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Abstract

Kaluza-Klein theory is developed starting from the simplest example in which a single
extra spatial dimension is compactified to a circle, and a single Abelian gauge field
emerges in four dimensions from the higher-dimensional metric. This is generalised
to greater dimensionality whence non-Abelian gauge groups may be obtained, and
possible mechanisms for achieving the compactification of the extra spatial dimensions
are discussed. The spectrum of particles appearing in four dimensions is discussed
with particular emphasis on the spectrum of light fermions, and the constraints arising
from cancellation of anomalies when explicit higher-dimensional gauge fields are
present are studied. Cosmological aspects of these theories are described, including
possible mechanisms for cosmological inflation, and relic heavy particles. Finally, an
introductory account of Kaluza-Klein supergravity is given leading towards superstring
theory.
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1. Five-dimensional Kaluza-Klein theory

1.1. Introduction

A theory unifying gravitation and electromagnetism using five-dimensional Riemannian
geometry (Kaluza 1921, Klein 1926) and its higher-dimensional generalisations to
include weak and strong interactions (DeWitt 1964, Kerner 1968, Trautman 1970, Cho
1975, Cho and Freund 1975) have become a focus of attention for many particle
physicists in the past few years. This revival of interest in Kaluza-Klein theory stemmed
in the first instance from work in string theories (Scherk and Schwarz 1975, Cremmer
and Scherk 1977), and then from the usefulness of extra spatial dimensions in the
construction of N =8 supergravity theory (Cremmer et al 1978, Cremmer and Julia
1978). In these contexts, it would have been possible to regard the extra spatial
dimensions as a mathematical device. However, the above authors took the potentially
more fruitful approach of considering them to be genuine physical dimensions which
we do not normally observe because they have compactified down to a very small scale
(spontaneous compactification). Extra temporal dimensions are undesirable for several
reasons. Firstly, there would be tachyons observed in four dimensions. (See the
analysis given in § 1.5.) Secondly, there would be closed timelike loops leading to
world lines which violate causality. Thirdly, the sign of the Maxwell action would be
incorrect. (See the analysis in § 1.4.)

Though the renaissance of Kaluza-Klein theory has received a considerable impetus
from the possible relevance to supergravity, many theorists have taken the view that
extra spatial dimensions may be an ingredient in the unification of all interactions
even if supergravity should eventually have to be relinquished. In this review, we shall
avoid, as far as possible, reliance on supergravity as a framework for Kaluza-Klein
theory. Instead we shall try to emphasise those aspects of such theories which might
be of importance for unification of interactions with or without supergravity. Our
approach is pedagogical and directed primarily towards readers without an extensive
background in supergravity theories. Accordingly, we have been selective in the
material included, and consequently in that section of the literature to which we refer.
The reader may restore the imbalance against work deeply rooted in supergravity
theory by a reading of one of the recent excellent review papers which have approached
the subject from that standpoint (Duft et al 1986, Englert and Nicolai 1983).

1.2. The five-dimensional theory

Five-dimensional Kaluza-Klein theory (Kaluza 1921, Klein 1926) unifies electromag-
netism with gravitation by starting from a theory of Einstein gravity in five dimensions.
Thus, the initial theory has five-dimensional general coordinate invariance. However,
it is assumed that one of the spatial dimensions compactifies so as to have the geometry
of a circle S' of very small radius. Then, there is a residual four-dimensional general
coordinate invariance, and, as we see in § 1.3, an Abelian gauge invariance associated
with transformations of the coordinate of the compact manifold, S'. Put another way,
the original five-dimensional general coordinate invariance is spontaneously broken
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in the ground state. In this way, we arrive at an ordinary theory of gravity in four
dimensions, together with a theory of an Abelian gauge field, with connections between
the parameters of the two theories because they both derive from the same initial
five-dimensional Einstein gravity theory.

We adopt coordinates ¥4, A=1,...,5 with

Xt =x* ©nw=0,1,2,3 (1.1)
being coordinates for ordinary four-dimensional spacetime, and
=6 (1.2)

being an angle to parametrise the compact dimension with the geometry of a circle.
The ground-state metric after compactification is

g_(/%:diag{")w_gss} (1.3)
where

N = (1,-1, -1, ~1) (1.4)
is the metric of Minkowski space, M,, and

§ss= R? (1.5)

is the metric of the compact manifold S', where R is the radius of the circle.

The identification of the gauge field arises from an expansion of the metric about
the ground state. Quite generally, we may parametrise the metric in the form
8u(x, 8) — B, (x, 6) B,(x, 0)®(x, 0) B, (x, 6)d(x, 6))

gas(x,0) =( B,(x, 6)®(x, 6) —d(x, 0)

(1.6)

To extract the graviton and the Abelian gauge field it proves sufficient to replace
®(x, 0) by its ground-state value gss, and to use the ansatz without @ dependence:

8uv(%) = B, (%) B, (x)gss B“(X)g“ss)

- . 1.7)
B, (x)gss —&ss

Zap(x) =<

We write
B, (x)=¢A,(x) (1.8)

where £ is a scale factor we shall choose later so that A,(x) is a conventionally
normalised gauge field.

1.3. Abelian gauge transformations

Coordinate transformations associated with the coordinate 6 of the compact manifold
may be interpreted as gauge transformations, as we now show. Consider the trans-
formation

00 =0+ te(x). (1.9)
For a general coordinate transformation

ax'* ax'%

—_— 1.10
ax* ax? (1.10)

Sap=8uasm
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For the particular transformation (1.9), the off-diagonal elements of the metric give
A, A=A, +o,e (1.11)

Thus the transformation (1.9) of the coordinates of the compact manifold induces an
Abelian gauge transformation on A,. This means that the compact manifold is provid-
ing the internal symmetry space for the (Abelian) gauge group, and internal symmetry
has now to be interpreted as just another spacetime symmetry, but associated with the
extra spatial dimension.

1.4. Effective four-dimensional action

An effective action for the four-dimensional theory may be derived from the action
for five-dimensional Einstein gravity

- 1 _
[=———= J d°x|det g|'"/°R (1.12)
T

where R is the five-dimensional curvature scalar, and G is the gravitational constant
for five dimensions. Substituting the ansatz (1.7) for g4z, and integrating over the
extra spatial coordinate 6, gives an effective four-dimensional action

2mR

_ §2§55 27T§
167G

4 Vg 4 1/2 v
J d*x|det g|'’R 4 162G J d*x|det g|'/*F,,,F (1.13)

where R is the radius of the compact manifold as in (1.5), R is the four-dimensional
curvature scalar, and

F,.=0,A,-3,A,. (1.14)
The four-dimensional gravitational constant G is thus identified as
G=G/2mR. (1.15)

To obtain standard normalisation for the gauge field we must then choose

[}

_ 167G

K
F=— =5 (1.16)
8ss R?
where
k’=167G. (117)
Then the effective four-dimensional action is
1
I=———| d*xid 12 —lj 4 me, .
16#GI x|det g|'*R—5 | d*x F,,F (1.18)

(Had the extra dimension been timelike, we would have obtained the opposite (wrong)
sign for the Maxwell action in (1.13).)

Whether retaining just the massless states in four dimensions in this way is an
adequate approximation is discussed in § 2.3.
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1.5. Mass eigenstates

The natural scale of mass for these theories is the Planck mass and massive fields in
five dimensions will naturally lead in four dimensions to particles with masses on the
Planck scale. Suppose instead we start with a massless field in five dimensions. For
a five-dimensional scalar field ¢(x, ) we may make the Fourier expansion on the
compact manifold

B(x, 0)= i ¢"(x)e". (1.19)

n=-—0o0

The Klein-Gordon equation

(Dx—ﬁ_ziz)qﬁ(x, 6)=0 (1.20)
a6
then gives the equations for the Fourier components:

(Ox+m2)e"(x)=0 (1.21)
where

m? =n?/R> (1.22)

The fields ¢"(x) are thus the mass eigenstates in four dimensions, and the field ¢°(x)
is the only massless one. (or perhaps light, after allowing for radiative corrections).
The other fields ¢"(x) have masses of order R™', which we would expect to be
comparable to the Planck mass. If the extra dimension had had a timelike signature
(positive in our convention), we would have obtained a negative mass squared in
(1.22), i.e. tachyons.

1.6. Charge quantisation

If we apply the coordinate transformation

8->0'=0+¢&(x) (1.23)
to the field ¢(x, 6) of (1.19), we have

¢"(x) > exp(inge(x))d" (x). (1.24)
Since the Abelian gauge field transforms (according to (1.11)) in the manner

A, A=A, +d,¢ (1.25)
this means that ¢"(x) has charge

gn=—n¢=—nx/R (1.26)

where we have used the normalisation condition (1.16). Thus, charge is quantised in
units of «/R. The radius of the compact manifold may now be estimated from

R*=«?e*=4G/(e*/4m). (1.27)
Thus, identifying e with the quantum of electric charge
R~10m;". (1.28)

There is however a flaw in the five-dimensional Kaluza-Klein theory, even if we do
not wish to include weak and strong interactions as well as electromagnetism. From
(1.26), we see that all charged particles have n # 0. But, from (1.22), this means that
they all have masses on the Planck scale m,, whereas the familiar charged particles
have very small masses on that scale.
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1.7. Scalar field from metric

Starting from the general parametrisation of the metric (1.6), it is possible to extract
a massless scalar field (Freund 1982, Appelquist and Chodos 1983a, b). Deleting 6
dependence, which is associated with massive degrees of freedom, the graviton-scalar
sector may be obtained from

g, (x) 0 )

0 —d(x) (1.29)

gap(x)= <
Substituting in the action (1.12) for five-dimensional gravity leads to the effective
four-dimensional action

2
I= —ﬁ‘l- d*x |det g|'2®"R. (1.30)

The ®'/? multiplying the four-dimensional curvature scalar may be removed by a Weyl
scaling,

g,u.v - guv©_1/3

© 2 (1.31)
Then,
1 -
I:—m‘]’d“XIdet gll/z{R‘%q) Za“ﬂbaud)} (132)
or, with the further change of variables
-1
K
x=—\7_§-1n(d>/<1>0) (1.33)
we have
1 1
I= %G J d*x|det g|1/2R+5 J d*x|det g["? 9"x a,x. (1.34)

This is a particular case of four-dimensional Brans-Dicke theory (Jordan 1959, Brans
and Dicke 1961).

2. (4+ D)-dimensional Kaluza—Klein theories

2.1. Isometry group of a manifold

In order to unify gravitation, not just with electromagnetism but also with weak and
strong interactions, it is necessary to generalise the five-dimensional theory of § 1 to
a higher-dimensional theory (Klein 1926, DeWitt 1964, Kerner 1968, Trautman 1970,
Cho 1975, Cho and Freund 1975, Scherk and Schwarz 1975, Cremmer and Scherk
1977) so as to obtain a non-Abelian gauge group. In the five-dimensional case, an
Abelian gauge group arose from the coordinate transformation

0->0"=6+¢e(x) (2.1)

on the single coordinate 6 of the compact manifold. In the (4+ D)-dimensional case
we must look for symmetries of the compact manifold which generalise (2.1). The
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appropriate transformations to study are the isometries of the manifold (an introductory
discussion of isometries is to be found in Weinberg 1972, ch 13). Let us denote the
coordinates of ordinary four-dimensional space by x*, and the coordinates of the
compact manifold K by y". An isometry of K is a coordinate transformation y - y’
which leaves the form of the metric &,,, for K invariant:

Y=Y &mn(¥') = Emn(¥'). (2.2)

Isometries form a group, with generators ¢, and structure constants C,,., in the following
way. The general infinitesimal isometry is

I+iet, y">y" =y " +e°€0(y) (2.3)

where the infinitesimal parameters ¢“ are independent of y, and the Killing vectors
&5, which are associated with the independent infinitesimal isometries, obey the algebra

g;namgz - ‘f;namfz = _Cabcgz' (24)

Correspondingly by considering the commutator of two infinitesimal isometries, we
can show that

[ta’ tb]=icabctc' (25)

For instance, the N-dimensional sphere S~ has isometry group SO(N +1), and the
2N(real)-dimensional complex projective plane CP™ has isometry group SU(N +1).
The isometry group for the compact manifold S' of the five-dimensional theory is just
the SO(2) (or U(1)) group of transformations of (2.1). As we shall discuss later, it is
possible to choose the compact manifold to obtain the isometry group SU(3) x SU(2) x
U(1), which is the (observed) gauge group of electroweak and strong interactions.

2.2. Non-Abelian gauge transformations

The ground-state metric for the compactified (4 + D)-dimensional theory may be written
as

g-AB = diag(O) {77,;», _g~mn (y)} (26)

where 7, is the metric of Minkowski space M, as in (1.4), and g,..(y) is the metric
of the compact manifold. We return in § 3 to discuss whether such a ground state
does exist. The non-Abelian gauge fields of the theory may be displayed by the
expansion about the ground state

_ 8. (X) = &mn(¥) B B, B, >
AB = m . 2.7
§ ( By =&mn(y) 27
with
By =£0(y)AL(x). (2.8)

(A more general ansatz including x dependence for g, and y dependence for g,, and
A, is necessary to display any massless scalars arising from the metric and massive
states.) ‘

Non-Abelian gauge transformations arise by considering the effect on the com-
ponents g, of the metric of the infinitesimal isometry with x-dependent parameters:

yreyt+a(y)et(x). (2.9)
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We then find that
AZ—»AZ'=AZ+8H5“(x)+ Ca,,csb(x)AfL (2.10)

which is just the usual Yang-Mills gauge transformation if we display the gauge
coupling constant g explicitly by writing

Cave = &fabe (2.11)
and

t,=gT, (2.12)
so that

[T, TL]=ifasc T (2.13)

Thus, non-Abelian gauge transformations are generated by x-dependent infinitesimal
isometries of the compact manifold K.

2.3. Effective four-dimensional action
The action for Einstein gravity in 4+ D dimensions is

- 1 -
I=_TG:J<1“+D %|det g|'°R (2.14)
T

where R is the (4+ D)-dimensional curvature scalar, and G is the gravitational constant
for 4+ D dimensions. Substituting the ansatz (2.7) for g4p, and integrating over the
compact degrees of freedom y gives an effective four-dimensional action

I= —(J dPy|det gi‘“)(wwé)—‘ J d*x|det g|'°R
- (f d°y|det §|”2§Z’(y)fﬂ(y)g"mn(y))

-1
x(167G)™" y J d*x|det g|'?F,,*(F*")® (2.15)

with
F;Lva = aMAi - aVA;:. - CabcApbAvC (216)

and R denoting the four-dimensional curvature scalar. The four-dimensional gravita-
tional constant G is thus identified by

k ?=(167G) ' =(167G)™" f dPy|det g(y)|"? (2.17)

and standard normalisation of the gauge fields requires the Killing vectors to be scaled
so that

(ETNENY)Emn(¥)) = K8, (2.18)

where we have introduced the notation (of Weinberg 1983)

_[d%yldet g]'2f(»)
fly)= TdPyldet 372 (2.19)
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Then we have the standard action for Einstein gravity plus non-Abelian gauge fields
in four dimensions:

1
I=—(167G)™! J d*x|det g|'/*R -3 J d*x|det g|"?F,,“(F*")%  (2.20)

The discussion given above has to be modified if the higher-dimensional theory
one starts from is supergravity rather than ordinary Einstein gravity. For instance,
there is present in eleven-dimensional supergravity a third-rank antisymmetric tensor
field. (See, for example, the review articles of Englert and Nicolai (1983) and Duft et
al 1986.) In an expansion of this field about its expectation value, terms proportional
to the gauge fields appear (Duff et al 1983¢, 1984a) and in four dimensions there is
an additional contribution for the Yang-Mills Lagrangian. Then, the normalisation
of the Killing vectors in terms of the gravitational constant differs from (2.18). This
. amounts to a modification of the relationship between the gauge coupling constant
and the gravitational constant, as can be seen from § 5.

A further subtlety, which has been emphasised by Duff et al (1984b) and Duff and
Pope (1984), is that simply retaining the massless states in the four-dimensional theory
after compactification may give field equations whose solutions are not exact solutions
of the full (4+ D)-dimensional field equations. (This includes the five-dimensional
case.) However, it has been argued by Witten and Weinberg (see Duft and Pope 1984)
that the errors incurred are suppressed at energy scale E by powers of E/E,, where
E, is the compactification scale, provided the four-dimensional ground state is
Minkowski space.

2.4. Graviton-scalar sector

The graviton-scalar action may be derived by making the ansatz
5 8ur(X) 0 )
= 2.21
gAB(xa )’) ( O _q)m"(x,y) ( )

which is more general than (2.7), in that it allows x dependence for g,,. Substitution
of this ansatz in the (4+ D)-dimensional gravitational action (2.14) yields (Cho and
Freund 1975)

I=-(167G)™" J d*x J dPyldet g,,|'/*|det ®,,,,|""*

x{R+R-®™D,D*®,, —1 D*®,, D" "
~1®™D*®,,, "D, d,, +1d" "D, d,, D", } (2.22)

where R and R are the curvature scalars for 4 and D dimensions, respectively. The

integration over the compact manifold | d”y may be performed given the metric.

2.5. Differential geometry

The modern formulation of differential geometry, in terms of differential forms, has
great calculational and notational advantages for studying the compact manifold of
Kaluza-Klein theory. Accordingly, we give here a brief resumé of the more important
definitions and results. For a more extensive and thorough discussion see, for instance,
Eguchi et al (1980) and Salam and Strathdee (1982). Differential forms are a convenient
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formalism for manipulating totally antisymmetric tensors. An antisymmetric product
of coordinate differentials (the exterior product A ) is defined so that

dy™ ady” =~(dy" andy™) (2.23)
and a p-form w is constructed from any pth-rank antisymmetric tensor @, ., :

O= Wy m, Ay AdYTA cooady™. (2.24)
Then for a p-form a, and a g-form B,

a, A B, =(—1)"B, A ap. (2.25)
A totally antisymmetric differentiation, the exterior derivative d, is defined by

do=38,  Omn .  m dy™rady™a...ady™. (2.26)
There follows immediately the important property

ddw =0 (2.27)
and it is easy to show that

d(a, A By)=da, A B+ (—1)"(a, AdB,). (2.28)
An important theorem which generalises Gauss’s Law and Stokes’s theorem is that

‘[ dw,_; =J W, (2.29)

M M ,

where M is a p-dimensional manifold and dM is its boundary.

It is often convenient to work with the vielbein ey, (y) for the compact manifold K
rather than its metric g,,,(y). If the tangent space to the manifold is a Euclidean space
so that we may choose its metric to be 8,5, then the vielbein is defined by

mn(¥) = Bagem(y)en(y). (2.30)
(We shall refer to «, B, ... as flat indices, or tangent space indices, and m, n, ... as
curved indices.) The vielbein has inverse e, (y) given by

en(y)=8.8"" (y)en(») (2.31)
so that

emel =88 (2.32)
and

5%Pellen=¢"" (2.33)

Flat indices may be converted into curved indices, and vice versa, using the vielbein
and its inverse.
The vielbein 1-form

e“(y)=en(y)dy” (2.34)

may be used to construct the spin-connection 1-form w“g, and the torsion and curvature
2-forms T and R%;:

de®+wg A ef=T" (2.35)
and
R =dostw, rw’
=31R%(e7ne’). (2.36)
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(We shall normally deal with manifolds which admit a torsion-free metric, T% =0.)
The usual curvature tensor R”,,, is obtained by using the vielbein to convert flat
indices into curved indices. The relationship of the spin connection as defined by
(2.35) to the usual definition (as, for example, in Weinberg 1972, § 12.5) may be read
off from the covariant derivative D, ¢ of a field ¢ transforming as the representation
M®* of the SO(D) tangent space group of the compact manifold K:

Dty = (8 —i0m )¢ (2.37)
where

0% = (%) mdy” (2.38)
and

O =3 (0ag) M. (2.39)
As a 1-form,

Dy =(d—iew)y. (2.40)

When the compact manifold K is a coset space G/ H, the vielbein may be constructed
as follows. The points y™ of K may be represented by chosen elements L(y) of G,
one from each coset. Let the Hermitian generators of G be Q; with commutation
relations

[Qz, Q) =ifs37 Q5. (2.41)
The object

e(y)=L"'(y)dL(y) (2.42)
may be written in the form

e(y)=e%(»)iQs

=e*(1)iQu +e%(»)iQa (2.43)

where the generators Q; have been divided into those, Q5, which belong to H, and
the others Q, which are associated with the tangent space. Then, e®(y) is the vielbein
1-form for G/H as in (2.34).

The spin connection for a coset space is conveniently calculated from the structure
constants of the group G using the Maurer-Cartan formula

de(y)+te(y)ne(y)=0 (2.44)
which follows from (2.42) and

ddL(y). (2.45)
In terms of the structure constants of G this is

de®(y) =4 fass(e*(¥) n €7 (). (2.46)
In particular.

de®(y) =3 fors(e” nel)+fusple? ne?). (2.47)

Comparing with (2.35) for zero torsion we identify the spin connection

0% =3 foype” + fusge’. (2.48)
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In particular for the important case of a symmetric coset space where

Japy=0 (2.49)
we have the simple form
(l)aB =fa'7Be‘;' (250)

It is important in applications to know that the generators Q; of H may be embedded
in the tangent space group SO(D) for K. The reasoning is as follows. A left translation
y-y' may be defined on K by

gL(y)=L(y")h (2.51)

where g is an arbitrary element of G, and h is a suitable element of H. When g is
independent of position on the manifold, it may be deduced from (2.42) (Salam and
Strathdee 1982) that under left translations

e*(y)=e?(y)Dg"(h™") (2.52)
where D,? is a matrix of the adjoint representation of G, defined by
g7'Qag=Ds #(2)Qs. (2.53)

Equation (2.52) specifies an embedding of H in the tangent space group SO(D). In
terms of the matrix elements of the adjoint representation of G,

(Qy)ag = —1Csap. (2.54)
But the standard generators of SO(D) are
(M) s = —i(85688 - 858%). (2.55)

Thus the embedding is
Qs =—3 Cosg M~ (2.56)

2.6. The manifolds M™%

To obtain the known gauge group SU(3) x SU(2) x U(1) of strong and electroweak
interactions as (a subgroup of) the isometry group of the compact manifold K, it is
necessary to have K at least seven dimensional. This is because (Witten 1981) the
lowest-dimensional manifold with isometry group G is a coset space G/H with H a
maximal subgroup of G, but with none of the factors in H identical to any factor in
G. Thus, for

G=SU@3)xSU2)xU(1) (2.57)
we must choose the maximal subgroup
H=SU(2)x U'(1)x U"(1) (2.58)

leading to the manifold
K =G/H (2.59)

of dimensionality 12—-5=7.

Almost the most general coset space of this type, denoted M??" by Witten, may be
constructed as follows. Denote the generators of SU(3), SU(2) and U(1) by iA,,
a=1,...,8,%0,,a=1,23, and Y. Itis necessary (without loss of generality) to select
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two U(1) factors commuting with the SU(2) isospin subgroup of SU(3) to be in H. In
other words, it is necessary to select one combination of 3As, 103 and Y which does
not occur in H (and so, as in § 2.5, is associated with the tangent space). Let this
combination be

Z=3(V3prst+qo,+2rY) (2.60)

with p, q and r arbitrary integers to give a compact U(1). Then, the two combinations
which lie in H may be taken to be the orthogonal combinations

Z'=3[2V3prAg+2qroy—2(3p*+q*) Y] (2.61)
and
Z"=3(—/3g\s+3pas). (2.62)

This completes the construction of K.

Generally, the isometry group for M?% is SU(3) x SU(2) x U(1). However, for the
exceptional cases (p=1, ¢g=0, r=1) and (p=0, g=1, r=1) the manifolds are $°x §>
and CP” x 8 with the larger isometry groups SO(6) x SO(3) and SU(3) x SO(4), respec-
tively (see § 2.1).

The manifolds M?? are not quite the most general (orientable) seven-dimensional
manifolds with isometry group at least SU(3) x SU(2) x U(1), because it is not necessary
to chose Z, Z' and Z” orthogonal. All that is required is that they should be independent
(Randjbar-Daemi et al 1984a). Thus, we may choose Z as in (2.60), but take the two
U(1) factors in H to be

X' =33 Ag+sY (2.63)
and

X"=30,+1tY (2.64)
where s and ¢ are free parameters, subject only to the constraint

ps+qt—r#0. (2.65)

This slightly more general class of manifolds with isometry group SU(3) x SU(2) x U(1)
is labelled M7 by Randjbar-Daemi et al (1984a).

3. Compactification mechanisms

3.1. General considerations

For a Kaluza-Kliein theory to be able to describe the observed four-dimensional world
it is necessary for the extra spatial dimensions to be compactified (except possibly in
the early universe) down to a size which we do not probe in particle physics experiments
(e.g. the Planck length). As has been emphasised by Appelquist and Chodos (1983a, b),
a basic difference between five-dimensional Kaluza-Klein theory and (4+
D)-dimensional theory (with D>1) is that the five-dimensional gravitational field
equations have a compactified classical solution of the form (1.3}, but, in general, the
(4+ D)-dimensional equations do not have a compactified classical solution of the
form (2.6). Thus, in the (4+ D)-dimensional theory, compactification of the D extra
spatial dimensions requires that either matter fields are introduced to provide an
energy-momentum tensor, or that the (4+ D)-dimensional gravitational action differs
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from the minimal Einstein action. We shall mostly discuss the former possibility, but
return to the latter possibility in § 3.8.

When compactification is due to matter fields, an energy-momentum tensor Tap
must be introduced on the right-hand side of the (4+ D)-dimensional gravitational
field equations: :

Rap—3R+A)gas =87GT 4 3.1)
where for generality a (4+ D)-dimensional cosmological constant A has been included.
(The following argument follows closely Randjbar-Daemi et al (1983b).) If we demand

compactification into M, X K, where M, is four-dimensional Minkowski space, and K
is the D-dimensional compact manifold, then

R, =0 ur=0,1,2,3 (3.2)

and because of Lorentz invariance the 4-space components of the energy-momentum
tensor are of the form

- 4

T, =—— .
v 87TG Nuv (3 3)

where 7, is the Minkowski metric of (1.4). If the compact manifold is an Einstein
space we may also write

Ry = —2kGn k>0 (3.4)

and the components of the energy-momentum tensor on the compact manifold are of
the form

~

C
m": =~ -m"' -5
876 & (3.5)

It then follows from the field equations (3.1) that

~

Ryun = (€= €)&pn (3.6)

R=g"R,.,=D(-c) (3.7)
and

A=-Dé+(D-2)c (3.8)

Equation (3.7) shows that compactification occurs provided

E—c<0. (3.9)

3.2. Freund-Rubin compactification

A mechanism for compactification which arises naturally in eleven-dimensional super-
gravity (see § 7.2) has been particularly explored by Freund and Rubin (1980). This
mechanism depends on a third-rank antisymmetric tensor field Azp with field strength

Fapcp=094Apcp —9pAacn T9cAasp —3pAape (3.10)

and action

= J d**Px|det g|"*(~ 35 FapcoF*?P) (3.11)
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(apart from couplings to fermions, and trilinear self-couplings which do not contribute
for the type of solution considered here). Then, the field equation for Fagcp is

det g]7"/%3 a(|det g|'2FAPPy =0 (3.12)
and the energy-momentum tensor is

Tap=~&(FepeaF "5 =5 FeperF " gap). (3.13)
The field equation (3.12) has a solution of the type

F*77=|det g|"V/?e*"*" F W, v, p,0=01,23 (3.14)

and all other entries zero, where det g refers to four-dimensional space, F is a constant
and the Levi-Civita symbol is defined such that

=1, (3.15)
For such a solution the energy-momentum tensor takes the form

- F? detg _

T =4 v
Y 2 |det g Eu

(3.16)

and
- F? detg
Ty =— g

where m, n run over the compact manifold. If we look for a compactification with
Minkowski four-dimensional space, then in the notation of (3.3) and (3.5),
¢ é F?> detg F*

_c ¢ T s 3.18
87G 887G 2 |detg| 2 (3.18)

(3.17)

Thus (3.9) is satisfied and compactification occurs. From (3.8), consistency requires
a (4+ D)-dimensional cosmological constant

A=87G(D-1)F~ (3.19)

However, in the case of eleven-dimensional supergravity, an eleven-dimensional
cosmological constant in the theory destroys the supersymmetry. In that case, one
must set A to zero, and one then finds

R=87GF4(D-1)/(D+2) (3.20)
and
R=-87GF3D/(D+2) (3.21)

where R and R denote the four- and D-dimensional curvature scalars, respectively.
Thus, for eleven-dimensional supergravity, there is the unwelcome feature of an anti-
de Sitter four-dimensional space!

3.3. Quantum fluctuations in massless higher-dimensional fields

An alternative compactification mechanism (Candelas and Weinberg 1984, Weinberg
1983) is through quantum fluctuations of massless fields in the (4+ D)-dimensional
theory. As these authors observe, for it to make sense to consider quantum fluctuations
in light matter fields, while neglecting gravitational quantum connections, it is necessary
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for the number of light matter fields to be large. By dimensional analysis, when the
matter fields are massless in (4+ D)-dimensions, we may write the matter field action
as

i=—J d*x|g|"?V(R) (3.22)

where R is the radius of the compact manifold and
V(R)= CpR™ (3.23)

with Cp, a constant dependent on the number of matter fields. The energy-momentum
tensor may be computed using

- 1 —

ol = -5 J d*"Px|det g|'"*T*P68 4. (3.24)
Thus,

T, =05 V(R)1,, =05 CoR ™y, (3.25)
and

T =Q5'D'R(AV/AR) G = —40 5 D CoR ™* G o (3.26)
with

Qp= J dPy|det g|'°. (3.27)

Also, for an Einstein space,
R,.=—-2kR7%g,., (3.28)

with k>0 for a compact manifold. Demanding that four-dimensional space be
Minkowski, the field equations (3.1) yield

%§’2= V(ﬁ)—D—lﬁj—I‘{ (3.29)
and with V(R) as in (3.23),

1€2=%ﬁ—) Cp (3.30)
and

A=87G(D+2)CpR™* (3.31)
where

G=G/Qp (3.32)
as in (2.17).

It can be seen from (3.30) that for compactification to occur Cp must be positive.
(Alternatively, this follows from (3.25), (3.26) and (3.9).) For any given manifold, Cp,
may be evaluated by calculating the eigenvalues of the Klein-Gordon or Dirac operator
on the compact manifold (for massless scalar or spinor fields in 4+ D dimensions,
respectively) to obtain the masses of the ‘tower’ of four-dimensional fields (see §§ 1.5
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and 5.1), and then calculating the effective potential in the usual way (Coleman and
Weinberg 1973).

A similar discussion has been given earlier for five-dimensional Kaluza-Klein
theory (Appelquist and Chodos 1983a,b). In this case k is zero, because S' is flat,
and no solution for R arises. The coefficient C), is found to be negative, and the
energy V(R) decreases without limit as R approaches zero. Thus, it has to be assumed
that as R approaches the Planck length, and the loop expansion of the effective potential
fails, the dynamics stabilise R at that scale. This is in contrast to the situation in the
absence of quantum corrections where any value of R satisfies the classical field

equations (neutral stability).

3.4. Compactification due to explicit gauge fields

It is contrary to the spirit of the original Kaluza-Klein theory to introduce gauge fields
explicitly in 4+ D dimensions, since the hope was that all gauge fields might arise
from the isometry group of the manifold, upon dimensional reduction. However, there
are three advantages to be derived from doing so. Firstly, the explicit gauge fields
provide a compactification mechanism. Secondly, the D ‘extra’ components of the
(4+ D)-dimensional gauge fields provide scalar fields in four dimensions which may
prove useful as Higgs scalars. The F,, F*" terms in the (4+ D)-dimensional gauge
field kinetic term provide in four dimensions the gauge field kinetic term, the F,, F*"
terms give the Higgs scalar kinetic terms, and the F,,,F™ terms provide the Higgs
scalar potential, after integration over the compact manifold. (This possibility has
been advocated by Manton (1979), Forgacs and Manton (1980) and Chapline and
Manton (1981), though with a mathematical dimensional reduction rather than a
physical compactification.) Thirdly, an explicit gauge field expectation value in a
topologically non-trivial configuration can overcome the difficulty endemic to pure
Kaluza-Klein theories of obtaining chiral fermions in four dimensions (see §5).
Kaluza-Klein theories with explicit gauge fields (higher-dimensional Einstein-Yang-
Mills theories or supergravity Yang-Mills theories) have been explored by Cremmer
and Scherk (1976, 1977), Horvath et al (1977), Horvath and Palla (1978), Luciani
(1978), Randjbar-Daemi and Percacci (1982), Randjbar-Daemi et al (1983a,b,c),
Witten (1983), and many subsequent authors, the most recent theories of this type to
excite interest being the ten-dimensional supergravity Yang-Mills theories derived
from superstring theory (Green and Schwarz 1984, Gross et al 1985).

For explicit gauge fields with field strength F,?, where A and B run over all 4+ D
dimensions, the action is

= 1

I=—ZJ d*" Px|det g|"*(F,) ap(F,)*? (3.33)
and the energy-momentum tensor is

TAB:—((Fa)AC(Fa)BC_%(Fa)CDFaCDg-AB)' (3.34)
Assuming that the field strength has a non-zero expectation value only on the compact
manifold, i.e. for A, B, C, D, ... taking values m, n, p, g, ..., and that the compact

manifold is an Einstein space, then in the notation of § 3.1 we have

¢ 1 cp
= ={E)co(F) (339)
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and

i cp 2k
— = }(F)ep(F,)P ——==—.
87G i(Fa)en(Fo) 87G

Thus, (3.9) is satisfied consistently with compactification occurring.

(3.36)

3.5. Monopole solutions

The simplest example of compactification using a topologically non-trivial explicit
gauge field configuration (Randjbar-Daemi et al 1983a) is obtained for D =2 with
compact manifold the surface of an ordinary sphere:

S2=G/H=SU(2)/U(1). (3.37)

Then an explicit U(1) gauge field may be introduced with a monopole expectation
value on the compact manifold:

A,.(y)dy™=a(1Fcos ) do (3.38)

where a is a constant to be determined in terms of the charges of the matter fields,
and the plus and minus signs refer to the upper and lower hemispheres, respec-
tively. The monopole solution is SU(2) invariant (up to a U(1) gauge transformation)
(Randjbar-Daemi et al 1983a).
The action for this theory is
I= —J' d6x|detg]”2< L (R+A)+1 FABFAB) (3.39)
167G
and the requirement that (3.38) is a solution of the field equations, for Minkowski
four-dimensional space, determines the radius of the compact manifold in terms of
the six-dimensional gravitational constant and the field strength a:

o =8nGa (3.40

When both the metric and the U(1) gauge field are expanded about the ground
state the situation is more complicated than for pure Kaluza-Klein theory. In the pure
Kaluza-Klein theory of § 2, the SU(2) isometry group of S leads to SU(2) gauge fields
in four dimensions arising from the off-diagonal components of the metric. In the
present case, the gauge group of the effective four-dimensional action is SU(2) x U(1),
with the SU(2) gauge fields being a superposition of the gauge fields from the metric
and the original explicit U(1) gauge field. Because the radius of the compact manifold
is related to the gravitational constant and the Yang-Mills field strength by (3.40), the
gauge coupling constant g for the four-dimensional SU(2) gauge group is related to
the monopole strength

g’=3/2d% (3.41)

3.6. Instanton solutions
If, instead, the compact manifold is
S§*=G/H=S80(5)/S0(4) (3.42)

then explicit SU(2) gauge fields may be introduced and an instanton solution on the
compact manifold may be used (Randjbar-Daemi et al 1983¢) instead of a monopole
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solution. (This solution is only formally an instanton. It is constructed using four
spatial coordinates, rather than three spatial coordinates and a time coordinate. It is
invariant, up to a gauge transformation under the action of SO(5) on the manifold.)
Then, an expansion of the metric and the explicit gauge fields about the ground state
leads to SO(5) Yang-Mills fields in four dimensions (rather than SO(5) x SU(2)),
because the original SU(2) gauge symmetry is spontaneously broken by the instanton
solution.

3.7. Generalised monopole and instanton solutions
If the compact manifold is the coset space
K=G/H (3.43)
then, in the notation of § 2.5, a G-invariant solution of the Einstein-Yang-Mills field
equations may always be obtained (Randjbar-Daemi and Percacci 1982) by taking
AS=A% dym=e° H=U(Q1) (3.44)
or
A% =ge® H=U(1) (3.45)

where a is a constant, and e® are the components of the covariant basis (2.43) associated
with the generators of H. In (3.44) and (3.45), it is understood that an embedding of
H in the explicit Yang-Mills group Gy has been specified (which of course requires
that Gyy is large enough to contain H). The gauge field configuration of (3.44) or
(3.45) generalises the monopole and instanton solutions of the last two sections to an
arbitrary coset space. If H is of the form

H=H'®U() (3.46)

then a monopole solution may be constructed by applying the ansatz (3.45) to the
U(1) factor. For instance, monopole solutions have been employed by Watamura
(1983, 1984) for the complex projective planes

SU(N+1
CPy = ( )

TSUN)YxU(1) (3.47)

If H is of the form

H=H'®SU(2)

then an instanton solution may be constructed by applying the ansatz (3.44) to the
SU(2) factor displayed. (In § 3.6, H was SU(2).)
Such gauge field configurations are in general topologically non-trivial. For
instance, if for a monopole solution we write

F=1F,,dy™"ardy" (3.48)

(with the gauge coupling absorbed in the definition of the gauge field) then the first
Chern number (Eguchi er al 1980)

1

T2m

C = J‘ F =integer (3.49)
K

is the monopole number, e.g.
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C,=-2a for §* (3.50)

with a as in (3.38).
For an instanton solution on S*, if we write
t a
F= .2 h
2 2
where (t,/2) are the matrices representing the SU(2) factor of H in the fundamental
representation of Gyy, the second Chern number (Eguchi ef al 1980)

(dy™ ady™) (3.51)

1 .
C,=— J Tr(F A F) =integer (3.52)
8 K

is the instanton number, and for an instanton solution
|Gl =1. (3.53)

(There is no contribution from the curvature to C, for S*)
Another very natural choice of gauge field configuration (Charap and Duff 1977,
Wilczek 1977, Witten 1983) is

AP =A,P dy" =0, dy" =0 (3.54)

where ,,"? is the spin connection for K of § 2.5, and the SO(D) tangent space group
has been embedded in Gyy. (A is a labelling of the gauge fields corresponding to
the standard antisymmetric generators M“? of SO(D).) Then the topology of the
gauge field configuration is directly related to the topology of the manifold (the Euler
characteristic).

3.8. Non-minimal gravitational actions

A possible compactification mechanism which does not require the introduction of
matter fields is through non-minimal terms added to the (4+ D)-dimensional Einstein
action. Wetterich (1982a) has considered an action of the form

I=-(167wG)""! J d* Px|det g R+ aR*+ BR,5R*® + YR 4pcpR* 5P} (3.55)

He finds that the field equations admit a compactified solution of the type M*x S°,
where M* is Minkowski space, though to obtain other compact manifolds (e.g. a
product of spheres) requires higher curvature invariants to stabilise the effective action.

3.9. Stability of compactification of pure Kaluza-Klein theories

The simplest perturbation under which to consider stability (Candelas and Weinberg
1984) is a change in the overall scale R of the manifold. Suppose that the action can
be written in the form

I=-(167G)™" J d4+Dilg}‘/2(@(y)+/_\)—Jd4x|g[”2V(Ii) (3.56)

where R(y) is the curvature scalar for the compact manifold, and V(R) is a compactify-
ing action. Using (3.28) for an Einstein space,

R=-2DkKR2. (3.57)
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Integrating over the coordinates y of the compact manifold, and using (3.27) and
(3.32), we may write (for Minkowski four-dimensional space)

I_; —'J. d4x Veff (3.58)
with

Ve=(167G) (A -2kDR %)+ V(R). (3.59)
When V(R) has the simple form

V(R)=cpR ™4 with >0 (3.60)

the effective potential always has a stable minimum, when k # 0, provided
g+D-2>0. (3.61)

This includes the case of compactification by quantum fluctuations in matter fields
(Candelas and Weinberg 1984), when g =4. It also includes (Bailin et al 1984) the
case of Freund-Rubin compactification because the field equation (3.12) implies that
F of (3.14) has the property

F~R™P (3.62)
so that (3.16) and (3.17) imply that V(R) is of the form (3.60) with
q=D Freund-Rubin compactification. (3.63)

One subtlety which arises for compactification by matter field quantum fluctuations
is that the (dR /dt)-dependent terms in the effective action may as a result of quantum
effects (Gilbert et al 1984) have a different sign from the tree approximation value
deriving from If&(y). This occurs (Gilbert and McClain 1984) when the ratio of the
number of massless scalar flelds to the number of massless spinor fields in the
higher-dimensional theory is sufficiently small. Then, instability would arise at the
apparently stable minimum of the effective potential!

More general perturbations may be considered than just an overall change of scale
of the compact manifold. For instance, for a product compact manifold and Freund-
Rubin compactification instability occurs under independent changes of scale of the
two spaces in the product (Duff et al 1984b, Bailin and Love 1985a) with the radius
of one growing at the expense of the other. A similar phenomenon occurs as a result
of one-loop quantum corrections for a toroidal compact manifold T, with one of the
D dimensions contracting while the others expand (Appelquist ef al 1983, Inami and
Yasuda 1983). Stability under more general perturbations including squashing has
also been studied for spheres (Page 1984) and other manifolds.

All the above considerations of stability are in terms of classical perturbations of
an effective action. However, in the five-dimensional theory there is an instability of
the Kaluza-Klein ground state (Witten 1982, Kogan er al 1983) due to quantum
tunnelling. Fortunately, there does not appear to be a (simple) generalisation of this
phenomenon to higher dimensions (Young 1984).

3.10. Stability of compactification for Einstein-Yang-Mills theories

When the theory contains explicit gauge fields, there is a further danger of instability
of the compactification, because of classical perturbations in the gauge fields. For the
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case of an explicit U(1) gauge field in a monopole configuration on S* it has been
shown by Randjbar-Daemi et al (1983a) that no instability arises in this way. However,
for any non-Abelian gauge group Gyy with an SU(2) invariant vacuum configuration
on §? instability occurs (Randjbar-Daemi et al 1983b) as can be seen by expanding
to quadratic order in the classical perturbation, in the action, and looking for tachyons.

In general (Randjbar-Daemi et al 1983b, Schellekens 1985a,b), for a compact
manifold G/H, only the perturbations in the gauge bosons associated with H mix with
the perturbations in the metric. This sector has been calculated (Schellekens 1984) for
a general hypersphere S°, for a general explicit gauge group Gyy. Except for the
case D =3, there are never any tachyons in this sector, and the compactification is
stable in this respect.

However, even when the perturbations in the H gauge bosons do not lead to
instability, the perturbations in the gauge bosons in G but not in H often do (Randjbar-
Daemi 1983c, 1984c, Frampton et al 1984a, Schellekens 1985a), as in the case discussed
by Randjbar-Daemi et al (1983b). A general discussion of this type of instability has
been given by Schellekens (1985b) for a general hypersphere S” with the explicit
gauge fields of gauge group Gyy in a generalised monopole configuration (as in § 3.7).

4. Gauge coupling constants

4.1. Geometric interpretation

In the five-dimensional case of § 1, where the gauge group was Abelian, charge was
quantised and the quantum of charge was related to the radius of the compact manifold
S' (and the four-dimensional gravitational constant) as in (1.26). In higher-dimensional
theories in six or more dimensions where the gauge group is non-Abelian we would
like to be able, in a similar fashion, to relate the gauge coupling constant (or coupling
constants) to the geometry of the compact manifold. The connection can be made
(Weinberg 1983) by considering isometric curves on the manifold (i.e. curves traced
out when an infinitesimal isometry is exponentiated). Consider the infinitesimal
isometry with parameter do associated with a particular generator ¢, of the isometry
group. From (2.3) this is

I+idot,: yr oyt =y"+doény) (4.1)

where £, is the corresponding Killing vector. The exponentiated curve traced out as
o varies is

el y"=Y" (o, yo) (4.2)
where Y” is the solution of
dY"/do=¢&.(y) Y"(o=0)=ys. (4.3)

For any representation of the non-Abelian isometry group, the eigenvalues of a diagonal
generator ¢, will be integral multiples of some lowest (positive) eigenvalue g.;, (with
the gauge coupling constant g absorbed in the definition of the generators). As o
increases from 0 to 27/ gmin, € 7' returns to its starting value, and, if the representation
t, is N valued, we go exactly N times round the manifold. The circumference S(y,)
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of the manifold along the isometric curve with starting point y, is

27/ 8min
S(vo) =-]1\7J do[&n(Y)ET(Y)EUY)]V?

0

27

=~ No_ [Zn (o) (¥o) €2 (y0) €a(¥0)]'? (4.4)
&min

where the metric g,,,(y) is as in (2.6), and infinitesimal distance ds along the isometric
curve is given by

ds® = g (y)€7 €5 do. (4.5)
Averaging over the starting points y,, and using the notation (2.19),

()= 27/ Nguin) Emn (1) €2 (y) €2 (1)) (4.6)
For standard normalisation of the gauge fields (2.18),

(s =27/ Ngmin)'x’ (4.7)

where « is the four-dimensional gravitation constant of (2.17). Thus, the gauge coupling
Zmin is related to the geometry of the compact manifold by

min =27/ N(s%)/? (4.8)

where (s%)'/? is the root-mean-square circumference of the manifold along the isometric

curve associated with the generator f, averaged over starting points. The result is
general enough to handle situations where the isometry group is a product of non-
Abelian factors, so that there might be different gauge coupling constants associated
with different diagonal generators t,. Clearly, the above reasoning is not directly
applicable to cases where the gauge group has an Abelian factor, since Abelian gauge
fields do not have any self-coupling. In that case, to interpret the result (Weinberg
1983) it is necessary to introduce a matter field (e.g. a complex scalar field).

For an Einstein space, where the Ricci tensor is proportional to the metric, a ‘radius’
a for the compact manifold may be introduced by writing

~

Ron=0a""§mn. (49)
For the hypersphere S°, (4.8) yields (Weinberg 1983)
2
, k° (D+1)
a7 4.10
&= 22D (4.10)

where the gauge coupling constant g for the SO(D+1) isometry group has been
normalised so that in the single-valued defining representation the eigenvalues of, say,
M' are (g, —g,0,0,...), with the normalisation of generators

(MY M¥]=i(6*"M" + 8" M* — §"'M* - 8*M") (4.11)
and couplings M'?A% +. ... For the four-dimensional manifold CP?, the correspond-
ing result (Weinberg 1983) is

g’ =%« d’ (4.12)

with a standard normalisation of generators for the isometry group SU(3), such that
the eigenvalues of ¢, in the 3 are (g/2, —g/2,0).
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4.2. Absolute values of gauge coupling constants

When compactification is by quantum fluctuations in massless higher-dimensional
fields, it is possible, as discussed in § 3.3, to determine the constant Cp, in the effective
potential of (3.23), by calculating with the tower of four-dimensional fields deriving
from the harmonic expansion of the higher-dimensional fields. Then, the radius of
the compact manifold is determined by (3.30) where, in the present notation,

a2=2kR™2. (4.13)
If for instance, the compact manifold is a sphere S°, then
2k=D-1 for s>, (4.14)

For this case, the absolute value of the gauge coupling constant (at the compactification
scale) is then determined by (4.10). Unfortunately (Candelas and Weinberg 1984),
very large numbers (>10%) of massless higher-dimensional fields seem to be required
to obtain g>/4m =<1, as we might expect if g” varies under the renormalisation group
by less than an order of magnitude between the electroweak scale and the compac-
tification scale.

4.3. Ratios of gauge coupling constants

When the compactification is be some mechanism other than quantum fluctuations, it
may not be possible to calculate absolute values of gauge coupling constants, e.g., for
Freund-Rubin compactification (Freund and Rubin 1980) the expectation value (3.14)
of the antisymmetric tensor field strength is unknown, and consequently the ‘radius’
of the compact manifold is unknown. However, it is still possible to calculate ratios
of gauge coupling constants provided the geometry of the compact manifold is com-
pletely determined apart from the overall scale. This is the case for Freund-Rubin
compactification, because (3.17) (together with the Einstein field equation) implies
that the compact manifold is an Einstein space, so that there is only a single overall
scale, and the various circumferences of the manifold are all related. (A subtlety arises
for the Kaluza-Klein supergravity case to which we return shortly.)

For the manifolds M of § 2.6, with isometry group SU(3) x SU(2) x U(1) (except
in the exceptional cases mentioned in § 2.6), the geometry is specified by three scales,
a, b and ¢ (Castellani et al 1984a). However, when the condition is imposed that M?¥
should be an Einstein space for Freund-Rubin compactification, these scales are related
(Castellani et al 1984a). Thus, the coupling constants g;, g> and g, for the SU(3),
SU(2) and U(1) factors of the isometry group are related by using (4.8), even though
the absolute values cannot be calculated. It is found (Bailin and Love 1984b, Ezawa
and Koh 1984a) that for all non-zero values of p, g and r

1<g3/g3<3 (4.15)
and

F(pPn/r)<gi/gi<wo (4.16)
where n is an integer. Equation (4.15) gives results which can be in reasonable
agreement with extrapolations (Bailin and Love 1984a) of the known gauge coupling
constants to the compactification scale. However, (4.16) gives values of g3/ g3 that are
far too large unless r is bigger than 1, corresponding to non-simply connected manifolds

(Witten 1981). The situation is a little better for the exceptional case S°x S§* (Bailin
and Love 1984a), but this product manifold is probably unstable, as discussed in § 3.9.
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Up to this point, we have been relating gauge coupling constants to the geometry
by assuming that the gauge field terms in the effective four-dimensional theory arise
entirely from the (4+ D)-dimensional curvature scalar, as in § 2.3. However, as we
have already mentioned in § 2.3, some refinement is necessary in the supergravity
context where there are other terms in the (4+ D)-dimensional action which may
contribute to the gauge field action in four dimensions. For instance, in eleven-
dimensional supergravity (see § 7.1) contributions to the Yang-Mills Lagrangian in
four dimensions can come from the fourth-rank antisymmetric field strength (employed
in the mechanism of Freund and Rubin (1980)). These contributions (Duff et al 1983¢c)
arise by taking an expectation value for the tensor field strength of the form (3.14),
and writing, in the expansion about the ground state,

Fp.vmnxE;wpchpAsz(g'np(y)gZ(y)) My V=O> 192, 3, m’n=4"~-a10 (417)

in the notation of § 2.2. When (4.17) is substituted in the action (7.11), extra contribu-
tions to the gauge field kinetic term arise from D*A{ in (4.17), resulting in this term
being multiplied by a factor of four relative to the pure eleven-dimensional Einstein
gravity case. The only effect is on the overall normalisation of the gauge field term in
four dimensions compared with the four-dimensional Einstein gravity term, so that
ratios of gauge coupling constants are unmodified.

The situation can be different in other supergravity theories. For instance,in N =2
(two supersymmetry generators) supergravity in ten dimensions, the extra contributions
to the Yang-Mills Lagrangian in four dimensions come from both a fourth-rank tensor
field strength and a second-rank tensor field strength belonging to the supergravity
multiplet, and these contributions have a different structure to the contribution due to
the metric of § 2. Then the ratios of gauge coupling constants differ from the ratios
in pure (4+ D)-dimensional Einstein gravity. As we have seen in § 3.5, a similar
phenomenon can occur in Einstein-Yang-Mills theories, with mixing between explicit
higher-dimensional gauge fields and gauge fields arising from the metric on dimensional
reduction.

In eleven-dimensional supergravity, the ratio of the gauge coupling constants gs
and g; for the isometry group SO(5) x SO(3) of the squashed 7-sphere (see § 7.2) has
been calculated by de Alwis et al (1985) to be

gi/g5=1. (4.18)

5. Particle spectrum of Kaluza-Klein theories

5.1. Boson spectrum

We have seen in § 1.5 that fields which depend upon the coordinate(s) associated with
the compactified dimension(s) have a mass whose scale is set by the size of the compact
space; the fields ¢"(x) in (1.19), for example, have a mass

m,=n/R (n=0,1,2,...) (5.1)

where R is the ‘radius’ of the circle formed by the compact dimension. This scale is
likely to be gigantic compared with the energies available to present or forseeable
particle accelerators, since we saw in (1.28) that R is of order of the Planck mass:

R™'~m,=G"2~10" GeV. (5.2)
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Nevertheless these massive states may still affect the low-energy sector (Duff 1984)
because of quantum effects. This low-energy dependence upon the high-mass states
derives from the propagators of the massive states

n

1
A(p, m,)x ———5=0(m?) as m - o, (5.3)
pi—m

Since m, » o as n—> o0 in (5.1), we might suppose that at most it would be necessary
to retain only the lowest excitations, say n =0, 1, 2, 3, at least in finite diagrams. (There
is also the possibility of logarithmic dependence upon m, which arises on renormalisa-
tion of divergence diagrams.) Quite apart from the question of the renormalisability
of Kaluza-Klein theories, the above argument for retaining at most the lowest excita-
tions is complicated by the fact that the charge g, of the particle of mass m, also
increases with n, as is apparent from (1.26). Since

g.=nk/R
K_2 1

E m=o<K2) (5.4)

qaA(p, m,) < n’

=0(167rm?) as n- 0.

Thus the contribution from each component of the whole ‘tower’ of massive states is
equally important (or unimportant). Our chief preoccupation in the succeeding parts
of this section will be the characterisation of the zero modes of Kaluza-Klein theories,
since it is these modes, which develop non-zero masses at a scale well below the Planck
scale, which are presumed to constitute the particles actually observed in the (low-
energy) world which is accessible to experiment. Even so, for the reasons already
given, it is of some interest to characterise the massive modes, and in any case these
modes are as important as the zero modes in determining the cosmological evolution
of the very early universe, near the compactification scale. (We shall discuss this
cosmological role of the massive modes in the following section.)

We start by determining the four-dimensional classical mass spectrum of the original
five-dimensional Kaluza-Klein theory. In the absence of any matter fields, the
equations of motion are

Rap =2 gasR=0 (5.5a)
or equivalently

Rap=0 (5.5b)
and the ground-state solution is

0184510y = map = diag(t, -1, -1, -1, - R?) (5.6)

as in (1.3). To find the mass spectrum we vary the field g4 around its ground-state
value. Thus we write

€as(x, 0)=mnap+hap(x, 0) (5.7)
and expand (5.5b) to lowest- (first-) order in h. This gives

BBBAhCC—8C8AhCB—acaghcA+8C6(~hAB=0. (5.8)
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Note that the connection coeflicients vanish in the ground state, so ordinary partial
derivatives are sufficient. Equation (5.8) is invariant with respect to the gauge transfor-
mation

hag—>hap+94lpT0pl4 (5.9)

so we may choose a convenient gauge in which to extract the physical content of the
theory. The choice is (Dolan 1983)

3“h,s=0 (5.10a)
°h,s=0 (5.10b)
3 hss=0. (5.10¢)

Since the compactified manifold is a circle we may write

0

has(x, 0)= X hi3(x)e™ (5.11)

n=—co

as in (1.19), so that A is well defined on S'. The gauge choice (5.10) then implies that

*hA(x)=0 (5.12a)
hY(x)=0 (n#0) (5.12b)
h{P(x) = (n#0). (5.12¢)

In other words, by an appropriate choice of gauge the n = 0 vector potentials h{¥(x)
and the n # 0 scalar fields h$?(x) may be transformed to zero (i.e. ‘gauged away)
This sounds reminiscent of the situation in electroweak theory, for example, where
the local SU(2)xU(1) gauge invariance is spontaneously broken. The would-be
Goldstone boson modes (which can also be gauged away) associated with spontaneous
breakdown of the global symmetry are ‘eaten’ by the hitherto massless gauge bosons.
In the process some of the gauge bosons become massive. We might wonder, therefore,
whether the n # 0 vector potentials and scalar fields are ‘eaten’ by the n # 0 tensor
modes h{))(x), which thereby become massive. (Note that, if the n # 0 vector potentials
and scalar fields really are (massless) Goldstone modes, then there are a total of three
modes for each n available for eating, since a massless vector field has two degrees
of freedom, and a massless scalar only one. Thus there would be a total of five degrees
of freedom available, just the number required by a massive spin-2 field.) In fact, the
scenario envisaged above is what actually happens, although it is not apparent at this
stage precisely what symmetry it is which will yield a (three-times) infinite number
(all n#0) of Goldstone modes. This is the subject of the following section. For the
present we shall content ourselves with verifying that the n # 0 tensor fields h!)(x)
are indeed massive, as we have claimed, and that all the other modes are massless
(Salam and Strathdee 1982). The derivation which we present follows that of Dolan
(1983).

First we substitute (5.11) into (5.8), and use the gauge choice (5.10), or equivalently
(5.11). From the 55 component of (5.8) we find

3"3,h¥ =0 (5.13a)
and

" =0 (n#0). (5.13b)
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The u5 component gives

3 3,h = (5.14a)
and, using (5.13b),

SRV =0 (n#0). (5.14b)
Finally, from the wv component of (5.8), we find

30 he) +8,8,(M Y+ k) —6,8,h 9 ~8,0,hV =0 (5.15a)
and using (5.13b) and (5.14b)

("9, +n*/ RO =0 (n#0). (5.15b)

Thus, as claimed, the n # 0 tensor modes hi{',,) are indeed massive, and turn out to have
masses m, as in (5.1). Equations (5.13a) and (5.14a) show that the surviving scalar
field 7$Y and vector potential A} are both massless. Also, by defining

RO =hO 41y h3© (5.16)
we find that we can recast (5.15a) in the form
33, A0 +8,0,0% Y —8,0,0 0 ~5,3,05 7 =0 (5.17)

which is the equation of a massless spin-2 (graviton) field (Weinberg 1972).

The masslessness of the n =0 modes was anticipated in §§ 1.4 and 1.7, where we
made the ansatz of discarding the 6 dependence of all fields, as in equation (1.7) for
example. In fact if we truncate the theory by retaining only the n = 0 modes, perform
a Weyl rescaling (1.31), and carry out the 6 integration in (1.12), we obtain an effective
four-dimensional action

1 ) 1 .
I= _-[ d*x|det g<0>|1/2{;_2 R(g®)+1 6@ FOF~ <0>_§ & 2(8M¢(0>)au¢<0>} (5.18)

where k2 is defined in (1.16) and (1.17), ¢ is defined in (1.19), gf?ﬁ, A(O) and hence
F(? are defined analogously to ¢‘”, as in (5.11), and indices are raised and lowered
w1th g(o) This (truncated) action is derlved in Appelquist and Chodos (1983a, b), for
example. The action (5.18) is consistent with the previous results (1.18) and (1.32).
The masslessness of A, derives from the invariance of (5.18) under the gauge transfor-
mation (1.11):

A, >AL=A,+3,¢ (5.19)

which in turn derives from the invariance of the original five-dimensional action under
the (particular) coordinate transformation (1.9):

8- 0 =0+ ¢(x) (5.20a)
x* - x'"" =x", (5.20b)

In the same way the masslessness of g'_) ) derives from the invariance of the action
under the generalised (four-dimensional) coordinate transformation

x* - x'™ = x"+ M (x) (3.21a)

6->0"=6. (5.21b)
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However (5.18) is also invariant under a global scale transformation, in which

g > 8 =8 (5.22a)

AP A= AP+ A (5.22b)

d)(o)_) d)l(o): ¢(0)_2/\¢(0) (5,22C)
with A infinitesimal and constant. The ground state of the system has

(840 = T (A)=0 (") =R’ (5.23)

where 7,, is the Minkowski metric. Thus it has symmetry P*x R', where P* is the
four-dimensional Poincaré group and R' is the gauge symmetry, which is not a compact
U(1) because the truncated theory has no memory of the periodicity in 6. Since (¢‘)
is non-zero, the ground state is not invariant under the global scale transformation.
Thus the masslessness of ¢'” is because it is the Goldstone boson associated with the
spontaneous breakdown of the global scale invariance (Dolan and Duff 1984).

It is important to remember that the results for the spectrum of the five-dimensional
Kaluza-Klein theory derived so far determine only the classical mass values. Quantum
effects can modify these values. In particular, we should expect that the massless
modes will only be ‘truly’ massless if their masslessness is protected by some sort of
symmetry. In the case of the graviton field gﬁf’v) and of the gauge field ALO) this is indeed
the case, since the gauge symmetries from which they derive are symmetries of the full
theory. However the (Brans-Dicke) scalar field ¢'” is not so protected. The global
scale invariance, of which it is the Goldstone boson, is a symmetry only of the truncated
theory, in which the n # 0 modes are discarded. We shall see in the following section
that the full theory does not have this symmetry. So ¢” is only a pseudo-Goldstone
boson (Dolan and Duff 1984). Its classical mass is zero, but we would expect that
radiative corrections will shift the mass to a non-zero value. Evidently, an understand-
ing of the symmetry of the full (untruncated) theory is necessary if we are to accurately
determine the zero modes in a general Kaluza-Klein theory. However, before address-
ing that task (in the next section) we shall describe briefly the work which has been
carried out to determine the classical mass spectrum in more realistic, and therefore
higher-dimensional, theories.

The procedure is essentially a generalisation of that which we have described for
the five-dimensional case. Firstly, one has to find a ground-state solution of the field
equations, as in (5.6). Secondly, one considers arbitrary fluctuations of all fields about
this solution, as in (5.7), and expands these fluctuations, as in (5.11), in a complete
set of harmonics on the compact manifold. The coefficients of these harmonics are
the physical (four-dimensional) fields, and substitution into the full higher-dimensional
field equations yields the four-dimensional field equations, and hence the spectrum.
However, there are a number of technical complications, which stem from the higher
dimensionality, which deserve comment.

Firstly, the ground-state metric (2.6)

<Oig_AB|O> = diag(n,uv’ _gmn (J’)) (524)

where 7,,, is the metric of flat Minkowski space M,, given in (1.4), and g,,.(y) is the
metric of the compact manifold, is in general not a solution of the (4+ D)-dimensional
pure gravity field equations. This was discussed in § 3. To achieve compactification
it is necessary to introduce additional (matter) fields (or to allow a non-minimal
gravitational action). The additional fields, of course, also have fluctuations about
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their ground-state (background field) values, and these fluctuations too must be expan-
ded in terms of a complete set of harmonics on the compact manifold. Thus there are
additional contributions to the spectrum, besides those originating in the purely
gravitational sector. In general the final spectrum depends in an essential way upon
the precise compactification mechanism actually utilised.

The second complication occurs because the ‘harmonic expansion’ is in general
considerably more complicated than in the five-dimensional case (5.11), and the
quantum numbers of the mass eigenstates are complicated by the general non-Abelian
nature of the isometry group of the compact manifold. The harmonic expansion (5.11)
expands the fields in terms of the harmonics ¢'”® which form a complete set of
representations of the isometry group U(1) on the compact manifold S'. In general
the fields of the theory transform as representations |R) of the tangent space group
Gr. For the case of a D-dimensional compact manifold K, the tangent space group is

G;=S80(1,3+D). (5.25)

The ‘harmonic expansion’ is then an expansion of the representations |R) in terms of
the representations |G, ) of the isometry group G, of the compact manifold K:

IR)=Y |G XG.|R). (5.26)

We shall assume that K is a coset space
K =G/H (5.27)

where G is a Lie group and H is a subgroup of G. In the case that H is a maximal
subgroup of G, the isometry group is G itself; but if H is a non-maximal subgroup,
then the isometry group is (Castellani et al 1984c¢)

G, =Gx N'(H) (5.28)

where N'(H) is the normaliser of H in G, but with any U(1) factors common with G
deleted. Thus in any event H is always a subgroup of G, so we may expand the
representations |G,) of Gy in terms of the representations |h;) of H:

‘Ga>=Z |hiY(hi| Ge). (5.29)

Also, we showed in (2.56) that H is a subgroup of the tangent space SO(D) of the
compact manifold K. Thus, since

G1>S0(1, 3) xSO(D)
>80(1,3)xH (5.30)
we may also expand the representations |R) of G in terms of the representations of H:
|R>=§lh}><h,’-iR>- (5.31)
Then the harmonic expansion (5.26) is
IRy = 3;3 |G (G, | hi)X | )R R). (5.32)

This shows that the isometry group representations which actually occur in the harmonic
expansion of | R) are those for which there is at least one overlap between the expansions
(5.29) and (5.31) in representations of H (de Alwis and Koh 1984). The degeneracy
of |G,) is given by the number of overlaps.
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As an illustration consider the (D =2) case in which
K =8%=80(3)/S0(2) =SU(2)/U(1). (5.33)

Since H=S0(2) is the maximal subgroup of G=S0(3), the isometry group is the
‘rotation’ group

G,=S0(3). (5.34)

Suppose also that we are concerned with the vector representation |vectors) of SO(1, 5).
Under the decomposition (5.30) the expansion (5.31) becomes

|vectorg) = [vector,, 0)+|scalar,, +1)+|scalar,, —1) (5.35)

using the notation |Lorentz group representation, U(1) charge). Consider first the
scalar component with charge +1. Then the representations of the isometry group
SO(3) which actually occur in the harmonic expansion are those which contain an
element with U(1) charge +1. Denoting the representations of SO(3) by their ‘angular
momentum’ J, so that the dimensionality is 2J+1, this means that the required
representations are those with J integral and non-zero:

J=n (n=1,2,3,...). (5.36)

The inclusion of the vector component with charge 0 extends this to include also the
J =0 representations of G;.

The ‘realistic’ cases studied have for the most part been in the context of eleven-
dimensional supergravity, in which the compactification is achieved using a background
‘three-index photon’ field Agcp with field strength F,pcp, defined in (3.10). As
explained in § 3.2, since supersymmetry forbids an eleven-dimensional cosmological
constant, these supergravity theories typically have a classical ground state which is a
four-dimensional anti-de Sitter space times a compact manifold K. The known solutions
of the field equations fall into two classes: the Freund-Rubin (1978, 1980) solution
and the Englert (1982) solution. In both classes the gravitino field vanishes; the
four-dimensional Riemann tensor is maximally symmetric:

Rpo = —k[8,p(%)81o(X) — 8uo(x)gup(x)] (5.37)

where g,,(x) is the anti-de Sitter space metric, and the ‘photon’ field strength in the
4-space is given by

F,,.o=|det g|"2e*"*"F (5.38)

as in (3.14). Also, in both classes the metric and the field strength with mixed indices
vanish:

g—#m = Fqum = F;wmn = Fumnp =0. (5.39)
However, in the Freund-Rubin solution,
anpq(y)=0 Rmnz%Fzgnxn k=§F2 (5'40)

whereas the Englert solution has
anpq(y)=:t% FﬁTmnpqn Rng%Fzgmn k=%FZ (541)

where 7 is a Killing spinor and 7, is the totally antisymmetric product of four
seven-dimensional Dirac matrices. All fields are then fluctuations about these ground-
state values and these fluctuations may be decomposed into irreducible representations
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of the tangent space group SO(7) of the compact manifold K. For example, the
fluctuations h,(x, y) of the metric may be decomposed into 1-, 7- and 27-dimensional
representations, the last one being the symmetric traceless representation, and the
fluctuations aspc(x, ¥) in the ‘photon’ field may be decomposed into 1-, 7-, 21- and
35-dimensional representations. We may then perform the harmonic expansion (5.26)
for each of these tangent space group representations. This expresses the various
fluctuations in terms of a basis of these irreducible representations of G satisfying the
criteria described after (5.32). We call these basis elements Y™i(y) ‘spherical’ har-
monics, where N,, N7, N, etc, identify representations of the tangent space group
from which the harmonic arose; the harmonics are eigenfunctions of the H-invariant
d’Alembertian operator

AYN(p)=—pu™NYN(y) (5.42)

where A, is the Hodge-de Rham operator. The various field equations are linearised
in the fluctuations, as in (5.8), and after fixing the gauge the mass eigenstates are
identified. The mass eigenvalues are specified in terms of the eigenvalues u™ of the
invariant operators on the internal space. The general solution in the case of the
Freund-Rubin solution has been derived by Castellani et al (1984b), but in the case
of the Englert solution a calculation of the bosonic spectrum is still awaited. (It is not
known whether these are the only solutions.) To fix the numerical values of the mass
eigenstates it is necessary to specify precisely which coset space G/H is being con-
sidered. In the case of the round 7-sphere the general treatment reproduces the
previously found results (Biran et al 1983, 1984, Duff and Pope 1983). In addition to
the zero modes expected in an N =8 supergravity theory (namely, one massless
graviton, 28 massless SO(7) gauge vector bosons, 35 scalars and 35 pseudoscalars)
there are an additional 294 massless scalars. It is not known whether these scalars
will remain massless when quantum effects are included, since their masslessness is
not obviously protected by a gauge symmetry. The results for the squashed 7-sphere
were derived by Awada et al (1983), Bais ef al (1983) and by Nilsson and Pope (1984).
The complete bosonic spectrum for the MP? solutions (Witten 1981) of eleven-
dimensional supergravity, with Freund-Rubin compactification, has been found by
D’Auria and Fré (1984a, b).

5.2. Kac-Moody symmetries

We saw in the previous section that the Brans-Dicke scalar field ¢'® of the five-
dimensional Kaluza-Klein theory was massless (only) at the classical level because of
the scale invariance of the truncated theory. This masslessness is not expected to
survive beyond the classical approximation, since the scale invariance is not an
invariance of the complete theory. We now wish to analyse the symmetry of the theory
in four dimensions when the complete tower of massive states is retained. This derives
from the general five-dimensional coordinate invariance. Under a general
(infinitesimal) coordinate transformation

xH - xt+*(x, 6) (5.43a)

6->0+(x,0) (5.43b)
where

{Mx, 8) = i M A(x)e™? (5.43¢)

n=-—aoG
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with

A =T A(x). (5.43d)
As in (1.19), and (5.11), we are restricted to periodic variation of the coordinates,
because of the topology of the ground state. Then it is easy to see that the global scale

transformation (5.22) is not a symmetry of the complete theory, since to effect the
transformation it is required to rescale the metric

Zas~>(1+2A/3)84s (5.44)
and combine this with the general coordinate transformation in which
A =82(~AR6). (5.45)

Clearly this coordinate transformation does not satisfy the periodicity requirement
(5.43¢), which means that ¢ is only a pseudo-Goldstone boson, as claimed in the
previous section.

In ordinary four-dimensional relativity the Poincaré invariance may be regarded
as a special case of the general covariance in which the infinitesimal coordinate
transformations {*(x) are restricted to the linear form

H(x)=a"*+w* x¥ (5.46)
where a* and w,, = —w,, are constant. To find the analogue in our five-dimensional
theory we restrict the quantities {”*(x) in an analogous manner

g(")u(x)=a(")l-t+w(")#yx”’ (547[1)

{("M(x) =™ (5.47b)

where a'™, »'™*, and ¢ are constants. We may determine the generators associated
with these constants in the usual way. Consider, for example, a translation with all

0™, ¢'" zero and a single non-zero a'"*, i.e.

x#_)x#+év('l)#ei"9 (548(1)

8- 8. (5.48b)
Then

d(x, 0)> ¢(x, ) +e" (", 4= (1-1"“P")¢. (5.49)
Hence

PV =ie"%,. : (5.50)
Similarly

M) =ie'"(x,0, —x,9,) (5.51)
generates the Lorentz transformation parametrised by o) and

Q" =ie"3, (5.52)

generates translations in S'. These generate a (non-compact) infinite parameter Lie
algebra (Dolan and Duff 1984) containing the usual Poincaré algebra:

[P, PUM]=0 (5.53a)
(M), PO =i(na PO =, PUT) (5.53b)
MY, MUD]=i(n,, MU + 5, M =g, MU =, M)

(5.53¢)



Kaluza-Klein theories 1123

(Q", Q" =(n-m)Q""™ (5.53d)
[Q", P ]=—mP,"™ (5.53¢)
[QM™, M =—-mM ;™. (5.531)

If we restrict our attention to the subalgebra with n=m =0, we of course obtain the
usual Poincaré ®U(1) algebra. In fact this finite-dimensional subalgebra may be
enlarged to Poincaré ®SO(1,2) since the generators P\, M), Q'VQ'”, Q""" also
close. The last three give

[V, Q""]=2QY (5.54a)
[Q, QM]=-0Q" (5.54b)
[QY, Q7 "]=+0QW (5.54¢)

which is the SO(1, 2) algebra (not SO(3)). This was noted by Salam and Strathdee
(1982).

The algebra (5.53) gives the symmetry of the full four-dimensional Lagrangian,
when all of the n # 0 modes are retained. It is the natural extension of the ordinary
Poincaré invariance with which we are familiar. However the ground state, the particle
physics vacuum, described by (5.23), only has symmetry Poincaré @U(1), so the full
(Kac-Moody) symmetry (Kac 1968, Moody 1968) is spontaneously broken. Since the
restriction (5.47) makes the symmetry a global one, rather than a local one, we expect
there to be Goldstone bosons generated by the symmetry breaking. To identify the
Goldstone bosons we need to determine which fields are transformed inhomogeneously
by the broken generators. For example in the case of the Abelian Higgs model with
a complex scalar field ¢(x)

¢ (x)=(1/vV2)($:(x) +ids(x)) (5.55)
suppose that

(dy(x)=v (5.56)

(¢a(x))=0. (5.57)
Then we write

&(x)=(1/VDv+di(x) +ida(x)] (5.58)
where

(i(x))=0 (i=1,2). (5.59)

Under an infinitesimal U(1) gauge transformation
b(x)-> (1+iA)d(x) = (1/VD) v+, +ids—Ad+iA(v+ )] (5.60)
Thus the Higgs field

$1“’$1'A$2 (5.61)
whereas the Goldstone boson field
ng“) (£2+i/\(v+ ‘-i;l) (5.62)

which is an inhomogeneous transformation.
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In the same way we may determine the properties of the fields A5 (defined in
(5.11)) appearing in the metric, under the transformations (5.47), and hence find the
Goldstone modes.

To do this the metric is first written in the rescaled form

gap = ¢"“<g“”:¢'2“A” Kd:;“) (5.63)
and then the fields are shifted so that

8uv ={Gur) T 8 (5.64a)

A, =(A)+A, (5.64b)

b =(d)+é. (5.64¢)

Under a general infinitesimal coordinate transformation the metric transforms accord-
ing to

§as~> Ean T 8cndal S +8acinl +{ dcgas (5.65)

and from this we may determine how the fields g,,, /iu and d; transform under the
(global) transformations (5.47). In this way we can find how the component fields
gn(x), AL")(x), é"(x) transform, and hence identify the Goldstone modes. The
conclusion (Dolan 1984a, b) is that the fields A\’ and ¢'" with n # 0 are Goldstone
modes, as anticipated in the previous section. This is why the full theory, which is
invariant under local five-dimensional coordinate transformations, has an infinite tower
of massive tensor and vector modes, as found in the last section.

There will, of course, be generalisations of the infinite parameter symmetry (5.53)
which occur in the various higher-dimensional (N > 5) Kaluza-Klein theories which
we have considered. For example in the case (5.33) that the compactified manifold
K is a sphere S°, the expansion (5.43) will be replaced by an expansion in spherical
harmonics. Evidently the derivation of the analogue of (5.53) will involve products
of these harmonics, and the structure constants of the infinite parameter Lie algebra
will be Clebsch-Gordan coefficients. It is expected that a full understanding of these
Kac-Moody symmetries will be important in determining the ultraviolet properties of
the non-Abelian Kaluza-Klein theories (Dolan and Duff 1984).

Four-dimensional Kac-Moody algebras have been studied in a different context
by Dolan (1984c¢). In this case they have been used to find exact non-perturbative
solutions for the (special) theories in which they are manifest.

5.3. Fermions (Witten 1983)

We have seen in § 3 that in order to achieve compactification of the extra dimensions
to a manifold K having isometry group

G, =>8SU(3) xSU(2)x U(1)

it is likely that matter fields, not arising from the metric, have to be input from the
start (unless we are prepared to believe that the compactification derives entirely from
quantum effects). We shall see in this section that there are additional reasons why
fundamental gauge fields, as opposed to those emerging from G,, are necessary if we
are to understand how light (on the Planck scale) fermions can arise in a Kaluza-Klein
scenario.
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Consider, for example, a massless spinor particle ¢ in 4+ D dimensions. The Dirac

equation can be written as

1Dy =(iy*a, +il"emV, )y =0

where y* are (22*P/2x 22072

with 7** as in (1.4) and the gamma matrices of the compact space satisfying

{y*, v 1=29*" (u, »=0,1,2,3)

{r=, T} =28% (e, B=4,...,3+D)
and

{re, y*}=0.

V.. is the covariant derivative defined in (2.37), so

Vm(// = (am _’% iwfnﬁMaB)w
with
M, = 4ilI%, %]

gamma matrices satisfying

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

being the spinor representation of the tangent space group SO(D) of the compact

manifold K. Clearly
M=-il""e,V,

(5.71)

plays the role of the mass operator, since its eigenvalues give the particle masses in
four dimensions. However, it can be shown that M has no zero eigenvalues (Lich-
nerowitz 1963, Schrédinger 1932). We outline the derivation given by Zee (1981).

First we write
M=-iI'""V,,
where
Ir'"=r<e”
so that
(T T"}=28"%elep =28
Squaring M gives
~M?*y=T"V, "V,
="'V, Vy+I"[V,, I"]V.y
=G{I" I+ T )V, V i
=g"V, Vo + 3T TV, V.1
= V"Vt = 3M ™" MR g
=V"V,.¥ - iRy
In deriving this we have used the identities
Vo, "IV =0
[V, Vol = =3iM R g, b

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)
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as well as the well known cyclic properties of the Riemann tensor. R is the curvature
scalar of K. The first term of (5.75) is not positive, since V,,§"" =0 so

J APy Vg WY,V = —J 4Py VE(V )™ (Y ). (5.77)

Also R is positive for a (closed) compact space, so it follows that M?* has only positive
eigenvalues. Furthermore, we expect these non-zero eigenvalues to be of order R,
with R the characteristic size of the compact manifold, and from (5.2) this means that
only fermions with masses of order m, are allowed. Of course we could instead have
considered a massive spinor in 4+ D dimensions, and then adjusted its mass to give
any desired mass in four dimensions. This requires a fine tuning to at least one part
in 10" to account for the masses of the fermions which we observe in nature, and this
is generally regarded as a most unattractive explanation. A much preferred scenario
is that the observed fermions are in fact zero modes of the Dirac operator, and that
their small non-zero masses arise from physics at a much lower (possibly electroweak)
energy scale. (There may still be a measure of fine tuning, but nothing like so much
as is needed at the Planck scale.)

If the observed fermions really are zero modes, it follows that we must change
some of the (tacit) assumptions made in deriving Lichnerowitz’s theorem. One possibil-
ity, which has been explored by Destri et al (1983) and by Wu and Zee (1984), is to
introduce torsion on the internal manifold K. This modifies (5.75) so that

M2y ={V"Y,, =3 M""M*®R gy +iM ™" T,V J& (5.78)
where
Th, =Tk, —Thn (5.79)

is non-zero when the Christoffel connection is not symmetric in its lower indices; in
the form language of § 2.5 the torsion 2-form is defined by

T*=de“+w% re’. (2.35)

The first term of (5.78) is still not positive, but the remaining terms can have either
sign, so zero modes are possible. Incidentally, the cyclic properties of the Riemann
tensor are not valid in the presence of torsion so we cannot reduce the second term
to the scalar curvature. Unfortunately the explorations of Wu and Zee have shown
that this possible escape route is also unattractive. First there is the arbitrariness of
precisely how the torsion should be introduced. These authors study only the case
when K is a group manifold, so the torsion is parallelisable, as proposed by Cartan
and Schouten (1926). (Parallelisable means that the curvature tensor, constructed from
8., and 'Y, vanishes.) They find that there are large numbers of zero modes (1024
in the case of the SU(5) manifold, for example) but these do not appear in the
representations which appear to be inhabited by the known fermions. This high
dimensionality is related to the high dimensionality of the manifold, so a better bet
might be to look at homogeneous coset spaces G/H, instead of G. In any case there
is no compelling reason to insist upon a parallelisable torsion. It is therefore possible
that the unsatisfactory results so far obtained could be improved upon given sufficient
ingenuity. However even if this could be achieved, the massless fermions so obtained
would most likely not have the quantum numbers of the fermions actually observed
in nature.

Suppose, for example, we take the manifold K to be a homogeneous coset space

K=G/H (5.80)
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as in (5.27), with G and H chosen so that K is one of the M™"™ spaces discussed in
§2.6. Then

G=G,=SU(3)~xSU(2), xU(1)y (5.81a)
and
H=SUQ2)xU(1)x xU(1) x- (5.81b)

with X' and X” as in (2.63) and (2.64). Then we may decompose the various
representations of G which are observed in nature in terms of representations of H,
as (5.29). Thus

er=1(1,—s,—1) (5.82a)
E =(1, % 330 +(1, =35, —3-31) (5.82b)
dp=(2,3—3s, —30)+(1, =1—3s,—31) (5.82¢)

with similar expansions for ur and the quark doublet Q.. The embedding of H in the
tangent space group SO(7) of K is given by (2.56). So, in an obvious notation, the
diagonal generators of H are

QA ) =3(M"~M*) (5.83a)
Q(X")=3}M"+ M%) (5.83b)
QX" =M (5.83¢)
where M*? (a, B=1,...,7) are the generators of SO(7). The representations of the

full tangent space group SO(1, 10) may be expanded in terms of the decomposition
(5.30). In particular it is clear that the spinor representation decomposes into a product
of spinors of SO(1,3) and of SO(7). Similarly a vector-spinor of SO(1, 10) (which
transforms as a product of vector and spinor representations) decomposes into products
of an SO(1, 3) vector-spinor with an SO(7) spinor, and an SO(1, 3) spinor with an
SO(7) vector-spinor. If we restrict ourselves to particles having spin less than 2, this
means that (the observed) SO(1, 3) spinors must be associated with spinors or vector-
spinors of SO(7) (de Alwis and Koh (1984). Now, the spinor representation of SO(7)
is generated by the 8 x 8 gamma matrices (see, for example, Rajpoot 1980)

M=o, x1x1 MP=o,x1x1
P=0;x0,x1 M=o;x0o,x1 (5.84)
[P=0yx0o3X 0y M=o, X 03X 05 M=y, x0y,% 05.
Then
M = L[Tr* 7] (5.85)

and it is easy to see, using (5.83), that this spinor representation may be expanded in
terms of representations of H as
LA DH(LE DL -3, 9+, -3, D), (5.86)

As explained in (5.32), in order for a particular (fermion) representation (5.82) of G
to occur in the harmonic expansion of the spinor representation of SO(7), there must
be at least one overlap between the expansion (5.82) and (5.86). Thus if we demand
that er arises in the harmonic expansion then

|t]= (5.87a)
(5.87b)

|8 —spinor) =2, 0,3

Nlu l

|si=
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But then E| does not occur in the harmonic expansion, and neither does dy, or indeed
any of the other fermion representations. Including the vector-spinor representation
of SO(7) does not alleviate the problem (Randjbar-Daemi et al 1984b). It is possible
to meet this objection by enlarging the manifold K. For example, taking (Bailin and
Love 1985a)

H=SU(2)xU(1), (5.88)

with Z as in (2.60), does allow the observed fermion quantum numbers to arise in the
expansion of the SO(8) spinor, provided

—3p=g=r (5.89)
or in the vector-spinor if
Ip=xqg=r or 3p==+3g==r {(5.90)
However the choice (5.88) gives an isometry group G, larger than G, as in (5.28); in fact
G;=SU(3)xSU(2)x U(1) x U(1) (5.91)

in this case, so there is an additional (hitherto) unobserved neutral gauge boson
associated with the extra U(1).

However, there are further objections to the programme we have pursued, quite
apart from the difficulty of arranging for masslessness and the observed fermion
quantum numbers. Even when we are able to satisfy these criteria there remains the
objection that the resulting fermions are not chiral fermions. By this we mean that
the left-chiral components of the (observed) fermion fields transform differently, with
respect to SU(3) x SU(2) x U(1), from the right-chiral components. In other words the
quantum numbers do not appear to be vector-like; for example the left-handed quark
fields transform as

Qu=(3,2,3%) (5.92)
whereas the right-handed quarks transform as
up=(3,1,%) (5.93a)
dp=(3, 1, —3). (5.93b)
Equivalently the left components of the antiquarks transform as
uf =(3,1,-3) (5.94a)
=315 (5.94b)

Thus the fermions of a given helicity transform as a complex representation of SU(3) x
SU(2) x U(1); the right-chiral components transform according to the complex conju-
gate of the left-chiral representation, and the two representations are inequivalent. Of
course, it is always possible that future high-energy experiments will discover new
‘mirror’ fermion states @ and d transforming as

0L=(3,2,-% (5.95a)
and

ar =(3,1,3) (5.95b)

df=@3,1,-% (5.95¢)
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and that the quantum numbers of the complete fermion generation are vector-like after
all. This seems unlikely for several reasons (Witten 1983). First, it is remarkable that
none of the (fourteen multiplets of) observed fermions are the mirror partners of others.
Second, the well known cancellation of the Adler-Bardeen vys anomalies within each
of the three known fermion generations would then be pure coincidence, since vector-
like theories are guaranteed to be anomaly free; the mirror states would automatically
have cancelled any non-zero anomaly generated by the known fermions.

We shall see that the requirement that the left-chiral zero modes form a complex
representation of the symmetry group is extremely restrictive. For instance, the
dimensionality of spacetime cannot be odd. This is because in odd dimensionality
there is a unique spinor representation. (This is illustrated for SO(7) in (5.84). The
product of all of the I matrices il"" . .. I'7 = I, whereas in four dimensions the product
iy’y'y*y’ =y’ # I,, and permits the decomposition of the spinor into left- and right-
chiral pieces.) This means that SO(1, 3+ D) has a unique spinor representation if D
is odd, which transforms under SO(1, 3) x SO(D) as the produ