = (z∗2 , t

∗

2) be the corresponding point on
C2. Then x∗2 lies between (1, 0) and x2. In particular x∗2 ∈ A∗

2. Since Ψ∗(A
∗

2)
has negative slope, we have t∗2 > t2. Hence t∗2 > t1. But then Ψ∗(x

∗

2) lies
above Ψ∗(x1), on the same vertical line. This is a contradiction.
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Figure 4.10

To show that γ encounters x2 before x1 we first introduce some terminol-
ogy. For j = 1, 2 we say that a type j arc is a portion of a fiber of Ψ which
connects a point of E0 − Q0 to Cj. The type j subarc of γ projects to the
portion of π(γ) which connects 0 to xj . Thus, we want to show that the type
1 sub-arc γ1 ⊂ γ contains the type 2 sub-arc γ2 ⊂ γ. We are going to make
an argument based on a computer plot, but we say in advance that we only
use topological features of the plot. We simply need the plot to draw the
reader’s attention to the relevant details.

We use the projection map η from §3.9. Figure 4.11 shows the relevant
objects at the parameter s. The picture looks similar at other parameters.

• The large black circle is η(E0). The small black circle is η(C1). The
small grey circle is η(C2). The grey geodesic has η(∂Q0) for endpoints.

• The black geodesic, which contains η(C1) ∩ η(C2), is η(ρ0). The black
geodesic arcs are images of the type 1 arcs of interest to us. η(γ) must
project onto the same side of η(R1) as these black arcs, and of course
η(γ) must intersect the black circle.
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• The grey arcs are images of the type 2 arcs of interest to us. The
last grey arc, the one tangent to the grey circle, is the type 2 subarc
which contains the point z ∈ C2 such that Ψ(z) has minimum height
on Ψ(C2). Thus η(γ2) must project into the region indicated by these
grey arcs.

Figure 4.11

The type 1 and type 2 subarcs of R0 coincide. As we move away from
η(R0) the projections of the type 1 subarcs grow longer in comparison to the
corresponding projections of the type 2 subarcs. In particular η(γ2) would
be shorter than η(γ1). Hence γ2 ⊂ γ1. ♠

In summary, if Ψ(C1) and Ψ(C2) intersect in a second point (x, y) then
x 6∈ (0, π/2]. By symmetry x 6∈ [−π/2, 0). Recall that Lj is the horizontal
line in S1 × R which contains the points of symmetry of Ψ(Cj). Then the
two points of L1 ∩Ψ(C1) are π apart. Let s1 be this symmetry point. As we
trace around Ψ(C1) from (0, 0) to s1 we remain above Ψ(C2). Once we reach
s2 we remain above L1 for another π radians of travel in the S1 direction. It
follows from Technical Lemma III that L1 lies above every point of Ψ(C2).
Depending on which option obtains, we have shown either that x 6∈ (0, 3π/2]
of x 6∈ [−3π/2, 0). Either case implies the other by symmetry. But then
x = 0 and we are done.
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5 Technical Lemma I

5.1 A Resume of Formulas

Here we introduce the formulas which we use for our technical estimates. As
a double-check, we verified all the numbered equations computationally, for
the parameter s. We will usually suppress the parameter s from our notation.
One should view this section as a continuation of §2.5. First, some quantities
from §2.5:

β =
s+ i√
2 + 2s2

; A1 =
s+ 17i

s+ i
; A2 =

12
√

2i√
1 + s2

. (36)

One verifies easily that

β =
3

4
× A1 − 1

A2
. (37)

The matrix g0 = I1I0I2 has a positive eigenvector (e, e, 1). The quantity e
(not to be confused with the base of the natural log) figures heavily in our
estimates. As suggested by the referee, we introduce the quantity:

x =
e2 + |e|2 + e2

1 − |e|2 . (38)

Here are 4 equations, all due to the referee:

|e|2 =
x2

9(x− 1)
(39)

|e− e|2 =
x(x− 3)2

9(x− 1)
(40)

|2βe− 1|2 =
(x− 3)2

18(x− 1)
. (41)

288

1 + s2
= |A2|2 =

9(x− 1)(x− 3)2

x
(42)

We will give the derivations below.
Note that x > 1 by Equation 39. It follows readily from Equation 42 that

s ∈ [s, s] =⇒ x ∈ [4,
817

200
]. (43)
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Recall that ρ0 is the R-circle {(z, z)} ⊂ S3. Recall also that E0 is the
C-circle stabilized by the element g0. We have E0 ∩ ρ0 = {q0, q′0} where

q0 =

[
a
a

]
; q′0 =

[
b
b

]
; a =

1 + i
√

2|e|2 − 1

2e
b =

1 − i
√

2|e|2 − 1

2e
.

(44)
This last equation follows from the fact that

|a|2 = |b|2 = 1/2; 〈(a, a, 1), (e, e, 1)〉 = 〈(b, b, 1), (e, e, 1)〉 = 0.

The endpoints of the arc Q0 ⊂ E0 are given by

∂1Q0 = (c, d); ∂2Q0 = (d, c).

We label so that |c|2 ≥ 1/2 and |d|2 ≤ 1/2. We have

|c|2|d|2 =
1

x(x− 3)2
; |c|2 + |d|2 = 1 (45)

We will give the derivation below.
It follows readily from Equation 39 that

Re(ab) =
−9 + 9x− x2

2x2
(46)

Below we will derive

Re(aβ) =
3(x− 1)(9 + x) − (x− 3)

√
(x− 3)(2x− 3)(9 − x)

16x2
. (47)

A similar derivation, which we omit, shows that

Re(βb) =
3(x− 1)(9 + x) + (x− 3)

√
(x− 3)(2x− 3)(9 − x)

16x2
. (48)

Finally:

Im(ab+ bβ + βa) =
(x− 3)

√
(x− 3)(2x− 3)(x− 1)

8x2
. (49)

I’m proud to say that I found these last 3 equations myself, though of course
the referee had a much better derivation for the last one, which he commu-
nicated to me in his final comments on the paper.
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5.2 The Derivations

The first 4 derivations, as well as the last one, are essentially due to the
referee. We begin with a technical lemma:

Lemma 5.1

A1 =
e2 − e4

|e|2 − |e|4 ; A2 =
e3 − e3

|e|2 − |e|4 ;
A1 − 1

A2
=
e

x
+ e (50)

Proof: The vector Ê0 is an eigenvalue for the matrix g0 from Equation 19.
That is: 


0 −1 0

−A1 0 A2

−A2 0 −A1








e
e
1



 = λ




e
e
1





Reading across the top row we see that λ = −e/e. Reading across the second
and third rows, using the relation A2 = −A2, multiplying through by powers
of e, and conjugating when necessary, we get:

−A1e
2 + A2e = −e2. − A1e+ A2e

2 = −e;

The first two equations in Equation 50 are now derived by the usual method
of elimination. The third equation is verified by expanding out both sides,
using the definition of x, and the identity e3 − e3 = (e− e)(e2 + |e|2 + e2). ♠

5.2.1 Derivation of Equation 39

Inspecting Equation 36, we get the equation 9|A1 − 1|2 = 8|A2|2. Therefore:

9|e2 − e4 − |e|2 − |e|4|2 = 8|e3 − e3|2 = 8|e− e|2 |e2 + |e|2 + e2|2 (51)

The left hand side equals

9|e− e|2|e(1 − |e|2) + e(e2 + |e|2 + e2)2

Therefore

9|e(1 − |e|2) + e(e2 + |e|2 + e2)|2 = 8|e2 + |e|2 + e2|2.
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Dividing through by (1− |e|2)2 and cancelling the term |e− e|2 which occurs
on both sides of Equation 51, we get 9|e+ ex|2 = 8x2. Expanding:

9(|e|2 + |e|2x2 + e2x+ e2x) = 8x2.

The left hand side can be re-written as

9(|e|2 + |e|2x2 − |e|2x+ x(e2 + |e|2 + e2)) = 9|e|2(1 + x2 − x) + x2(1 − |e|2).

Therefore
9|e|2(1 + x2 − x)) + 9x2(1 − |e|2) = 8x2

Solving this last equation for |e|2 yields Equation 39.

5.2.2 Derivation of Equation 40

|e− e|2 = (e− e)(e− e) = −e2 − e2 + 2|e|2 = −(e2 + |e|2 + e2) + 3|e2| =

−x(1 − |e|2) +
x2

3(x− 1)
= −x(1 − x2

9(x− 1)
) +

x2

3(x− 1)
.

The last equation is equivalent to the right hand side of Equation 40.

5.2.3 Derivation of Equation 41

From Equation 37 and the third part of Equation 50 we get

2βe =
3

2x
× (e2 + x|e|2).

Substituting in Equation 39 and grouping terms we get

2x

3
× (2βe− 1) = e2 + P ; P =

6x− 6x2 + x3

9x− 9
. (52)

Therefore
4x2

9
× |2βe− 1|2 = |e|4 + (e2 + e2)P + P 2 =

|e|4 + (e2 + |e|2 + e2)P +P 2 −P |e|2 = |e|4 + x(1− |e|2)P +P 2 −P |e|2. (53)

When we simplify Equation 53, using Equation 39, we get Equation 41.
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5.2.4 Derivation of Equation 42

The second equality in Equation 42 is the nontrivial one. From Equation 50
we get

A2 = (e− e)
x

|e|2(1 − |e|2); |A2|2 =
x2|e− e|2

|e|2(1 − |e|2) .

Now we plug in our equations for |e− e|2 and |e|2 and simplify.

5.2.5 Derivation of Equation 45

The values c, d, e are all roots of

z3 +

[
2A1

A2

]
z2 +

[
A

2

1

A2
2

− A1

A2
2

]
z +

1

A2

This polynomial comes from solving the system of equations entailed by the
equation g0(c, d, 1) = λ(c, d, 1). The last term is the product of the roots.
Hence

|c|2|d|2 =
1

|A2|2|e|2
=

1

x(x− 3)2
.

Since (c, d, 1) is a null vector we also have |c|2 + |d|2 = 1.

5.2.6 Derivation of Equation 47

We will be a bit sketchy here, to avoid a huge mess which is best done
symbolically. Note that

aβ =
(2ae)(2βe)

4|e|2 =
(1 + i

√
2|e|2 − 1)( 3

2x
× (e2 + P ) + 1)

4|e|2 . (54)

Here P is as above. The only term on the right hand side of Equation 54
which is not readily expressible in terms of x is the e2 term. However, when
we take twice the real part of the right hand side of Equation 54, which
amounts to adding this formula to the conjugate of itself, the only terms not
expressed in terms of x are the real and imaginary parts of e2. We have

2Re(e2) = e2 + e2 = x(1 − |e|2) − |e|2; (Re(e2))2 + (Im(e2))2 = (|e|2)2

(55)
Using these equations and Equation 39 we get expressions for the real and
imaginary parts of e2 in terms of x. When we simplify the massive expression
we arrive at Equation 47.
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5.2.7 Derivation of Equation 49

Noting that ae = eb we can write

ab+ bβ + βa =
(2ae)2 + 2ae(2βe+ 2βe)

4|e|2

Using Equations 44 and 52, 55 we find that this last expression equals

(1 + i
√

2|e|2 − 1)2 + 3
2
(1 − i

√
2|e|2 − 1)(1 + |e|2 − |e|2/x)

4|e|2 .

Using Equation 39 and expanding, we get Equation 49.

5.3 Items 1 and 2

We turn now to the proof of the Technical Lemma I. Here A denotes the
aspect of C1 relative to E0. A polar vector to a C-circle C is a vector X such
that 〈X, ŷ〉 = 0 whenever ŷ is a lift of a point on C. The polar vector for C
is unique up to scale.

Lemma 5.2 Let Ê0 and Ĉ1 be polar vectors to E0 and C1 respectively. Let

A be the aspect of C0 when E1 is normalized as above. Then

A =
|〈Ê0, Ê0〉||〈Ĉ1, Ĉ1〉|

|〈Ĉ1, Ê0〉|2
(56)

Moreover, the two C-circles are linked provided that A > 1.

Proof: The statement about the linking comes straight from [G, §3.3.2].
Now for the second statement: If E0 and C1 are normalized as in Lemma 4.1
then the polar vectors to E0 and C1, in the Siegel model, are:

Ê0 =




0
1
0



 ; Ĉ1 =




r2 − d2√

2du
1



 (57)

Here u is a unit complex number which is a real multiple of the projection
of the center of C1 to C. For E0 this is obvious and for C1 it is proved by
showing that any two distinct points on C1 are 〈, 〉′ orthogonal to Ĉ1. From
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here an easy computation shows that the left hand side of Equation 56, com-
puted with the Siegel Hermitian form, yields r2/d2 = A. ♠

In the ball model we have

Ê0 = (e, e, 1); Ĉ1 = (0, 2β, 1). (58)

In fact Ê0 is the positive eigenvector for g0 and the eigenvalue is −e/e. From
Lemma 5.2 and Equations 39 and 41 we have

A =
2|e|2 − 1

|2βe− 1|2
=

2(2x− 3)

x− 3
. (59)

For x as in Equation 43 we compute that A ∈ [9.5, 10]. This establishes
Items 1 and 2 of the Technical Lemma I.

5.4 Item 3

Here, as in §2,
C1 ∩ C2 = p0 = (β, β, 1).

Let q0 and q′0 be as in §5.1. Let B : S3 → H be the Heisenberg stereographic
projection which normalizes as in Item 3 of Technical Lemma I. Recall that
π(z, t) = z.

Lemma 5.3 Let q′′0 = (−a,−a). Then π ◦ B(q′′0 ) is the second intersection

point of π(C1) ∩ π(C2).

Proof: Let V denote the C-circle such that B(V ) is vertical and π(B(v))
is the second intersection point of π(C1)∩π(C2). By symmetry V lies on the
Clifford torus and is stabilized by the map (z, w) → (w, z). Also V contains
(a, a). Hence V also contains q′′0 . ♠

We introduce the cross ratio

χ(z1, z2, z3, z4) =
(z1 − z3)(z2 − z4)

(z1 − z2)(z3 − z4)
. (60)
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Let ζ ∈ (−∞, 0). Note that χ(∞, ζ, 0, 1) > 2 iff ζ < −1. Note also that
the restriction of Ψ∗ to ρ0 is a Mobius transformation. Hence ζ = Ψ∗(−a,−a)
is closer 0 = Ψ∗(b, b) than is 1 = Ψ∗(β, β) iff

f(s) := χ(a,−a, b, β) =
(a− b)(−β − a)

2a(b− β)
> 2. (61)

Equivalently (since |a|2 = |b|2 = |β|2 = 1/2) it suffices to show that

|a− b|2|β + a|2
|β − b|2 =

(1 − 2 Re(ab))(1 + 2 Re(aβ))

1 − 2 Re(bβ)
> 8 (62)

It is an exercise in calculus to show that the the quantities Re(ab) and
Re(aβ) and Re(bβ) are all monotone for x as in Equation 43. To sketch the
idea, let f1 be the function from Equation 47. We compute explicitly that
f ′

1(4) = −1/16 and we easily get the crude bound |f ′′

1 | < 1 on [4, 5]. Hence
f ′

1 < 0 for x in our range.
Computing at the endpoints of [s, s] we have:

Re(ab) ∈ [.331, .344]; Re(aβ) ∈ [.432, .438]; Re(bβ) ∈ [.474, .477].
(63)

Hence

(1 − 2 Re(ab))(1 + 2 Re(aβ))

1 − 2 Re(bβ)
≥ (1 − 2(.334))(1 + 2(.438))

1 − 2(.474)
= 11.9775.

(64)
This completes our proof.

Remark: All our points in C are confined to a single quadrant. Hence,
the imaginary parts also vary monotonically. We compute

Im(ba) ∈ [−.374,−.363]; Im(aβ) ∈ [.242, .252]; Im(βb) ∈ [.151, .171].
(65)
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6 Technical Lemma II

6.1 Estimating Q0

Recall that E0 intersects the Clifford torus in points (a, a) and (b, b), where
a and b are as in Equation 44. The vectors (a, a, 1) and (b, b, 1) have real
Hermitian inner product. Therefore the point Pr, represented by the vector

r




a
a
1



 + i




b
b
1



 (66)

lies in E0. The idea here is that the chosen lift of Pr is null and lies in the
span of (a, a, 1) and (b, b, 1). As r → ∞ the point Pr converges to (a, a) and
P0 = (b, b). The fixed points of g0 have the form Pr and P−r where r = r(s).
We define r(s) = ∞, in keeping with the analysis just made.

Lemma 6.1 r(s) > 3 for all s ∈ [s, s].

Proof: Equation 45 gives us |d|2(1 − |d|2) > .2079. It follows easily that

|d|2 > .294 (67)

when x is as in Equation 43. This also holds for the smaller range s ∈ [s, s].
We will suppose that there is some s ∈ [s, s] such that r(s) = 3 and we

will derive a contradiction. If r(s) = 3 then we have

d =
3a+ ib

3 + i
.

Since |3 + i|2 = 10 we have

|3a+ ib|2 > 2.94

Using |a|2 = |b|2 = 1/2 and expanding:

5 + 3i(ab− ab) = 5 − 6 Im(ab) > 2.94.

Hence
Im(ab) < .343333. (68)

This contradicts Equation 65, which says that Im(ab) > .36 throughout [s, s].
♠
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6.2 Item 1

There exists a (unique) Heisenberg stereographic projection B which maps
E0 to ({0} × R) ∪∞, and has the following properties:

• B(C1) is centered at a point on the positive real axis.

• B(C1) projects to a circle in C of radius 1.

• The endpoints of B(Q0) are symmetrically located on B(E0). Hence
the R-axis for Σ1 is just the real line in C × {0}.

The Siegel model polar vector for B(C1) is

V3 =




D√
2d
1



 ; D = 1 − d2. (69)

The Siegel model vectors representing the endpoints of B(Q0) are given by

V1 =




iu
0
1



 ; V2




−iu
0
1



 ; (70)

In this section we prove the following result, which implies item 1 of the
Technical Lemma II.

Lemma 6.2 u > 4.2 for all s ∈ [s, s].

Given 3 vectors V1, V2, V3 ∈ C
2,1 we define:

δ(V1, V2, V3) =
|Im(τ)|
|Re(τ)| ; τ = 〈V1, V2〉〈V2, V3〉〈V3, V1〉 (71)

Using the form in Equation 7 we compute readily that

δ(V1, V2, V3) =
|D2 − u2|

2Du
(72)

V1, V2, V3 correspond to the following vectors in the ball model:

Pr; −P−r; Ĉ1 =




0
2β
1



 . (73)

54



(We prefer to use −P−r in place of P−r.) It is convenient to define

Ua = 〈




a
a
1



 , Ĉ1〉 = 2aβ − 1 Ub = 〈




b
b
1



 , Ĉ1〉 = 2bβ − 1 (74)

Then

〈Pr, Ĉ1〉 = rUa + iUb; 〈Ĉ1,−P−r〉 = rUa + iU b; 〈Pr,−P−r〉 ∈ iR.

From this we get

δ(V1, V2, V3) =
∣∣∣
r|Ua|2 − r−1|Ub|2

2Re(UaU b)

∣∣∣ (75)

From Equation 63 we have

|Ua|2 = |1 − 2aβ|2 = 2 − 4 Re(aβ) > .248;

|Ua|2 = |1 − 2bβ|2 = 2 − 4 Re(bβ) < .104.

Using Equations 46, 47, 54 and 74 we compute that

2Re(UaU b) =
−3(3 − 4x+ x2)

2x2
< .301

for x as in Equation 43. Therefore

δ(V1, V2, V3) = δ(Pr,−P−r, Ĉ1) ≥
3(.248) − (1/3)(.104)

(.301)
> 2.35

Combining our last result with Equation 72 we get | − D2 + u2| ≥ 4.7Du.
Since u > 0 for all parameters, the quantity −D2 + u2 cannot change sign.
For otherwise we would have 0 > Du. Hence u2 > 4.7Du. From Technical
Lemma I we have

D = 1 − 1

d2
> 1 − 1

9.5
> .894.

Hence u > (4.7)(.894) > 4.2. This completes our proof.
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6.3 Item 2

We normalize by the map B so that all our calculations take place in H. So,
C1 is a C-circle, centered on a point c1 ∈ R

+ and C1 projects to a circle of
radius 1. Since the aspect of C1 is at least 9 we conclude that c ∈ (0, 1/3].
Now I1 is a C-reflection in C1. The x-axis is precisely R1, the axis for Σ1.
Note that R1 intersects C1 twice, at points which are precisely 2 units away
from each other. The restriction of I1 to R1 is a Mobius transformation.

Lemma 6.3 E2 = I1(E0) intersects R1 in two points. One of the points is

(c, 0) and the other one is (−1/c+ c, 0).

Proof: This follows from the fact that the restriction of I1 to R
1 is an in-

version in the segment of radius 1 centered at 0. ♠

Thus we see that E2 projects to a circle diameter 1/c ≥ 3. Moreover, the
center of E1 is (−1/2c+c) < −7/6. Now E1 is contained in the contact plane
based at its center. From this we see that E2 is contained in a contact plane
of slope at least 7/3. (Here, and below, slope means vertical rise divided by
horizontal run.) Compared to C1, the C-circle E2 is a big and tall set.

Lemma 6.4 Both endpoints of Q2 are at most 1/4 from the horizontal plane

C × {0}.

Proof: Working in the Siegel model, the endpoints of Q0 have lifts V1 and
V2, as Equation 70 and the polar vector V3 for C1 is as in Equation 69. Using
Equation 5 relative to the Siegel form we have

IC1
(V1) = −




iu
0
1



 + 2
iu+D

2D − 2d2




D√
2d
1



 =




D2 + i(uD − u)

∗
D − 1 + iu



 .

(The starred entry is irrelevant to us.) Multiplying through by D − 1 − iu
we see that IC1

(V1) is a scalar multiple of the matrix




P (u,D) + iu(1 − 2D)

∗
u2 + (D − 1)2



 . (76)
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Here P (u, d) is a real polynomial in u and D whose form is not important to
us. If (z, t) is the point represented by IC1

(V1), then

|t| =
u|1 − 2D|

u2 + (D − 1)2
<

|1 − 2D|
u

≤ 1/u ≤ 1/4.

But the point (z, t) is one of the endpoints of Q2 = I1(Q0). The same arg-
ment works for the other endpoint of Q2. ♠

Here are three geometric facts:

1. Q2 is centered at 0 in H and extends upwards at most 1/4 in either
direction. Since E2 is contained in a contact plane of slope at least 7/3,
the circle E2 has slope 7/3 at the origin by symmetry. Since Q2 rises
up only 1/4 in either direction away from the origin, we see easily that
every point of Q2 has slope greater than 1.

2. Given that every point of Q2 has slope greater than 1, we see that the
projection π(Q2) is contained in the dist ∆1/4 of radius 1/4 about the
origin.

3. Any harmonic R-arc which intersects Q2 has slope less than 1/2 at
the intersection point, because this R-arc is integral to the contact
structure and the intersection point projects inside ∆1/4.

These properties together imply that Ψ(Q2) does not contain any extrema
of the height function, even at the endpoints. This establishes Item 2 of
Technical Lemma II.

Remark: A more intuitive way to see the same result is that E2 is ex-
tremely tall in comparison to Q2, and the fibers of Ψ are fairly straight near
Q2 (because they have large diameter) and hence there is no way the height
of Ψ|E2

takes on its extrema on Q2.
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7 Technical Lemma III

7.1 Estimating Q21

We continue our work from the previous chapter. In this section, we continue
to normalize using B. However, our main estimate is independent of the
normalization.

Recall that Ψ is the loxodromic elevation map, the map of interest to us.
Given a subset X, which is disjoint from E0, let 2‖X‖ denote the “vertical
diameter” of the set Ψ(X). By this we mean that 2‖X‖ denotes the maximum
difference in heights between two points of the form Ψ(p1) and Ψ(p2), where
p1, p2 ∈ X. We call ‖X‖ the vertical Ψ-radius of X. This quantity is not
quite canonical; it depends on us choosing a scaling factor for the image of Ψ.
However, we shall always be interested in quantities of the form ‖X‖/‖Y ‖,
and this ratio is independent of the way we scale Ψ. The main goal of this
section is to prove

Lemma 7.1
‖Q12‖
‖C1‖

<
1

15
. (77)

for all s ∈ [s, s].

So far we have estimated quantities in H and we need to translate the
information we have gathered into terms related to Ψ. Here is an outline
of how we will do this. For X ⊂ H let ‖X‖′ denote half the width of the
smallest vertical slab which contains X. At the parameter s = s we have
‖X‖′ = ‖X‖. We want to compare ‖X‖′ and ‖X‖ in general. For this
purpose we let [X] ⊂ E0 − Q0 denote the set of all (lower) endpoints of
harmonic R-arcs which contain points of X. These R-arcs are meant to be
harmonic with respect to (E0, Q0). They are the arcs used in the definition
of Ψ. Here are the estimates we will prove:

1. ‖Q12‖′/‖C1‖′ < 1/17.

2. ‖[Q12]‖′ < ‖Q12‖′ and ‖[C1]‖′ > (15/17)‖C1‖′.

3. ‖Q12‖/‖C1‖ < ‖[Q12]‖′/‖[C1]‖′.

These estimates combine, in a straightforward way, to establish Lemma 7.1.
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7.1.1 First Estimate

We have Q21 = I1(Q01). Here Q01 ⊂ Q0 consists of points x such that x
is the endpoint of an R-arc which is harmonic with respect to (E0, Q0) and
which intersects C1. The endpoints of Q01 are represented by vectors of the
form

V ′

1 =




iu′

0
1



 ; V ′

2 =




−iu′

0
1



 . (78)

The two endpoints t1 and t2 of any R-arc, harmonic with respect to
(E0, Q0), satisfy

t1t2 = u2 > 17,

and also |t1| < ‖C1‖′. Hence u′ > 17‖C1‖′. The same argument as in Lemma
6.4 now shows that both endpoints of Q21 are at most

1/(17/‖C1‖′) = ‖C1‖′/17

away from C × {0}. Hence ‖Q12‖′ < ‖C1‖′/17.

7.1.2 The Second Estimate

Our harmonic arcs vary monotonically in height from their lower to their
upper endpoints. Hence ‖[Q12]‖′ ≤ ‖Q′

12‖. This estimate is true for any set
X, actually. The other estimate is the interesting one.

Let η be the map described in §3.9. To do our analysis efficiently we
post-compose η with a Mobius transformation so that η is the identity on
E0 and η(H) is the left half plane. (The HYP1 coordinate system in our
applet is precisely this map.) η conjugates the Heisenberg automorphism
(z, t) → (rz, r2t) to the hyperbolic isometry z → rz. Hence, the restriction
of η to the R-circle R1 = R× {0} is the map r → r2.

let (c, 0) denote the center of C1. Here c ∈ (0, 1/3] as in §6.3. Since C1

projects to a circle of radius 1 we have ‖C1‖′ = 2c. Now, C1 intersects R1 in
the two points c− 1 and c + 1. Hence η(C1) is the circle of radius 2c which
intersects the positive real axis in the points (1− c)2 and (1+ c)2. Figure 7.1
shows the picture.

Let α be a harmonic arc which contains a point of C1. Then η(α) is a
semicircle which connects two points of the y-axis which are harmonic with
respect to the endpoints of Q0. The upper endpoint of Q0 is at least 4 away
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from the origin. Also, the lower endpoint of η(α) is at most 2c away from
0. Hence the other endpoint of η(α) is at least 42/(2c) > 8/c away from the
origin. Hence η(α) has radius at least

R(c) =
4

c
− c (79)

Note that R(c) > 11 for c ∈ [0, 1/3].

(1−x1)^2 (1+x1^2)

h2h1

η(α)

Λ

Figure 7.1

We want to compare the point h2 where η(α) intersects the y-axis with
the point h1 where the horizontal line Λ tangent to η(C1) intersects the y-
axis. These two points are shown in Figure 7.1. Our goal is to show that
h2/h1 > 15/17. Let λ be the length of the portion of Λ contained inside
η(C1). This segment is drawn thickly in Figure 7.1. Using a familiar fact
from high school geometry we have

(h1 − h2)(2R(c) − (h1 − h2)) ≤ λ2 < (c) + (1 − (c))2)2 (80)

The right hand side of the equation comes from the fact that the intersection
Λ ∩ η(C1) occurs closer to the y-axis than does the center of η(C1).

To simplify this equation note that 2R(c) > 22 and certainly h1−h2 < 1.
Hence

(2R(c) − (h1 − h2)) >
21

22
R(c).

Therefore (using the fact that h1 = 2c) we have

1 − h2

h1
=
h1 − h2

h1
=
h1 − h2

2c
<

22

21
× (100/81)

4cR(c)
≤ 1

12
<

2

17
. (81)

In particular h2/h1 > 15/17, as claimed. (We will use the stronger estimate
in Equation 81 below.)
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7.1.3 The Third Estimate

At this point we need to look at the loxodromic elevation map Ψ geometri-
cally. We need to quantify the difference in heights between the two points
Ψ(p1) and Ψ(p2). Let αj be the harmonic arc which contains pj. Let
xj ∈ E0 − Q0 be the relevant endpoint of αj . Let u1 = u and u2 = −u
be the two endpoints of Q0. Then, up to a constant, the difference in heights
of Ψ(p1) and Ψ(p2) is

log
(u1 − x2)(u2 − x1)

(u1 − x1)(u2 − x2)
. (82)

This quantity is none other than the hyperbolic radius of the segment [x1, x2],
when the segment [−u, u] = E0 − Q0 is identified with the hyperbolic line.
This interpretation comes from the fact that the quantity in Equation 82
is invariant under Heisenberg automorphisms of (E0, Q0), and Ψ conjugates
such maps to vertical translations.

After rotating the picture sideways (so as to work with the x-axis rather
than the y-axis) our third estimate reduces to the following situation. We
have points u and −u as reference points. We have positive 0 < v < w < u
and we consider the intervals Iv = [−v.v] and Iw = [−w,w]. We let ‖Iv‖u

denote the hyperbolic radius of the segment Iv when the interval [u,−u] is
identified with the hyperbolic line. Likewise we define ‖Iw‖u.

To make our third estimate, we have in mind that

[Q12] = Iv; [C1] = Iw.

We have
‖[Q12]‖′ = ‖Iv‖∞; ‖[C1]‖′ = ‖Iw‖∞;

‖Q12‖ = ‖Iv‖u; ‖C1‖ = ‖Iw‖u.

Here our specific choice of u is as in Equation 70. Thus, to establish our
third estimate, it suffices to show that

v

w
>

‖Iv‖u

‖Iw‖u

=
log( (u+v)2

(u−v)2
)

log( (u+w)2

(u−w)2
)

=
log(u+ v) − log(u− v)

log(u+ w) − log(u− w)
.

This is an easy exercise in calculus. This completes our proof of the third
estimate.
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7.2 Estimating the Gap

At this point we have done the hardest part of the estimate, which involved
controlling Ψ(Q21). Given Lemma 7.1 we are back to a problem involving the
two curves Ψ(C1) and Ψ(C2). It is difficult to draw these curves well, so we
will consider η(C1) and η(C2), where η is the map considered in the previous
section. Given the work done in the previous section, we will see readily how
to translate back and forth between η coordinates and Ψ coordinates.

Figure 7.2 shows a schematic (and fairly accurate) picture of η(C1) and
η(C2). Here η is the map we used in the previous section.

Regarding this picture:

• The two white dots on the y-axis are the endpoints of η(Q0).

• The two black dots are the hyperbolic centers of η(C1) and η(C2).

• All the geodesics drawn are orthogonal to the geodesic joining the end-
points of η(Q0). Indeed, these geodesics are all certain images of har-
monic R-arcs.

• For j = 1, 2, we have γj = η(Rj), where Rj is the R-axis of Cj.

• ‖C1‖ is the hyperbolic distance between γ1 and γ2 and equally well the
hyperbolic distance between γ2 and γ4.

• The geodesic γ5 contains the lower endpoint of η(Q21).

To finish the Technical Lemma III we just need to show that η(Q21) lies
above the geodesic γ3. Let dij denote the hyperbolic distance between γi and
γj. Lemma 7.1, interpreted in terms of η, says that

d14

d15
<

1

15
. (83)

To prove item 1 of Technical Lemma III it suffices to establish the in-
equality:

d13

d14

>
1

15
. (84)

Using a bit of algebra, we see that Equation 84 is equivalent to the more
symmetric:

d34

d12
<

7

8
. (85)
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γ5

γ2

γ4

γ3

γ1

(C2)η

(C1)η

η (Q21)

Figure 7.2

Remark: Our normalization here is slightly different than in the previous
section. We are now normalizing so that reflection in the x axis interchanges
η(C1) and η(C2). The reason we have changed normalizations is that previ-
ously we were just concentrating on C1 and now we need to treat both C1 and
C2. Note that Lemma 7.1 is independent of normalization, as we mentioned
above.

Let d′12 denote the Euclidean distance between the centers of η(C1) and
η(C2) and let d′34 denote the Euclidean distance between the point of maxi-
mum height on η(C2) and the point of minumum height of η(C1).

Lemma 7.2 Equation 85 is true provided that

d′34
d′12

<
4

5
. (86)
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Proof: Our proof here is very much like what we did in the previous section,
for Estimates 2 and 3. Estimate 3 works exactly the same way, and Estimate
3 is replaced by the statements that

d34 < d′34; d12 >
11

12
d′12. (87)

Thus, if Equation 86 holds then

d34

d12
<

12

11
× 4

5
<

7

8
.

The first part of Equation 87 is immediate, as above. The second part of
Equation 87 is similar to what we have already done, though we have to
think about our new normalization. In the old normalization we knew that
η(C1) was centered at the real axis, and had a center which was at most
10/9 from the y-axis. (In the old normalization η(C2) was some other circle
below η(C1).) Our new normalization is obtained by the old one by applying
a hyperbolic isometry I translating along the geodesic joining the endpoints
of η(Q0). The hyperbolic isometry is chosen so that η(C1) and η(C2) are
moved into symmetric position.

Let h1 denote the Euclidean distance between the centers of η(C1) and
η(C1). Let h2 denote the Euclidean length of the segment on the y-axis
between γ1 and γ2. We want to show that h2/h1 < 11/12. This is the same
as showing that

1 − h2

h1
< 1/12

The argument given in §7.1.2 goes through, once a few changes are noted.
By construction, the x-coordinate of the hyperbolic center of the new

η(C1) is less than the x-coordinate of the hyperbolic center of the old η(C1),
which is in turn less than the x coordinate of the Euclidean center of the old
η(C1). We conclude that the Euclidean distance from the hyperbolic center
of the new η(C1) to the y-axis is at most 10/9. (This hyperbolic center is the
intersection point of γ1 = η(α1) and Λ, the curves from §7.1.2.) The radius of
the circle containing γ1 is still at least R(c). Having made these definitions,
we see that the rest of the argument in §7.1.2 is the same. ♠

By the previous result, Equation 86 implies item 1 of Technical Lemma
III. Since 4/5 < 1, Equation 86 implies item 2 of Technical Lemma III. Thus,
to finish the proof of Technical Lemma III we just have to verify Equation
86.
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7.3 Back to Heisenberg Space

Figure 7.3 shows the picture of π(C1) and π(C2) in C. Referring to Figure
7.3, we will show that Technical Lemma III is true provided that sin(θ) > 5/9.

Let c1 = z + it be the center of C1. The quantity d′12 is just the vertical
distance between centers of the two circles. The quantity d′34 is the vertical
distance between the minimum height point on C1 and the maximum height
point on C2.

The outer edge of the rectangle in Figure 7.3 is tangent to π(C1) and
parallel to axis 1, the R-circle through the center of C1 which intersects C1

in two other points. The number R is the radius of C1.

c1

axis1

R

1

θ

0

C1

C2

R0

S

T

Figure 7.3

The vertical distance between the two centers is twice the distance from
the center of C1 to C × {0}. This latter distance is 2|z|S because S runs
perpendicular to axis 1 and joins a point on C1 to the point (1, 0). The
vertical distance between the max of C2 and the min of C1 is twice the
vertical distance from C × {0} to the min of C1. This distance is 2|z|T .
Therefore

d′34
d′12

=
T

S
=
R −R sin(θ)

R sin(θ)
=

1

sin(θ)
− 1.

If sin(θ) > 5/9 then the quantity on the right is less than 4/5.
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7.4 The End of the Proof

We will suppose that sin(θ) < 5/9 and derive a contradiction.

7.4.1 Siegel Model Computation

The center of C1 is the point c = z+ it. In §5 we saw that C1 has aspect less
than 10. Hence

R

|z| <
√

10. (88)

In the Siegel model, the vectors representing 0,∞, c are respectively

V1 =




0
0
1



 ; V1 =




1
0
0



 ; V1 =




−|z|2 + it√

2z
1



 . (89)

Letting δ be the invariant from Equation 71 we have

δ(V1, V2, V3) =
t

|z|2 =
2|z|R sin(θ)

|z|2 =
R

|z| ×2 sin(θ) <
√

10× 10

9
< 3.52. (90)

7.4.2 Ball Model Computation

In the ball model the corresponding vectors are:

U1 =




b
b
1



 ; U2 =




a
a
1



 ; U3 =




−1 0 0
0 3 −4β
0 4β −3








a
a
1



 (91)

Note that 〈U1, U2〉 ∈ R. Also 〈U2, U3〉 ∈ R because these two vectors are
exchanged by I1. Therefore δ(V1, V2, V3) = |Im(τ)|/|Re(τ)|, where

τ = 〈U1, U3〉 = 3 + 3(ab+ ba) − 4ab− 4bβ − 4βa. (92)

Using Equations 46, 47, 48, and 49 we get

δ(V1, V2, V3) =

√
(x− 1)(2x− 3)

x− 3
. (93)

A bit of calculus now shows that

δ(V1, V2, V3) > 3.83 (94)

in our range of parameters. This contradicts Equation 90 and we are done.
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